ON THE GENERALIZED ORDER OF DIRICHLET SERIES

By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of slow growth are obtained, which briefly extends some results of paper [1]...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 35; no. 1; pp. 133 - 139
Main Author 霍颖莹 孔荫莹
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2015
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China%School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(14)60146-6

Cover

Abstract By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of slow growth are obtained, which briefly extends some results of paper [1].
AbstractList By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of slow growth are obtained, which briefly extends some results of paper [1].
Author 霍颖莹 孔荫莹
AuthorAffiliation School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China
AuthorAffiliation_xml – name: School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China%School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China
Author_xml – sequence: 1
  fullname: 霍颖莹 孔荫莹
BookMark eNqFkM9PwjAUxxuDiYD-CSaLJ0ictltXRjwYAwWWEEkGXrw0ZXvDmtlhO_zx31uYevDi5b2k-X7ee_10UEtXGhA6J_iKYMKulziIAn_IcNAjtM8wocxnR6hNooF7xvGghdq_kRPUsfYZOy5gtI0uF_feasa9Kb_n6d08eeRjb5GOeeotJt44SZPRbM5X3pKnCV-eouNClhbOvnsXPUz4ajTz54tpMrqb-xnFYe0DK9aUFTFg6boMJaUYojimecgikhV5HueuuJPoOnD35UM2iClQKEhBw5iGXdRv5r5LXUi9Ec_Vzmi3UdiP9_JjLSDAJMLu89hle012a6rXHdhavCibQVlKDdXOCsKGQRiRgatdFDXRzFTWGijE1qgXaT4FwWJvUhxMir0mQag4mBTMcTd_uEzVslaVro1U5b_0bUODM_amwAibKdAZ5MpAVou8Uv9OuPje_1TpzatyQn4OZyyMA-ag8AvCZpQT
CitedBy_id crossref_primary_10_1155_2019_9191346
crossref_primary_10_1007_s10473_020_0418_9
Cites_doi 10.1016/S0252-9602(13)60134-4
10.1007/s10587-012-0074-x
10.1073/pnas.20.3.211
10.1007/BF01574830
10.1016/j.jmaa.2007.06.073
ContentType Journal Article
Copyright 2015 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2015 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(14)60146-6
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate ON THE GENERALIZED ORDER OF DIRICHLET SERIES
EISSN 1572-9087
EndPage 139
ExternalDocumentID sxwlxb_e201501010
10_1016_S0252_9602_14_60146_6
S0252960214601466
663826252
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11201083
– fundername: Guangdong Natural Science Foundation
  grantid: S2012010010376
– fundername: National Natural Science Foundation of China
  grantid: 11301140
– fundername: National Natural Science Foundation of China
  grantid: 11101096
– fundername: The research is supported by the National Natural Science Foundation of China; the National Natural Science Foundation of China; the National Natural Science Foundation of China; the Guangdong Natural Science Foundation
  funderid: (11101096); (11201083); (11301140); (S2012010010376)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
HG6
SJYHP
SSH
7SC
7TB
8FD
ACLOT
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
~HD
4A8
PSX
ID FETCH-LOGICAL-c403t-e6fb46f8e0ab46a3a440e5884d3651cfdd8dfdd0254b2908d96784e4ef1f43843
IEDL.DBID AIKHN
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Sun Sep 28 10:47:17 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 02:27:32 EDT 2025
Fri Feb 23 02:25:03 EST 2024
Wed Feb 14 10:34:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords maximum term
30D30
generalized order
Dirichlet series
30D35
maximum modulus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-e6fb46f8e0ab46a3a440e5884d3651cfdd8dfdd0254b2908d96784e4ef1f43843
Notes Dirichlet series; generalized order; maximum modulus; maximum term
42-1227/O
By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of slow growth are obtained, which briefly extends some results of paper [1].
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1692351792
PQPubID 23500
PageCount 7
ParticipantIDs wanfang_journals_sxwlxb_e201501010
proquest_miscellaneous_1692351792
crossref_primary_10_1016_S0252_9602_14_60146_6
crossref_citationtrail_10_1016_S0252_9602_14_60146_6
elsevier_sciencedirect_doi_10_1016_S0252_9602_14_60146_6
chongqing_primary_663826252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015
January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2015
Publisher Elsevier Ltd
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China%School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China
Publisher_xml – name: Elsevier Ltd
– name: School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China%School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, China
References Shang, Gao (bib10) 2009; 29B
Jin, Sun (bib4) 2008; 32
Kong (bib6) 2009; 52
Knopp (bib12) 1951; 54
Shang, Gao (bib8) 2008; 339
Kong, Gan (bib1) 2010; 34
Jin, Deng, Sun (bib5) 2012; 62
Huo, Kong (bib11) 2014; 34B
Jiarong (bib2) 1997
Valiron (bib3) 1934; 20
Kong, Huo (bib9) 2012; 33
Liang, Gao (bib7) 2010; 30B
Liang (10.1016/S0252-9602(14)60146-6_bib7) 2010; 30B
Huo (10.1016/S0252-9602(14)60146-6_bib11) 2014; 34B
Shang (10.1016/S0252-9602(14)60146-6_bib8) 2008; 339
Kong (10.1016/S0252-9602(14)60146-6_bib9) 2012; 33
Knopp (10.1016/S0252-9602(14)60146-6_bib12) 1951; 54
Jin (10.1016/S0252-9602(14)60146-6_bib5) 2012; 62
Kong (10.1016/S0252-9602(14)60146-6_bib6) 2009; 52
Jiarong (10.1016/S0252-9602(14)60146-6_bib2) 1997
Valiron (10.1016/S0252-9602(14)60146-6_bib3) 1934; 20
Jin (10.1016/S0252-9602(14)60146-6_bib4) 2008; 32
Shang (10.1016/S0252-9602(14)60146-6_bib10) 2009; 29B
Kong (10.1016/S0252-9602(14)60146-6_bib1) 2010; 34
References_xml – year: 1997
  ident: bib2
  publication-title: Dirichlet Seires and Random Dirichlet Series
– volume: 20
  start-page: 211
  year: 1934
  end-page: 215
  ident: bib3
  article-title: Entire functions and Borel's directions
  publication-title: Proc Nat Acad Sci
– volume: 30B
  start-page: 1640
  year: 2010
  end-page: 1648
  ident: bib7
  article-title: Convergence and growth of multiple dirichlet series
  publication-title: Acta Mathematica Scientia
– volume: 33
  start-page: 323
  year: 2012
  end-page: 328
  ident: bib9
  article-title: The random Dirichlet series with slow growth
  publication-title: Chinese Annals of Mathematics (Ser A)
– volume: 29B
  start-page: 83
  year: 2009
  end-page: 93
  ident: bib10
  article-title: The pits property of entire functions defined by Dirichlet series
  publication-title: Acta Mathematica Scientia
– volume: 34B
  start-page: 175
  year: 2014
  end-page: 182
  ident: bib11
  article-title: On generalized orders and generalized types of Dirichlet series in the right half-plane
  publication-title: Acta Mathematica Scientia
– volume: 34
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib1
  article-title: On orders and types of Dirichlet series of slow growth
  publication-title: Turk J Math
– volume: 339
  start-page: 853
  year: 2008
  end-page: 862
  ident: bib8
  article-title: Entire functions defined by Dirichlet series
  publication-title: J Math Anal Appl
– volume: 32
  start-page: 245
  year: 2008
  end-page: 254
  ident: bib4
  article-title: On the distribution of random Dirichlet series in the whole plane
  publication-title: Turk J Math
– volume: 52
  start-page: 1165
  year: 2009
  end-page: 1172
  ident: bib6
  article-title: On some
  publication-title: Acta Mathematica Sinica, Chinese Series
– volume: 54
  start-page: 291
  year: 1951
  end-page: 296
  ident: bib12
  article-title: Über de konvergenzaabscisse des Laplcace-Integrals
  publication-title: Math Z
– volume: 62
  start-page: 919
  year: 2012
  end-page: 936
  ident: bib5
  article-title: Julia Lines of General Random Dirichlet series
  publication-title: Czechoslavak Mathematical Journal
– volume: 32
  start-page: 245
  year: 2008
  ident: 10.1016/S0252-9602(14)60146-6_bib4
  article-title: On the distribution of random Dirichlet series in the whole plane
  publication-title: Turk J Math
– volume: 34B
  start-page: 175
  issue: 1
  year: 2014
  ident: 10.1016/S0252-9602(14)60146-6_bib11
  article-title: On generalized orders and generalized types of Dirichlet series in the right half-plane
  publication-title: Acta Mathematica Scientia
  doi: 10.1016/S0252-9602(13)60134-4
– volume: 62
  start-page: 919
  issue: 137
  year: 2012
  ident: 10.1016/S0252-9602(14)60146-6_bib5
  article-title: Julia Lines of General Random Dirichlet series
  publication-title: Czechoslavak Mathematical Journal
  doi: 10.1007/s10587-012-0074-x
– volume: 52
  start-page: 1165
  issue: 6
  year: 2009
  ident: 10.1016/S0252-9602(14)60146-6_bib6
  article-title: On some q-orders and q-types of Dirichlet-Hadamard product function
  publication-title: Acta Mathematica Sinica, Chinese Series
– volume: 29B
  start-page: 83
  year: 2009
  ident: 10.1016/S0252-9602(14)60146-6_bib10
  article-title: The pits property of entire functions defined by Dirichlet series
  publication-title: Acta Mathematica Scientia
– volume: 34
  start-page: 1
  year: 2010
  ident: 10.1016/S0252-9602(14)60146-6_bib1
  article-title: On orders and types of Dirichlet series of slow growth
  publication-title: Turk J Math
– volume: 30B
  start-page: 1640
  year: 2010
  ident: 10.1016/S0252-9602(14)60146-6_bib7
  article-title: Convergence and growth of multiple dirichlet series
  publication-title: Acta Mathematica Scientia
– volume: 20
  start-page: 211
  year: 1934
  ident: 10.1016/S0252-9602(14)60146-6_bib3
  article-title: Entire functions and Borel's directions
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.20.3.211
– volume: 54
  start-page: 291
  year: 1951
  ident: 10.1016/S0252-9602(14)60146-6_bib12
  article-title: Über de konvergenzaabscisse des Laplcace-Integrals
  publication-title: Math Z
  doi: 10.1007/BF01574830
– volume: 33
  start-page: 323
  issue: 3
  year: 2012
  ident: 10.1016/S0252-9602(14)60146-6_bib9
  article-title: The random Dirichlet series with slow growth
  publication-title: Chinese Annals of Mathematics (Ser A)
– year: 1997
  ident: 10.1016/S0252-9602(14)60146-6_bib2
– volume: 339
  start-page: 853
  year: 2008
  ident: 10.1016/S0252-9602(14)60146-6_bib8
  article-title: Entire functions defined by Dirichlet series
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2007.06.073
SSID ssj0016264
Score 1.981512
Snippet By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and...
SourceID wanfang
proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms 30D30
30D35
Dirichlet problem
Dirichlet series
Dirichlet级数
Entire functions
generalized order
Mathematical analysis
maximum modulus
maximum term
大模数
广义
整函数
Title ON THE GENERALIZED ORDER OF DIRICHLET SERIES
URI http://lib.cqvip.com/qk/86464X/201501/663826252.html
https://dx.doi.org/10.1016/S0252-9602(14)60146-6
https://www.proquest.com/docview/1692351792
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201501010
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oRNCD3-L8oooHBbOlbVqz4xjKVNSDCt5CmibbYHRqJ4oH_3Zf2nTqQQQvLU37Hu17Sd4vTd4vAAe8RQ2lShLDdEQspTlJeCRJyJPAl1RhJbHZyFfXcfeeXTxED1PQqXJh7LJK1_eXfXrRW7uSprNm83EwaN5itA4Qf9udqS0DSjwNMwFGe16Dmfb5Zfd6MpmAmL1gkcLniRX4SuQplRSFhz47KvSQgmahP8p6Txg8fgtX3-Do7KvMjMx63-LS2RIsOEDptct3XoYpna3AogOXnmu6-QrMX00IWvFqtlj5qfJVOL7JPLzh9Ur-6cE7ShV8nN7IeGicgeqjaz1bU3W-Bvdnp3edLnFbKBDFaDgmOjYJiw3XVOJZhpIxqm1uahrGka9MmvIUDzYlPglalKctDF5MM218g45j4TrUslGmN8AzPpcG8UZAI8PSCHFNQlF9SltKBfHJSR22JlYTjyVVhkA8g-MXtHEdWGVHoRz7uN0EYyi-lpnhY8K6AocjonCFiOvQmIhVOv8Q4JWTxI96JDBE_CW6VzlVYBuzEycy06OXXPgxwmDLZYafse-8LVxbz0X-9jp8S4QO7M8jVE83__8OWzBn1ZT_eLahNn5-0TuIesbJLkw3PvxdV7c_Ab-i9zg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90IuqD3-L8rOKDgnFpm9buUcSxqZsPKvgW0jTZBqObdqL413tp06kPIvjS0rR3tHdJ7pcm9wvAUVSnmlIpiGYqIIbSnMRRIIgfxZ4rqMRKYrKR252w-ciun4KnKbgsc2HMskrb9xd9et5b25KatWZt1O_X7jFae4i_zc7UhgElnIYZZja1rsDMReum2ZlMJiBmz1mk8HliBL4SeQoleeGxy05yPSSnWegN0-4zBo_fwtU3ODr7JlIt0u63uNRYhkULKJ2L4p1XYEqlq7BkwaVjm262CgvtCUErXs3mKz9ltgand6mDN5xuwT_d_0CpnI_TGWoHjdOXPXStY2qqytbhsXH1cNkkdgsFIhn1x0SFOmahjhQVeBa-YIwqk5ua-GHgSp0kUYIHkxIfe3UaJXUMXkwxpV2NjmP-BlTSYao2wdFuJDTiDY8GmiUB4pqYovqE1qX0wvPzKmxPrMZHBVUGRzyD4xe0cRVYaUcuLfu42QRjwL-WmeFj3LgChyM8dwUPq3A2ESt1_iEQlU7iP-oRxxDxl-hB6VSObcxMnIhUDV8z7oYIgw2XGX7GofU2t20949n72-A95sozP49QPd36_zvsw1zzoX3Lb1udm22YNyqL_z07UBm_vKpdREDjeM_W8E-S6Pke
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+GENERALIZED+ORDER+OF+DIRICHLET+SERIES&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9AB%E8%BE%91%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%9C%8D%E9%A2%96%E8%8E%B9+%E5%AD%94%E8%8D%AB%E8%8E%B9&rft.date=2015&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=1&rft.spage=133&rft.epage=139&rft_id=info:doi/10.1016%2FS0252-9602%2814%2960146-6&rft.externalDocID=663826252
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg