Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images

An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using inp...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 62; pp. 167 - 173
Main Authors Shaikh, Tawseef Ayoub, Ali, Rashid
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.10.2019
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2019.06.019

Cover

Abstract An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features.
AbstractList An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features.
An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features.An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145 HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier performance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional spaces took the top two important features as classification features for separating HC and AD to the maximum extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100% tissue classification accuracy for test samples under consideration with only 7 input features.
Author Shaikh, Tawseef Ayoub
Ali, Rashid
Author_xml – sequence: 1
  givenname: Tawseef Ayoub
  surname: Shaikh
  fullname: Shaikh, Tawseef Ayoub
  email: tawseef37@gmail.com
– sequence: 2
  givenname: Rashid
  surname: Ali
  fullname: Ali, Rashid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31279772$$D View this record in MEDLINE/PubMed
BookMark eNqFkE9rFDEYh4NU7Lb6AbxIbvYyYzKZTGbwtBT_FCqFUsFbyCTvtFlnkjVvVth-elO2euihnn6BPE8Izwk5CjEAIW85qznj3YdNvSRfN4wPNevqMi_IivdKVLIf2iOyYkqwSjXyxzE5QdwwxmQj5CtyLHijBqWaFblZ73JcTAZHTU5xe7enBhEQFwiZTjHR9Xx_B36B9B6p8wgGoay5DRE90inFhY7J-EC_XV9Qv5hbwNfk5WRmhDePe0q-f_50c_61urz6cnG-vqxsy0SuwPG2dRwaK5QYh0HKkVvWGyvGHvpy05WD7K2d5MjUIKcRnGuHMlaCBSVOydnh3W2Kv3aAWS8eLcyzCRB3qJtGil7wTsqCvntEd-MCTm9T-Wra678lCsAPgE0RMcH0D-FMP9TWG11q64famnW6THHUE8f6bLKPIZci87Pmx4MJJc9vD0mj9RAsOJ_AZu2if9Yenth29sFbM_-E_X_cP0Dmreg
CitedBy_id crossref_primary_10_3233_IDT_230524
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_14283_jpad_2024_66
crossref_primary_10_1007_s41060_024_00658_y
crossref_primary_10_1002_ima_22650
crossref_primary_10_3233_KES_220007
crossref_primary_10_1007_s11042_023_16023_3
crossref_primary_10_1007_s41870_020_00606_6
crossref_primary_10_1016_j_nicl_2021_102842
crossref_primary_10_3233_JAD_220877
crossref_primary_10_3390_app11136175
crossref_primary_10_1080_20479700_2023_2175414
crossref_primary_10_1007_s42600_024_00394_z
crossref_primary_10_1007_s40031_021_00571_z
crossref_primary_10_1016_j_compag_2022_107119
crossref_primary_10_1016_j_jns_2020_117077
crossref_primary_10_2196_59370
Cites_doi 10.1016/j.mcna.2012.12.014
10.1016/j.neuroimage.2010.07.020
10.1109/TBME.2008.919107
10.1109/JBHI.2017.2655720
10.2528/PIER11031709
10.1016/j.bspc.2006.05.002
10.1109/TGRS.2005.863297
10.1016/j.jalz.2013.02.003
10.1016/j.mri.2014.05.008
10.1016/j.neucom.2014.09.072
10.1109/TMI.2006.887364
10.1109/TBME.2013.2284195
10.1214/009053607000000677
10.1016/j.eswa.2011.02.012
10.1016/j.neurobiolaging.2009.09.006
10.1016/j.neuroimage.2011.11.066
10.2528/PIER10090105
10.1109/72.788646
10.1016/j.compmedimag.2012.11.001
10.1007/978-3-030-17297-8
10.1111/j.1600-0447.2008.01326.x
10.1016/j.neubiorev.2015.08.001
10.1016/S0140-6736(01)05408-3
10.2528/PIER12061410
10.1016/j.jns.2009.10.022
10.1016/S1361-8415(03)00037-9
10.1371/journal.pone.0064704
10.1016/j.pnpbp.2017.06.024
10.1155/2017/4080874
10.2528/PIER13010105
10.1109/JBHI.2013.2285378
10.1016/j.dsp.2009.07.002
10.1007/s00429-013-0641-4
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2019.06.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 173
ExternalDocumentID 31279772
10_1016_j_mri_2019_06_019
S0730725X1930102X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c403t-ed144d1e2c373b9955b1c08ac3b8e84d163b858ccf5b0795fbedd49fbec5ece73
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Sat Sep 27 18:14:37 EDT 2025
Wed Feb 19 02:31:41 EST 2025
Thu Apr 24 22:55:15 EDT 2025
Thu Oct 16 04:28:10 EDT 2025
Fri Feb 23 02:22:55 EST 2024
Tue Oct 14 19:40:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords DWT (Discrete Wavelet Transform)
Computer-assisted diagnosis (CAD)
Classifier
Support Vector Machine (SVM)
Alzheimer's disease
Machine intelligence
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-ed144d1e2c373b9955b1c08ac3b8e84d163b858ccf5b0795fbedd49fbec5ece73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31279772
PQID 2253831655
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2253831655
pubmed_primary_31279772
crossref_primary_10_1016_j_mri_2019_06_019
crossref_citationtrail_10_1016_j_mri_2019_06_019
elsevier_sciencedirect_doi_10_1016_j_mri_2019_06_019
elsevier_clinicalkey_doi_10_1016_j_mri_2019_06_019
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sokolova, Lapalme (bb0185) 2009; 45
Wolfers, Buitelaar, Beckmann, Franke, Marquand (bb0305) 2015; 57
Liu (bb0170) 2015; 220
bb0120
Fischl, Sereno, Dale (bb0200) 1999; 9
Keogh, Mueen (bb0045) 2017
Liu, Suk, Wee, Chen, Shen (bb0160) 2013
Dale, Fischl, Sereno (bb0205) 1999; 9
Zhang, Wu, Wang (bb0260) 2011; 116
Qing, Xia, Lele, Kewei, Li, Rui (bb0240) 2017; 150
Hofmann, Scholkopf, Smola (bb0215) 2008; 36
Segonne (bb0135) 2004; 22
Hanyu, Sato, Hirao, Kanetaka, Iwamoto, Koizumi (bb0060) 2010; 290
Sudeb, Manish, Kundu (bb0295) 2013; 137
Rowayda et al., Regional atrophy analysis of MRI for early detection of Alzheimer's disease, Image Process Pattern Recognit, Wiley, 6 (2013), no. 1, 49–58.
Liu, Zhou, Shen, Yin (bb0075) 2014; 18
Segonne, Pacheco, Fischl (bb0195) 2007; 26
Ouyang, Chen, Chen, Poon, Yang, Lee (bb0020) 2008; 2008
Chen, Deutsch, Satya, Liu, Mountz (bb0070) 2013; 37
bb0150
Jha, Kwon (bb0290) 2016; 14
bb0190
Qian, David, Elizabeth, Weizhao, Jason, Maria (bb0330) 2011; 7
Fox, Crum, Scahill, Stevens, Janssen, Rossar (bb0005) 2001; 358
Gao (bb0165) 2013; 8
Carlos, Eric, Sebastian, Patrizia, Bruno, Magda (bb0220) 2013; 212
Muhammad, Ahmed, Jeevan (bb0335) 2015; 10
Thies, Bleiler (bb0010) 2013; 9
Khedher, Ramırez, Gorriz, Brahim, Segovia, Initiative (bb0285) 2015; 151
Jie, Wee, Shen, Zhang (bb0090) 2016; 32
Ramesh, Jeonghwan, Jeong-Seon, Sang (bb0325) 2017
Gray, Wolz, Heckemann, Aljabar, Hammers, Rueckert (bb0065) 2012; 60(1)
Hanyu, Sato, Hirao, Kanetaka, Iwamoto, Koizumi (bb0085) 2010; 290
Tijn, Koini, Vosa, Seiler, Rooij, Lechner (bb0110) 2017; 152
Li, Meng, Shi, A. D. N. I (bb0270) 2019
I. T. Jollie, et al., Principal component analysis, Springer, 2002.
Siddiqui, Reza, Kanesan (bb0300) 2015; 0135875
Mitchell, Shiri-Feshki (bb0315) 2009; 119
Zhang, Wu (bb0265) 2012; 130
Keith, Nick, Reisa, William (bb0320) 2012; 2
Cocosco, Zijdenbos, Evans (bb0025) 2003; 7
Zhang, Wang, Wu (bb0250) 2010; 109
Zhang, Dong, Wu, Wang (bb0255) 2011; 38
Chaplot, Patnaik, Jagannathan (bb0245) 2006; 1
Jie, Zhang, Gao, Wang, Wee, Shen (bb0095) 2014; 61
Banday, Mir (bb0125) 2016
Harrison (bb0040) 2013; 97
Kim, Na (bb0310) 2017; 80
Chapelle, Haffner, Vapnik (bb0210) 1999; 10
Shi, Zheng, Li, Zhang, Ying (bb0275) 2018; 22
Muwei, Yuanyuan, Fei, Wenzhen, Xiaohai (bb0230) 2014; 32
M. Reuter, H. D. Rosas, and B. Fischl B, Highly accurate inverse consistent registration: A robust approach, NeuroImage, Elsevier, 53(7), (2010), 1181–1196.
Chu, Hsu, Chou, Bandettini, Lin, Initiative (bb0155) 2012; 60
Ouyang, Chen, Chai, Chen, Poon, Yang (bb0015) 2008; 55
Ashraf, Ahmad, Ali, Zaheer (bb0100) 2018; 12
Yingling, Shenquan (bb0235) 2017; 63
Hart, Cribben, Fieca (bb0105) 2018; 178(687)
Fischl (bb0140) 2004; 23
Lenzi, Serra, Perri, Pantano, Lenzi, Paulesu (bb0035) 2011; 32
Xiaohong, Jie, Hao, Guimei, Huijun, Fangpeng (bb0080) 2018; 12
Wang, Chang (bb0030) 2006; 44
Dahshan, Hosny, Salem (bb0280) 2010; 20
Kim, Sae (bb0180) 2017; 3
Vos, Koini, Tijn, Seiler, Grond, Lechner (bb0115) 2018; 167
Desikan (bb0145) 2006; 31
Collier, Burnett, Amin (bb0050) 2003; 4
Vansteenkiste (bb0055) 2007
Xiaohong (10.1016/j.mri.2019.06.019_bb0080) 2018; 12
Shi (10.1016/j.mri.2019.06.019_bb0275) 2018; 22
Chu (10.1016/j.mri.2019.06.019_bb0155) 2012; 60
Zhang (10.1016/j.mri.2019.06.019_bb0250) 2010; 109
10.1016/j.mri.2019.06.019_bb0175
Hanyu (10.1016/j.mri.2019.06.019_bb0060) 2010; 290
Lenzi (10.1016/j.mri.2019.06.019_bb0035) 2011; 32
Mitchell (10.1016/j.mri.2019.06.019_bb0315) 2009; 119
Dale (10.1016/j.mri.2019.06.019_bb0205) 1999; 9
Zhang (10.1016/j.mri.2019.06.019_bb0255) 2011; 38
10.1016/j.mri.2019.06.019_bb0130
Zhang (10.1016/j.mri.2019.06.019_bb0260) 2011; 116
Hanyu (10.1016/j.mri.2019.06.019_bb0085) 2010; 290
Jha (10.1016/j.mri.2019.06.019_bb0290) 2016; 14
Segonne (10.1016/j.mri.2019.06.019_bb0135) 2004; 22
Liu (10.1016/j.mri.2019.06.019_bb0170) 2015; 220
Chaplot (10.1016/j.mri.2019.06.019_bb0245) 2006; 1
Liu (10.1016/j.mri.2019.06.019_bb0075) 2014; 18
Fischl (10.1016/j.mri.2019.06.019_bb0200) 1999; 9
Hofmann (10.1016/j.mri.2019.06.019_bb0215) 2008; 36
Liu (10.1016/j.mri.2019.06.019_bb0160) 2013
Ouyang (10.1016/j.mri.2019.06.019_bb0015) 2008; 55
Siddiqui (10.1016/j.mri.2019.06.019_bb0300) 2015; 0135875
Qian (10.1016/j.mri.2019.06.019_bb0330) 2011; 7
Muwei (10.1016/j.mri.2019.06.019_bb0230) 2014; 32
Yingling (10.1016/j.mri.2019.06.019_bb0235) 2017; 63
Fox (10.1016/j.mri.2019.06.019_bb0005) 2001; 358
Segonne (10.1016/j.mri.2019.06.019_bb0195) 2007; 26
Cocosco (10.1016/j.mri.2019.06.019_bb0025) 2003; 7
Khedher (10.1016/j.mri.2019.06.019_bb0285) 2015; 151
Wolfers (10.1016/j.mri.2019.06.019_bb0305) 2015; 57
Thies (10.1016/j.mri.2019.06.019_bb0010) 2013; 9
Collier (10.1016/j.mri.2019.06.019_bb0050) 2003; 4
Jie (10.1016/j.mri.2019.06.019_bb0095) 2014; 61
Vansteenkiste (10.1016/j.mri.2019.06.019_bb0055) 2007
Dahshan (10.1016/j.mri.2019.06.019_bb0280) 2010; 20
Desikan (10.1016/j.mri.2019.06.019_bb0145) 2006; 31
Ramesh (10.1016/j.mri.2019.06.019_bb0325) 2017
Chapelle (10.1016/j.mri.2019.06.019_bb0210) 1999; 10
Ouyang (10.1016/j.mri.2019.06.019_bb0020) 2008; 2008
Chen (10.1016/j.mri.2019.06.019_bb0070) 2013; 37
Tijn (10.1016/j.mri.2019.06.019_bb0110) 2017; 152
Banday (10.1016/j.mri.2019.06.019_bb0125) 2016
Gray (10.1016/j.mri.2019.06.019_bb0065) 2012; 60(1)
Sokolova (10.1016/j.mri.2019.06.019_bb0185) 2009; 45
Qing (10.1016/j.mri.2019.06.019_bb0240) 2017; 150
Fischl (10.1016/j.mri.2019.06.019_bb0140) 2004; 23
Kim (10.1016/j.mri.2019.06.019_bb0180) 2017; 3
Carlos (10.1016/j.mri.2019.06.019_bb0220) 2013; 212
Keogh (10.1016/j.mri.2019.06.019_bb0045) 2017
Li (10.1016/j.mri.2019.06.019_bb0270) 2019
Harrison (10.1016/j.mri.2019.06.019_bb0040) 2013; 97
Gao (10.1016/j.mri.2019.06.019_bb0165) 2013; 8
Wang (10.1016/j.mri.2019.06.019_bb0030) 2006; 44
Keith (10.1016/j.mri.2019.06.019_bb0320) 2012; 2
10.1016/j.mri.2019.06.019_bb0225
Muhammad (10.1016/j.mri.2019.06.019_bb0335) 2015; 10
Kim (10.1016/j.mri.2019.06.019_bb0310) 2017; 80
Ashraf (10.1016/j.mri.2019.06.019_bb0100) 2018; 12
Hart (10.1016/j.mri.2019.06.019_bb0105) 2018; 178(687)
Sudeb (10.1016/j.mri.2019.06.019_bb0295) 2013; 137
Jie (10.1016/j.mri.2019.06.019_bb0090) 2016; 32
Zhang (10.1016/j.mri.2019.06.019_bb0265) 2012; 130
Vos (10.1016/j.mri.2019.06.019_bb0115) 2018; 167
References_xml – volume: 18
  start-page: 984
  year: 2014
  end-page: 990
  ident: bb0075
  article-title: Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification
  publication-title: IEEE J Biomed Health Infor
– reference: M. Reuter, H. D. Rosas, and B. Fischl B, Highly accurate inverse consistent registration: A robust approach, NeuroImage, Elsevier, 53(7), (2010), 1181–1196.
– year: 2007
  ident: bb0055
  article-title: Quantitative analysis of ultrasound images of the preterm brain
– volume: 60
  start-page: 59
  year: 2012
  end-page: 70
  ident: bb0155
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
– volume: 137
  start-page: 1
  year: 2013
  end-page: 17
  ident: bb0295
  article-title: Brain MR image classification using multi-scale geometric analysis of ripplet
  publication-title: Prog Electromagn Res
– volume: 8
  year: 2013
  ident: bb0165
  article-title: A novel approach for lie detection based on F-score and extreme learning machine
  publication-title: PloS One
– volume: 1
  start-page: 86
  year: 2006
  end-page: 92
  ident: bb0245
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed Signal Process Control
– volume: 22
  start-page: 1060
  year: 2004
  end-page: 1075
  ident: bb0135
  article-title: A hybrid approach to the skull stripping problem in MRI
  publication-title: NeuroImage
– volume: 130
  start-page: 369
  year: 2012
  end-page: 388
  ident: bb0265
  article-title: An MR brain images classifier via principal component analysis and kernel support vector machine
  publication-title: Prog Electromagn Res
– volume: 20
  start-page: 433
  year: 2010
  end-page: 441
  ident: bb0280
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit Signal Process
– volume: 9
  start-page: 208
  year: 2013
  end-page: 245
  ident: bb0010
  article-title: 2013 Alzheimer's facts and figures, Alzheimer's $ dementia
  publication-title: J Alzheimer's Assoc
– volume: 44
  start-page: 1586
  year: 2006
  end-page: 1600
  ident: bb0030
  article-title: Independent component analysis-based dimensionality reduction with applications in hyper spectral image analysis
  publication-title: IEEE Trans Geo Remote Sens
– volume: 12
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0080
  article-title: Classification of Alzheimer's disease, mild cognitive impairment, and normal controls with sub network selection and graph kernel principal component analysis based on minimum spanning tree brain functional network
  publication-title: Front Comput Neurosci Methods
– volume: 63
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0235
  article-title: Analysis of structural brain MRI and multiparameter classification for Alzheimer's disease
  publication-title: Biomed Eng-Biomed Tech
– volume: 26
  start-page: 518
  year: 2007
  end-page: 529
  ident: bb0195
  article-title: Geometrically accurate topology-correction of cortical surfaces using non separating loops
  publication-title: IEEE Trans Med Imaging
– year: 2019
  ident: bb0270
  article-title: Learning using privileged information improves neuroimaging-based CAD of Alzheimer's disease: a comparative study
  publication-title: Med Biol Eng Comput
– volume: 10
  start-page: 1055
  year: 1999
  end-page: 1064
  ident: bb0210
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans Neural Netw
– volume: 290
  start-page: 96
  year: 2010
  end-page: 101
  ident: bb0085
  article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study
  publication-title: J Neuro Sci
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bb0145
  article-title: An automated labelling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 80
  start-page: 71
  year: 2017
  end-page: 80
  ident: bb0310
  article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 4
  start-page: 17
  year: 2003
  end-page: 24
  ident: bb0050
  article-title: Assessment of consistency in contouring of normal-tissue anatomic structures
  publication-title: J Appl Clin Med Phy
– reference: Rowayda et al., Regional atrophy analysis of MRI for early detection of Alzheimer's disease, Image Process Pattern Recognit, Wiley, 6 (2013), no. 1, 49–58.
– volume: 14
  start-page: 121
  year: 2016
  end-page: 129
  ident: bb0290
  article-title: Alzheimer disease detection in MRI using curvelet transform with KNN
  publication-title: J Korea Inst Info Tech
– volume: 0135875
  start-page: 1
  year: 2015
  end-page: 16
  ident: bb0300
  article-title: An automated and intelligent medical decision support system for brain MRI scans classification
  publication-title: Plos One
– volume: 32
  start-page: 84
  year: 2016
  end-page: 100
  ident: bb0090
  article-title: Hyper-connectivity of functional networks for brain disease diagnosis
  publication-title: Med. image anal
– volume: 212
  start-page: 89
  year: 2013
  end-page: 98
  ident: bb0220
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatry res.: neuroimaging
– ident: bb0120
– volume: 119
  start-page: 252
  year: 2009
  end-page: 265
  ident: bb0315
  article-title: Rate of progression of mild cognitive impairment to dementia—meta-analysis of 41 robust inception cohort studies
  publication-title: Acta Psychiatr Scand
– start-page: 1
  year: 2017
  end-page: 11
  ident: bb0325
  article-title: Diagnosis of Alzheimer's disease based on structural MRI images using a regularized extreme learning machine and PCA features
  publication-title: J Healthcare Eng
– volume: 32
  start-page: 1542
  year: 2011
  end-page: 1557
  ident: bb0035
  article-title: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation
  publication-title: Neurobiol. Aging
– volume: 150
  start-page: 1
  year: 2017
  end-page: 8
  ident: bb0240
  article-title: Multi-modal discriminative dictionary learning for Alzheimer's disease and mild cognitive impairment
  publication-title: Comput Methods Prog Biomed
– ident: bb0190
– volume: 152
  start-page: 476
  year: 2017
  end-page: 481
  ident: bb0110
  article-title: Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging
  publication-title: NeuroImage
– year: 2016
  ident: bb0125
  article-title: Statistical textural feature and deformable model based brain tumor segmentation and volume estimation
  publication-title: Multimed tools appl
– volume: 7
  start-page: 513
  year: 2003
  end-page: 527
  ident: bb0025
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title: Med. Imag. Anal.
– volume: 61
  start-page: 576
  year: 2014
  end-page: 589
  ident: bb0095
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans Biomed Eng
– reference: I. T. Jollie, et al., Principal component analysis, Springer, 2002.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 24
  ident: bb0100
  article-title: Analyzing the behavior of neuronal pathways in Alzheimer's disease using petri net modeling approach
  publication-title: Front Neuroinform
– volume: 358
  start-page: 201
  year: 2001
  end-page: 205
  ident: bb0005
  article-title: Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images
  publication-title: Lancet
– volume: 116
  start-page: 65
  year: 2011
  end-page: 79
  ident: bb0260
  article-title: Magnetic resonance brain image classification by an improved artificial bee colony algorithm
  publication-title: Prog Electromagn Res
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 14
  ident: bb0020
  article-title: Independent component analysis for magnetic resonance image analysis
  publication-title: EURASIP J. on Adv. in Sig. Proc., Hindawi
– volume: 290
  start-page: 96
  year: 2010
  end-page: 101
  ident: bb0060
  article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study
  publication-title: J Neurol Sci
– volume: 22
  start-page: 173
  year: 2018
  end-page: 183
  ident: bb0275
  article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
  publication-title: IEEE J Biomed Health Inform
– start-page: 257
  year: 2017
  end-page: 268
  ident: bb0045
  article-title: Curse of dimensionality
  publication-title: Encyclopaedia of machine learning and data mining
– volume: 36
  start-page: 1171
  year: 2008
  end-page: 1220
  ident: bb0215
  article-title: Kernel methods in machine learning
  publication-title: Ann Stat
– volume: 57
  start-page: 328
  year: 2015
  end-page: 349
  ident: bb0305
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci Biobehav
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bb0200
  article-title: Cortical surface-based analysis: inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
– volume: 167
  start-page: 62
  year: 2018
  end-page: 72
  ident: bb0115
  article-title: A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease
  publication-title: NeuroImage
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bb0205
  article-title: Cortical surface-based analysis: segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 178(687)
  start-page: 687
  year: 2018
  end-page: 701
  ident: bb0105
  article-title: A longitudinal model for functional connectivity networks using resting-state fMRI
– volume: 151
  start-page: 139
  year: 2015
  end-page: 150
  ident: bb0285
  article-title: Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
– volume: 32
  start-page: 1043
  year: 2014
  end-page: 1051
  ident: bb0230
  article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images
  publication-title: Magn Reson Imaging
– volume: 109
  start-page: 325
  year: 2010
  end-page: 343
  ident: bb0250
  article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO
  publication-title: Prog Electromagn Res
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bb0185
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf process manag
– volume: 10
  start-page: 1
  year: 2015
  end-page: 16
  ident: bb0335
  article-title: An automated and intelligent medical decision support system for brain MRI scans classification
  publication-title: Plos One
– volume: 220
  start-page: 101
  year: 2015
  end-page: 115
  ident: bb0170
  article-title: Multivariate classification of social anxiety disorder using whole-brain functional connectivity
  publication-title: Brain Struct Function
– volume: 55
  start-page: 1666
  year: 2008
  end-page: 1677
  ident: bb0015
  article-title: Band expansion based over complete independent component analysis for multispectral processing of magnetic resonance images
  publication-title: IEEE Trans Biomed Eng
– volume: 37
  start-page: 40
  year: 2013
  end-page: 47
  ident: bb0070
  article-title: A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer's disease versus vascular dementia
  publication-title: Comput Med Imaging Graph
– start-page: 311
  year: 2013
  end-page: 318
  ident: bb0160
  article-title: High-order graph matching based feature selection for Alzheimer's disease identification
  publication-title: Med image computing and com-assisted interv—MICCAI 2013
– volume: 97
  start-page: 425
  year: 2013
  end-page: 438
  ident: bb0040
  article-title: Cognitive approaches to early Alzheimer's disease diagnosis
  publication-title: Med Clin North Am
– volume: 23
  start-page: 69
  year: 2004
  end-page: 84
  ident: bb0140
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: NeuroImage
– volume: 60(1)
  start-page: 221
  year: 2012
  end-page: 229
  ident: bb0065
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
  publication-title: NeuroImage
– volume: 3
  start-page: 71
  year: 2017
  end-page: 80
  ident: bb0180
  article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– ident: bb0150
– volume: 7
  start-page: 1
  year: 2011
  end-page: 17
  ident: bb0330
  article-title: Volumetric and visual rating of MRI scans in the diagnosis of amnestic MCI and Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 2
  start-page: 1
  year: 2012
  end-page: 23
  ident: bb0320
  article-title: Brain imaging in Alzheimer disease, Cold Spring Harb (CSH)
  publication-title: Perspect Med
– volume: 38
  start-page: 10049
  year: 2011
  end-page: 10053
  ident: bb0255
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst Appl
– volume: 22
  start-page: 1060
  year: 2004
  ident: 10.1016/j.mri.2019.06.019_bb0135
  article-title: A hybrid approach to the skull stripping problem in MRI
– start-page: 257
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0045
  article-title: Curse of dimensionality
– volume: 150
  start-page: 1
  issue: 18
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0240
  article-title: Multi-modal discriminative dictionary learning for Alzheimer's disease and mild cognitive impairment
  publication-title: Comput Methods Prog Biomed
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1016/j.mri.2019.06.019_bb0205
  article-title: Cortical surface-based analysis: segmentation and surface reconstruction
– volume: 97
  start-page: 425
  issue: 3
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0040
  article-title: Cognitive approaches to early Alzheimer's disease diagnosis
  publication-title: Med Clin North Am
  doi: 10.1016/j.mcna.2012.12.014
– ident: 10.1016/j.mri.2019.06.019_bb0130
  doi: 10.1016/j.neuroimage.2010.07.020
– volume: 63
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0235
  article-title: Analysis of structural brain MRI and multiparameter classification for Alzheimer's disease
  publication-title: Biomed Eng-Biomed Tech
– volume: 60(1)
  start-page: 221
  year: 2012
  ident: 10.1016/j.mri.2019.06.019_bb0065
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
– volume: 12
  start-page: 1
  issue: 31
  year: 2018
  ident: 10.1016/j.mri.2019.06.019_bb0080
  article-title: Classification of Alzheimer's disease, mild cognitive impairment, and normal controls with sub network selection and graph kernel principal component analysis based on minimum spanning tree brain functional network
  publication-title: Front Comput Neurosci Methods
– volume: 55
  start-page: 1666
  issue: 6
  year: 2008
  ident: 10.1016/j.mri.2019.06.019_bb0015
  article-title: Band expansion based over complete independent component analysis for multispectral processing of magnetic resonance images
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.919107
– volume: 22
  start-page: 173
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2019.06.019_bb0275
  article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2655720
– volume: 116
  start-page: 65
  year: 2011
  ident: 10.1016/j.mri.2019.06.019_bb0260
  article-title: Magnetic resonance brain image classification by an improved artificial bee colony algorithm
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER11031709
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.mri.2019.06.019_bb0245
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2006.05.002
– volume: 44
  start-page: 1586
  issue: 6
  year: 2006
  ident: 10.1016/j.mri.2019.06.019_bb0030
  article-title: Independent component analysis-based dimensionality reduction with applications in hyper spectral image analysis
  publication-title: IEEE Trans Geo Remote Sens
  doi: 10.1109/TGRS.2005.863297
– volume: 9
  start-page: 208
  issue: 2
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0010
  article-title: 2013 Alzheimer's facts and figures, Alzheimer's $ dementia
  publication-title: J Alzheimer's Assoc
  doi: 10.1016/j.jalz.2013.02.003
– volume: 14
  start-page: 121
  issue: 8
  year: 2016
  ident: 10.1016/j.mri.2019.06.019_bb0290
  article-title: Alzheimer disease detection in MRI using curvelet transform with KNN
  publication-title: J Korea Inst Info Tech
– ident: 10.1016/j.mri.2019.06.019_bb0225
– volume: 32
  start-page: 1043
  year: 2014
  ident: 10.1016/j.mri.2019.06.019_bb0230
  article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2014.05.008
– volume: 151
  start-page: 139
  year: 2015
  ident: 10.1016/j.mri.2019.06.019_bb0285
  article-title: Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.072
– volume: 32
  start-page: 84
  year: 2016
  ident: 10.1016/j.mri.2019.06.019_bb0090
  article-title: Hyper-connectivity of functional networks for brain disease diagnosis
– volume: 26
  start-page: 518
  year: 2007
  ident: 10.1016/j.mri.2019.06.019_bb0195
  article-title: Geometrically accurate topology-correction of cortical surfaces using non separating loops
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.887364
– volume: 61
  start-page: 576
  year: 2014
  ident: 10.1016/j.mri.2019.06.019_bb0095
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2284195
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  ident: 10.1016/j.mri.2019.06.019_bb0215
  article-title: Kernel methods in machine learning
  publication-title: Ann Stat
  doi: 10.1214/009053607000000677
– volume: 38
  start-page: 10049
  issue: 8
  year: 2011
  ident: 10.1016/j.mri.2019.06.019_bb0255
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.012
– volume: 32
  start-page: 1542
  issue: 9
  year: 2011
  ident: 10.1016/j.mri.2019.06.019_bb0035
  article-title: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2009.09.006
– volume: 12
  start-page: 1
  issue: 26
  year: 2018
  ident: 10.1016/j.mri.2019.06.019_bb0100
  article-title: Analyzing the behavior of neuronal pathways in Alzheimer's disease using petri net modeling approach
  publication-title: Front Neuroinform
– volume: 60
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.1016/j.mri.2019.06.019_bb0155
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.066
– volume: 109
  start-page: 325
  year: 2010
  ident: 10.1016/j.mri.2019.06.019_bb0250
  article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER10090105
– ident: 10.1016/j.mri.2019.06.019_bb0175
– volume: 3
  start-page: 71
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0180
  article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 10
  start-page: 1055
  issue: 5
  year: 1999
  ident: 10.1016/j.mri.2019.06.019_bb0210
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788646
– volume: 0135875
  start-page: 1
  year: 2015
  ident: 10.1016/j.mri.2019.06.019_bb0300
  article-title: An automated and intelligent medical decision support system for brain MRI scans classification
  publication-title: Plos One
– start-page: 311
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0160
  article-title: High-order graph matching based feature selection for Alzheimer's disease identification
– volume: 152
  start-page: 476
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0110
  article-title: Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging
– volume: 37
  start-page: 40
  issue: 1
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0070
  article-title: A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer's disease versus vascular dementia
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2012.11.001
– volume: 45
  start-page: 427
  year: 2009
  ident: 10.1016/j.mri.2019.06.019_bb0185
  article-title: A systematic analysis of performance measures for classification tasks
– volume: 167
  start-page: 62
  year: 2018
  ident: 10.1016/j.mri.2019.06.019_bb0115
  article-title: A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease
– year: 2019
  ident: 10.1016/j.mri.2019.06.019_bb0270
  article-title: Learning using privileged information improves neuroimaging-based CAD of Alzheimer's disease: a comparative study
  publication-title: Med Biol Eng Comput
  doi: 10.1007/978-3-030-17297-8
– volume: 119
  start-page: 252
  year: 2009
  ident: 10.1016/j.mri.2019.06.019_bb0315
  article-title: Rate of progression of mild cognitive impairment to dementia—meta-analysis of 41 robust inception cohort studies
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.2008.01326.x
– volume: 178(687)
  start-page: 687
  year: 2018
  ident: 10.1016/j.mri.2019.06.019_bb0105
  article-title: A longitudinal model for functional connectivity networks using resting-state fMRI
– volume: 10
  start-page: 1
  issue: 8
  year: 2015
  ident: 10.1016/j.mri.2019.06.019_bb0335
  article-title: An automated and intelligent medical decision support system for brain MRI scans classification
  publication-title: Plos One
– volume: 9
  start-page: 195
  year: 1999
  ident: 10.1016/j.mri.2019.06.019_bb0200
  article-title: Cortical surface-based analysis: inflation, flattening, and a surface-based coordinate system
– volume: 57
  start-page: 328
  year: 2015
  ident: 10.1016/j.mri.2019.06.019_bb0305
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci Biobehav
  doi: 10.1016/j.neubiorev.2015.08.001
– volume: 358
  start-page: 201
  year: 2001
  ident: 10.1016/j.mri.2019.06.019_bb0005
  article-title: Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)05408-3
– volume: 130
  start-page: 369
  year: 2012
  ident: 10.1016/j.mri.2019.06.019_bb0265
  article-title: An MR brain images classifier via principal component analysis and kernel support vector machine
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER12061410
– volume: 290
  start-page: 96
  year: 2010
  ident: 10.1016/j.mri.2019.06.019_bb0085
  article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study
  publication-title: J Neuro Sci
  doi: 10.1016/j.jns.2009.10.022
– volume: 212
  start-page: 89
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0220
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
– year: 2016
  ident: 10.1016/j.mri.2019.06.019_bb0125
  article-title: Statistical textural feature and deformable model based brain tumor segmentation and volume estimation
– volume: 7
  start-page: 513
  issue: 4
  year: 2003
  ident: 10.1016/j.mri.2019.06.019_bb0025
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title: Med. Imag. Anal.
  doi: 10.1016/S1361-8415(03)00037-9
– volume: 290
  start-page: 96
  year: 2010
  ident: 10.1016/j.mri.2019.06.019_bb0060
  article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2009.10.022
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0165
  article-title: A novel approach for lie detection based on F-score and extreme learning machine
  publication-title: PloS One
  doi: 10.1371/journal.pone.0064704
– volume: 23
  start-page: 69
  year: 2004
  ident: 10.1016/j.mri.2019.06.019_bb0140
  article-title: Sequence-independent segmentation of magnetic resonance images
– volume: 80
  start-page: 71
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0310
  article-title: Application of machine learning classification for structural brain MRI in mood disorders: a critical review from a clinical perspective
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2017.06.024
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.mri.2019.06.019_bb0145
  article-title: An automated labelling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
– year: 2007
  ident: 10.1016/j.mri.2019.06.019_bb0055
– start-page: 1
  year: 2017
  ident: 10.1016/j.mri.2019.06.019_bb0325
  article-title: Diagnosis of Alzheimer's disease based on structural MRI images using a regularized extreme learning machine and PCA features
  publication-title: J Healthcare Eng
  doi: 10.1155/2017/4080874
– volume: 137
  start-page: 1
  year: 2013
  ident: 10.1016/j.mri.2019.06.019_bb0295
  article-title: Brain MR image classification using multi-scale geometric analysis of ripplet
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER13010105
– volume: 18
  start-page: 984
  issue: 3
  year: 2014
  ident: 10.1016/j.mri.2019.06.019_bb0075
  article-title: Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification
  publication-title: IEEE J Biomed Health Infor
  doi: 10.1109/JBHI.2013.2285378
– volume: 20
  start-page: 433
  issue: 2
  year: 2010
  ident: 10.1016/j.mri.2019.06.019_bb0280
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2009.07.002
– volume: 2008
  start-page: 1
  issue: 780656
  year: 2008
  ident: 10.1016/j.mri.2019.06.019_bb0020
  article-title: Independent component analysis for magnetic resonance image analysis
  publication-title: EURASIP J. on Adv. in Sig. Proc., Hindawi
– volume: 220
  start-page: 101
  issue: 1
  year: 2015
  ident: 10.1016/j.mri.2019.06.019_bb0170
  article-title: Multivariate classification of social anxiety disorder using whole-brain functional connectivity
  publication-title: Brain Struct Function
  doi: 10.1007/s00429-013-0641-4
– volume: 7
  start-page: 1
  issue: 4
  year: 2011
  ident: 10.1016/j.mri.2019.06.019_bb0330
  article-title: Volumetric and visual rating of MRI scans in the diagnosis of amnestic MCI and Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.mri.2019.06.019_bb0320
  article-title: Brain imaging in Alzheimer disease, Cold Spring Harb (CSH)
  publication-title: Perspect Med
– volume: 4
  start-page: 17
  issue: 1
  year: 2003
  ident: 10.1016/j.mri.2019.06.019_bb0050
  article-title: Assessment of consistency in contouring of normal-tissue anatomic structures
  publication-title: J Appl Clin Med Phy
SSID ssj0005235
Score 2.403274
Snippet An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast Discrete Wavelet Transform (DWT)/Band Expansion...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Aged
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Atrophy - diagnostic imaging
Atrophy - pathology
Brain - diagnostic imaging
Brain - pathology
Brain Mapping
Classifier
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - pathology
Computer-assisted diagnosis (CAD)
DWT (Discrete Wavelet Transform)
False Positive Reactions
Female
Humans
Image Processing, Computer-Assisted - methods
Least-Squares Analysis
Machine intelligence
Magnetic Resonance Imaging
Male
Middle Aged
Pattern Recognition, Automated
Principal Component Analysis
ROC Curve
Support Vector Machine
Support Vector Machine (SVM)
Wavelet Analysis
Title Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X1930102X
https://dx.doi.org/10.1016/j.mri.2019.06.019
https://www.ncbi.nlm.nih.gov/pubmed/31279772
https://www.proquest.com/docview/2253831655
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iIL6It-tFBEEQ6m7apMfjIsqqrA8esG-hSaZY2UP2ePHB3-5Mj0XBA3zqldAwk06-dL6ZYezEQBSoOHNemCbGk0YqLwUVeBmuhUpaISGmQOHuXdh5kjc91VtgF3UsDNEqK9tf2vTCWld3mpU0m6953nygyRn5qocQhBKj9SiCXUZUxeD8_TPNoyyyiY09al17NguO12CcE7srKVJ4UrKd79emn7BnsQZdrbHVCjzydjm-dbYAww223K3c45vssT2bjhCCguP0ixslyNN55k2O8JS3-2_PkA9gfDrhlW8GjwXbLp9wijXhhopG8O79Nc8HaGwmW-zp6vLxouNVZRM8K1vB1AOHmyQnwLdBFJgkUcoI24pTG5gYYnwS4omKrc2UaUWJygw4JxM8WAUWdbfNFoejIewyLkPfN8KBD1JKsInJEDCKzCkRuhCcbbBWLTBtq5ziVNqir2vy2ItGGWuSsSYCnUga7Gze5bVMqPFbY7_Wgq4jRdG2aTT3v3WS805fptJf3Y5rNWv8xMhvkg5hNJtoNHm4jxehUg22U-p_PvRA-BFCaH_vfy_dZyt0VbIDD9jidDyDQ0Q5U3NUTOMjttS-vu3cfQA7gvxm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SBNpeStLntmmiQqFQcHclS34cl9CwSbM5tBvYm7CkMXHJ7oZ9XHrob--MH0sLbQo52VgaLGbkmU-eF8B7h2lssjJESZG7SDttogJNHJVkC432UmPGicLjy2R0pc-nZroDJ10uDIdVtrq_0em1tm6f9Ftu9m-rqv-NN2eqzJQgCBdGmz6APW1UyiewTz9_j_NoumzS7Iind67NOshrtqw4vCuva3hytZ2_G6d_gc_aCJ3uw5MWPYphs8AD2MH5U3g4bv3jz2Ay3KwXhEExCP7HTSwUxbb0piB8KoY3P66xmuHyw0q0zhm61uF21Upwsolw3DVCjL-eiWpG2mb1HK5OP09ORlHbNyHyehCvIwx0SgoSlY_T2OW5MU76QVb42GWY0UhCNybzvjRukOamdBiCzuniDXoS3gvYnS_m-AqETpRyMqBCrTX63JWEGGUZjExCgsH3YNAxzPq2qDj3trixXfTYd0s8tsxjyxF0Mu_Bxy3JbVNR467JqpOC7VJFSblZ0vd3Eekt0R976X9k7zoxW_rG2HFSzHGxWVnSeXSQl4kxPXjZyH-79FiqlDC0en2_lx7Do9FkfGEvzi6_vIHHPMKWUepD2F0vN_iWIM_aHdVb-hcKMf3_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+atrophy+assessment+for+Alzheimer%27s+disease+diagnosis+from+brain+MRI+images&rft.jtitle=Magnetic+resonance+imaging&rft.au=Shaikh%2C+Tawseef+Ayoub&rft.au=Ali%2C+Rashid&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=62&rft.spage=167&rft.epage=173&rft_id=info:doi/10.1016%2Fj.mri.2019.06.019&rft.externalDocID=S0730725X1930102X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon