Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images
An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using inp...
Saved in:
| Published in | Magnetic resonance imaging Vol. 62; pp. 167 - 173 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier Inc
01.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0730-725X 1873-5894 1873-5894 |
| DOI | 10.1016/j.mri.2019.06.019 |
Cover
| Abstract | An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features. |
|---|---|
| AbstractList | An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features. An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features.An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features. |
| Author | Shaikh, Tawseef Ayoub Ali, Rashid |
| Author_xml | – sequence: 1 givenname: Tawseef Ayoub surname: Shaikh fullname: Shaikh, Tawseef Ayoub email: tawseef37@gmail.com – sequence: 2 givenname: Rashid surname: Ali fullname: Ali, Rashid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31279772$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE9rFDEYh4NU7Lb6AbxIbvYyYzKZTGbwtBT_FCqFUsFbyCTvtFlnkjVvVth-elO2euihnn6BPE8Izwk5CjEAIW85qznj3YdNvSRfN4wPNevqMi_IivdKVLIf2iOyYkqwSjXyxzE5QdwwxmQj5CtyLHijBqWaFblZ73JcTAZHTU5xe7enBhEQFwiZTjHR9Xx_B36B9B6p8wgGoay5DRE90inFhY7J-EC_XV9Qv5hbwNfk5WRmhDePe0q-f_50c_61urz6cnG-vqxsy0SuwPG2dRwaK5QYh0HKkVvWGyvGHvpy05WD7K2d5MjUIKcRnGuHMlaCBSVOydnh3W2Kv3aAWS8eLcyzCRB3qJtGil7wTsqCvntEd-MCTm9T-Wra678lCsAPgE0RMcH0D-FMP9TWG11q64famnW6THHUE8f6bLKPIZci87Pmx4MJJc9vD0mj9RAsOJ_AZu2if9Yenth29sFbM_-E_X_cP0Dmreg |
| CitedBy_id | crossref_primary_10_3233_IDT_230524 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_14283_jpad_2024_66 crossref_primary_10_1007_s41060_024_00658_y crossref_primary_10_1002_ima_22650 crossref_primary_10_3233_KES_220007 crossref_primary_10_1007_s11042_023_16023_3 crossref_primary_10_1007_s41870_020_00606_6 crossref_primary_10_1016_j_nicl_2021_102842 crossref_primary_10_3233_JAD_220877 crossref_primary_10_3390_app11136175 crossref_primary_10_1080_20479700_2023_2175414 crossref_primary_10_1007_s42600_024_00394_z crossref_primary_10_1007_s40031_021_00571_z crossref_primary_10_1016_j_compag_2022_107119 crossref_primary_10_1016_j_jns_2020_117077 crossref_primary_10_2196_59370 |
| Cites_doi | 10.1016/j.mcna.2012.12.014 10.1016/j.neuroimage.2010.07.020 10.1109/TBME.2008.919107 10.1109/JBHI.2017.2655720 10.2528/PIER11031709 10.1016/j.bspc.2006.05.002 10.1109/TGRS.2005.863297 10.1016/j.jalz.2013.02.003 10.1016/j.mri.2014.05.008 10.1016/j.neucom.2014.09.072 10.1109/TMI.2006.887364 10.1109/TBME.2013.2284195 10.1214/009053607000000677 10.1016/j.eswa.2011.02.012 10.1016/j.neurobiolaging.2009.09.006 10.1016/j.neuroimage.2011.11.066 10.2528/PIER10090105 10.1109/72.788646 10.1016/j.compmedimag.2012.11.001 10.1007/978-3-030-17297-8 10.1111/j.1600-0447.2008.01326.x 10.1016/j.neubiorev.2015.08.001 10.1016/S0140-6736(01)05408-3 10.2528/PIER12061410 10.1016/j.jns.2009.10.022 10.1016/S1361-8415(03)00037-9 10.1371/journal.pone.0064704 10.1016/j.pnpbp.2017.06.024 10.1155/2017/4080874 10.2528/PIER13010105 10.1109/JBHI.2013.2285378 10.1016/j.dsp.2009.07.002 10.1007/s00429-013-0641-4 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.mri.2019.06.019 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-5894 |
| EndPage | 173 |
| ExternalDocumentID | 31279772 10_1016_j_mri_2019_06_019 S0730725X1930102X |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS G8K LCYCR RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c403t-ed144d1e2c373b9955b1c08ac3b8e84d163b858ccf5b0795fbedd49fbec5ece73 |
| IEDL.DBID | .~1 |
| ISSN | 0730-725X 1873-5894 |
| IngestDate | Sat Sep 27 18:14:37 EDT 2025 Wed Feb 19 02:31:41 EST 2025 Thu Apr 24 22:55:15 EDT 2025 Thu Oct 16 04:28:10 EDT 2025 Fri Feb 23 02:22:55 EST 2024 Tue Oct 14 19:40:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DWT (Discrete Wavelet Transform) Computer-assisted diagnosis (CAD) Classifier Support Vector Machine (SVM) Alzheimer's disease Machine intelligence |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-ed144d1e2c373b9955b1c08ac3b8e84d163b858ccf5b0795fbedd49fbec5ece73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31279772 |
| PQID | 2253831655 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2253831655 pubmed_primary_31279772 crossref_primary_10_1016_j_mri_2019_06_019 crossref_citationtrail_10_1016_j_mri_2019_06_019 elsevier_sciencedirect_doi_10_1016_j_mri_2019_06_019 elsevier_clinicalkey_doi_10_1016_j_mri_2019_06_019 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Magnetic resonance imaging |
| PublicationTitleAlternate | Magn Reson Imaging |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Sokolova, Lapalme (bb0185) 2009; 45 Wolfers, Buitelaar, Beckmann, Franke, Marquand (bb0305) 2015; 57 Liu (bb0170) 2015; 220 bb0120 Fischl, Sereno, Dale (bb0200) 1999; 9 Keogh, Mueen (bb0045) 2017 Liu, Suk, Wee, Chen, Shen (bb0160) 2013 Dale, Fischl, Sereno (bb0205) 1999; 9 Zhang, Wu, Wang (bb0260) 2011; 116 Qing, Xia, Lele, Kewei, Li, Rui (bb0240) 2017; 150 Hofmann, Scholkopf, Smola (bb0215) 2008; 36 Segonne (bb0135) 2004; 22 Hanyu, Sato, Hirao, Kanetaka, Iwamoto, Koizumi (bb0060) 2010; 290 Sudeb, Manish, Kundu (bb0295) 2013; 137 Rowayda et al., Regional atrophy analysis of MRI for early detection of Alzheimer's disease, Image Process Pattern Recognit, Wiley, 6 (2013), no. 1, 49–58. Liu, Zhou, Shen, Yin (bb0075) 2014; 18 Segonne, Pacheco, Fischl (bb0195) 2007; 26 Ouyang, Chen, Chen, Poon, Yang, Lee (bb0020) 2008; 2008 Chen, Deutsch, Satya, Liu, Mountz (bb0070) 2013; 37 bb0150 Jha, Kwon (bb0290) 2016; 14 bb0190 Qian, David, Elizabeth, Weizhao, Jason, Maria (bb0330) 2011; 7 Fox, Crum, Scahill, Stevens, Janssen, Rossar (bb0005) 2001; 358 Gao (bb0165) 2013; 8 Carlos, Eric, Sebastian, Patrizia, Bruno, Magda (bb0220) 2013; 212 Muhammad, Ahmed, Jeevan (bb0335) 2015; 10 Thies, Bleiler (bb0010) 2013; 9 Khedher, Ramırez, Gorriz, Brahim, Segovia, Initiative (bb0285) 2015; 151 Jie, Wee, Shen, Zhang (bb0090) 2016; 32 Ramesh, Jeonghwan, Jeong-Seon, Sang (bb0325) 2017 Gray, Wolz, Heckemann, Aljabar, Hammers, Rueckert (bb0065) 2012; 60(1) Hanyu, Sato, Hirao, Kanetaka, Iwamoto, Koizumi (bb0085) 2010; 290 Tijn, Koini, Vosa, Seiler, Rooij, Lechner (bb0110) 2017; 152 Li, Meng, Shi, A. D. N. I (bb0270) 2019 I. T. Jollie, et al., Principal component analysis, Springer, 2002. Siddiqui, Reza, Kanesan (bb0300) 2015; 0135875 Mitchell, Shiri-Feshki (bb0315) 2009; 119 Zhang, Wu (bb0265) 2012; 130 Keith, Nick, Reisa, William (bb0320) 2012; 2 Cocosco, Zijdenbos, Evans (bb0025) 2003; 7 Zhang, Wang, Wu (bb0250) 2010; 109 Zhang, Dong, Wu, Wang (bb0255) 2011; 38 Chaplot, Patnaik, Jagannathan (bb0245) 2006; 1 Jie, Zhang, Gao, Wang, Wee, Shen (bb0095) 2014; 61 Banday, Mir (bb0125) 2016 Harrison (bb0040) 2013; 97 Kim, Na (bb0310) 2017; 80 Chapelle, Haffner, Vapnik (bb0210) 1999; 10 Shi, Zheng, Li, Zhang, Ying (bb0275) 2018; 22 Muwei, Yuanyuan, Fei, Wenzhen, Xiaohai (bb0230) 2014; 32 M. Reuter, H. D. Rosas, and B. Fischl B, Highly accurate inverse consistent registration: A robust approach, NeuroImage, Elsevier, 53(7), (2010), 1181–1196. Chu, Hsu, Chou, Bandettini, Lin, Initiative (bb0155) 2012; 60 Ouyang, Chen, Chai, Chen, Poon, Yang (bb0015) 2008; 55 Ashraf, Ahmad, Ali, Zaheer (bb0100) 2018; 12 Yingling, Shenquan (bb0235) 2017; 63 Hart, Cribben, Fieca (bb0105) 2018; 178(687) Fischl (bb0140) 2004; 23 Lenzi, Serra, Perri, Pantano, Lenzi, Paulesu (bb0035) 2011; 32 Xiaohong, Jie, Hao, Guimei, Huijun, Fangpeng (bb0080) 2018; 12 Wang, Chang (bb0030) 2006; 44 Dahshan, Hosny, Salem (bb0280) 2010; 20 Kim, Sae (bb0180) 2017; 3 Vos, Koini, Tijn, Seiler, Grond, Lechner (bb0115) 2018; 167 Desikan (bb0145) 2006; 31 Collier, Burnett, Amin (bb0050) 2003; 4 Vansteenkiste (bb0055) 2007 Xiaohong (10.1016/j.mri.2019.06.019_bb0080) 2018; 12 Shi (10.1016/j.mri.2019.06.019_bb0275) 2018; 22 Chu (10.1016/j.mri.2019.06.019_bb0155) 2012; 60 Zhang (10.1016/j.mri.2019.06.019_bb0250) 2010; 109 10.1016/j.mri.2019.06.019_bb0175 Hanyu (10.1016/j.mri.2019.06.019_bb0060) 2010; 290 Lenzi (10.1016/j.mri.2019.06.019_bb0035) 2011; 32 Mitchell (10.1016/j.mri.2019.06.019_bb0315) 2009; 119 Dale (10.1016/j.mri.2019.06.019_bb0205) 1999; 9 Zhang (10.1016/j.mri.2019.06.019_bb0255) 2011; 38 10.1016/j.mri.2019.06.019_bb0130 Zhang (10.1016/j.mri.2019.06.019_bb0260) 2011; 116 Hanyu (10.1016/j.mri.2019.06.019_bb0085) 2010; 290 Jha (10.1016/j.mri.2019.06.019_bb0290) 2016; 14 Segonne (10.1016/j.mri.2019.06.019_bb0135) 2004; 22 Liu (10.1016/j.mri.2019.06.019_bb0170) 2015; 220 Chaplot (10.1016/j.mri.2019.06.019_bb0245) 2006; 1 Liu (10.1016/j.mri.2019.06.019_bb0075) 2014; 18 Fischl (10.1016/j.mri.2019.06.019_bb0200) 1999; 9 Hofmann (10.1016/j.mri.2019.06.019_bb0215) 2008; 36 Liu (10.1016/j.mri.2019.06.019_bb0160) 2013 Ouyang (10.1016/j.mri.2019.06.019_bb0015) 2008; 55 Siddiqui (10.1016/j.mri.2019.06.019_bb0300) 2015; 0135875 Qian (10.1016/j.mri.2019.06.019_bb0330) 2011; 7 Muwei (10.1016/j.mri.2019.06.019_bb0230) 2014; 32 Yingling (10.1016/j.mri.2019.06.019_bb0235) 2017; 63 Fox (10.1016/j.mri.2019.06.019_bb0005) 2001; 358 Segonne (10.1016/j.mri.2019.06.019_bb0195) 2007; 26 Cocosco (10.1016/j.mri.2019.06.019_bb0025) 2003; 7 Khedher (10.1016/j.mri.2019.06.019_bb0285) 2015; 151 Wolfers (10.1016/j.mri.2019.06.019_bb0305) 2015; 57 Thies (10.1016/j.mri.2019.06.019_bb0010) 2013; 9 Collier (10.1016/j.mri.2019.06.019_bb0050) 2003; 4 Jie (10.1016/j.mri.2019.06.019_bb0095) 2014; 61 Vansteenkiste (10.1016/j.mri.2019.06.019_bb0055) 2007 Dahshan (10.1016/j.mri.2019.06.019_bb0280) 2010; 20 Desikan (10.1016/j.mri.2019.06.019_bb0145) 2006; 31 Ramesh (10.1016/j.mri.2019.06.019_bb0325) 2017 Chapelle (10.1016/j.mri.2019.06.019_bb0210) 1999; 10 Ouyang (10.1016/j.mri.2019.06.019_bb0020) 2008; 2008 Chen (10.1016/j.mri.2019.06.019_bb0070) 2013; 37 Tijn (10.1016/j.mri.2019.06.019_bb0110) 2017; 152 Banday (10.1016/j.mri.2019.06.019_bb0125) 2016 Gray (10.1016/j.mri.2019.06.019_bb0065) 2012; 60(1) Sokolova (10.1016/j.mri.2019.06.019_bb0185) 2009; 45 Qing (10.1016/j.mri.2019.06.019_bb0240) 2017; 150 Fischl (10.1016/j.mri.2019.06.019_bb0140) 2004; 23 Kim (10.1016/j.mri.2019.06.019_bb0180) 2017; 3 Carlos (10.1016/j.mri.2019.06.019_bb0220) 2013; 212 Keogh (10.1016/j.mri.2019.06.019_bb0045) 2017 Li (10.1016/j.mri.2019.06.019_bb0270) 2019 Harrison (10.1016/j.mri.2019.06.019_bb0040) 2013; 97 Gao (10.1016/j.mri.2019.06.019_bb0165) 2013; 8 Wang (10.1016/j.mri.2019.06.019_bb0030) 2006; 44 Keith (10.1016/j.mri.2019.06.019_bb0320) 2012; 2 10.1016/j.mri.2019.06.019_bb0225 Muhammad (10.1016/j.mri.2019.06.019_bb0335) 2015; 10 Kim (10.1016/j.mri.2019.06.019_bb0310) 2017; 80 Ashraf (10.1016/j.mri.2019.06.019_bb0100) 2018; 12 Hart (10.1016/j.mri.2019.06.019_bb0105) 2018; 178(687) Sudeb (10.1016/j.mri.2019.06.019_bb0295) 2013; 137 Jie (10.1016/j.mri.2019.06.019_bb0090) 2016; 32 Zhang (10.1016/j.mri.2019.06.019_bb0265) 2012; 130 Vos (10.1016/j.mri.2019.06.019_bb0115) 2018; 167 |
| References_xml | – volume: 18 start-page: 984 year: 2014 end-page: 990 ident: bb0075 article-title: Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification publication-title: IEEE J Biomed Health Infor – reference: M. Reuter, H. D. Rosas, and B. Fischl B, Highly accurate inverse consistent registration: A robust approach, NeuroImage, Elsevier, 53(7), (2010), 1181–1196. – year: 2007 ident: bb0055 article-title: Quantitative analysis of ultrasound images of the preterm brain – volume: 60 start-page: 59 year: 2012 end-page: 70 ident: bb0155 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage – volume: 137 start-page: 1 year: 2013 end-page: 17 ident: bb0295 article-title: Brain MR image classification using multi-scale geometric analysis of ripplet publication-title: Prog Electromagn Res – volume: 8 year: 2013 ident: bb0165 article-title: A novel approach for lie detection based on F-score and extreme learning machine publication-title: PloS One – volume: 1 start-page: 86 year: 2006 end-page: 92 ident: bb0245 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed Signal Process Control – volume: 22 start-page: 1060 year: 2004 end-page: 1075 ident: bb0135 article-title: A hybrid approach to the skull stripping problem in MRI publication-title: NeuroImage – volume: 130 start-page: 369 year: 2012 end-page: 388 ident: bb0265 article-title: An MR brain images classifier via principal component analysis and kernel support vector machine publication-title: Prog Electromagn Res – volume: 20 start-page: 433 year: 2010 end-page: 441 ident: bb0280 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit Signal Process – volume: 9 start-page: 208 year: 2013 end-page: 245 ident: bb0010 article-title: 2013 Alzheimer's facts and figures, Alzheimer's $ dementia publication-title: J Alzheimer's Assoc – volume: 44 start-page: 1586 year: 2006 end-page: 1600 ident: bb0030 article-title: Independent component analysis-based dimensionality reduction with applications in hyper spectral image analysis publication-title: IEEE Trans Geo Remote Sens – volume: 12 start-page: 1 year: 2018 end-page: 11 ident: bb0080 article-title: Classification of Alzheimer's disease, mild cognitive impairment, and normal controls with sub network selection and graph kernel principal component analysis based on minimum spanning tree brain functional network publication-title: Front Comput Neurosci Methods – volume: 63 start-page: 1 year: 2017 end-page: 11 ident: bb0235 article-title: Analysis of structural brain MRI and multiparameter classification for Alzheimer's disease publication-title: Biomed Eng-Biomed Tech – volume: 26 start-page: 518 year: 2007 end-page: 529 ident: bb0195 article-title: Geometrically accurate topology-correction of cortical surfaces using non separating loops publication-title: IEEE Trans Med Imaging – year: 2019 ident: bb0270 article-title: Learning using privileged information improves neuroimaging-based CAD of Alzheimer's disease: a comparative study publication-title: Med Biol Eng Comput – volume: 10 start-page: 1055 year: 1999 end-page: 1064 ident: bb0210 article-title: Support vector machines for histogram-based image classification publication-title: IEEE Trans Neural Netw – volume: 290 start-page: 96 year: 2010 end-page: 101 ident: bb0085 article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study publication-title: J Neuro Sci – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bb0145 article-title: An automated labelling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 80 start-page: 71 year: 2017 end-page: 80 ident: bb0310 article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 4 start-page: 17 year: 2003 end-page: 24 ident: bb0050 article-title: Assessment of consistency in contouring of normal-tissue anatomic structures publication-title: J Appl Clin Med Phy – reference: Rowayda et al., Regional atrophy analysis of MRI for early detection of Alzheimer's disease, Image Process Pattern Recognit, Wiley, 6 (2013), no. 1, 49–58. – volume: 14 start-page: 121 year: 2016 end-page: 129 ident: bb0290 article-title: Alzheimer disease detection in MRI using curvelet transform with KNN publication-title: J Korea Inst Info Tech – volume: 0135875 start-page: 1 year: 2015 end-page: 16 ident: bb0300 article-title: An automated and intelligent medical decision support system for brain MRI scans classification publication-title: Plos One – volume: 32 start-page: 84 year: 2016 end-page: 100 ident: bb0090 article-title: Hyper-connectivity of functional networks for brain disease diagnosis publication-title: Med. image anal – volume: 212 start-page: 89 year: 2013 end-page: 98 ident: bb0220 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatry res.: neuroimaging – ident: bb0120 – volume: 119 start-page: 252 year: 2009 end-page: 265 ident: bb0315 article-title: Rate of progression of mild cognitive impairment to dementia—meta-analysis of 41 robust inception cohort studies publication-title: Acta Psychiatr Scand – start-page: 1 year: 2017 end-page: 11 ident: bb0325 article-title: Diagnosis of Alzheimer's disease based on structural MRI images using a regularized extreme learning machine and PCA features publication-title: J Healthcare Eng – volume: 32 start-page: 1542 year: 2011 end-page: 1557 ident: bb0035 article-title: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation publication-title: Neurobiol. Aging – volume: 150 start-page: 1 year: 2017 end-page: 8 ident: bb0240 article-title: Multi-modal discriminative dictionary learning for Alzheimer's disease and mild cognitive impairment publication-title: Comput Methods Prog Biomed – ident: bb0190 – volume: 152 start-page: 476 year: 2017 end-page: 481 ident: bb0110 article-title: Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging publication-title: NeuroImage – year: 2016 ident: bb0125 article-title: Statistical textural feature and deformable model based brain tumor segmentation and volume estimation publication-title: Multimed tools appl – volume: 7 start-page: 513 year: 2003 end-page: 527 ident: bb0025 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: Med. Imag. Anal. – volume: 61 start-page: 576 year: 2014 end-page: 589 ident: bb0095 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans Biomed Eng – reference: I. T. Jollie, et al., Principal component analysis, Springer, 2002. – volume: 12 start-page: 1 year: 2018 end-page: 24 ident: bb0100 article-title: Analyzing the behavior of neuronal pathways in Alzheimer's disease using petri net modeling approach publication-title: Front Neuroinform – volume: 358 start-page: 201 year: 2001 end-page: 205 ident: bb0005 article-title: Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images publication-title: Lancet – volume: 116 start-page: 65 year: 2011 end-page: 79 ident: bb0260 article-title: Magnetic resonance brain image classification by an improved artificial bee colony algorithm publication-title: Prog Electromagn Res – volume: 2008 start-page: 1 year: 2008 end-page: 14 ident: bb0020 article-title: Independent component analysis for magnetic resonance image analysis publication-title: EURASIP J. on Adv. in Sig. Proc., Hindawi – volume: 290 start-page: 96 year: 2010 end-page: 101 ident: bb0060 article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study publication-title: J Neurol Sci – volume: 22 start-page: 173 year: 2018 end-page: 183 ident: bb0275 article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease publication-title: IEEE J Biomed Health Inform – start-page: 257 year: 2017 end-page: 268 ident: bb0045 article-title: Curse of dimensionality publication-title: Encyclopaedia of machine learning and data mining – volume: 36 start-page: 1171 year: 2008 end-page: 1220 ident: bb0215 article-title: Kernel methods in machine learning publication-title: Ann Stat – volume: 57 start-page: 328 year: 2015 end-page: 349 ident: bb0305 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci Biobehav – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0200 article-title: Cortical surface-based analysis: inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage – volume: 167 start-page: 62 year: 2018 end-page: 72 ident: bb0115 article-title: A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease publication-title: NeuroImage – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0205 article-title: Cortical surface-based analysis: segmentation and surface reconstruction publication-title: NeuroImage – volume: 178(687) start-page: 687 year: 2018 end-page: 701 ident: bb0105 article-title: A longitudinal model for functional connectivity networks using resting-state fMRI – volume: 151 start-page: 139 year: 2015 end-page: 150 ident: bb0285 article-title: Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing – volume: 32 start-page: 1043 year: 2014 end-page: 1051 ident: bb0230 article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images publication-title: Magn Reson Imaging – volume: 109 start-page: 325 year: 2010 end-page: 343 ident: bb0250 article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO publication-title: Prog Electromagn Res – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bb0185 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf process manag – volume: 10 start-page: 1 year: 2015 end-page: 16 ident: bb0335 article-title: An automated and intelligent medical decision support system for brain MRI scans classification publication-title: Plos One – volume: 220 start-page: 101 year: 2015 end-page: 115 ident: bb0170 article-title: Multivariate classification of social anxiety disorder using whole-brain functional connectivity publication-title: Brain Struct Function – volume: 55 start-page: 1666 year: 2008 end-page: 1677 ident: bb0015 article-title: Band expansion based over complete independent component analysis for multispectral processing of magnetic resonance images publication-title: IEEE Trans Biomed Eng – volume: 37 start-page: 40 year: 2013 end-page: 47 ident: bb0070 article-title: A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer's disease versus vascular dementia publication-title: Comput Med Imaging Graph – start-page: 311 year: 2013 end-page: 318 ident: bb0160 article-title: High-order graph matching based feature selection for Alzheimer's disease identification publication-title: Med image computing and com-assisted interv—MICCAI 2013 – volume: 97 start-page: 425 year: 2013 end-page: 438 ident: bb0040 article-title: Cognitive approaches to early Alzheimer's disease diagnosis publication-title: Med Clin North Am – volume: 23 start-page: 69 year: 2004 end-page: 84 ident: bb0140 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: NeuroImage – volume: 60(1) start-page: 221 year: 2012 end-page: 229 ident: bb0065 article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease publication-title: NeuroImage – volume: 3 start-page: 71 year: 2017 end-page: 80 ident: bb0180 article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective publication-title: Prog Neuropsychopharmacol Biol Psychiatry – ident: bb0150 – volume: 7 start-page: 1 year: 2011 end-page: 17 ident: bb0330 article-title: Volumetric and visual rating of MRI scans in the diagnosis of amnestic MCI and Alzheimer's disease publication-title: Alzheimers Dement – volume: 2 start-page: 1 year: 2012 end-page: 23 ident: bb0320 article-title: Brain imaging in Alzheimer disease, Cold Spring Harb (CSH) publication-title: Perspect Med – volume: 38 start-page: 10049 year: 2011 end-page: 10053 ident: bb0255 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst Appl – volume: 22 start-page: 1060 year: 2004 ident: 10.1016/j.mri.2019.06.019_bb0135 article-title: A hybrid approach to the skull stripping problem in MRI – start-page: 257 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0045 article-title: Curse of dimensionality – volume: 150 start-page: 1 issue: 18 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0240 article-title: Multi-modal discriminative dictionary learning for Alzheimer's disease and mild cognitive impairment publication-title: Comput Methods Prog Biomed – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.mri.2019.06.019_bb0205 article-title: Cortical surface-based analysis: segmentation and surface reconstruction – volume: 97 start-page: 425 issue: 3 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0040 article-title: Cognitive approaches to early Alzheimer's disease diagnosis publication-title: Med Clin North Am doi: 10.1016/j.mcna.2012.12.014 – ident: 10.1016/j.mri.2019.06.019_bb0130 doi: 10.1016/j.neuroimage.2010.07.020 – volume: 63 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0235 article-title: Analysis of structural brain MRI and multiparameter classification for Alzheimer's disease publication-title: Biomed Eng-Biomed Tech – volume: 60(1) start-page: 221 year: 2012 ident: 10.1016/j.mri.2019.06.019_bb0065 article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease – volume: 12 start-page: 1 issue: 31 year: 2018 ident: 10.1016/j.mri.2019.06.019_bb0080 article-title: Classification of Alzheimer's disease, mild cognitive impairment, and normal controls with sub network selection and graph kernel principal component analysis based on minimum spanning tree brain functional network publication-title: Front Comput Neurosci Methods – volume: 55 start-page: 1666 issue: 6 year: 2008 ident: 10.1016/j.mri.2019.06.019_bb0015 article-title: Band expansion based over complete independent component analysis for multispectral processing of magnetic resonance images publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.919107 – volume: 22 start-page: 173 issue: 1 year: 2018 ident: 10.1016/j.mri.2019.06.019_bb0275 article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2655720 – volume: 116 start-page: 65 year: 2011 ident: 10.1016/j.mri.2019.06.019_bb0260 article-title: Magnetic resonance brain image classification by an improved artificial bee colony algorithm publication-title: Prog Electromagn Res doi: 10.2528/PIER11031709 – volume: 1 start-page: 86 issue: 1 year: 2006 ident: 10.1016/j.mri.2019.06.019_bb0245 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2006.05.002 – volume: 44 start-page: 1586 issue: 6 year: 2006 ident: 10.1016/j.mri.2019.06.019_bb0030 article-title: Independent component analysis-based dimensionality reduction with applications in hyper spectral image analysis publication-title: IEEE Trans Geo Remote Sens doi: 10.1109/TGRS.2005.863297 – volume: 9 start-page: 208 issue: 2 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0010 article-title: 2013 Alzheimer's facts and figures, Alzheimer's $ dementia publication-title: J Alzheimer's Assoc doi: 10.1016/j.jalz.2013.02.003 – volume: 14 start-page: 121 issue: 8 year: 2016 ident: 10.1016/j.mri.2019.06.019_bb0290 article-title: Alzheimer disease detection in MRI using curvelet transform with KNN publication-title: J Korea Inst Info Tech – ident: 10.1016/j.mri.2019.06.019_bb0225 – volume: 32 start-page: 1043 year: 2014 ident: 10.1016/j.mri.2019.06.019_bb0230 article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2014.05.008 – volume: 151 start-page: 139 year: 2015 ident: 10.1016/j.mri.2019.06.019_bb0285 article-title: Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.072 – volume: 32 start-page: 84 year: 2016 ident: 10.1016/j.mri.2019.06.019_bb0090 article-title: Hyper-connectivity of functional networks for brain disease diagnosis – volume: 26 start-page: 518 year: 2007 ident: 10.1016/j.mri.2019.06.019_bb0195 article-title: Geometrically accurate topology-correction of cortical surfaces using non separating loops publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2006.887364 – volume: 61 start-page: 576 year: 2014 ident: 10.1016/j.mri.2019.06.019_bb0095 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2284195 – volume: 36 start-page: 1171 issue: 3 year: 2008 ident: 10.1016/j.mri.2019.06.019_bb0215 article-title: Kernel methods in machine learning publication-title: Ann Stat doi: 10.1214/009053607000000677 – volume: 38 start-page: 10049 issue: 8 year: 2011 ident: 10.1016/j.mri.2019.06.019_bb0255 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.012 – volume: 32 start-page: 1542 issue: 9 year: 2011 ident: 10.1016/j.mri.2019.06.019_bb0035 article-title: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.09.006 – volume: 12 start-page: 1 issue: 26 year: 2018 ident: 10.1016/j.mri.2019.06.019_bb0100 article-title: Analyzing the behavior of neuronal pathways in Alzheimer's disease using petri net modeling approach publication-title: Front Neuroinform – volume: 60 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.mri.2019.06.019_bb0155 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 109 start-page: 325 year: 2010 ident: 10.1016/j.mri.2019.06.019_bb0250 article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO publication-title: Prog Electromagn Res doi: 10.2528/PIER10090105 – ident: 10.1016/j.mri.2019.06.019_bb0175 – volume: 3 start-page: 71 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0180 article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 10 start-page: 1055 issue: 5 year: 1999 ident: 10.1016/j.mri.2019.06.019_bb0210 article-title: Support vector machines for histogram-based image classification publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788646 – volume: 0135875 start-page: 1 year: 2015 ident: 10.1016/j.mri.2019.06.019_bb0300 article-title: An automated and intelligent medical decision support system for brain MRI scans classification publication-title: Plos One – start-page: 311 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0160 article-title: High-order graph matching based feature selection for Alzheimer's disease identification – volume: 152 start-page: 476 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0110 article-title: Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging – volume: 37 start-page: 40 issue: 1 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0070 article-title: A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer's disease versus vascular dementia publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2012.11.001 – volume: 45 start-page: 427 year: 2009 ident: 10.1016/j.mri.2019.06.019_bb0185 article-title: A systematic analysis of performance measures for classification tasks – volume: 167 start-page: 62 year: 2018 ident: 10.1016/j.mri.2019.06.019_bb0115 article-title: A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease – year: 2019 ident: 10.1016/j.mri.2019.06.019_bb0270 article-title: Learning using privileged information improves neuroimaging-based CAD of Alzheimer's disease: a comparative study publication-title: Med Biol Eng Comput doi: 10.1007/978-3-030-17297-8 – volume: 119 start-page: 252 year: 2009 ident: 10.1016/j.mri.2019.06.019_bb0315 article-title: Rate of progression of mild cognitive impairment to dementia—meta-analysis of 41 robust inception cohort studies publication-title: Acta Psychiatr Scand doi: 10.1111/j.1600-0447.2008.01326.x – volume: 178(687) start-page: 687 year: 2018 ident: 10.1016/j.mri.2019.06.019_bb0105 article-title: A longitudinal model for functional connectivity networks using resting-state fMRI – volume: 10 start-page: 1 issue: 8 year: 2015 ident: 10.1016/j.mri.2019.06.019_bb0335 article-title: An automated and intelligent medical decision support system for brain MRI scans classification publication-title: Plos One – volume: 9 start-page: 195 year: 1999 ident: 10.1016/j.mri.2019.06.019_bb0200 article-title: Cortical surface-based analysis: inflation, flattening, and a surface-based coordinate system – volume: 57 start-page: 328 year: 2015 ident: 10.1016/j.mri.2019.06.019_bb0305 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci Biobehav doi: 10.1016/j.neubiorev.2015.08.001 – volume: 358 start-page: 201 year: 2001 ident: 10.1016/j.mri.2019.06.019_bb0005 article-title: Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images publication-title: Lancet doi: 10.1016/S0140-6736(01)05408-3 – volume: 130 start-page: 369 year: 2012 ident: 10.1016/j.mri.2019.06.019_bb0265 article-title: An MR brain images classifier via principal component analysis and kernel support vector machine publication-title: Prog Electromagn Res doi: 10.2528/PIER12061410 – volume: 290 start-page: 96 year: 2010 ident: 10.1016/j.mri.2019.06.019_bb0085 article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study publication-title: J Neuro Sci doi: 10.1016/j.jns.2009.10.022 – volume: 212 start-page: 89 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0220 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment – year: 2016 ident: 10.1016/j.mri.2019.06.019_bb0125 article-title: Statistical textural feature and deformable model based brain tumor segmentation and volume estimation – volume: 7 start-page: 513 issue: 4 year: 2003 ident: 10.1016/j.mri.2019.06.019_bb0025 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: Med. Imag. Anal. doi: 10.1016/S1361-8415(03)00037-9 – volume: 290 start-page: 96 year: 2010 ident: 10.1016/j.mri.2019.06.019_bb0060 article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study publication-title: J Neurol Sci doi: 10.1016/j.jns.2009.10.022 – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0165 article-title: A novel approach for lie detection based on F-score and extreme learning machine publication-title: PloS One doi: 10.1371/journal.pone.0064704 – volume: 23 start-page: 69 year: 2004 ident: 10.1016/j.mri.2019.06.019_bb0140 article-title: Sequence-independent segmentation of magnetic resonance images – volume: 80 start-page: 71 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0310 article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2017.06.024 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.mri.2019.06.019_bb0145 article-title: An automated labelling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest – year: 2007 ident: 10.1016/j.mri.2019.06.019_bb0055 – start-page: 1 year: 2017 ident: 10.1016/j.mri.2019.06.019_bb0325 article-title: Diagnosis of Alzheimer's disease based on structural MRI images using a regularized extreme learning machine and PCA features publication-title: J Healthcare Eng doi: 10.1155/2017/4080874 – volume: 137 start-page: 1 year: 2013 ident: 10.1016/j.mri.2019.06.019_bb0295 article-title: Brain MR image classification using multi-scale geometric analysis of ripplet publication-title: Prog Electromagn Res doi: 10.2528/PIER13010105 – volume: 18 start-page: 984 issue: 3 year: 2014 ident: 10.1016/j.mri.2019.06.019_bb0075 article-title: Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification publication-title: IEEE J Biomed Health Infor doi: 10.1109/JBHI.2013.2285378 – volume: 20 start-page: 433 issue: 2 year: 2010 ident: 10.1016/j.mri.2019.06.019_bb0280 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit Signal Process doi: 10.1016/j.dsp.2009.07.002 – volume: 2008 start-page: 1 issue: 780656 year: 2008 ident: 10.1016/j.mri.2019.06.019_bb0020 article-title: Independent component analysis for magnetic resonance image analysis publication-title: EURASIP J. on Adv. in Sig. Proc., Hindawi – volume: 220 start-page: 101 issue: 1 year: 2015 ident: 10.1016/j.mri.2019.06.019_bb0170 article-title: Multivariate classification of social anxiety disorder using whole-brain functional connectivity publication-title: Brain Struct Function doi: 10.1007/s00429-013-0641-4 – volume: 7 start-page: 1 issue: 4 year: 2011 ident: 10.1016/j.mri.2019.06.019_bb0330 article-title: Volumetric and visual rating of MRI scans in the diagnosis of amnestic MCI and Alzheimer's disease publication-title: Alzheimers Dement – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.mri.2019.06.019_bb0320 article-title: Brain imaging in Alzheimer disease, Cold Spring Harb (CSH) publication-title: Perspect Med – volume: 4 start-page: 17 issue: 1 year: 2003 ident: 10.1016/j.mri.2019.06.019_bb0050 article-title: Assessment of consistency in contouring of normal-tissue anatomic structures publication-title: J Appl Clin Med Phy |
| SSID | ssj0005235 |
| Score | 2.403274 |
| Snippet | An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 167 |
| SubjectTerms | Aged Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Atrophy - diagnostic imaging Atrophy - pathology Brain - diagnostic imaging Brain - pathology Brain Mapping Classifier Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - pathology Computer-assisted diagnosis (CAD) DWT (Discrete Wavelet Transform) False Positive Reactions Female Humans Image Processing, Computer-Assisted - methods Least-Squares Analysis Machine intelligence Magnetic Resonance Imaging Male Middle Aged Pattern Recognition, Automated Principal Component Analysis ROC Curve Support Vector Machine Support Vector Machine (SVM) Wavelet Analysis |
| Title | Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X1930102X https://dx.doi.org/10.1016/j.mri.2019.06.019 https://www.ncbi.nlm.nih.gov/pubmed/31279772 https://www.proquest.com/docview/2253831655 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iIL6It-tFBEEQ6m7apMfjIsqqrA8esG-hSaZY2UP2ePHB3-5Mj0XBA3zqldAwk06-dL6ZYezEQBSoOHNemCbGk0YqLwUVeBmuhUpaISGmQOHuXdh5kjc91VtgF3UsDNEqK9tf2vTCWld3mpU0m6953nygyRn5qocQhBKj9SiCXUZUxeD8_TPNoyyyiY09al17NguO12CcE7srKVJ4UrKd79emn7BnsQZdrbHVCjzydjm-dbYAww223K3c45vssT2bjhCCguP0ixslyNN55k2O8JS3-2_PkA9gfDrhlW8GjwXbLp9wijXhhopG8O79Nc8HaGwmW-zp6vLxouNVZRM8K1vB1AOHmyQnwLdBFJgkUcoI24pTG5gYYnwS4omKrc2UaUWJygw4JxM8WAUWdbfNFoejIewyLkPfN8KBD1JKsInJEDCKzCkRuhCcbbBWLTBtq5ziVNqir2vy2ItGGWuSsSYCnUga7Gze5bVMqPFbY7_Wgq4jRdG2aTT3v3WS805fptJf3Y5rNWv8xMhvkg5hNJtoNHm4jxehUg22U-p_PvRA-BFCaH_vfy_dZyt0VbIDD9jidDyDQ0Q5U3NUTOMjttS-vu3cfQA7gvxm |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SBNpeStLntmmiQqFQcHclS34cl9CwSbM5tBvYm7CkMXHJ7oZ9XHrob--MH0sLbQo52VgaLGbkmU-eF8B7h2lssjJESZG7SDttogJNHJVkC432UmPGicLjy2R0pc-nZroDJ10uDIdVtrq_0em1tm6f9Ftu9m-rqv-NN2eqzJQgCBdGmz6APW1UyiewTz9_j_NoumzS7Iind67NOshrtqw4vCuva3hytZ2_G6d_gc_aCJ3uw5MWPYphs8AD2MH5U3g4bv3jz2Ay3KwXhEExCP7HTSwUxbb0piB8KoY3P66xmuHyw0q0zhm61uF21Upwsolw3DVCjL-eiWpG2mb1HK5OP09ORlHbNyHyehCvIwx0SgoSlY_T2OW5MU76QVb42GWY0UhCNybzvjRukOamdBiCzuniDXoS3gvYnS_m-AqETpRyMqBCrTX63JWEGGUZjExCgsH3YNAxzPq2qDj3trixXfTYd0s8tsxjyxF0Mu_Bxy3JbVNR467JqpOC7VJFSblZ0vd3Eekt0R976X9k7zoxW_rG2HFSzHGxWVnSeXSQl4kxPXjZyH-79FiqlDC0en2_lx7Do9FkfGEvzi6_vIHHPMKWUepD2F0vN_iWIM_aHdVb-hcKMf3_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+atrophy+assessment+for+Alzheimer%27s+disease+diagnosis+from+brain+MRI+images&rft.jtitle=Magnetic+resonance+imaging&rft.au=Shaikh%2C+Tawseef+Ayoub&rft.au=Ali%2C+Rashid&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=62&rft.spage=167&rft.epage=173&rft_id=info:doi/10.1016%2Fj.mri.2019.06.019&rft.externalDocID=S0730725X1930102X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |