Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism
Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (L...
Saved in:
Published in | Molecular therapy. Methods & clinical development Vol. 33; no. 1; p. 101436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.03.2025
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2329-0501 2329-0501 |
DOI | 10.1016/j.omtm.2025.101436 |
Cover
Abstract | Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver’s distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP’s effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications.
[Display omitted]
Lipid nanoparticles (LNPs) preferentially accumulate in the liver through ApoE-mediated LDL receptor binding. This review examines this specificity and explores strategies to enhance targeting, expanding LNP applications beyond hepatic diseases. |
---|---|
AbstractList | Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications.Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver’s distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP’s effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. Lipid nanoparticles (LNPs) preferentially accumulate in the liver through ApoE-mediated LDL receptor binding. This review examines this specificity and explores strategies to enhance targeting, expanding LNP applications beyond hepatic diseases. Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver’s distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP’s effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. [Display omitted] Lipid nanoparticles (LNPs) preferentially accumulate in the liver through ApoE-mediated LDL receptor binding. This review examines this specificity and explores strategies to enhance targeting, expanding LNP applications beyond hepatic diseases. |
ArticleNumber | 101436 |
Author | Prestidge, Clive A. Hosseini-Kharat, Mahboubeh Bremmell, Kristen E. |
Author_xml | – sequence: 1 givenname: Mahboubeh surname: Hosseini-Kharat fullname: Hosseini-Kharat, Mahboubeh organization: Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia – sequence: 2 givenname: Kristen E. surname: Bremmell fullname: Bremmell, Kristen E. organization: Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia – sequence: 3 givenname: Clive A. orcidid: 0000-0001-5401-7535 surname: Prestidge fullname: Prestidge, Clive A. email: clive.prestidge@unisa.edu.au organization: Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40104152$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWlSdP8gR6Kjr14qy97LSiEEvoRCPTS0KOQpdGuFltyJe1C_n209TYkl-oiMfPmvZnRe4vOQgyA0HtKVpTQ7tNuFacyrRhh7TEgePcKXTDOZENaQs-evc_RVc47Uo9cE97KN-hcEEoEbdkF2v7ePmAb8ehnb3HQIc46FW9GyLjotIGCyxZq-gDpGt8HCykXHawPGxwdHny0Ppfkh33xMeCaWbBNnsF45w0uKc4-T-_Qa6fHDFen-xLdf_v66-ZHc_fz--3Nl7vGCMJLA2tGmXUdsbJ2aJjuhaWC2Y700gHvoGeOStF2ug4-cCuIdppSOsiWSCE1v0S3C6-Neqfm5CedHlTUXv0NxLRRpwEVWes1EMOINVY41g1tlaS6H5zth6pfua4Xrnk_TGANhJL0-IL0ZSb4rdrEg6JUUslZXxk-nhhS_LOHXNTks4Fx1AHiPitO133PWcfaCv3wXOxJ5d9fVQBbACbFnBO4Jwgl6ugJVcernlBHT6jFE7Xo81IEdecHD0ll4yEYsD6BKXUp_n_ljzfUwDE |
Cites_doi | 10.1038/s41598-017-14221-2 10.1016/j.jconrel.2024.04.022 10.33549/physiolres.934755 10.1038/s41467-021-20903-3 10.1016/j.jconrel.2024.05.006 10.1038/s41565-020-00836-6 10.1002/btm2.10213 10.1007/s12565-017-0395-9 10.1016/j.colsurfb.2024.114177 10.1021/acs.analchem.4c02399 10.1073/pnas.1906182116 10.1016/j.jconrel.2020.03.006 10.1042/CS20241137 10.1007/s12668-024-01589-5 10.1002/advs.202404684 10.1021/acsomega.3c08353 10.1007/s43152-020-00004-x 10.3390/ph15070897 10.1073/pnas.2307801120 10.1186/s12929-024-01080-z 10.3390/cimb44100341 10.1038/s41565-024-01747-6 10.1002/adma.202211420 10.1016/j.jconrel.2019.01.001 10.1016/j.jhep.2016.07.009 10.1016/j.ijbiomac.2024.133984 10.1016/j.jconrel.2024.08.012 10.1080/14686996.2019.1590126 10.1038/s41575-020-00411-3 10.1039/D0BM01609H 10.1073/pnas.2109256118 10.1038/s43586-022-00104-y 10.1016/j.omtm.2023.06.005 10.1186/s11658-024-00655-w 10.1038/nmat4718 10.1038/s41467-022-35637-z 10.3390/nano12152576 10.1038/s12276-023-01086-x 10.1038/s41565-019-0591-y 10.1038/s41419-020-2571-4 10.1186/s12951-024-02325-7 10.1021/acs.bioconjchem.3c00174 10.1186/s12951-024-02919-1 10.1038/s41587-024-02437-3 10.1089/hum.2024.106 10.1038/s41467-018-06318-7 10.3390/ijms25010312 10.1080/17425247.2022.2093854 10.1007/s12195-019-00573-4 10.1016/j.addr.2020.06.017 10.3389/fmolb.2021.804396 10.1007/s13205-023-03901-8 10.3390/vaccines12101148 10.1021/acsnano.0c10064 10.1038/s41578-021-00358-0 10.1039/D2LC00799A 10.3390/vaccines11030658 10.1039/D3NH00145H 10.1038/s41565-020-0669-6 10.20517/evcna.2024.19 10.1007/s00277-023-05425-w 10.1002/adma.202201095 10.1055/s-0041-1742279 10.1016/j.addr.2019.04.008 10.1021/acsnano.8b03640 10.3390/ijms241814299 10.1007/s13346-022-01146-1 10.1038/s41467-021-27493-0 10.1073/pnas.2307800120 10.1039/D3TB02766J 10.1038/s41467-021-24543-5 10.1039/D2BM00168C 10.1007/s11095-022-03460-2 10.1016/j.addr.2020.06.026 10.1186/s12951-022-01309-9 10.1248/bpb.b19-00743 10.1073/pnas.1713390114 10.1016/j.addr.2020.06.002 10.3389/fgene.2023.1163392 10.1021/acs.molpharmaceut.2c00442 10.1038/s41467-023-39768-9 10.1038/s41467-023-37465-1 10.1186/s12951-024-02812-x 10.3390/pharmaceutics13101675 10.1080/17425247.2024.2375400 |
ContentType | Journal Article |
Copyright | 2025 The Authors 2025 The Authors. 2025 The Authors 2025 |
Copyright_xml | – notice: 2025 The Authors – notice: 2025 The Authors. – notice: 2025 The Authors 2025 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.omtm.2025.101436 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2329-0501 |
ExternalDocumentID | oai_doaj_org_article_07a7e0c20dcd4f26b50411a8bfd8bd90 PMC11919328 40104152 10_1016_j_omtm_2025_101436 S2329050125000312 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 53G 5VS 6I. 7X7 8FE 8FH 8FI AACTN AAEDW AAFTH AAMRU ABMAC ACGFS ADBBV ADVLN AFKRA AFTJW AITUG ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FYUFA GROUPED_DOAJ HCIFZ LK8 M7P M~E O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 8FJ AAYXX ABUWG ADRAZ CCPQU CITATION EJD HMCUK HYE M41 M48 PHGZM PHGZT UKHRP NPM 7X8 5PM |
ID | FETCH-LOGICAL-c403t-e7212df60d9041c2a84d142d6089fe36e82f19456a025b3d40afa111b950949a3 |
IEDL.DBID | DOA |
ISSN | 2329-0501 |
IngestDate | Wed Aug 27 01:23:49 EDT 2025 Thu Aug 21 18:39:19 EDT 2025 Thu Sep 04 15:07:39 EDT 2025 Fri Mar 21 01:25:58 EDT 2025 Tue Jul 01 05:12:58 EDT 2025 Sat Mar 29 16:11:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | lipid nanoparticles biodistribution LNPs apolipoprotein E ApoE liver targeting therapeutic delivery |
Language | English |
License | This is an open access article under the CC BY license. 2025 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-e7212df60d9041c2a84d142d6089fe36e82f19456a025b3d40afa111b950949a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5401-7535 |
OpenAccessLink | https://doaj.org/article/07a7e0c20dcd4f26b50411a8bfd8bd90 |
PMID | 40104152 |
PQID | 3178832625 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07a7e0c20dcd4f26b50411a8bfd8bd90 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11919328 proquest_miscellaneous_3178832625 pubmed_primary_40104152 crossref_primary_10_1016_j_omtm_2025_101436 elsevier_sciencedirect_doi_10_1016_j_omtm_2025_101436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-13 |
PublicationDateYYYYMMDD | 2025-03-13 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy. Methods & clinical development |
PublicationTitleAlternate | Mol Ther Methods Clin Dev |
PublicationYear | 2025 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Gracia-Sancho, Caparrós, Fernández-Iglesias, Francés (bib30) 2021; 18 Sato, Nakamura, Yamada, Harashima (bib61) 2024; 370 Paunovska, Gil, Lokugamage, Sago, Sato, Lando, Gamboa Castro, Bryksin, Dahlman (bib68) 2018; 12 Panday, Monckton, Khetani (bib87) 2022; 42 Poisson, Lemoinne, Boulanger, Durand, Moreau, Valla, Rautou (bib31) 2017; 66 Chen, Han, Zhao, Xu, Yin, Lawanprasert, Trinidad, Burgstone, Murthy, Doudna (bib78) 2024 Choi, Yoo, Park, Kim, Ann, Park, Kim, Kim, Shin, Lee (bib39) 2024; 22 Senoo, Mezaki, Fujiwara (bib49) 2017; 92 Tenchov, Sasso, Zhou (bib95) 2023; 34 Pattipeiluhu, Arias-Alpizar, Basha, Chan, Bussmann, Sharp, Moradi, Sommerdijk, Harris, Cullis (bib45) 2022; 34 Swetha, Kotla, Tunki, Jayaraj, Bhargava, Hu, Bonam, Kurapati (bib6) 2023; 11 Chander, Basha, Yan Cheng, Witzigmann, Cullis (bib59) 2023; 30 Radmand, Kim, Beyersdorf, Dobrowolski, Zenhausern, Paunovska, Huayamares, Hua, Han, Loughrey (bib70) 2024; 121 Mendes, Conniot, Avital, Yao, Jiang, Zhou, Sharf-Pauker, Xiao, Adir, Liang (bib17) 2022; 2 Bashiri, Padilla, Swingle, Shepherd, Mitchell, Wang (bib99) 2023; 23 Richter, Deligiannis, Yin, Danese, Lleshi, Coupland, Vallejos, Matchett, Henderson, Colome-Tatche, Martinez-Jimenez (bib42) 2021; 12 Samaridou, Heyes, Lutwyche (bib3) 2020; 154–155 Kim, Jeong, Hur, Cho, Park, Jung, Seo, Woo, Nam, Lee, Lee (bib23) 2021; 7 Hagedorn, Jürgens, Merkel, Winkeljann (bib20) 2024; 5 Algarni, Pilkington, Suys, Al-Wassiti, Pouton, Truong (bib69) 2022; 10 Żak, Zangi (bib18) 2021; 13 Ma, Li, Lin, Chen (bib4) 2024; 4 Sebastiani, Yanez Arteta, Lerche, Porcar, Lang, Bragg, Elmore, Krishnamurthy, Russell, Darwish (bib22) 2021; 15 Zhang, El-Mayta, Murdoch, Warzecha, Billingsley, Shepherd, Gong, Wang, Wilson, Lee, Mitchell (bib24) 2021; 9 Liu, Nilsson, Lázaro-Ibáñez, Duàn, Miliotis, Strimfors, Lerche, Salgado Ribeiro, Ulander, Lindén (bib44) 2023; 14 Rizvi, Everton, Smith, Liu, Osota, Beattie, Tam, Pardi, Weissman, Gouon-Evans (bib79) 2021; 12 Labouta, Langer, Cullis, Merkel, Prausnitz, Gomaa, Nogueira, Kumeria (bib5) 2022; 12 Van der Sanden, Paun, Yitayew, Boyadjian, Tabrizian (bib55) 2024; 7 Couture-Senécal, Natraj, Khan (bib64) 2024; 96 Gu, Zhang, Wu, Zhuge (bib89) 2022; 8 Lam, Leung, Martin, Wood, Schreiner, Palmer, Daly, Zhao, McClintock, Heyes (bib47) 2023; 35 Khalil, Younis, Kimura, Harashima (bib52) 2020; 43 Lopez-Pascual, Russo-Cabrera, Ardaiz, Palmer, Graham, Uriarte, Gomar, Ruiz-Guillamon, Latasa, Arechederra (bib80) 2024; 138 Lu, Hsu, Perez, Kumari, Chen, Hong, Lin, Liu, Ko, Concio (bib102) 2024; 31 Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros, Ansell, Du, Hope, Madden (bib8) 2019; 14 Hashiba, Taguchi, Sakamoto, Otsu, Maeda, Suzuki, Ebe, Okazaki, Harashima, Sato (bib72) 2024; 24 Isaac, Patel, Tran, Singam, Guha, Park, Bhattacharya (bib100) 2024 He, Wang, Wang, Jiang, Wilhelm (bib11) 2024; 21 Li, Fang, Zhang, Wang, Qi, Li, Jiao (bib103) 2022; 10 Morita, Horii, Kimura, Kobayashi, Tanaka, Akita, Hatada (bib67) 2023; 24 Hu, Wang, Liu, Yu, Guan, Liu, Wang, Tan, Huang (bib75) 2021; 16 Jeong, Shin, Lee, Lee, Park, Kang, Lee, Seo, Lee (bib74) 2024; 374 Ziqi, Kai, Costabel, Xiaoju (bib9) 2022; 2 Xue, Zhao, Gong, Han, Shepherd, Xiong, Xiao, Palanki, Xu, Swingle (bib71) 2024; 20 Dilliard, Cheng, Siegwart (bib65) 2021; 118 Das, Kudale, Dandekar, Devarajan (bib84) 2019 Truong, Allegri, Liu, Burke, Zhu, Cederbaum, Häberle, Martini, Lipshutz (bib77) 2019; 116 Ganilho, da Silva, Paiva, de Menezes, Dos Santos, Pereira, Pereira, Andreani (bib97) 2022; 12 Rampado, Crotti, Caliceti, Pucciarelli, Agostini (bib86) 2020; 8 Witzigmann, Kulkarni, Leung, Chen, Cullis, van der Meel (bib16) 2020; 159 Luo, Li, Wei, Lu, Dong (bib29) 2021; 70 Sago, Krupczak, Lokugamage, Gan, Dahlman (bib32) 2019; 12 Wolfram, Nizzero, Liu, Li, Zhang, Li, Shen, Blanco, Ferrari (bib37) 2017; 7 Jiang, Chu, Zhan (bib85) 2022; 19 Woltman, Boonstra, Naito, Leenen (bib40) 2014 MacParland, Liu, Ma, Innes, Bartczak, Gage, Manuel, Khuu, Echeverri, Linares (bib34) 2018; 9 Lee, Jeong, Park, Jung, Lee (bib93) 2023; 55 D'Alessio, Boffa, De Stefano, Soria, Brunetti-Pierri (bib41) 2024; 598 Zhang, Liang, Liang, Li, Wu (bib54) 2024; 244 Wasti, Lee, Kim, Lee, Kim (bib91) 2023; 14 Li, Hu, Jin, Huo, Chen, Lin, Lu (bib48) 2024; 22 Sun, Lu (bib19) 2023; 40 Kumar, Ahmed, Kaur, Saha (bib62) 2024; 277 Mahmoud, Swidan, El-Nabarawi, Teaima (bib10) 2022; 20 Böttger, Pauli, Chao, Al Fayez, Hohenwarter, Li (bib25) 2020; 154–155 Toriyabe, Sakurai, Kato, Yamamoto, Tange, Nakai, Akita, Harahsima (bib51) 2017; 106 Gimondi, Ferreira, Reis, Neves (bib58) 2024; 25 Woitok, Zoubek, Doleschel, Bartneck, Mohamed, Kießling, Lederle, Trautwein, Cubero (bib14) 2020; 11 Lam, Schreiner, Leung, Stainton, Reid, Yaworski, Lutwyche, Heyes (bib60) 2023; 35 Chu, Wang, Kong, Pan, Yang, He (bib12) 2024; 12 Li, Wang (bib26) 2023; 8 Wang, Jia, Wang, Chen, Jiang, Li, Ji (bib90) 2024; 11 Wang, Ding, Chong, Cui, Cao, Tang, Tian, Hu, Zhao, Jiang (bib94) 2024; 12 Ayanoğlu, Elçin, Elçin (bib92) 2020; 44 Paunovska, Da Silva Sanchez, Sago, Gan, Lokugamage, Islam, Kalathoor, Krupczak, Dahlman (bib73) 2019; 31 Vasu, Yadav, Satyanarayana, Ahlawat, Sandeep, Kumar (bib7) 2024; 14 Tsoi, MacParland, Ma, Spetzler, Echeverri, Ouyang, Fadel, Sykes, Goldaracena, Kaths (bib15) 2016; 15 Simonsen (bib98) 2024; 370 Chatterjee, Kon, Sharma, Peer (bib57) 2024; 121 Mashima, Takada (bib2) 2022; 44 Sato, Kinami, Hashiba, Harashima (bib43) 2020; 322 Han, Zhang, Butowska, Swingle, Alameh, Weissman, Mitchell (bib46) 2021; 12 Zhang, Li, Zhou (bib83) 2024; 9 Koike, Miura, Hatta, Nakamura, Hirabayashi, Yuda, Harada, Hirai, Tsuboi, Aizawa (bib38) 2023; 102 Nguyen-Lefebvre, Horuzsko (bib28) 2015; 1 Kasiewicz, Biswas, Beach, Ren, Dutta, Mazzola, Rohde, Chadwick, Cheng, Garcia (bib82) 2023; 14 Johnson, Zhang, Zhou, Lee, Liu, Dilliard, Farbiak, Chatterjee, Lin, Siegwart (bib36) 2022; 19 Han, Gong, Xue, Billingsley, El-Mayta, Shepherd, Alameh, Weissman, Mitchell (bib76) 2023; 14 Cheng, Wei, Farbiak, Johnson, Dilliard, Siegwart (bib66) 2020; 15 Shiraishi, Yokoyama (bib96) 2019; 20 Sato, Hashiba, Sasaki, Maeki, Tokeshi, Harashima (bib81) 2019; 295 Lv, Yu, Wang, Li, Wang, Xue, Wang, Shi, Han, Qin (bib63) 2024; 11 Czyzynska-Cichon, Kotlinowski, Blacharczyk, Giergiel, Szymanowski, Metwally, Wojnar-Lason, Dobosz, Koziel, Lekka (bib88) 2024; 29 Kubiatowicz, Mohapatra, Krishnan, Fang, Zhang (bib101) 2022; 2 Schlich, Palomba, Costabile, Mizrahy, Pannuzzo, Peer, Decuzzi (bib21) 2021; 6 Chen, Liu, Kan, Wang, Wang, Wang, Li, Jiang, Chen, Zhou (bib33) 2024; 11 Hou, Zaks, Langer, Dong (bib1) 2021; 6 Kularatne, Crist, Stern (bib27) 2022; 15 Dhayalan, Wang, Riyaz, Dinesh, Shanmugam, Irudayaraj, Stalin, Giri, Mallik, Hu (bib104) 2024; 14 Donahue, Acar, Wilhelm (bib56) 2019; 143 Kong, Wei, Dong, Liu, Zhao, Huang, Yang, Wu, He, Qi (bib53) 2024; 22 Saber, Senti, Schiffelers (bib13) 2024; 35 Tavares, Poon, Zhang, Dai, Besla, Ding, Ouyang, Li, Chen, Zheng (bib35) 2017; 114 Poelstra (bib50) 2020; 1 Wasti (10.1016/j.omtm.2025.101436_bib91) 2023; 14 Wang (10.1016/j.omtm.2025.101436_bib94) 2024; 12 Labouta (10.1016/j.omtm.2025.101436_bib5) 2022; 12 Gu (10.1016/j.omtm.2025.101436_bib89) 2022; 8 Lam (10.1016/j.omtm.2025.101436_bib47) 2023; 35 Das (10.1016/j.omtm.2025.101436_bib84) 2019 Donahue (10.1016/j.omtm.2025.101436_bib56) 2019; 143 Gracia-Sancho (10.1016/j.omtm.2025.101436_bib30) 2021; 18 Chatterjee (10.1016/j.omtm.2025.101436_bib57) 2024; 121 Samaridou (10.1016/j.omtm.2025.101436_bib3) 2020; 154–155 Hagedorn (10.1016/j.omtm.2025.101436_bib20) 2024; 5 Ziqi (10.1016/j.omtm.2025.101436_bib9) 2022; 2 Zhang (10.1016/j.omtm.2025.101436_bib24) 2021; 9 Tsoi (10.1016/j.omtm.2025.101436_bib15) 2016; 15 Bashiri (10.1016/j.omtm.2025.101436_bib99) 2023; 23 Lopez-Pascual (10.1016/j.omtm.2025.101436_bib80) 2024; 138 Jeong (10.1016/j.omtm.2025.101436_bib74) 2024; 374 Chu (10.1016/j.omtm.2025.101436_bib12) 2024; 12 Gimondi (10.1016/j.omtm.2025.101436_bib58) 2024; 25 Choi (10.1016/j.omtm.2025.101436_bib39) 2024; 22 Toriyabe (10.1016/j.omtm.2025.101436_bib51) 2017; 106 Isaac (10.1016/j.omtm.2025.101436_bib100) 2024 Kularatne (10.1016/j.omtm.2025.101436_bib27) 2022; 15 Rampado (10.1016/j.omtm.2025.101436_bib86) 2020; 8 Pattipeiluhu (10.1016/j.omtm.2025.101436_bib45) 2022; 34 Lee (10.1016/j.omtm.2025.101436_bib93) 2023; 55 Nguyen-Lefebvre (10.1016/j.omtm.2025.101436_bib28) 2015; 1 Schlich (10.1016/j.omtm.2025.101436_bib21) 2021; 6 Kumar (10.1016/j.omtm.2025.101436_bib62) 2024; 277 Lv (10.1016/j.omtm.2025.101436_bib63) 2024; 11 Paunovska (10.1016/j.omtm.2025.101436_bib68) 2018; 12 Han (10.1016/j.omtm.2025.101436_bib76) 2023; 14 Dilliard (10.1016/j.omtm.2025.101436_bib65) 2021; 118 Luo (10.1016/j.omtm.2025.101436_bib29) 2021; 70 He (10.1016/j.omtm.2025.101436_bib11) 2024; 21 Jiang (10.1016/j.omtm.2025.101436_bib85) 2022; 19 Chander (10.1016/j.omtm.2025.101436_bib59) 2023; 30 Paunovska (10.1016/j.omtm.2025.101436_bib73) 2019; 31 Hashiba (10.1016/j.omtm.2025.101436_bib72) 2024; 24 Swetha (10.1016/j.omtm.2025.101436_bib6) 2023; 11 Sato (10.1016/j.omtm.2025.101436_bib81) 2019; 295 Kubiatowicz (10.1016/j.omtm.2025.101436_bib101) 2022; 2 Sato (10.1016/j.omtm.2025.101436_bib61) 2024; 370 Ma (10.1016/j.omtm.2025.101436_bib4) 2024; 4 Liu (10.1016/j.omtm.2025.101436_bib44) 2023; 14 Li (10.1016/j.omtm.2025.101436_bib26) 2023; 8 Sago (10.1016/j.omtm.2025.101436_bib32) 2019; 12 Johnson (10.1016/j.omtm.2025.101436_bib36) 2022; 19 Simonsen (10.1016/j.omtm.2025.101436_bib98) 2024; 370 Khalil (10.1016/j.omtm.2025.101436_bib52) 2020; 43 Lam (10.1016/j.omtm.2025.101436_bib60) 2023; 35 Van der Sanden (10.1016/j.omtm.2025.101436_bib55) 2024; 7 Zhang (10.1016/j.omtm.2025.101436_bib54) 2024; 244 Zhang (10.1016/j.omtm.2025.101436_bib83) 2024; 9 Chen (10.1016/j.omtm.2025.101436_bib78) 2024 Couture-Senécal (10.1016/j.omtm.2025.101436_bib64) 2024; 96 Kong (10.1016/j.omtm.2025.101436_bib53) 2024; 22 Sebastiani (10.1016/j.omtm.2025.101436_bib22) 2021; 15 Truong (10.1016/j.omtm.2025.101436_bib77) 2019; 116 Wang (10.1016/j.omtm.2025.101436_bib90) 2024; 11 MacParland (10.1016/j.omtm.2025.101436_bib34) 2018; 9 Xue (10.1016/j.omtm.2025.101436_bib71) 2024; 20 Poelstra (10.1016/j.omtm.2025.101436_bib50) 2020; 1 Li (10.1016/j.omtm.2025.101436_bib103) 2022; 10 Sato (10.1016/j.omtm.2025.101436_bib43) 2020; 322 Cheng (10.1016/j.omtm.2025.101436_bib66) 2020; 15 Shiraishi (10.1016/j.omtm.2025.101436_bib96) 2019; 20 Morita (10.1016/j.omtm.2025.101436_bib67) 2023; 24 Vasu (10.1016/j.omtm.2025.101436_bib7) 2024; 14 Żak (10.1016/j.omtm.2025.101436_bib18) 2021; 13 Böttger (10.1016/j.omtm.2025.101436_bib25) 2020; 154–155 Woltman (10.1016/j.omtm.2025.101436_bib40) 2014 Richter (10.1016/j.omtm.2025.101436_bib42) 2021; 12 Hu (10.1016/j.omtm.2025.101436_bib75) 2021; 16 Tavares (10.1016/j.omtm.2025.101436_bib35) 2017; 114 Akinc (10.1016/j.omtm.2025.101436_bib8) 2019; 14 Czyzynska-Cichon (10.1016/j.omtm.2025.101436_bib88) 2024; 29 Panday (10.1016/j.omtm.2025.101436_bib87) 2022; 42 Hou (10.1016/j.omtm.2025.101436_bib1) 2021; 6 D'Alessio (10.1016/j.omtm.2025.101436_bib41) 2024; 598 Kim (10.1016/j.omtm.2025.101436_bib23) 2021; 7 Woitok (10.1016/j.omtm.2025.101436_bib14) 2020; 11 Chen (10.1016/j.omtm.2025.101436_bib33) 2024; 11 Han (10.1016/j.omtm.2025.101436_bib46) 2021; 12 Lu (10.1016/j.omtm.2025.101436_bib102) 2024; 31 Kasiewicz (10.1016/j.omtm.2025.101436_bib82) 2023; 14 Tenchov (10.1016/j.omtm.2025.101436_bib95) 2023; 34 Sun (10.1016/j.omtm.2025.101436_bib19) 2023; 40 Dhayalan (10.1016/j.omtm.2025.101436_bib104) 2024; 14 Mahmoud (10.1016/j.omtm.2025.101436_bib10) 2022; 20 Senoo (10.1016/j.omtm.2025.101436_bib49) 2017; 92 Poisson (10.1016/j.omtm.2025.101436_bib31) 2017; 66 Algarni (10.1016/j.omtm.2025.101436_bib69) 2022; 10 Wolfram (10.1016/j.omtm.2025.101436_bib37) 2017; 7 Ayanoğlu (10.1016/j.omtm.2025.101436_bib92) 2020; 44 Radmand (10.1016/j.omtm.2025.101436_bib70) 2024; 121 Rizvi (10.1016/j.omtm.2025.101436_bib79) 2021; 12 Mendes (10.1016/j.omtm.2025.101436_bib17) 2022; 2 Li (10.1016/j.omtm.2025.101436_bib48) 2024; 22 Ganilho (10.1016/j.omtm.2025.101436_bib97) 2022; 12 Mashima (10.1016/j.omtm.2025.101436_bib2) 2022; 44 Koike (10.1016/j.omtm.2025.101436_bib38) 2023; 102 Witzigmann (10.1016/j.omtm.2025.101436_bib16) 2020; 159 Saber (10.1016/j.omtm.2025.101436_bib13) 2024; 35 |
References_xml | – volume: 114 year: 2017 ident: bib35 article-title: Effect of removing Kupffer cells on nanoparticle tumor delivery publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 3973 year: 2022 end-page: 3986 ident: bib36 article-title: Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model publication-title: Mol. Pharm. – start-page: 217 year: 2014 end-page: 247 ident: bib40 article-title: Kupffer Cells in Health and Disease publication-title: Macrophages: Biology and Role in the Pathology of Diseases – volume: 15 start-page: 313 year: 2020 end-page: 320 ident: bib66 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing publication-title: Nat. Nanotechnol. – volume: 1 year: 2015 ident: bib28 article-title: Kupffer Cell Metabolism and Function publication-title: J. Enzymol. Metabol. – volume: 24 start-page: 12758 year: 2024 end-page: 12767 ident: bib72 article-title: Impact of Lipid Tail Length on the Organ Selectivity of mRNA-Lipid Nanoparticles publication-title: Nano Lett. – volume: 12 start-page: 4264 year: 2021 ident: bib42 article-title: Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy publication-title: Nat. Commun. – volume: 12 start-page: 8341 year: 2018 end-page: 8349 ident: bib68 article-title: Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery publication-title: ACS Nano – volume: 20 start-page: 132 year: 2024 end-page: 143 ident: bib71 article-title: Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery publication-title: Nat. Nanotechnol. – volume: 14 start-page: 3430 year: 2024 end-page: 3439 ident: bib7 article-title: Golden Threads of Lipid Nanoparticles (LNPs) contributing to COVID-19 mRNA Vaccine: A Review publication-title: BioNanoScience – volume: 8 year: 2020 ident: bib86 article-title: Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of “Stealthy” publication-title: Nanomaterials – volume: 42 start-page: 1 year: 2022 end-page: 16 ident: bib87 article-title: The Role of Liver Zonation in Physiology, Regeneration, and Disease publication-title: Semin. Liver Dis. – volume: 11 year: 2024 ident: bib90 article-title: Nanogene editing drug delivery systems in the treatment of liver fibrosis publication-title: Front. Med. – start-page: 353 year: 2019 end-page: 381 ident: bib84 article-title: Asialoglycoprotein Receptor and Targeting Strategies publication-title: Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis – volume: 4 year: 2024 ident: bib4 article-title: A perspective of lipid nanoparticles for RNA delivery publication-title: Explorations – volume: 14 start-page: 2776 year: 2023 ident: bib82 article-title: GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy publication-title: Nat. Commun. – volume: 6 start-page: 1078 year: 2021 end-page: 1094 ident: bib1 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. – volume: 11 start-page: 658 year: 2023 ident: bib6 article-title: Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines publication-title: Vaccines – volume: 9 start-page: 1449 year: 2021 end-page: 1463 ident: bib24 article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver publication-title: Biomater. Sci. – volume: 118 year: 2021 ident: bib65 article-title: On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 2940 year: 2022 end-page: 2952 ident: bib69 article-title: In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression publication-title: Biomater. Sci. – volume: 12 start-page: 389 year: 2019 end-page: 397 ident: bib32 article-title: Cell Subtypes Within the Liver Microenvironment Differentially Interact with Lipid Nanoparticles publication-title: Cell. Mol. Bioeng. – volume: 10 year: 2022 ident: bib103 article-title: Lipid-mRNA nanoparticles landscape for cancer therapy publication-title: Front. Bioeng. Biotechnol. – volume: 6 year: 2021 ident: bib21 article-title: Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles publication-title: Bioeng. Transl. Med. – volume: 12 start-page: 7233 year: 2021 ident: bib46 article-title: An ionizable lipid toolbox for RNA delivery publication-title: Nat. Commun. – volume: 24 year: 2023 ident: bib67 article-title: A Lipid Nanoparticle-Based Method for the Generation of Liver-Specific Knockout Mice publication-title: Int. J. Mol. Sci. – volume: 370 start-page: 516 year: 2024 end-page: 527 ident: bib61 article-title: The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting publication-title: J. Contr. Release – volume: 21 start-page: 829 year: 2024 end-page: 843 ident: bib11 article-title: Understanding nanoparticle-liver interactions in nanomedicine publication-title: Expet Opin. Drug Deliv. – volume: 1 start-page: 13 year: 2020 end-page: 22 ident: bib50 article-title: Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell publication-title: Curr. Tissue Microenviron. Rep. – volume: 35 year: 2023 ident: bib60 article-title: Optimizing Lipid Nanoparticles for Delivery in Primates publication-title: Adv. Mater. – volume: 12 start-page: 4759 year: 2024 end-page: 4784 ident: bib12 article-title: Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders publication-title: J. Mater. Chem. B – volume: 159 start-page: 344 year: 2020 end-page: 363 ident: bib16 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv. Drug Deliv. Rev. – volume: 40 start-page: 27 year: 2023 end-page: 46 ident: bib19 article-title: Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery publication-title: Pharm. Res. – volume: 370 start-page: 763 year: 2024 end-page: 772 ident: bib98 article-title: Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities publication-title: J. Contr. Release – volume: 23 start-page: 1432 year: 2023 end-page: 1466 ident: bib99 article-title: Nanoparticle protein corona: from structure and function to therapeutic targeting publication-title: Lab Chip – volume: 11 year: 2024 ident: bib33 article-title: CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p publication-title: Adv. Sci. – volume: 70 start-page: 821 year: 2021 end-page: 829 ident: bib29 article-title: Hepatic Stellate Cell: A Double-Edged Sword in the Liver publication-title: Physiol. Res. – volume: 12 start-page: 1148 year: 2024 ident: bib94 article-title: Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery publication-title: Vaccines – volume: 29 start-page: 139 year: 2024 ident: bib88 article-title: Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation publication-title: Cell. Mol. Biol. Lett. – volume: 244 year: 2024 ident: bib54 article-title: Efficient delivery of curcumin by functional solid lipid nanoparticles with promoting endosomal escape and liver targeting properties publication-title: Colloids Surf. B Biointerfaces – volume: 8 start-page: 1155 year: 2023 end-page: 1173 ident: bib26 article-title: Selective organ targeting nanoparticles: from design to clinical translation publication-title: Nanoscale Horiz. – year: 2024 ident: bib100 article-title: Reengineering mRNA lipid nanoparticles for systemic delivery to pancreas publication-title: bioRxiv – volume: 322 start-page: 217 year: 2020 end-page: 226 ident: bib43 article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway publication-title: J. Contr. Release – volume: 92 start-page: 387 year: 2017 end-page: 455 ident: bib49 article-title: The stellate cell system (vitamin A-storing cell system) publication-title: Anat. Sci. Int. – volume: 35 year: 2023 ident: bib47 article-title: Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications publication-title: Adv. Mater. – volume: 598 start-page: 2372 year: 2024 end-page: 2384 ident: bib41 article-title: Liver gene transfer for metabolite detoxification in inherited metabolic diseases publication-title: FEBS Lett. – volume: 31 start-page: 89 year: 2024 ident: bib102 article-title: Current landscape of mRNA technologies and delivery systems for new modality therapeutics publication-title: J. Biomed. Sci. – volume: 2 year: 2022 ident: bib9 article-title: Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic publication-title: Explorations – volume: 15 year: 2022 ident: bib27 article-title: The Future of Tissue-Targeted Lipid Nanoparticle-Mediated Nucleic Acid Delivery publication-title: Pharmaceuticals – volume: 20 start-page: 109 year: 2022 ident: bib10 article-title: Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances publication-title: J. Nanobiotechnol. – volume: 14 start-page: 4007 year: 2023 ident: bib44 article-title: Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function publication-title: Nat. Commun. – volume: 66 start-page: 212 year: 2017 end-page: 227 ident: bib31 article-title: Liver sinusoidal endothelial cells: Physiology and role in liver diseases publication-title: J. Hepatol. – volume: 14 year: 2023 ident: bib91 article-title: Ethical and legal challenges in nanomedical innovations: a scoping review publication-title: Front. Genet. – year: 2024 ident: bib78 article-title: Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein publication-title: Nat. Biotechnol. – volume: 44 start-page: 110 year: 2020 end-page: 120 ident: bib92 article-title: Bioethical issues in genome editing by CRISPR-Cas9 technology publication-title: Turkish journal of biology = Turk biyoloji dergisi – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: bib8 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. – volume: 13 year: 2021 ident: bib18 article-title: Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery publication-title: Pharmaceutics – volume: 34 year: 2022 ident: bib45 article-title: Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System publication-title: Adv. Mater. – volume: 43 start-page: 584 year: 2020 end-page: 595 ident: bib52 article-title: Lipid Nanoparticles for Cell-Specific publication-title: Biol. Pharm. Bull. – volume: 9 start-page: 6219 year: 2024 end-page: 6234 ident: bib83 article-title: Lipid Nanoparticle-Based Delivery System-A Competing Place for mRNA Vaccines publication-title: ACS Omega – volume: 12 start-page: 613 year: 2021 ident: bib79 article-title: Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA publication-title: Nat. Commun. – volume: 121 year: 2024 ident: bib70 article-title: Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 5013 year: 2022 end-page: 5027 ident: bib2 article-title: Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application publication-title: Curr. Issues Mol. Biol. – volume: 121 year: 2024 ident: bib57 article-title: Endosomal escape: A bottleneck for LNP-mediated therapeutics publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 553 year: 2024 ident: bib53 article-title: Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA publication-title: J. Nanobiotechnol. – volume: 295 start-page: 140 year: 2019 end-page: 152 ident: bib81 article-title: Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo publication-title: J. Contr. Release – volume: 35 start-page: 617 year: 2024 end-page: 627 ident: bib13 article-title: Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver publication-title: Hum. Gene Ther. – volume: 154–155 start-page: 37 year: 2020 end-page: 63 ident: bib3 article-title: Lipid nanoparticles for nucleic acid delivery: Current perspectives publication-title: Adv. Drug Deliv. Rev. – volume: 20 start-page: 324 year: 2019 end-page: 336 ident: bib96 article-title: Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review publication-title: Sci. Technol. Adv. Mater. – volume: 34 start-page: 941 year: 2023 end-page: 960 ident: bib95 article-title: PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective publication-title: Bioconjug. Chem. – volume: 25 start-page: 312 year: 2024 ident: bib58 article-title: Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 4383 year: 2018 ident: bib34 article-title: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations publication-title: Nat. Commun. – volume: 277 year: 2024 ident: bib62 article-title: Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis publication-title: Int. J. Biol. Macromol. – volume: 374 start-page: 337 year: 2024 end-page: 348 ident: bib74 article-title: Engineered lipid nanoparticles enable therapeutic gene silencing of GTSE1 for the treatment of liver fibrosis publication-title: J. Contr. Release – volume: 11 year: 2024 ident: bib63 article-title: Discovery of Ketal-Ester Ionizable Lipid Nanoparticle with Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery publication-title: Adv. Sci. – volume: 16 start-page: 466 year: 2021 end-page: 477 ident: bib75 article-title: Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis publication-title: Nat. Nanotechnol. – volume: 22 start-page: 83 year: 2024 ident: bib39 article-title: Development of finely tuned liposome nanoplatform for macrophage depletion publication-title: J. Nanobiotechnol. – volume: 55 start-page: 2085 year: 2023 end-page: 2096 ident: bib93 article-title: Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics publication-title: Exp. Mol. Med. – volume: 154–155 start-page: 79 year: 2020 end-page: 101 ident: bib25 article-title: Lipid-based nanoparticle technologies for liver targeting publication-title: Adv. Drug Deliv. Rev. – volume: 116 start-page: 21150 year: 2019 end-page: 21159 ident: bib77 article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 year: 2022 ident: bib97 article-title: Environmental Safety Assessments of Lipid Nanoparticles Loaded with Lambda-Cyhalothrin publication-title: Nanomaterials – volume: 138 start-page: 1265 year: 2024 end-page: 1284 ident: bib80 article-title: Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD) publication-title: Clin. Sci. – volume: 15 start-page: 6709 year: 2021 end-page: 6722 ident: bib22 article-title: Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles publication-title: ACS Nano – volume: 30 start-page: 235 year: 2023 end-page: 245 ident: bib59 article-title: Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues publication-title: Mol. Ther. Methods Clin. Dev. – volume: 8 year: 2022 ident: bib89 article-title: Nanotechnology in Drug Delivery for Liver Fibrosis publication-title: Front Mol Biosci. – volume: 5 start-page: 344 year: 2024 end-page: 357 ident: bib20 article-title: Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design publication-title: Extracell. Vesicles Circ. Nucl. Acids – volume: 14 start-page: 57 year: 2024 ident: bib104 article-title: Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications publication-title: 3 Biotech – volume: 2 start-page: 24 year: 2022 ident: bib17 article-title: Nanodelivery of nucleic acids publication-title: Nat. Rev. Methods Primers – volume: 7 year: 2017 ident: bib37 article-title: A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery publication-title: Sci. Rep. – volume: 102 start-page: 3311 year: 2023 end-page: 3323 ident: bib38 article-title: Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis publication-title: Ann. Hematol. – volume: 2 year: 2022 ident: bib101 article-title: mRNA nanomedicine: Design and recent applications publication-title: Explorations – volume: 11 start-page: 343 year: 2020 ident: bib14 article-title: Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease publication-title: Cell Death Dis. – volume: 7 year: 2021 ident: bib23 article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver publication-title: Sci. Adv. – volume: 7 year: 2024 ident: bib55 article-title: An investigation of the effect of the protein corona on the cellular uptake of nanoliposomes under flow conditions using quartz crystal microgravimetry with dissipation publication-title: Nanoscale Adv. – volume: 31 year: 2019 ident: bib73 article-title: Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses publication-title: Adv. Mater. – volume: 106 start-page: 2046 year: 2017 end-page: 2052 ident: bib51 article-title: The Delivery of Small Interfering RNA to Hepatic Stellate Cells Using a Lipid Nanoparticle Composed of a Vitamin A-Scaffold Lipid-Like Material publication-title: J. Pharmacol. Sci. (Tokyo, Jpn.) – volume: 22 start-page: 672 year: 2024 ident: bib48 article-title: High-throughput synthesis and optimization of ionizable lipids through A3 coupling for efficient mRNA delivery publication-title: J. Nanobiotechnol. – volume: 143 start-page: 68 year: 2019 end-page: 96 ident: bib56 article-title: Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine publication-title: Adv. Drug Deliv. Rev. – volume: 14 start-page: 75 year: 2023 ident: bib76 article-title: Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis publication-title: Nat. Commun. – volume: 19 start-page: 833 year: 2022 end-page: 846 ident: bib85 article-title: Protein corona: challenges and opportunities for targeted delivery of nanomedicines publication-title: Expet Opin. Drug Deliv. – volume: 18 start-page: 411 year: 2021 end-page: 431 ident: bib30 article-title: Role of liver sinusoidal endothelial cells in liver diseases publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 12 start-page: 2581 year: 2022 end-page: 2588 ident: bib5 article-title: Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective publication-title: Drug Deliv. Transl. Res. – volume: 15 start-page: 1212 year: 2016 end-page: 1221 ident: bib15 article-title: Mechanism of hard-nanomaterial clearance by the liver publication-title: Nat. Mater. – volume: 96 start-page: 17128 year: 2024 end-page: 17134 ident: bib64 article-title: A Cell-Free Kinetic Analysis of Ionizable Lipid Hydrolysis publication-title: Anal. Chem. – volume: 7 year: 2017 ident: 10.1016/j.omtm.2025.101436_bib37 article-title: A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery publication-title: Sci. Rep. doi: 10.1038/s41598-017-14221-2 – volume: 370 start-page: 763 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib98 article-title: Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2024.04.022 – volume: 70 start-page: 821 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib29 article-title: Hepatic Stellate Cell: A Double-Edged Sword in the Liver publication-title: Physiol. Res. doi: 10.33549/physiolres.934755 – volume: 12 start-page: 613 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib79 article-title: Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA publication-title: Nat. Commun. doi: 10.1038/s41467-021-20903-3 – volume: 370 start-page: 516 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib61 article-title: The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2024.05.006 – volume: 16 start-page: 466 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib75 article-title: Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00836-6 – volume: 6 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib21 article-title: Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10213 – volume: 92 start-page: 387 year: 2017 ident: 10.1016/j.omtm.2025.101436_bib49 article-title: The stellate cell system (vitamin A-storing cell system) publication-title: Anat. Sci. Int. doi: 10.1007/s12565-017-0395-9 – volume: 244 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib54 article-title: Efficient delivery of curcumin by functional solid lipid nanoparticles with promoting endosomal escape and liver targeting properties publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2024.114177 – volume: 96 start-page: 17128 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib64 article-title: A Cell-Free Kinetic Analysis of Ionizable Lipid Hydrolysis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c02399 – volume: 116 start-page: 21150 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib77 article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906182116 – volume: 322 start-page: 217 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib43 article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.03.006 – volume: 24 start-page: 12758 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib72 article-title: Impact of Lipid Tail Length on the Organ Selectivity of mRNA-Lipid Nanoparticles publication-title: Nano Lett. – volume: 138 start-page: 1265 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib80 article-title: Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD) publication-title: Clin. Sci. doi: 10.1042/CS20241137 – volume: 14 start-page: 3430 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib7 article-title: Golden Threads of Lipid Nanoparticles (LNPs) contributing to COVID-19 mRNA Vaccine: A Review publication-title: BioNanoScience doi: 10.1007/s12668-024-01589-5 – volume: 11 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib63 article-title: Discovery of Ketal-Ester Ionizable Lipid Nanoparticle with Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery publication-title: Adv. Sci. doi: 10.1002/advs.202404684 – volume: 10 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib103 article-title: Lipid-mRNA nanoparticles landscape for cancer therapy publication-title: Front. Bioeng. Biotechnol. – volume: 9 start-page: 6219 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib83 article-title: Lipid Nanoparticle-Based Delivery System-A Competing Place for mRNA Vaccines publication-title: ACS Omega doi: 10.1021/acsomega.3c08353 – volume: 1 start-page: 13 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib50 article-title: Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell publication-title: Curr. Tissue Microenviron. Rep. doi: 10.1007/s43152-020-00004-x – volume: 15 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib27 article-title: The Future of Tissue-Targeted Lipid Nanoparticle-Mediated Nucleic Acid Delivery publication-title: Pharmaceuticals doi: 10.3390/ph15070897 – volume: 121 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib70 article-title: Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2307801120 – volume: 31 start-page: 89 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib102 article-title: Current landscape of mRNA technologies and delivery systems for new modality therapeutics publication-title: J. Biomed. Sci. doi: 10.1186/s12929-024-01080-z – volume: 44 start-page: 5013 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib2 article-title: Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application publication-title: Curr. Issues Mol. Biol. doi: 10.3390/cimb44100341 – volume: 20 start-page: 132 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib71 article-title: Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-024-01747-6 – volume: 35 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib60 article-title: Optimizing Lipid Nanoparticles for Delivery in Primates publication-title: Adv. Mater. doi: 10.1002/adma.202211420 – volume: 2 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib101 article-title: mRNA nanomedicine: Design and recent applications publication-title: Explorations – volume: 295 start-page: 140 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib81 article-title: Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2019.01.001 – volume: 66 start-page: 212 year: 2017 ident: 10.1016/j.omtm.2025.101436_bib31 article-title: Liver sinusoidal endothelial cells: Physiology and role in liver diseases publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.07.009 – volume: 1 year: 2015 ident: 10.1016/j.omtm.2025.101436_bib28 article-title: Kupffer Cell Metabolism and Function publication-title: J. Enzymol. Metabol. – volume: 277 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib62 article-title: Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.133984 – volume: 374 start-page: 337 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib74 article-title: Engineered lipid nanoparticles enable therapeutic gene silencing of GTSE1 for the treatment of liver fibrosis publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2024.08.012 – volume: 20 start-page: 324 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib96 article-title: Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1590126 – volume: 18 start-page: 411 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib30 article-title: Role of liver sinusoidal endothelial cells in liver diseases publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-00411-3 – volume: 2 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib9 article-title: Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic publication-title: Explorations – volume: 35 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib47 article-title: Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications publication-title: Adv. Mater. – volume: 9 start-page: 1449 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib24 article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver publication-title: Biomater. Sci. doi: 10.1039/D0BM01609H – volume: 118 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib65 article-title: On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2109256118 – volume: 2 start-page: 24 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib17 article-title: Nanodelivery of nucleic acids publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-022-00104-y – volume: 30 start-page: 235 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib59 article-title: Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2023.06.005 – volume: 7 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib55 article-title: An investigation of the effect of the protein corona on the cellular uptake of nanoliposomes under flow conditions using quartz crystal microgravimetry with dissipation publication-title: Nanoscale Adv. – start-page: 217 year: 2014 ident: 10.1016/j.omtm.2025.101436_bib40 article-title: Kupffer Cells in Health and Disease – volume: 29 start-page: 139 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib88 article-title: Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation publication-title: Cell. Mol. Biol. Lett. doi: 10.1186/s11658-024-00655-w – volume: 15 start-page: 1212 year: 2016 ident: 10.1016/j.omtm.2025.101436_bib15 article-title: Mechanism of hard-nanomaterial clearance by the liver publication-title: Nat. Mater. doi: 10.1038/nmat4718 – volume: 14 start-page: 75 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib76 article-title: Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis publication-title: Nat. Commun. doi: 10.1038/s41467-022-35637-z – volume: 12 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib97 article-title: Environmental Safety Assessments of Lipid Nanoparticles Loaded with Lambda-Cyhalothrin publication-title: Nanomaterials doi: 10.3390/nano12152576 – volume: 55 start-page: 2085 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib93 article-title: Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics publication-title: Exp. Mol. Med. doi: 10.1038/s12276-023-01086-x – volume: 14 start-page: 1084 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib8 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0591-y – volume: 11 start-page: 343 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib14 article-title: Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease publication-title: Cell Death Dis. doi: 10.1038/s41419-020-2571-4 – start-page: 353 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib84 article-title: Asialoglycoprotein Receptor and Targeting Strategies – volume: 22 start-page: 83 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib39 article-title: Development of finely tuned liposome nanoplatform for macrophage depletion publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-024-02325-7 – volume: 34 start-page: 941 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib95 article-title: PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.3c00174 – volume: 22 start-page: 672 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib48 article-title: High-throughput synthesis and optimization of ionizable lipids through A3 coupling for efficient mRNA delivery publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-024-02919-1 – year: 2024 ident: 10.1016/j.omtm.2025.101436_bib78 article-title: Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein publication-title: Nat. Biotechnol. doi: 10.1038/s41587-024-02437-3 – volume: 35 start-page: 617 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib13 article-title: Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver publication-title: Hum. Gene Ther. doi: 10.1089/hum.2024.106 – volume: 9 start-page: 4383 year: 2018 ident: 10.1016/j.omtm.2025.101436_bib34 article-title: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations publication-title: Nat. Commun. doi: 10.1038/s41467-018-06318-7 – volume: 25 start-page: 312 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib58 article-title: Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms25010312 – volume: 19 start-page: 833 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib85 article-title: Protein corona: challenges and opportunities for targeted delivery of nanomedicines publication-title: Expet Opin. Drug Deliv. doi: 10.1080/17425247.2022.2093854 – volume: 12 start-page: 389 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib32 article-title: Cell Subtypes Within the Liver Microenvironment Differentially Interact with Lipid Nanoparticles publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-019-00573-4 – volume: 11 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib90 article-title: Nanogene editing drug delivery systems in the treatment of liver fibrosis publication-title: Front. Med. – volume: 154–155 start-page: 79 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib25 article-title: Lipid-based nanoparticle technologies for liver targeting publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.017 – year: 2024 ident: 10.1016/j.omtm.2025.101436_bib100 article-title: Reengineering mRNA lipid nanoparticles for systemic delivery to pancreas publication-title: bioRxiv – volume: 8 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib89 article-title: Nanotechnology in Drug Delivery for Liver Fibrosis publication-title: Front Mol Biosci. doi: 10.3389/fmolb.2021.804396 – volume: 11 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib33 article-title: CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p publication-title: Adv. Sci. – volume: 14 start-page: 57 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib104 article-title: Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications publication-title: 3 Biotech doi: 10.1007/s13205-023-03901-8 – volume: 12 start-page: 1148 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib94 article-title: Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery publication-title: Vaccines doi: 10.3390/vaccines12101148 – volume: 106 start-page: 2046 year: 2017 ident: 10.1016/j.omtm.2025.101436_bib51 article-title: The Delivery of Small Interfering RNA to Hepatic Stellate Cells Using a Lipid Nanoparticle Composed of a Vitamin A-Scaffold Lipid-Like Material publication-title: J. Pharmacol. Sci. (Tokyo, Jpn.) – volume: 15 start-page: 6709 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib22 article-title: Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.0c10064 – volume: 6 start-page: 1078 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib1 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00358-0 – volume: 23 start-page: 1432 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib99 article-title: Nanoparticle protein corona: from structure and function to therapeutic targeting publication-title: Lab Chip doi: 10.1039/D2LC00799A – volume: 11 start-page: 658 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib6 article-title: Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines publication-title: Vaccines doi: 10.3390/vaccines11030658 – volume: 8 start-page: 1155 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib26 article-title: Selective organ targeting nanoparticles: from design to clinical translation publication-title: Nanoscale Horiz. doi: 10.1039/D3NH00145H – volume: 15 start-page: 313 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib66 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 – volume: 44 start-page: 110 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib92 article-title: Bioethical issues in genome editing by CRISPR-Cas9 technology publication-title: Turkish journal of biology = Turk biyoloji dergisi – volume: 5 start-page: 344 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib20 article-title: Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design publication-title: Extracell. Vesicles Circ. Nucl. Acids doi: 10.20517/evcna.2024.19 – volume: 102 start-page: 3311 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib38 article-title: Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis publication-title: Ann. Hematol. doi: 10.1007/s00277-023-05425-w – volume: 34 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib45 article-title: Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System publication-title: Adv. Mater. doi: 10.1002/adma.202201095 – volume: 42 start-page: 1 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib87 article-title: The Role of Liver Zonation in Physiology, Regeneration, and Disease publication-title: Semin. Liver Dis. doi: 10.1055/s-0041-1742279 – volume: 143 start-page: 68 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib56 article-title: Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.04.008 – volume: 12 start-page: 8341 year: 2018 ident: 10.1016/j.omtm.2025.101436_bib68 article-title: Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery publication-title: ACS Nano doi: 10.1021/acsnano.8b03640 – volume: 24 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib67 article-title: A Lipid Nanoparticle-Based Method for the Generation of Liver-Specific Knockout Mice publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms241814299 – volume: 12 start-page: 2581 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib5 article-title: Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-022-01146-1 – volume: 12 start-page: 7233 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib46 article-title: An ionizable lipid toolbox for RNA delivery publication-title: Nat. Commun. doi: 10.1038/s41467-021-27493-0 – volume: 121 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib57 article-title: Endosomal escape: A bottleneck for LNP-mediated therapeutics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2307800120 – volume: 12 start-page: 4759 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib12 article-title: Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders publication-title: J. Mater. Chem. B doi: 10.1039/D3TB02766J – volume: 12 start-page: 4264 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib42 article-title: Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy publication-title: Nat. Commun. doi: 10.1038/s41467-021-24543-5 – volume: 10 start-page: 2940 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib69 article-title: In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression publication-title: Biomater. Sci. doi: 10.1039/D2BM00168C – volume: 40 start-page: 27 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib19 article-title: Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery publication-title: Pharm. Res. doi: 10.1007/s11095-022-03460-2 – volume: 4 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib4 article-title: A perspective of lipid nanoparticles for RNA delivery publication-title: Explorations – volume: 8 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib86 article-title: Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of “Stealthy” publication-title: Nanomaterials – volume: 159 start-page: 344 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib16 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.026 – volume: 20 start-page: 109 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib10 article-title: Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-022-01309-9 – volume: 43 start-page: 584 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib52 article-title: Lipid Nanoparticles for Cell-Specific in Vivo Targeted Delivery of Nucleic Acids publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b19-00743 – volume: 114 year: 2017 ident: 10.1016/j.omtm.2025.101436_bib35 article-title: Effect of removing Kupffer cells on nanoparticle tumor delivery publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1713390114 – volume: 154–155 start-page: 37 year: 2020 ident: 10.1016/j.omtm.2025.101436_bib3 article-title: Lipid nanoparticles for nucleic acid delivery: Current perspectives publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.002 – volume: 14 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib91 article-title: Ethical and legal challenges in nanomedical innovations: a scoping review publication-title: Front. Genet. doi: 10.3389/fgene.2023.1163392 – volume: 19 start-page: 3973 year: 2022 ident: 10.1016/j.omtm.2025.101436_bib36 article-title: Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.2c00442 – volume: 14 start-page: 4007 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib44 article-title: Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function publication-title: Nat. Commun. doi: 10.1038/s41467-023-39768-9 – volume: 14 start-page: 2776 year: 2023 ident: 10.1016/j.omtm.2025.101436_bib82 article-title: GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy publication-title: Nat. Commun. doi: 10.1038/s41467-023-37465-1 – volume: 598 start-page: 2372 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib41 article-title: Liver gene transfer for metabolite detoxification in inherited metabolic diseases publication-title: FEBS Lett. – volume: 22 start-page: 553 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib53 article-title: Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-024-02812-x – volume: 13 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib18 article-title: Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13101675 – volume: 21 start-page: 829 year: 2024 ident: 10.1016/j.omtm.2025.101436_bib11 article-title: Understanding nanoparticle-liver interactions in nanomedicine publication-title: Expet Opin. Drug Deliv. doi: 10.1080/17425247.2024.2375400 – volume: 7 year: 2021 ident: 10.1016/j.omtm.2025.101436_bib23 article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver publication-title: Sci. Adv. – volume: 31 year: 2019 ident: 10.1016/j.omtm.2025.101436_bib73 article-title: Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses publication-title: Adv. Mater. |
SSID | ssj0000970359 |
Score | 2.408816 |
SecondaryResourceType | review_article |
Snippet | Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 101436 |
SubjectTerms | ApoE apolipoprotein E biodistribution lipid nanoparticles liver targeting LNPs Review therapeutic delivery |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RUKVeqkIfpLSVkXqrUjmJkzgHhNoKhJDg1FW5WXbsdIMgWXaD1P33nUkcSlrUE8fYzmNmbM_3KeMZgI9pgpgiszp0qUWCUvAyNNbp0JYuqaJCc6eJKJ6dZyczcXqRXmzAWO7IK3D1ILWjelKz5dXnXzfrQ1zwB39itdrrjk6Vxyk1iCR7AlvomWKa5Wce7vc7c5FTxjp_dubhWyf-qU_jP3FT_8LQv6Mp77mn4xfw3ONK9mWYCNuw4ZodeDpUmly_hPmP-ZrZll3Vi9qyRjfIlX1IHBuCwRkiQezGmX3IZvdPvLC2YqZuLWXY9cWxGPYMY0M6qUnRRqxbtot6df0KZsdH37-dhL7IQlgKnnShQwoY2yrjtuAiKmMthY1EbDMui8olmZMx2gxhlkYdmcQKriuNG6QpKPVeoZPXsNm0jdsFJgtbIp1BRuoioY3B6wzHoQfMtSxlHsCnUbVqMeTSUGOQ2aUiQygyhBoMEcBX0v7dSMqD3Te0y5_Kq0jxXOeOlzG3pRVVnJkUhYi0NJWVBiUKIB1tpzykGKACPqr-78v3R0MrXG_0E0U3rr1dKcRbEndBpI0BvBkMf_eJgsgtAqIA5GRKTGSY9jT1vM_pTXn2EErLt48h9R48I1koVC5K3sFmt7x17xE7deZDvyB-A2T8GtI priority: 102 providerName: Scholars Portal |
Title | Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism |
URI | https://dx.doi.org/10.1016/j.omtm.2025.101436 https://www.ncbi.nlm.nih.gov/pubmed/40104152 https://www.proquest.com/docview/3178832625 https://pubmed.ncbi.nlm.nih.gov/PMC11919328 https://doaj.org/article/07a7e0c20dcd4f26b50411a8bfd8bd90 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2329-0501 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970359 issn: 2329-0501 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2329-0501 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970359 issn: 2329-0501 databaseCode: DIK dateStart: 20140101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2329-0501 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970359 issn: 2329-0501 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2329-0501 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000970359 issn: 2329-0501 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2329-0501 dateEnd: 20250630 omitProxy: true ssIdentifier: ssj0000970359 issn: 2329-0501 databaseCode: M48 dateStart: 20140301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRv61fRPAmxbRN2_QkKi6LoCcXvYWkSdmKtstuPfjvnWm6666CXrwU2oQ2mUky79HJCyFncQSYIjHKt7EBgpKx3NfGKt_kNiqCTDGrkCjePySDIb97jp8XjvrCnDAnD-wMd8FSlVqWh8zkhhdhomPGg0AJXRihTdaydQhjC2SqXYOzFLXpul0yLqGrfmtw63kY4wPeajJ_RaJWsH8pIP0EnN_zJhcCUX-DrHcIkl65lm-SFVttkVV3puTHNhk9jT6oqelrOS4NrVQFrLhLfqMu7ZsC5oNiGMOXdLi4t4XWBdVlbVBLtzsGi0KJq-vjnkzMK6LNpB6X07cdMuzfPt4M_O44BT_nLGp8C2QvNEXCwGo8yEMluAl4aBImssJGiRUheAcAlQIb6chwpgoFS6HOUGQvU9Eu6VV1ZfcJFZnJgbgA97QBV1rDfQL1INalSuQi9cj5zLRy7FQz5Cyd7EWiIyQ6QjpHeOQarT-viYrX7QMYB7IzkfxrHHgknvlOduDBgQJ4Vfnrx09njpYws_B3iaps_T6VgKwErHdAED2y5xw_byJHGgvQxyNiaUgs9WG5pCpHrXo3KuoBaBYH_9HrQ7KGfcGkuCA6Ir1m8m6PASU1-qSdEHC95-ITbMETfA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+do+lipid+nanoparticles+target+the+liver%3F+Understanding+of+biodistribution+and+liver-specific+tropism&rft.jtitle=Molecular+therapy.+Methods+%26+clinical+development&rft.au=Mahboubeh+Hosseini-Kharat&rft.au=Kristen+E.+Bremmell&rft.au=Clive+A.+Prestidge&rft.date=2025-03-13&rft.pub=Elsevier&rft.eissn=2329-0501&rft.volume=33&rft.issue=1&rft.spage=101436&rft_id=info:doi/10.1016%2Fj.omtm.2025.101436&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07a7e0c20dcd4f26b50411a8bfd8bd90 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-0501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-0501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-0501&client=summon |