Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism

Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (L...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Methods & clinical development Vol. 33; no. 1; p. 101436
Main Authors Hosseini-Kharat, Mahboubeh, Bremmell, Kristen E., Prestidge, Clive A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.03.2025
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2329-0501
2329-0501
DOI10.1016/j.omtm.2025.101436

Cover

Abstract Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver’s distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP’s effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. [Display omitted] Lipid nanoparticles (LNPs) preferentially accumulate in the liver through ApoE-mediated LDL receptor binding. This review examines this specificity and explores strategies to enhance targeting, expanding LNP applications beyond hepatic diseases.
AbstractList Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications.
Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications.Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications.
Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver’s distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP’s effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. Lipid nanoparticles (LNPs) preferentially accumulate in the liver through ApoE-mediated LDL receptor binding. This review examines this specificity and explores strategies to enhance targeting, expanding LNP applications beyond hepatic diseases.
Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver’s distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP’s effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications. [Display omitted] Lipid nanoparticles (LNPs) preferentially accumulate in the liver through ApoE-mediated LDL receptor binding. This review examines this specificity and explores strategies to enhance targeting, expanding LNP applications beyond hepatic diseases.
ArticleNumber 101436
Author Prestidge, Clive A.
Hosseini-Kharat, Mahboubeh
Bremmell, Kristen E.
Author_xml – sequence: 1
  givenname: Mahboubeh
  surname: Hosseini-Kharat
  fullname: Hosseini-Kharat, Mahboubeh
  organization: Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
– sequence: 2
  givenname: Kristen E.
  surname: Bremmell
  fullname: Bremmell, Kristen E.
  organization: Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
– sequence: 3
  givenname: Clive A.
  orcidid: 0000-0001-5401-7535
  surname: Prestidge
  fullname: Prestidge, Clive A.
  email: clive.prestidge@unisa.edu.au
  organization: Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40104152$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWlSdP8gR6Kjr14qy97LSiEEvoRCPTS0KOQpdGuFltyJe1C_n209TYkl-oiMfPmvZnRe4vOQgyA0HtKVpTQ7tNuFacyrRhh7TEgePcKXTDOZENaQs-evc_RVc47Uo9cE97KN-hcEEoEbdkF2v7ePmAb8ehnb3HQIc46FW9GyLjotIGCyxZq-gDpGt8HCykXHawPGxwdHny0Ppfkh33xMeCaWbBNnsF45w0uKc4-T-_Qa6fHDFen-xLdf_v66-ZHc_fz--3Nl7vGCMJLA2tGmXUdsbJ2aJjuhaWC2Y700gHvoGeOStF2ug4-cCuIdppSOsiWSCE1v0S3C6-Neqfm5CedHlTUXv0NxLRRpwEVWes1EMOINVY41g1tlaS6H5zth6pfua4Xrnk_TGANhJL0-IL0ZSb4rdrEg6JUUslZXxk-nhhS_LOHXNTks4Fx1AHiPitO133PWcfaCv3wXOxJ5d9fVQBbACbFnBO4Jwgl6ugJVcernlBHT6jFE7Xo81IEdecHD0ll4yEYsD6BKXUp_n_ljzfUwDE
Cites_doi 10.1038/s41598-017-14221-2
10.1016/j.jconrel.2024.04.022
10.33549/physiolres.934755
10.1038/s41467-021-20903-3
10.1016/j.jconrel.2024.05.006
10.1038/s41565-020-00836-6
10.1002/btm2.10213
10.1007/s12565-017-0395-9
10.1016/j.colsurfb.2024.114177
10.1021/acs.analchem.4c02399
10.1073/pnas.1906182116
10.1016/j.jconrel.2020.03.006
10.1042/CS20241137
10.1007/s12668-024-01589-5
10.1002/advs.202404684
10.1021/acsomega.3c08353
10.1007/s43152-020-00004-x
10.3390/ph15070897
10.1073/pnas.2307801120
10.1186/s12929-024-01080-z
10.3390/cimb44100341
10.1038/s41565-024-01747-6
10.1002/adma.202211420
10.1016/j.jconrel.2019.01.001
10.1016/j.jhep.2016.07.009
10.1016/j.ijbiomac.2024.133984
10.1016/j.jconrel.2024.08.012
10.1080/14686996.2019.1590126
10.1038/s41575-020-00411-3
10.1039/D0BM01609H
10.1073/pnas.2109256118
10.1038/s43586-022-00104-y
10.1016/j.omtm.2023.06.005
10.1186/s11658-024-00655-w
10.1038/nmat4718
10.1038/s41467-022-35637-z
10.3390/nano12152576
10.1038/s12276-023-01086-x
10.1038/s41565-019-0591-y
10.1038/s41419-020-2571-4
10.1186/s12951-024-02325-7
10.1021/acs.bioconjchem.3c00174
10.1186/s12951-024-02919-1
10.1038/s41587-024-02437-3
10.1089/hum.2024.106
10.1038/s41467-018-06318-7
10.3390/ijms25010312
10.1080/17425247.2022.2093854
10.1007/s12195-019-00573-4
10.1016/j.addr.2020.06.017
10.3389/fmolb.2021.804396
10.1007/s13205-023-03901-8
10.3390/vaccines12101148
10.1021/acsnano.0c10064
10.1038/s41578-021-00358-0
10.1039/D2LC00799A
10.3390/vaccines11030658
10.1039/D3NH00145H
10.1038/s41565-020-0669-6
10.20517/evcna.2024.19
10.1007/s00277-023-05425-w
10.1002/adma.202201095
10.1055/s-0041-1742279
10.1016/j.addr.2019.04.008
10.1021/acsnano.8b03640
10.3390/ijms241814299
10.1007/s13346-022-01146-1
10.1038/s41467-021-27493-0
10.1073/pnas.2307800120
10.1039/D3TB02766J
10.1038/s41467-021-24543-5
10.1039/D2BM00168C
10.1007/s11095-022-03460-2
10.1016/j.addr.2020.06.026
10.1186/s12951-022-01309-9
10.1248/bpb.b19-00743
10.1073/pnas.1713390114
10.1016/j.addr.2020.06.002
10.3389/fgene.2023.1163392
10.1021/acs.molpharmaceut.2c00442
10.1038/s41467-023-39768-9
10.1038/s41467-023-37465-1
10.1186/s12951-024-02812-x
10.3390/pharmaceutics13101675
10.1080/17425247.2024.2375400
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors.
2025 The Authors 2025
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors.
– notice: 2025 The Authors 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.omtm.2025.101436
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2329-0501
ExternalDocumentID oai_doaj_org_article_07a7e0c20dcd4f26b50411a8bfd8bd90
PMC11919328
40104152
10_1016_j_omtm_2025_101436
S2329050125000312
Genre Journal Article
Review
GroupedDBID 0R~
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AAMRU
ABMAC
ACGFS
ADBBV
ADVLN
AFKRA
AFTJW
AITUG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
LK8
M7P
M~E
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
8FJ
AAYXX
ABUWG
ADRAZ
CCPQU
CITATION
EJD
HMCUK
HYE
M41
M48
PHGZM
PHGZT
UKHRP
NPM
7X8
5PM
ID FETCH-LOGICAL-c403t-e7212df60d9041c2a84d142d6089fe36e82f19456a025b3d40afa111b950949a3
IEDL.DBID DOA
ISSN 2329-0501
IngestDate Wed Aug 27 01:23:49 EDT 2025
Thu Aug 21 18:39:19 EDT 2025
Thu Sep 04 15:07:39 EDT 2025
Fri Mar 21 01:25:58 EDT 2025
Tue Jul 01 05:12:58 EDT 2025
Sat Mar 29 16:11:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords lipid nanoparticles
biodistribution
LNPs
apolipoprotein E
ApoE
liver targeting
therapeutic delivery
Language English
License This is an open access article under the CC BY license.
2025 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-e7212df60d9041c2a84d142d6089fe36e82f19456a025b3d40afa111b950949a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5401-7535
OpenAccessLink https://doaj.org/article/07a7e0c20dcd4f26b50411a8bfd8bd90
PMID 40104152
PQID 3178832625
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_07a7e0c20dcd4f26b50411a8bfd8bd90
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11919328
proquest_miscellaneous_3178832625
pubmed_primary_40104152
crossref_primary_10_1016_j_omtm_2025_101436
elsevier_sciencedirect_doi_10_1016_j_omtm_2025_101436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-13
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy. Methods & clinical development
PublicationTitleAlternate Mol Ther Methods Clin Dev
PublicationYear 2025
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Gracia-Sancho, Caparrós, Fernández-Iglesias, Francés (bib30) 2021; 18
Sato, Nakamura, Yamada, Harashima (bib61) 2024; 370
Paunovska, Gil, Lokugamage, Sago, Sato, Lando, Gamboa Castro, Bryksin, Dahlman (bib68) 2018; 12
Panday, Monckton, Khetani (bib87) 2022; 42
Poisson, Lemoinne, Boulanger, Durand, Moreau, Valla, Rautou (bib31) 2017; 66
Chen, Han, Zhao, Xu, Yin, Lawanprasert, Trinidad, Burgstone, Murthy, Doudna (bib78) 2024
Choi, Yoo, Park, Kim, Ann, Park, Kim, Kim, Shin, Lee (bib39) 2024; 22
Senoo, Mezaki, Fujiwara (bib49) 2017; 92
Tenchov, Sasso, Zhou (bib95) 2023; 34
Pattipeiluhu, Arias-Alpizar, Basha, Chan, Bussmann, Sharp, Moradi, Sommerdijk, Harris, Cullis (bib45) 2022; 34
Swetha, Kotla, Tunki, Jayaraj, Bhargava, Hu, Bonam, Kurapati (bib6) 2023; 11
Chander, Basha, Yan Cheng, Witzigmann, Cullis (bib59) 2023; 30
Radmand, Kim, Beyersdorf, Dobrowolski, Zenhausern, Paunovska, Huayamares, Hua, Han, Loughrey (bib70) 2024; 121
Mendes, Conniot, Avital, Yao, Jiang, Zhou, Sharf-Pauker, Xiao, Adir, Liang (bib17) 2022; 2
Bashiri, Padilla, Swingle, Shepherd, Mitchell, Wang (bib99) 2023; 23
Richter, Deligiannis, Yin, Danese, Lleshi, Coupland, Vallejos, Matchett, Henderson, Colome-Tatche, Martinez-Jimenez (bib42) 2021; 12
Samaridou, Heyes, Lutwyche (bib3) 2020; 154–155
Kim, Jeong, Hur, Cho, Park, Jung, Seo, Woo, Nam, Lee, Lee (bib23) 2021; 7
Hagedorn, Jürgens, Merkel, Winkeljann (bib20) 2024; 5
Algarni, Pilkington, Suys, Al-Wassiti, Pouton, Truong (bib69) 2022; 10
Żak, Zangi (bib18) 2021; 13
Ma, Li, Lin, Chen (bib4) 2024; 4
Sebastiani, Yanez Arteta, Lerche, Porcar, Lang, Bragg, Elmore, Krishnamurthy, Russell, Darwish (bib22) 2021; 15
Zhang, El-Mayta, Murdoch, Warzecha, Billingsley, Shepherd, Gong, Wang, Wilson, Lee, Mitchell (bib24) 2021; 9
Liu, Nilsson, Lázaro-Ibáñez, Duàn, Miliotis, Strimfors, Lerche, Salgado Ribeiro, Ulander, Lindén (bib44) 2023; 14
Rizvi, Everton, Smith, Liu, Osota, Beattie, Tam, Pardi, Weissman, Gouon-Evans (bib79) 2021; 12
Labouta, Langer, Cullis, Merkel, Prausnitz, Gomaa, Nogueira, Kumeria (bib5) 2022; 12
Van der Sanden, Paun, Yitayew, Boyadjian, Tabrizian (bib55) 2024; 7
Couture-Senécal, Natraj, Khan (bib64) 2024; 96
Gu, Zhang, Wu, Zhuge (bib89) 2022; 8
Lam, Leung, Martin, Wood, Schreiner, Palmer, Daly, Zhao, McClintock, Heyes (bib47) 2023; 35
Khalil, Younis, Kimura, Harashima (bib52) 2020; 43
Lopez-Pascual, Russo-Cabrera, Ardaiz, Palmer, Graham, Uriarte, Gomar, Ruiz-Guillamon, Latasa, Arechederra (bib80) 2024; 138
Lu, Hsu, Perez, Kumari, Chen, Hong, Lin, Liu, Ko, Concio (bib102) 2024; 31
Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros, Ansell, Du, Hope, Madden (bib8) 2019; 14
Hashiba, Taguchi, Sakamoto, Otsu, Maeda, Suzuki, Ebe, Okazaki, Harashima, Sato (bib72) 2024; 24
Isaac, Patel, Tran, Singam, Guha, Park, Bhattacharya (bib100) 2024
He, Wang, Wang, Jiang, Wilhelm (bib11) 2024; 21
Li, Fang, Zhang, Wang, Qi, Li, Jiao (bib103) 2022; 10
Morita, Horii, Kimura, Kobayashi, Tanaka, Akita, Hatada (bib67) 2023; 24
Hu, Wang, Liu, Yu, Guan, Liu, Wang, Tan, Huang (bib75) 2021; 16
Jeong, Shin, Lee, Lee, Park, Kang, Lee, Seo, Lee (bib74) 2024; 374
Ziqi, Kai, Costabel, Xiaoju (bib9) 2022; 2
Xue, Zhao, Gong, Han, Shepherd, Xiong, Xiao, Palanki, Xu, Swingle (bib71) 2024; 20
Dilliard, Cheng, Siegwart (bib65) 2021; 118
Das, Kudale, Dandekar, Devarajan (bib84) 2019
Truong, Allegri, Liu, Burke, Zhu, Cederbaum, Häberle, Martini, Lipshutz (bib77) 2019; 116
Ganilho, da Silva, Paiva, de Menezes, Dos Santos, Pereira, Pereira, Andreani (bib97) 2022; 12
Rampado, Crotti, Caliceti, Pucciarelli, Agostini (bib86) 2020; 8
Witzigmann, Kulkarni, Leung, Chen, Cullis, van der Meel (bib16) 2020; 159
Luo, Li, Wei, Lu, Dong (bib29) 2021; 70
Sago, Krupczak, Lokugamage, Gan, Dahlman (bib32) 2019; 12
Wolfram, Nizzero, Liu, Li, Zhang, Li, Shen, Blanco, Ferrari (bib37) 2017; 7
Jiang, Chu, Zhan (bib85) 2022; 19
Woltman, Boonstra, Naito, Leenen (bib40) 2014
MacParland, Liu, Ma, Innes, Bartczak, Gage, Manuel, Khuu, Echeverri, Linares (bib34) 2018; 9
Lee, Jeong, Park, Jung, Lee (bib93) 2023; 55
D'Alessio, Boffa, De Stefano, Soria, Brunetti-Pierri (bib41) 2024; 598
Zhang, Liang, Liang, Li, Wu (bib54) 2024; 244
Wasti, Lee, Kim, Lee, Kim (bib91) 2023; 14
Li, Hu, Jin, Huo, Chen, Lin, Lu (bib48) 2024; 22
Sun, Lu (bib19) 2023; 40
Kumar, Ahmed, Kaur, Saha (bib62) 2024; 277
Mahmoud, Swidan, El-Nabarawi, Teaima (bib10) 2022; 20
Böttger, Pauli, Chao, Al Fayez, Hohenwarter, Li (bib25) 2020; 154–155
Toriyabe, Sakurai, Kato, Yamamoto, Tange, Nakai, Akita, Harahsima (bib51) 2017; 106
Gimondi, Ferreira, Reis, Neves (bib58) 2024; 25
Woitok, Zoubek, Doleschel, Bartneck, Mohamed, Kießling, Lederle, Trautwein, Cubero (bib14) 2020; 11
Lam, Schreiner, Leung, Stainton, Reid, Yaworski, Lutwyche, Heyes (bib60) 2023; 35
Chu, Wang, Kong, Pan, Yang, He (bib12) 2024; 12
Li, Wang (bib26) 2023; 8
Wang, Jia, Wang, Chen, Jiang, Li, Ji (bib90) 2024; 11
Wang, Ding, Chong, Cui, Cao, Tang, Tian, Hu, Zhao, Jiang (bib94) 2024; 12
Ayanoğlu, Elçin, Elçin (bib92) 2020; 44
Paunovska, Da Silva Sanchez, Sago, Gan, Lokugamage, Islam, Kalathoor, Krupczak, Dahlman (bib73) 2019; 31
Vasu, Yadav, Satyanarayana, Ahlawat, Sandeep, Kumar (bib7) 2024; 14
Tsoi, MacParland, Ma, Spetzler, Echeverri, Ouyang, Fadel, Sykes, Goldaracena, Kaths (bib15) 2016; 15
Simonsen (bib98) 2024; 370
Chatterjee, Kon, Sharma, Peer (bib57) 2024; 121
Mashima, Takada (bib2) 2022; 44
Sato, Kinami, Hashiba, Harashima (bib43) 2020; 322
Han, Zhang, Butowska, Swingle, Alameh, Weissman, Mitchell (bib46) 2021; 12
Zhang, Li, Zhou (bib83) 2024; 9
Koike, Miura, Hatta, Nakamura, Hirabayashi, Yuda, Harada, Hirai, Tsuboi, Aizawa (bib38) 2023; 102
Nguyen-Lefebvre, Horuzsko (bib28) 2015; 1
Kasiewicz, Biswas, Beach, Ren, Dutta, Mazzola, Rohde, Chadwick, Cheng, Garcia (bib82) 2023; 14
Johnson, Zhang, Zhou, Lee, Liu, Dilliard, Farbiak, Chatterjee, Lin, Siegwart (bib36) 2022; 19
Han, Gong, Xue, Billingsley, El-Mayta, Shepherd, Alameh, Weissman, Mitchell (bib76) 2023; 14
Cheng, Wei, Farbiak, Johnson, Dilliard, Siegwart (bib66) 2020; 15
Shiraishi, Yokoyama (bib96) 2019; 20
Sato, Hashiba, Sasaki, Maeki, Tokeshi, Harashima (bib81) 2019; 295
Lv, Yu, Wang, Li, Wang, Xue, Wang, Shi, Han, Qin (bib63) 2024; 11
Czyzynska-Cichon, Kotlinowski, Blacharczyk, Giergiel, Szymanowski, Metwally, Wojnar-Lason, Dobosz, Koziel, Lekka (bib88) 2024; 29
Kubiatowicz, Mohapatra, Krishnan, Fang, Zhang (bib101) 2022; 2
Schlich, Palomba, Costabile, Mizrahy, Pannuzzo, Peer, Decuzzi (bib21) 2021; 6
Chen, Liu, Kan, Wang, Wang, Wang, Li, Jiang, Chen, Zhou (bib33) 2024; 11
Hou, Zaks, Langer, Dong (bib1) 2021; 6
Kularatne, Crist, Stern (bib27) 2022; 15
Dhayalan, Wang, Riyaz, Dinesh, Shanmugam, Irudayaraj, Stalin, Giri, Mallik, Hu (bib104) 2024; 14
Donahue, Acar, Wilhelm (bib56) 2019; 143
Kong, Wei, Dong, Liu, Zhao, Huang, Yang, Wu, He, Qi (bib53) 2024; 22
Saber, Senti, Schiffelers (bib13) 2024; 35
Tavares, Poon, Zhang, Dai, Besla, Ding, Ouyang, Li, Chen, Zheng (bib35) 2017; 114
Poelstra (bib50) 2020; 1
Wasti (10.1016/j.omtm.2025.101436_bib91) 2023; 14
Wang (10.1016/j.omtm.2025.101436_bib94) 2024; 12
Labouta (10.1016/j.omtm.2025.101436_bib5) 2022; 12
Gu (10.1016/j.omtm.2025.101436_bib89) 2022; 8
Lam (10.1016/j.omtm.2025.101436_bib47) 2023; 35
Das (10.1016/j.omtm.2025.101436_bib84) 2019
Donahue (10.1016/j.omtm.2025.101436_bib56) 2019; 143
Gracia-Sancho (10.1016/j.omtm.2025.101436_bib30) 2021; 18
Chatterjee (10.1016/j.omtm.2025.101436_bib57) 2024; 121
Samaridou (10.1016/j.omtm.2025.101436_bib3) 2020; 154–155
Hagedorn (10.1016/j.omtm.2025.101436_bib20) 2024; 5
Ziqi (10.1016/j.omtm.2025.101436_bib9) 2022; 2
Zhang (10.1016/j.omtm.2025.101436_bib24) 2021; 9
Tsoi (10.1016/j.omtm.2025.101436_bib15) 2016; 15
Bashiri (10.1016/j.omtm.2025.101436_bib99) 2023; 23
Lopez-Pascual (10.1016/j.omtm.2025.101436_bib80) 2024; 138
Jeong (10.1016/j.omtm.2025.101436_bib74) 2024; 374
Chu (10.1016/j.omtm.2025.101436_bib12) 2024; 12
Gimondi (10.1016/j.omtm.2025.101436_bib58) 2024; 25
Choi (10.1016/j.omtm.2025.101436_bib39) 2024; 22
Toriyabe (10.1016/j.omtm.2025.101436_bib51) 2017; 106
Isaac (10.1016/j.omtm.2025.101436_bib100) 2024
Kularatne (10.1016/j.omtm.2025.101436_bib27) 2022; 15
Rampado (10.1016/j.omtm.2025.101436_bib86) 2020; 8
Pattipeiluhu (10.1016/j.omtm.2025.101436_bib45) 2022; 34
Lee (10.1016/j.omtm.2025.101436_bib93) 2023; 55
Nguyen-Lefebvre (10.1016/j.omtm.2025.101436_bib28) 2015; 1
Schlich (10.1016/j.omtm.2025.101436_bib21) 2021; 6
Kumar (10.1016/j.omtm.2025.101436_bib62) 2024; 277
Lv (10.1016/j.omtm.2025.101436_bib63) 2024; 11
Paunovska (10.1016/j.omtm.2025.101436_bib68) 2018; 12
Han (10.1016/j.omtm.2025.101436_bib76) 2023; 14
Dilliard (10.1016/j.omtm.2025.101436_bib65) 2021; 118
Luo (10.1016/j.omtm.2025.101436_bib29) 2021; 70
He (10.1016/j.omtm.2025.101436_bib11) 2024; 21
Jiang (10.1016/j.omtm.2025.101436_bib85) 2022; 19
Chander (10.1016/j.omtm.2025.101436_bib59) 2023; 30
Paunovska (10.1016/j.omtm.2025.101436_bib73) 2019; 31
Hashiba (10.1016/j.omtm.2025.101436_bib72) 2024; 24
Swetha (10.1016/j.omtm.2025.101436_bib6) 2023; 11
Sato (10.1016/j.omtm.2025.101436_bib81) 2019; 295
Kubiatowicz (10.1016/j.omtm.2025.101436_bib101) 2022; 2
Sato (10.1016/j.omtm.2025.101436_bib61) 2024; 370
Ma (10.1016/j.omtm.2025.101436_bib4) 2024; 4
Liu (10.1016/j.omtm.2025.101436_bib44) 2023; 14
Li (10.1016/j.omtm.2025.101436_bib26) 2023; 8
Sago (10.1016/j.omtm.2025.101436_bib32) 2019; 12
Johnson (10.1016/j.omtm.2025.101436_bib36) 2022; 19
Simonsen (10.1016/j.omtm.2025.101436_bib98) 2024; 370
Khalil (10.1016/j.omtm.2025.101436_bib52) 2020; 43
Lam (10.1016/j.omtm.2025.101436_bib60) 2023; 35
Van der Sanden (10.1016/j.omtm.2025.101436_bib55) 2024; 7
Zhang (10.1016/j.omtm.2025.101436_bib54) 2024; 244
Zhang (10.1016/j.omtm.2025.101436_bib83) 2024; 9
Chen (10.1016/j.omtm.2025.101436_bib78) 2024
Couture-Senécal (10.1016/j.omtm.2025.101436_bib64) 2024; 96
Kong (10.1016/j.omtm.2025.101436_bib53) 2024; 22
Sebastiani (10.1016/j.omtm.2025.101436_bib22) 2021; 15
Truong (10.1016/j.omtm.2025.101436_bib77) 2019; 116
Wang (10.1016/j.omtm.2025.101436_bib90) 2024; 11
MacParland (10.1016/j.omtm.2025.101436_bib34) 2018; 9
Xue (10.1016/j.omtm.2025.101436_bib71) 2024; 20
Poelstra (10.1016/j.omtm.2025.101436_bib50) 2020; 1
Li (10.1016/j.omtm.2025.101436_bib103) 2022; 10
Sato (10.1016/j.omtm.2025.101436_bib43) 2020; 322
Cheng (10.1016/j.omtm.2025.101436_bib66) 2020; 15
Shiraishi (10.1016/j.omtm.2025.101436_bib96) 2019; 20
Morita (10.1016/j.omtm.2025.101436_bib67) 2023; 24
Vasu (10.1016/j.omtm.2025.101436_bib7) 2024; 14
Żak (10.1016/j.omtm.2025.101436_bib18) 2021; 13
Böttger (10.1016/j.omtm.2025.101436_bib25) 2020; 154–155
Woltman (10.1016/j.omtm.2025.101436_bib40) 2014
Richter (10.1016/j.omtm.2025.101436_bib42) 2021; 12
Hu (10.1016/j.omtm.2025.101436_bib75) 2021; 16
Tavares (10.1016/j.omtm.2025.101436_bib35) 2017; 114
Akinc (10.1016/j.omtm.2025.101436_bib8) 2019; 14
Czyzynska-Cichon (10.1016/j.omtm.2025.101436_bib88) 2024; 29
Panday (10.1016/j.omtm.2025.101436_bib87) 2022; 42
Hou (10.1016/j.omtm.2025.101436_bib1) 2021; 6
D'Alessio (10.1016/j.omtm.2025.101436_bib41) 2024; 598
Kim (10.1016/j.omtm.2025.101436_bib23) 2021; 7
Woitok (10.1016/j.omtm.2025.101436_bib14) 2020; 11
Chen (10.1016/j.omtm.2025.101436_bib33) 2024; 11
Han (10.1016/j.omtm.2025.101436_bib46) 2021; 12
Lu (10.1016/j.omtm.2025.101436_bib102) 2024; 31
Kasiewicz (10.1016/j.omtm.2025.101436_bib82) 2023; 14
Tenchov (10.1016/j.omtm.2025.101436_bib95) 2023; 34
Sun (10.1016/j.omtm.2025.101436_bib19) 2023; 40
Dhayalan (10.1016/j.omtm.2025.101436_bib104) 2024; 14
Mahmoud (10.1016/j.omtm.2025.101436_bib10) 2022; 20
Senoo (10.1016/j.omtm.2025.101436_bib49) 2017; 92
Poisson (10.1016/j.omtm.2025.101436_bib31) 2017; 66
Algarni (10.1016/j.omtm.2025.101436_bib69) 2022; 10
Wolfram (10.1016/j.omtm.2025.101436_bib37) 2017; 7
Ayanoğlu (10.1016/j.omtm.2025.101436_bib92) 2020; 44
Radmand (10.1016/j.omtm.2025.101436_bib70) 2024; 121
Rizvi (10.1016/j.omtm.2025.101436_bib79) 2021; 12
Mendes (10.1016/j.omtm.2025.101436_bib17) 2022; 2
Li (10.1016/j.omtm.2025.101436_bib48) 2024; 22
Ganilho (10.1016/j.omtm.2025.101436_bib97) 2022; 12
Mashima (10.1016/j.omtm.2025.101436_bib2) 2022; 44
Koike (10.1016/j.omtm.2025.101436_bib38) 2023; 102
Witzigmann (10.1016/j.omtm.2025.101436_bib16) 2020; 159
Saber (10.1016/j.omtm.2025.101436_bib13) 2024; 35
References_xml – volume: 114
  year: 2017
  ident: bib35
  article-title: Effect of removing Kupffer cells on nanoparticle tumor delivery
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 3973
  year: 2022
  end-page: 3986
  ident: bib36
  article-title: Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model
  publication-title: Mol. Pharm.
– start-page: 217
  year: 2014
  end-page: 247
  ident: bib40
  article-title: Kupffer Cells in Health and Disease
  publication-title: Macrophages: Biology and Role in the Pathology of Diseases
– volume: 15
  start-page: 313
  year: 2020
  end-page: 320
  ident: bib66
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2015
  ident: bib28
  article-title: Kupffer Cell Metabolism and Function
  publication-title: J. Enzymol. Metabol.
– volume: 24
  start-page: 12758
  year: 2024
  end-page: 12767
  ident: bib72
  article-title: Impact of Lipid Tail Length on the Organ Selectivity of mRNA-Lipid Nanoparticles
  publication-title: Nano Lett.
– volume: 12
  start-page: 4264
  year: 2021
  ident: bib42
  article-title: Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy
  publication-title: Nat. Commun.
– volume: 12
  start-page: 8341
  year: 2018
  end-page: 8349
  ident: bib68
  article-title: Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery
  publication-title: ACS Nano
– volume: 20
  start-page: 132
  year: 2024
  end-page: 143
  ident: bib71
  article-title: Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 3430
  year: 2024
  end-page: 3439
  ident: bib7
  article-title: Golden Threads of Lipid Nanoparticles (LNPs) contributing to COVID-19 mRNA Vaccine: A Review
  publication-title: BioNanoScience
– volume: 8
  year: 2020
  ident: bib86
  article-title: Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of “Stealthy”
  publication-title: Nanomaterials
– volume: 42
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib87
  article-title: The Role of Liver Zonation in Physiology, Regeneration, and Disease
  publication-title: Semin. Liver Dis.
– volume: 11
  year: 2024
  ident: bib90
  article-title: Nanogene editing drug delivery systems in the treatment of liver fibrosis
  publication-title: Front. Med.
– start-page: 353
  year: 2019
  end-page: 381
  ident: bib84
  article-title: Asialoglycoprotein Receptor and Targeting Strategies
  publication-title: Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis
– volume: 4
  year: 2024
  ident: bib4
  article-title: A perspective of lipid nanoparticles for RNA delivery
  publication-title: Explorations
– volume: 14
  start-page: 2776
  year: 2023
  ident: bib82
  article-title: GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1078
  year: 2021
  end-page: 1094
  ident: bib1
  article-title: Lipid nanoparticles for mRNA delivery
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 658
  year: 2023
  ident: bib6
  article-title: Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines
  publication-title: Vaccines
– volume: 9
  start-page: 1449
  year: 2021
  end-page: 1463
  ident: bib24
  article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver
  publication-title: Biomater. Sci.
– volume: 118
  year: 2021
  ident: bib65
  article-title: On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 2940
  year: 2022
  end-page: 2952
  ident: bib69
  article-title: In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression
  publication-title: Biomater. Sci.
– volume: 12
  start-page: 389
  year: 2019
  end-page: 397
  ident: bib32
  article-title: Cell Subtypes Within the Liver Microenvironment Differentially Interact with Lipid Nanoparticles
  publication-title: Cell. Mol. Bioeng.
– volume: 10
  year: 2022
  ident: bib103
  article-title: Lipid-mRNA nanoparticles landscape for cancer therapy
  publication-title: Front. Bioeng. Biotechnol.
– volume: 6
  year: 2021
  ident: bib21
  article-title: Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles
  publication-title: Bioeng. Transl. Med.
– volume: 12
  start-page: 7233
  year: 2021
  ident: bib46
  article-title: An ionizable lipid toolbox for RNA delivery
  publication-title: Nat. Commun.
– volume: 24
  year: 2023
  ident: bib67
  article-title: A Lipid Nanoparticle-Based Method for the Generation of Liver-Specific Knockout Mice
  publication-title: Int. J. Mol. Sci.
– volume: 370
  start-page: 516
  year: 2024
  end-page: 527
  ident: bib61
  article-title: The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting
  publication-title: J. Contr. Release
– volume: 21
  start-page: 829
  year: 2024
  end-page: 843
  ident: bib11
  article-title: Understanding nanoparticle-liver interactions in nanomedicine
  publication-title: Expet Opin. Drug Deliv.
– volume: 1
  start-page: 13
  year: 2020
  end-page: 22
  ident: bib50
  article-title: Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell
  publication-title: Curr. Tissue Microenviron. Rep.
– volume: 35
  year: 2023
  ident: bib60
  article-title: Optimizing Lipid Nanoparticles for Delivery in Primates
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4759
  year: 2024
  end-page: 4784
  ident: bib12
  article-title: Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders
  publication-title: J. Mater. Chem. B
– volume: 159
  start-page: 344
  year: 2020
  end-page: 363
  ident: bib16
  article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver
  publication-title: Adv. Drug Deliv. Rev.
– volume: 40
  start-page: 27
  year: 2023
  end-page: 46
  ident: bib19
  article-title: Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery
  publication-title: Pharm. Res.
– volume: 370
  start-page: 763
  year: 2024
  end-page: 772
  ident: bib98
  article-title: Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities
  publication-title: J. Contr. Release
– volume: 23
  start-page: 1432
  year: 2023
  end-page: 1466
  ident: bib99
  article-title: Nanoparticle protein corona: from structure and function to therapeutic targeting
  publication-title: Lab Chip
– volume: 11
  year: 2024
  ident: bib33
  article-title: CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p
  publication-title: Adv. Sci.
– volume: 70
  start-page: 821
  year: 2021
  end-page: 829
  ident: bib29
  article-title: Hepatic Stellate Cell: A Double-Edged Sword in the Liver
  publication-title: Physiol. Res.
– volume: 12
  start-page: 1148
  year: 2024
  ident: bib94
  article-title: Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery
  publication-title: Vaccines
– volume: 29
  start-page: 139
  year: 2024
  ident: bib88
  article-title: Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation
  publication-title: Cell. Mol. Biol. Lett.
– volume: 244
  year: 2024
  ident: bib54
  article-title: Efficient delivery of curcumin by functional solid lipid nanoparticles with promoting endosomal escape and liver targeting properties
  publication-title: Colloids Surf. B Biointerfaces
– volume: 8
  start-page: 1155
  year: 2023
  end-page: 1173
  ident: bib26
  article-title: Selective organ targeting nanoparticles: from design to clinical translation
  publication-title: Nanoscale Horiz.
– year: 2024
  ident: bib100
  article-title: Reengineering mRNA lipid nanoparticles for systemic delivery to pancreas
  publication-title: bioRxiv
– volume: 322
  start-page: 217
  year: 2020
  end-page: 226
  ident: bib43
  article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway
  publication-title: J. Contr. Release
– volume: 92
  start-page: 387
  year: 2017
  end-page: 455
  ident: bib49
  article-title: The stellate cell system (vitamin A-storing cell system)
  publication-title: Anat. Sci. Int.
– volume: 35
  year: 2023
  ident: bib47
  article-title: Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications
  publication-title: Adv. Mater.
– volume: 598
  start-page: 2372
  year: 2024
  end-page: 2384
  ident: bib41
  article-title: Liver gene transfer for metabolite detoxification in inherited metabolic diseases
  publication-title: FEBS Lett.
– volume: 31
  start-page: 89
  year: 2024
  ident: bib102
  article-title: Current landscape of mRNA technologies and delivery systems for new modality therapeutics
  publication-title: J. Biomed. Sci.
– volume: 2
  year: 2022
  ident: bib9
  article-title: Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic
  publication-title: Explorations
– volume: 15
  year: 2022
  ident: bib27
  article-title: The Future of Tissue-Targeted Lipid Nanoparticle-Mediated Nucleic Acid Delivery
  publication-title: Pharmaceuticals
– volume: 20
  start-page: 109
  year: 2022
  ident: bib10
  article-title: Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances
  publication-title: J. Nanobiotechnol.
– volume: 14
  start-page: 4007
  year: 2023
  ident: bib44
  article-title: Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function
  publication-title: Nat. Commun.
– volume: 66
  start-page: 212
  year: 2017
  end-page: 227
  ident: bib31
  article-title: Liver sinusoidal endothelial cells: Physiology and role in liver diseases
  publication-title: J. Hepatol.
– volume: 14
  year: 2023
  ident: bib91
  article-title: Ethical and legal challenges in nanomedical innovations: a scoping review
  publication-title: Front. Genet.
– year: 2024
  ident: bib78
  article-title: Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein
  publication-title: Nat. Biotechnol.
– volume: 44
  start-page: 110
  year: 2020
  end-page: 120
  ident: bib92
  article-title: Bioethical issues in genome editing by CRISPR-Cas9 technology
  publication-title: Turkish journal of biology = Turk biyoloji dergisi
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  ident: bib8
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
– volume: 13
  year: 2021
  ident: bib18
  article-title: Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery
  publication-title: Pharmaceutics
– volume: 34
  year: 2022
  ident: bib45
  article-title: Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System
  publication-title: Adv. Mater.
– volume: 43
  start-page: 584
  year: 2020
  end-page: 595
  ident: bib52
  article-title: Lipid Nanoparticles for Cell-Specific
  publication-title: Biol. Pharm. Bull.
– volume: 9
  start-page: 6219
  year: 2024
  end-page: 6234
  ident: bib83
  article-title: Lipid Nanoparticle-Based Delivery System-A Competing Place for mRNA Vaccines
  publication-title: ACS Omega
– volume: 12
  start-page: 613
  year: 2021
  ident: bib79
  article-title: Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA
  publication-title: Nat. Commun.
– volume: 121
  year: 2024
  ident: bib70
  article-title: Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 5013
  year: 2022
  end-page: 5027
  ident: bib2
  article-title: Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application
  publication-title: Curr. Issues Mol. Biol.
– volume: 121
  year: 2024
  ident: bib57
  article-title: Endosomal escape: A bottleneck for LNP-mediated therapeutics
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 553
  year: 2024
  ident: bib53
  article-title: Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA
  publication-title: J. Nanobiotechnol.
– volume: 295
  start-page: 140
  year: 2019
  end-page: 152
  ident: bib81
  article-title: Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo
  publication-title: J. Contr. Release
– volume: 35
  start-page: 617
  year: 2024
  end-page: 627
  ident: bib13
  article-title: Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver
  publication-title: Hum. Gene Ther.
– volume: 154–155
  start-page: 37
  year: 2020
  end-page: 63
  ident: bib3
  article-title: Lipid nanoparticles for nucleic acid delivery: Current perspectives
  publication-title: Adv. Drug Deliv. Rev.
– volume: 20
  start-page: 324
  year: 2019
  end-page: 336
  ident: bib96
  article-title: Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review
  publication-title: Sci. Technol. Adv. Mater.
– volume: 34
  start-page: 941
  year: 2023
  end-page: 960
  ident: bib95
  article-title: PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective
  publication-title: Bioconjug. Chem.
– volume: 25
  start-page: 312
  year: 2024
  ident: bib58
  article-title: Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: 4383
  year: 2018
  ident: bib34
  article-title: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations
  publication-title: Nat. Commun.
– volume: 277
  year: 2024
  ident: bib62
  article-title: Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis
  publication-title: Int. J. Biol. Macromol.
– volume: 374
  start-page: 337
  year: 2024
  end-page: 348
  ident: bib74
  article-title: Engineered lipid nanoparticles enable therapeutic gene silencing of GTSE1 for the treatment of liver fibrosis
  publication-title: J. Contr. Release
– volume: 11
  year: 2024
  ident: bib63
  article-title: Discovery of Ketal-Ester Ionizable Lipid Nanoparticle with Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery
  publication-title: Adv. Sci.
– volume: 16
  start-page: 466
  year: 2021
  end-page: 477
  ident: bib75
  article-title: Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 83
  year: 2024
  ident: bib39
  article-title: Development of finely tuned liposome nanoplatform for macrophage depletion
  publication-title: J. Nanobiotechnol.
– volume: 55
  start-page: 2085
  year: 2023
  end-page: 2096
  ident: bib93
  article-title: Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics
  publication-title: Exp. Mol. Med.
– volume: 154–155
  start-page: 79
  year: 2020
  end-page: 101
  ident: bib25
  article-title: Lipid-based nanoparticle technologies for liver targeting
  publication-title: Adv. Drug Deliv. Rev.
– volume: 116
  start-page: 21150
  year: 2019
  end-page: 21159
  ident: bib77
  article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  year: 2022
  ident: bib97
  article-title: Environmental Safety Assessments of Lipid Nanoparticles Loaded with Lambda-Cyhalothrin
  publication-title: Nanomaterials
– volume: 138
  start-page: 1265
  year: 2024
  end-page: 1284
  ident: bib80
  article-title: Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD)
  publication-title: Clin. Sci.
– volume: 15
  start-page: 6709
  year: 2021
  end-page: 6722
  ident: bib22
  article-title: Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles
  publication-title: ACS Nano
– volume: 30
  start-page: 235
  year: 2023
  end-page: 245
  ident: bib59
  article-title: Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 8
  year: 2022
  ident: bib89
  article-title: Nanotechnology in Drug Delivery for Liver Fibrosis
  publication-title: Front Mol Biosci.
– volume: 5
  start-page: 344
  year: 2024
  end-page: 357
  ident: bib20
  article-title: Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design
  publication-title: Extracell. Vesicles Circ. Nucl. Acids
– volume: 14
  start-page: 57
  year: 2024
  ident: bib104
  article-title: Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications
  publication-title: 3 Biotech
– volume: 2
  start-page: 24
  year: 2022
  ident: bib17
  article-title: Nanodelivery of nucleic acids
  publication-title: Nat. Rev. Methods Primers
– volume: 7
  year: 2017
  ident: bib37
  article-title: A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery
  publication-title: Sci. Rep.
– volume: 102
  start-page: 3311
  year: 2023
  end-page: 3323
  ident: bib38
  article-title: Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis
  publication-title: Ann. Hematol.
– volume: 2
  year: 2022
  ident: bib101
  article-title: mRNA nanomedicine: Design and recent applications
  publication-title: Explorations
– volume: 11
  start-page: 343
  year: 2020
  ident: bib14
  article-title: Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease
  publication-title: Cell Death Dis.
– volume: 7
  year: 2021
  ident: bib23
  article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver
  publication-title: Sci. Adv.
– volume: 7
  year: 2024
  ident: bib55
  article-title: An investigation of the effect of the protein corona on the cellular uptake of nanoliposomes under flow conditions using quartz crystal microgravimetry with dissipation
  publication-title: Nanoscale Adv.
– volume: 31
  year: 2019
  ident: bib73
  article-title: Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses
  publication-title: Adv. Mater.
– volume: 106
  start-page: 2046
  year: 2017
  end-page: 2052
  ident: bib51
  article-title: The Delivery of Small Interfering RNA to Hepatic Stellate Cells Using a Lipid Nanoparticle Composed of a Vitamin A-Scaffold Lipid-Like Material
  publication-title: J. Pharmacol. Sci. (Tokyo, Jpn.)
– volume: 22
  start-page: 672
  year: 2024
  ident: bib48
  article-title: High-throughput synthesis and optimization of ionizable lipids through A3 coupling for efficient mRNA delivery
  publication-title: J. Nanobiotechnol.
– volume: 143
  start-page: 68
  year: 2019
  end-page: 96
  ident: bib56
  article-title: Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine
  publication-title: Adv. Drug Deliv. Rev.
– volume: 14
  start-page: 75
  year: 2023
  ident: bib76
  article-title: Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis
  publication-title: Nat. Commun.
– volume: 19
  start-page: 833
  year: 2022
  end-page: 846
  ident: bib85
  article-title: Protein corona: challenges and opportunities for targeted delivery of nanomedicines
  publication-title: Expet Opin. Drug Deliv.
– volume: 18
  start-page: 411
  year: 2021
  end-page: 431
  ident: bib30
  article-title: Role of liver sinusoidal endothelial cells in liver diseases
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 12
  start-page: 2581
  year: 2022
  end-page: 2588
  ident: bib5
  article-title: Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective
  publication-title: Drug Deliv. Transl. Res.
– volume: 15
  start-page: 1212
  year: 2016
  end-page: 1221
  ident: bib15
  article-title: Mechanism of hard-nanomaterial clearance by the liver
  publication-title: Nat. Mater.
– volume: 96
  start-page: 17128
  year: 2024
  end-page: 17134
  ident: bib64
  article-title: A Cell-Free Kinetic Analysis of Ionizable Lipid Hydrolysis
  publication-title: Anal. Chem.
– volume: 7
  year: 2017
  ident: 10.1016/j.omtm.2025.101436_bib37
  article-title: A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14221-2
– volume: 370
  start-page: 763
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib98
  article-title: Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2024.04.022
– volume: 70
  start-page: 821
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib29
  article-title: Hepatic Stellate Cell: A Double-Edged Sword in the Liver
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.934755
– volume: 12
  start-page: 613
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib79
  article-title: Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20903-3
– volume: 370
  start-page: 516
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib61
  article-title: The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2024.05.006
– volume: 16
  start-page: 466
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib75
  article-title: Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00836-6
– volume: 6
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib21
  article-title: Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10213
– volume: 92
  start-page: 387
  year: 2017
  ident: 10.1016/j.omtm.2025.101436_bib49
  article-title: The stellate cell system (vitamin A-storing cell system)
  publication-title: Anat. Sci. Int.
  doi: 10.1007/s12565-017-0395-9
– volume: 244
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib54
  article-title: Efficient delivery of curcumin by functional solid lipid nanoparticles with promoting endosomal escape and liver targeting properties
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2024.114177
– volume: 96
  start-page: 17128
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib64
  article-title: A Cell-Free Kinetic Analysis of Ionizable Lipid Hydrolysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c02399
– volume: 116
  start-page: 21150
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib77
  article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906182116
– volume: 322
  start-page: 217
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib43
  article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.03.006
– volume: 24
  start-page: 12758
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib72
  article-title: Impact of Lipid Tail Length on the Organ Selectivity of mRNA-Lipid Nanoparticles
  publication-title: Nano Lett.
– volume: 138
  start-page: 1265
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib80
  article-title: Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD)
  publication-title: Clin. Sci.
  doi: 10.1042/CS20241137
– volume: 14
  start-page: 3430
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib7
  article-title: Golden Threads of Lipid Nanoparticles (LNPs) contributing to COVID-19 mRNA Vaccine: A Review
  publication-title: BioNanoScience
  doi: 10.1007/s12668-024-01589-5
– volume: 11
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib63
  article-title: Discovery of Ketal-Ester Ionizable Lipid Nanoparticle with Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202404684
– volume: 10
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib103
  article-title: Lipid-mRNA nanoparticles landscape for cancer therapy
  publication-title: Front. Bioeng. Biotechnol.
– volume: 9
  start-page: 6219
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib83
  article-title: Lipid Nanoparticle-Based Delivery System-A Competing Place for mRNA Vaccines
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c08353
– volume: 1
  start-page: 13
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib50
  article-title: Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell
  publication-title: Curr. Tissue Microenviron. Rep.
  doi: 10.1007/s43152-020-00004-x
– volume: 15
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib27
  article-title: The Future of Tissue-Targeted Lipid Nanoparticle-Mediated Nucleic Acid Delivery
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15070897
– volume: 121
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib70
  article-title: Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2307801120
– volume: 31
  start-page: 89
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib102
  article-title: Current landscape of mRNA technologies and delivery systems for new modality therapeutics
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-024-01080-z
– volume: 44
  start-page: 5013
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib2
  article-title: Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application
  publication-title: Curr. Issues Mol. Biol.
  doi: 10.3390/cimb44100341
– volume: 20
  start-page: 132
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib71
  article-title: Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-024-01747-6
– volume: 35
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib60
  article-title: Optimizing Lipid Nanoparticles for Delivery in Primates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211420
– volume: 2
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib101
  article-title: mRNA nanomedicine: Design and recent applications
  publication-title: Explorations
– volume: 295
  start-page: 140
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib81
  article-title: Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.01.001
– volume: 66
  start-page: 212
  year: 2017
  ident: 10.1016/j.omtm.2025.101436_bib31
  article-title: Liver sinusoidal endothelial cells: Physiology and role in liver diseases
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2016.07.009
– volume: 1
  year: 2015
  ident: 10.1016/j.omtm.2025.101436_bib28
  article-title: Kupffer Cell Metabolism and Function
  publication-title: J. Enzymol. Metabol.
– volume: 277
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib62
  article-title: Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.133984
– volume: 374
  start-page: 337
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib74
  article-title: Engineered lipid nanoparticles enable therapeutic gene silencing of GTSE1 for the treatment of liver fibrosis
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2024.08.012
– volume: 20
  start-page: 324
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib96
  article-title: Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1590126
– volume: 18
  start-page: 411
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib30
  article-title: Role of liver sinusoidal endothelial cells in liver diseases
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-00411-3
– volume: 2
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib9
  article-title: Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic
  publication-title: Explorations
– volume: 35
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib47
  article-title: Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1449
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib24
  article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM01609H
– volume: 118
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib65
  article-title: On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2109256118
– volume: 2
  start-page: 24
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib17
  article-title: Nanodelivery of nucleic acids
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-022-00104-y
– volume: 30
  start-page: 235
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib59
  article-title: Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2023.06.005
– volume: 7
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib55
  article-title: An investigation of the effect of the protein corona on the cellular uptake of nanoliposomes under flow conditions using quartz crystal microgravimetry with dissipation
  publication-title: Nanoscale Adv.
– start-page: 217
  year: 2014
  ident: 10.1016/j.omtm.2025.101436_bib40
  article-title: Kupffer Cells in Health and Disease
– volume: 29
  start-page: 139
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib88
  article-title: Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.1186/s11658-024-00655-w
– volume: 15
  start-page: 1212
  year: 2016
  ident: 10.1016/j.omtm.2025.101436_bib15
  article-title: Mechanism of hard-nanomaterial clearance by the liver
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4718
– volume: 14
  start-page: 75
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib76
  article-title: Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35637-z
– volume: 12
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib97
  article-title: Environmental Safety Assessments of Lipid Nanoparticles Loaded with Lambda-Cyhalothrin
  publication-title: Nanomaterials
  doi: 10.3390/nano12152576
– volume: 55
  start-page: 2085
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib93
  article-title: Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-023-01086-x
– volume: 14
  start-page: 1084
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib8
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0591-y
– volume: 11
  start-page: 343
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib14
  article-title: Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-2571-4
– start-page: 353
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib84
  article-title: Asialoglycoprotein Receptor and Targeting Strategies
– volume: 22
  start-page: 83
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib39
  article-title: Development of finely tuned liposome nanoplatform for macrophage depletion
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-024-02325-7
– volume: 34
  start-page: 941
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib95
  article-title: PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.3c00174
– volume: 22
  start-page: 672
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib48
  article-title: High-throughput synthesis and optimization of ionizable lipids through A3 coupling for efficient mRNA delivery
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-024-02919-1
– year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib78
  article-title: Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-024-02437-3
– volume: 35
  start-page: 617
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib13
  article-title: Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2024.106
– volume: 9
  start-page: 4383
  year: 2018
  ident: 10.1016/j.omtm.2025.101436_bib34
  article-title: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06318-7
– volume: 25
  start-page: 312
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib58
  article-title: Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms25010312
– volume: 19
  start-page: 833
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib85
  article-title: Protein corona: challenges and opportunities for targeted delivery of nanomedicines
  publication-title: Expet Opin. Drug Deliv.
  doi: 10.1080/17425247.2022.2093854
– volume: 12
  start-page: 389
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib32
  article-title: Cell Subtypes Within the Liver Microenvironment Differentially Interact with Lipid Nanoparticles
  publication-title: Cell. Mol. Bioeng.
  doi: 10.1007/s12195-019-00573-4
– volume: 11
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib90
  article-title: Nanogene editing drug delivery systems in the treatment of liver fibrosis
  publication-title: Front. Med.
– volume: 154–155
  start-page: 79
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib25
  article-title: Lipid-based nanoparticle technologies for liver targeting
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.017
– year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib100
  article-title: Reengineering mRNA lipid nanoparticles for systemic delivery to pancreas
  publication-title: bioRxiv
– volume: 8
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib89
  article-title: Nanotechnology in Drug Delivery for Liver Fibrosis
  publication-title: Front Mol Biosci.
  doi: 10.3389/fmolb.2021.804396
– volume: 11
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib33
  article-title: CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p
  publication-title: Adv. Sci.
– volume: 14
  start-page: 57
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib104
  article-title: Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications
  publication-title: 3 Biotech
  doi: 10.1007/s13205-023-03901-8
– volume: 12
  start-page: 1148
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib94
  article-title: Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery
  publication-title: Vaccines
  doi: 10.3390/vaccines12101148
– volume: 106
  start-page: 2046
  year: 2017
  ident: 10.1016/j.omtm.2025.101436_bib51
  article-title: The Delivery of Small Interfering RNA to Hepatic Stellate Cells Using a Lipid Nanoparticle Composed of a Vitamin A-Scaffold Lipid-Like Material
  publication-title: J. Pharmacol. Sci. (Tokyo, Jpn.)
– volume: 15
  start-page: 6709
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib22
  article-title: Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10064
– volume: 6
  start-page: 1078
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib1
  article-title: Lipid nanoparticles for mRNA delivery
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00358-0
– volume: 23
  start-page: 1432
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib99
  article-title: Nanoparticle protein corona: from structure and function to therapeutic targeting
  publication-title: Lab Chip
  doi: 10.1039/D2LC00799A
– volume: 11
  start-page: 658
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib6
  article-title: Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines
  publication-title: Vaccines
  doi: 10.3390/vaccines11030658
– volume: 8
  start-page: 1155
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib26
  article-title: Selective organ targeting nanoparticles: from design to clinical translation
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D3NH00145H
– volume: 15
  start-page: 313
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib66
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 44
  start-page: 110
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib92
  article-title: Bioethical issues in genome editing by CRISPR-Cas9 technology
  publication-title: Turkish journal of biology = Turk biyoloji dergisi
– volume: 5
  start-page: 344
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib20
  article-title: Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design
  publication-title: Extracell. Vesicles Circ. Nucl. Acids
  doi: 10.20517/evcna.2024.19
– volume: 102
  start-page: 3311
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib38
  article-title: Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis
  publication-title: Ann. Hematol.
  doi: 10.1007/s00277-023-05425-w
– volume: 34
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib45
  article-title: Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201095
– volume: 42
  start-page: 1
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib87
  article-title: The Role of Liver Zonation in Physiology, Regeneration, and Disease
  publication-title: Semin. Liver Dis.
  doi: 10.1055/s-0041-1742279
– volume: 143
  start-page: 68
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib56
  article-title: Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.04.008
– volume: 12
  start-page: 8341
  year: 2018
  ident: 10.1016/j.omtm.2025.101436_bib68
  article-title: Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03640
– volume: 24
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib67
  article-title: A Lipid Nanoparticle-Based Method for the Generation of Liver-Specific Knockout Mice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms241814299
– volume: 12
  start-page: 2581
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib5
  article-title: Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-022-01146-1
– volume: 12
  start-page: 7233
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib46
  article-title: An ionizable lipid toolbox for RNA delivery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27493-0
– volume: 121
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib57
  article-title: Endosomal escape: A bottleneck for LNP-mediated therapeutics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2307800120
– volume: 12
  start-page: 4759
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib12
  article-title: Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D3TB02766J
– volume: 12
  start-page: 4264
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib42
  article-title: Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24543-5
– volume: 10
  start-page: 2940
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib69
  article-title: In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00168C
– volume: 40
  start-page: 27
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib19
  article-title: Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-022-03460-2
– volume: 4
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib4
  article-title: A perspective of lipid nanoparticles for RNA delivery
  publication-title: Explorations
– volume: 8
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib86
  article-title: Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of “Stealthy”
  publication-title: Nanomaterials
– volume: 159
  start-page: 344
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib16
  article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.026
– volume: 20
  start-page: 109
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib10
  article-title: Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-022-01309-9
– volume: 43
  start-page: 584
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib52
  article-title: Lipid Nanoparticles for Cell-Specific in Vivo Targeted Delivery of Nucleic Acids
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b19-00743
– volume: 114
  year: 2017
  ident: 10.1016/j.omtm.2025.101436_bib35
  article-title: Effect of removing Kupffer cells on nanoparticle tumor delivery
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1713390114
– volume: 154–155
  start-page: 37
  year: 2020
  ident: 10.1016/j.omtm.2025.101436_bib3
  article-title: Lipid nanoparticles for nucleic acid delivery: Current perspectives
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.002
– volume: 14
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib91
  article-title: Ethical and legal challenges in nanomedical innovations: a scoping review
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2023.1163392
– volume: 19
  start-page: 3973
  year: 2022
  ident: 10.1016/j.omtm.2025.101436_bib36
  article-title: Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.2c00442
– volume: 14
  start-page: 4007
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib44
  article-title: Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39768-9
– volume: 14
  start-page: 2776
  year: 2023
  ident: 10.1016/j.omtm.2025.101436_bib82
  article-title: GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37465-1
– volume: 598
  start-page: 2372
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib41
  article-title: Liver gene transfer for metabolite detoxification in inherited metabolic diseases
  publication-title: FEBS Lett.
– volume: 22
  start-page: 553
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib53
  article-title: Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-024-02812-x
– volume: 13
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib18
  article-title: Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13101675
– volume: 21
  start-page: 829
  year: 2024
  ident: 10.1016/j.omtm.2025.101436_bib11
  article-title: Understanding nanoparticle-liver interactions in nanomedicine
  publication-title: Expet Opin. Drug Deliv.
  doi: 10.1080/17425247.2024.2375400
– volume: 7
  year: 2021
  ident: 10.1016/j.omtm.2025.101436_bib23
  article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver
  publication-title: Sci. Adv.
– volume: 31
  year: 2019
  ident: 10.1016/j.omtm.2025.101436_bib73
  article-title: Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses
  publication-title: Adv. Mater.
SSID ssj0000970359
Score 2.408816
SecondaryResourceType review_article
Snippet Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 101436
SubjectTerms ApoE
apolipoprotein E
biodistribution
lipid nanoparticles
liver targeting
LNPs
Review
therapeutic delivery
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RUKVeqkIfpLSVkXqrUjmJkzgHhNoKhJDg1FW5WXbsdIMgWXaD1P33nUkcSlrUE8fYzmNmbM_3KeMZgI9pgpgiszp0qUWCUvAyNNbp0JYuqaJCc6eJKJ6dZyczcXqRXmzAWO7IK3D1ILWjelKz5dXnXzfrQ1zwB39itdrrjk6Vxyk1iCR7AlvomWKa5Wce7vc7c5FTxjp_dubhWyf-qU_jP3FT_8LQv6Mp77mn4xfw3ONK9mWYCNuw4ZodeDpUmly_hPmP-ZrZll3Vi9qyRjfIlX1IHBuCwRkiQezGmX3IZvdPvLC2YqZuLWXY9cWxGPYMY0M6qUnRRqxbtot6df0KZsdH37-dhL7IQlgKnnShQwoY2yrjtuAiKmMthY1EbDMui8olmZMx2gxhlkYdmcQKriuNG6QpKPVeoZPXsNm0jdsFJgtbIp1BRuoioY3B6wzHoQfMtSxlHsCnUbVqMeTSUGOQ2aUiQygyhBoMEcBX0v7dSMqD3Te0y5_Kq0jxXOeOlzG3pRVVnJkUhYi0NJWVBiUKIB1tpzykGKACPqr-78v3R0MrXG_0E0U3rr1dKcRbEndBpI0BvBkMf_eJgsgtAqIA5GRKTGSY9jT1vM_pTXn2EErLt48h9R48I1koVC5K3sFmt7x17xE7deZDvyB-A2T8GtI
  priority: 102
  providerName: Scholars Portal
Title Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism
URI https://dx.doi.org/10.1016/j.omtm.2025.101436
https://www.ncbi.nlm.nih.gov/pubmed/40104152
https://www.proquest.com/docview/3178832625
https://pubmed.ncbi.nlm.nih.gov/PMC11919328
https://doaj.org/article/07a7e0c20dcd4f26b50411a8bfd8bd90
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2329-0501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970359
  issn: 2329-0501
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2329-0501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970359
  issn: 2329-0501
  databaseCode: DIK
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2329-0501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970359
  issn: 2329-0501
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2329-0501
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000970359
  issn: 2329-0501
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2329-0501
  dateEnd: 20250630
  omitProxy: true
  ssIdentifier: ssj0000970359
  issn: 2329-0501
  databaseCode: M48
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRv61fRPAmxbRN2_QkKi6LoCcXvYWkSdmKtstuPfjvnWm6666CXrwU2oQ2mUky79HJCyFncQSYIjHKt7EBgpKx3NfGKt_kNiqCTDGrkCjePySDIb97jp8XjvrCnDAnD-wMd8FSlVqWh8zkhhdhomPGg0AJXRihTdaydQhjC2SqXYOzFLXpul0yLqGrfmtw63kY4wPeajJ_RaJWsH8pIP0EnN_zJhcCUX-DrHcIkl65lm-SFVttkVV3puTHNhk9jT6oqelrOS4NrVQFrLhLfqMu7ZsC5oNiGMOXdLi4t4XWBdVlbVBLtzsGi0KJq-vjnkzMK6LNpB6X07cdMuzfPt4M_O44BT_nLGp8C2QvNEXCwGo8yEMluAl4aBImssJGiRUheAcAlQIb6chwpgoFS6HOUGQvU9Eu6VV1ZfcJFZnJgbgA97QBV1rDfQL1INalSuQi9cj5zLRy7FQz5Cyd7EWiIyQ6QjpHeOQarT-viYrX7QMYB7IzkfxrHHgknvlOduDBgQJ4Vfnrx09njpYws_B3iaps_T6VgKwErHdAED2y5xw_byJHGgvQxyNiaUgs9WG5pCpHrXo3KuoBaBYH_9HrQ7KGfcGkuCA6Ir1m8m6PASU1-qSdEHC95-ITbMETfA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+do+lipid+nanoparticles+target+the+liver%3F+Understanding+of+biodistribution+and+liver-specific+tropism&rft.jtitle=Molecular+therapy.+Methods+%26+clinical+development&rft.au=Mahboubeh+Hosseini-Kharat&rft.au=Kristen+E.+Bremmell&rft.au=Clive+A.+Prestidge&rft.date=2025-03-13&rft.pub=Elsevier&rft.eissn=2329-0501&rft.volume=33&rft.issue=1&rft.spage=101436&rft_id=info:doi/10.1016%2Fj.omtm.2025.101436&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07a7e0c20dcd4f26b50411a8bfd8bd90
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-0501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-0501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-0501&client=summon