MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network
Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolu...
Saved in:
Published in | Magnetic resonance imaging Vol. 110; pp. 195 - 209 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0730-725X 1873-5894 1873-5894 |
DOI | 10.1016/j.mri.2024.04.021 |
Cover
Abstract | Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data. |
---|---|
AbstractList | Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data. Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data. |
Author | U, Nimitha P.M., Ameer |
Author_xml | – sequence: 1 givenname: Nimitha surname: U fullname: U, Nimitha email: nimithau@gmail.com – sequence: 2 givenname: Ameer surname: P.M. fullname: P.M., Ameer email: ameer@nitc.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38653336$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G3tD3AjWbqZaz7mE1elaC1UhVKhu5BJzsi5zWTGJFO5v8M_bO697aaLCoFAeJ83nPOckCM_eSDkHWdrznj9cbMeA64FE-Wa5SP4K7LibSOLqu3KI7JijWRFI6q7Y3IS44YxVglZvSHHsq0rKWW9In-_3VzRuMwQigBxckvCydMlov9FI47odMC0pRZj0t4A1d7ScXEJi2i0AxrAwJzwAeiA4CztdQRLB9BpCfktF-W6y_Pve3AOUKSg0edIdJjr0CcI8-T0_lsP6c8U7t-S14N2Ec4e71Py88vn24uvxfWPy6uL8-vClEymwpatsLZrQHJtqh6Y7OuhqW3Zl1DZxvYDs23bCmnasrIgRS-k7q02zDLWs06ekg-H3jlMvxeISY0YDTinPUxLVJKVFeddLescff8YXfoRrJoDjjps1dMic6A5BEyYYgwwKINpP9VuYKc4UztlaqOyMrVTplg-gmeSPyOfyl9iPh0YyOt5QAgqGoTsx2IWkpSd8EW6e0Ybhx6zz3vY_of9B3ytxXU |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3429291 |
Cites_doi | 10.1111/jon.12929 10.1109/JTEHM.2018.2855213 10.3390/rs11151817 10.1093/comjnl/bxm075 10.1371/journal.pone.0056098 10.1038/s41598-021-03979-1 10.1016/j.mri.2022.01.016 10.1109/TMI.2020.3037187 10.1109/38.988747 10.1109/TMI.2017.2673121 10.1109/ACCESS.2023.3307577 10.1016/j.mri.2022.02.001 10.1109/TMI.2014.2377694 10.1002/mrm.27178 10.1109/TPAMI.2020.2968521 10.1007/s11042-022-13416-8 10.1109/TPAMI.2015.2439281 10.1016/S0730-725X(02)00511-8 10.1148/ryai.2020190007 10.1016/j.compbiomed.2018.06.010 10.1002/mrm.26715 10.1007/s00330-006-0470-4 10.1109/TIP.2006.888334 10.1016/j.cmpb.2021.106330 10.1109/TIP.2012.2192127 10.1109/34.75515 10.1109/TCSVT.2019.2915238 10.1109/TIP.2010.2050625 10.3390/tomography8020073 10.1109/83.951537 10.1109/TPAMI.2020.2982166 10.1109/TASSP.1978.1163154 10.1109/MSP.2003.1203207 10.1016/j.jmr.2023.107477 10.1002/jmri.23642 10.1056/NEJMoa070972 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.mri.2024.04.021 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 209 |
ExternalDocumentID | 38653336 10_1016_j_mri_2024_04_021 S0730725X24001346 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW G8K RIG AAYXX AGRNS CITATION NPM 7X8 EFLBG |
ID | FETCH-LOGICAL-c403t-d482dd97e31ac5be03b6f76d4b4e5d7dbf0d88823c845de32b23abdac0d00b093 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Thu Sep 04 18:03:14 EDT 2025 Mon Jul 21 06:04:27 EDT 2025 Thu Apr 24 22:53:25 EDT 2025 Tue Jul 01 01:55:29 EDT 2025 Sat May 04 15:44:32 EDT 2024 Tue Aug 26 16:33:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Generative adversarial networks Super-resolution Magnetic resonance imaging In-plane and out-of-plane attention Frame interpolation |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-d482dd97e31ac5be03b6f76d4b4e5d7dbf0d88823c845de32b23abdac0d00b093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38653336 |
PQID | 3045119636 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3045119636 pubmed_primary_38653336 crossref_citationtrail_10_1016_j_mri_2024_04_021 crossref_primary_10_1016_j_mri_2024_04_021 elsevier_sciencedirect_doi_10_1016_j_mri_2024_04_021 elsevier_clinicalkey_doi_10_1016_j_mri_2024_04_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dong, Loy, He, Tang (bb0110) 2016; 38 Kim, Lee, Lee (bb0125) 2016 Hayit Greenspan, Oz, Peled (bb0035) 2002; 20 Knoll, Zbontar, Sriram, Muckley, Bruno, Defazio (bb0305) 2020; 2 Osadebey, Pedersen, Arnold, Wendel-Mitoraj (bb0015) 2018; 6 Ding, Liang, Zhu, Zharkov (bb0260) 2021 Vernooij, Arfan Ikram, Tanghe, Vincent, Hofman, Krestin (bb0025) 2007; 357 Song, Wang, Liu, Li, Fan, Yang (bb0170) 2022; 12 Stadler, Schima, Ba’ssalamah, Kettenbach, Eisenhuber (bb0030) 2007; 17 He, Tang, Jin, Li, Zhang, Liu (bb0175) 2022; 88 Díez, Meunier, Bednarek, Fablet, Passat, Rousseau (bb0230) 2019; 77 Cheon, Kim, Choi, Lee (bb0270) 2018 Ceren Askin Incebacak, Sui, Levy, Merlini, Sa, de Almeida (bb0250) 2022; 32 He, Zhang, Ren, Sun (bb0280) 2016 Park, Park, Kang (bb0040) 2003; 20 Yang, Wang, Lin, Cohen, Huang (bb0095) 2012; 21 Yanting, Li, Huang, Gao (bb0135) 2020; 30 Pang, Zhang (bb0265) 2013; 8 Tsai (bb0055) 1984; 1 Kumar, Kumar, Kumar (bb0300) 2013 Behzadpour, Ghanbari (bb0295) 2023; 82 Wang, Ke, Shixiang, Jinjin, Liu, Dong (bb0155) 2018 Luo, Zhou, Yang, Wei, Ying (bb0240) 2022; 88 Wang, Chan, Yu, Dong, Loy (bb0145) June 2019 de Vos, Wolterink, de Jong, Leiner, Viergever, Išgum (bb0220) 2017; 36 Hou, Andrews (bb0070) 1978; 26 Shen, Zhang, Huang, Li (bb0080) 2007; 16 Jun, Sun, Zhang, Kun, Wang (bb0140) 2019; 11 Pham, Ducournau, Fablet, Rousseau (bb0190) 2017 Freeman, Jones, Pasztor (bb0085) 2002; 22 Chen, Xie, Zhou, Shi, Christodoulou, Li (bb0195) 2018 Rajpurkar, Irvin, Zhu, Yang, Mehta, Duan (bb0215) November 2017 Ko, Lee, Hong, Kim, Ko (bb0235) 2023; 352 Chang, Yeung, Xiong (bb0090) 2004; 1 Shah, Gupta (bb0050) 2012 Kim, Lee, Lee (bb0120) 2016 Koktzoglou, Edelman (bb0255) 2018; 79 Plewes, Kucharczyk (bb0005) 2012; 40 Lim, Son, Kim, Nah, Lee (bb0275) 07 2017 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby (bb0290) 2015; 34 Nimitha, Ameer (bb0185) 2024 Cappabianco, Shida, Ide (bb0010) 2016 Yang, Wright, Huang, Ma (bb0100) 2010; 19 Chaudhari, Fang, Kogan, Wood, Stevens, Gibbons (bb0180) 2018; 80 Ixi dataset (bb0285) Greenspan, Oz, Kiryati, Peled (bb0225) 2002 Lin, Miao, Surawech, Raman, Zhao, Wu (bb0245) 2023; 11 Chatterjee, Sciarra, Dünnwald, Mushunuri, Podishetti, Rao (bb0200) 2021 Ledig, Theis, Huszár, Caballero, Cunningham, Acosta (bb0150) 2017 Greenspan (bb0020) 2008; 52 Dong, Loy, Tang (bb0115) 2016 Zhang, Haoji, Philbrick, Conte, Sobek, Rouzrokh (bb0205) March 2022; 8 Unser, Aldroubi, Eden (bb0075) 1991; 13 Islam, Asari, Islam, Karim (bb0060) 2012 Majdabadi, Ko (bb0165) 2020 Zhu, Qiu (bb0045) 2021; 209 Wang, Chen, Hoi (bb0105) 2021; 43 Zhao, Dewey, Pham, Calabresi, Reich, Prince (bb0210) 2021; 40 Feng, Huazhu, Yuan, Xu (bb0310) 2021 Zeng, Zheng, Congbo Cai, Yang, Chen (bb0160) 2018; 99 Zhang, Yapeng Tian, Kong, Yun (bb0130) 2021; 43 Li, Orchard (bb0065) 2001; 10 Behzadpour (10.1016/j.mri.2024.04.021_bb0295) 2023; 82 Zhang (10.1016/j.mri.2024.04.021_bb0130) 2021; 43 He (10.1016/j.mri.2024.04.021_bb0280) 2016 Yang (10.1016/j.mri.2024.04.021_bb0095) 2012; 21 Zhao (10.1016/j.mri.2024.04.021_bb0210) 2021; 40 Hayit Greenspan (10.1016/j.mri.2024.04.021_bb0035) 2002; 20 Chatterjee (10.1016/j.mri.2024.04.021_bb0200) 2021 Koktzoglou (10.1016/j.mri.2024.04.021_bb0255) 2018; 79 Song (10.1016/j.mri.2024.04.021_bb0170) 2022; 12 Nimitha (10.1016/j.mri.2024.04.021_bb0185) 2024 Pham (10.1016/j.mri.2024.04.021_bb0190) 2017 Kim (10.1016/j.mri.2024.04.021_bb0125) 2016 Zhu (10.1016/j.mri.2024.04.021_bb0045) 2021; 209 Li (10.1016/j.mri.2024.04.021_bb0065) 2001; 10 Chang (10.1016/j.mri.2024.04.021_bb0090) 2004; 1 Pang (10.1016/j.mri.2024.04.021_bb0265) 2013; 8 Hou (10.1016/j.mri.2024.04.021_bb0070) 1978; 26 Unser (10.1016/j.mri.2024.04.021_bb0075) 1991; 13 Zeng (10.1016/j.mri.2024.04.021_bb0160) 2018; 99 Stadler (10.1016/j.mri.2024.04.021_bb0030) 2007; 17 Luo (10.1016/j.mri.2024.04.021_bb0240) 2022; 88 Ko (10.1016/j.mri.2024.04.021_bb0235) 2023; 352 Greenspan (10.1016/j.mri.2024.04.021_bb0020) 2008; 52 Yanting (10.1016/j.mri.2024.04.021_bb0135) 2020; 30 Chaudhari (10.1016/j.mri.2024.04.021_bb0180) 2018; 80 Feng (10.1016/j.mri.2024.04.021_bb0310) 2021 Tsai (10.1016/j.mri.2024.04.021_bb0055) 1984; 1 Chen (10.1016/j.mri.2024.04.021_bb0195) 2018 Wang (10.1016/j.mri.2024.04.021_bb0155) 2018 Rajpurkar (10.1016/j.mri.2024.04.021_bb0215) 2017 Shen (10.1016/j.mri.2024.04.021_bb0080) 2007; 16 Kumar (10.1016/j.mri.2024.04.021_bb0300) 2013 He (10.1016/j.mri.2024.04.021_bb0175) 2022; 88 Zhang (10.1016/j.mri.2024.04.021_bb0205) 2022; 8 Lin (10.1016/j.mri.2024.04.021_bb0245) 2023; 11 Ceren Askin Incebacak (10.1016/j.mri.2024.04.021_bb0250) 2022; 32 Wang (10.1016/j.mri.2024.04.021_bb0145) 2019 Knoll (10.1016/j.mri.2024.04.021_bb0305) 2020; 2 Ixi dataset (10.1016/j.mri.2024.04.021_bb0285) Dong (10.1016/j.mri.2024.04.021_bb0115) 2016 Cheon (10.1016/j.mri.2024.04.021_bb0270) 2018 Plewes (10.1016/j.mri.2024.04.021_bb0005) 2012; 40 Cappabianco (10.1016/j.mri.2024.04.021_bb0010) 2016 de Vos (10.1016/j.mri.2024.04.021_bb0220) 2017; 36 Ding (10.1016/j.mri.2024.04.021_bb0260) 2021 Kim (10.1016/j.mri.2024.04.021_bb0120) 2016 Ledig (10.1016/j.mri.2024.04.021_bb0150) 2017 Osadebey (10.1016/j.mri.2024.04.021_bb0015) 2018; 6 Dong (10.1016/j.mri.2024.04.021_bb0110) 2016; 38 Freeman (10.1016/j.mri.2024.04.021_bb0085) 2002; 22 Lim (10.1016/j.mri.2024.04.021_bb0275) 2017 Yang (10.1016/j.mri.2024.04.021_bb0100) 2010; 19 Wang (10.1016/j.mri.2024.04.021_bb0105) 2021; 43 Jun (10.1016/j.mri.2024.04.021_bb0140) 2019; 11 Menze (10.1016/j.mri.2024.04.021_bb0290) 2015; 34 Islam (10.1016/j.mri.2024.04.021_bb0060) 2012 Majdabadi (10.1016/j.mri.2024.04.021_bb0165) 2020 Vernooij (10.1016/j.mri.2024.04.021_bb0025) 2007; 357 Díez (10.1016/j.mri.2024.04.021_bb0230) 2019; 77 Shah (10.1016/j.mri.2024.04.021_bb0050) 2012 Greenspan (10.1016/j.mri.2024.04.021_bb0225) 2002 Park (10.1016/j.mri.2024.04.021_bb0040) 2003; 20 |
References_xml | – volume: 17 start-page: 1242 year: 2007 end-page: 1255 ident: bb0030 article-title: Artifacts in body mr imaging: their appearance and how to eliminate them publication-title: Eur Radiol – volume: 88 start-page: 53 year: 2022 end-page: 61 ident: bb0175 article-title: Dense channel splitting network for mr image super-resolution publication-title: Magn Reson Imaging – start-page: 943 year: 2002 end-page: 946 ident: bb0225 article-title: Super-resolution in mri publication-title: Proceedings IEEE international symposium on biomedical imaging – volume: 6 start-page: 1 year: 2018 end-page: 15 ident: bb0015 article-title: Image quality evaluation in clinical research: a case study on brain and cardiac mri images in multi-center clinical trials publication-title: IEEE J Transl Eng Health Med – volume: 99 start-page: 133 year: 2018 end-page: 141 ident: bb0160 article-title: Simultaneous single- and multi-contrast super-resolution for brain mri images based on a convolutional neural network publication-title: Comput Biol Med – volume: 1 year: 2004 ident: bb0090 article-title: Super-resolution through neighbor embedding publication-title: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004 – volume: 40 start-page: 805 year: 2021 end-page: 817 ident: bb0210 article-title: Smore: a self-supervised anti-aliasing and super-resolution algorithm for mri using deep learning publication-title: IEEE Trans Med Imaging – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bb0110 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell – ident: bb0285 – start-page: 105 year: 2017 end-page: 114 ident: bb0150 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: 2017 IEEE conference on computer vision and pattern recognition (CVPR) – volume: 40 start-page: 1038 year: 2012 end-page: 1054 ident: bb0005 article-title: Physics of mri: a primer publication-title: J Magn Reson Imaging – volume: 8 start-page: 1 year: 2013 end-page: 5 ident: bb0265 article-title: Interpolated compressed sensing for 2d multiple slice fast mr imaging publication-title: PloS One – start-page: 770 year: 2016 end-page: 778 ident: bb0280 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 52 start-page: 43 year: 2008 end-page: 63 ident: bb0020 article-title: Super-resolution in medical imaging publication-title: Comp J – start-page: 140 year: 2021 end-page: 149 ident: bb0310 article-title: Multi-contrast mri super-resolution via a multi-stage integration network publication-title: Medical image computing and computer assisted intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI – start-page: 1 year: 2016 end-page: 14 ident: bb0010 article-title: Introduction to research in magnetic resonance imaging publication-title: 2016 29th SIBGRAPI conference on graphics, patterns and images tutorials (SIBGRAPI-T) – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: bb0290 article-title: The multimodal brain tumor image segmentation benchmark (brats) publication-title: IEEE Trans Med Imaging – start-page: 1 year: 2012 end-page: 6 ident: bb0050 article-title: Image super resolution-a survey publication-title: 2012 1st international conference on emerging technology trends in electronics, communication networking – volume: 36 start-page: 1470 year: 2017 end-page: 1481 ident: bb0220 article-title: Convnet-based localization of anatomical structures in 3-d medical images publication-title: IEEE Trans Med Imaging – volume: 2 year: 2020 ident: bb0305 article-title: Fastmri: a publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction using machine learning publication-title: Radiol Artif Intell – volume: 22 start-page: 56 year: 2002 end-page: 65 ident: bb0085 article-title: Example-based super-resolution publication-title: IEEE Comput Graph Appl – volume: 209 year: 2021 ident: bb0045 article-title: Residual dense network for medical magnetic resonance images super-resolution publication-title: Comput Methods Programs Biomed – start-page: 1 year: 2020 end-page: 3 ident: bb0165 article-title: Msg-capsgan: multi-scale gradient capsule gan for face super resolution publication-title: 2020 international conference on electronics, information, and communication (ICEIC) – volume: 79 start-page: 683 year: 2018 end-page: 691 ident: bb0255 article-title: Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography publication-title: Magn Reson Med – start-page: 1132 year: 07 2017 end-page: 1140 ident: bb0275 article-title: Enhanced deep residual networks for single image super-resolution – volume: 30 start-page: 3911 year: 2020 end-page: 3927 ident: bb0135 article-title: Channel-wise and spatial feature modulation network for single image super-resolution publication-title: IEEE Trans Circuits Syst Video Technol – volume: 19 start-page: 2861 year: 2010 end-page: 2873 ident: bb0100 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans Image Process – volume: 88 start-page: 101 year: 2022 end-page: 107 ident: bb0240 article-title: Diffusion mri super-resolution reconstruction via sub-pixel convolution generative adversarial network publication-title: Magn Reson Imaging – year: 2021 ident: bb0260 article-title: Cdfi: Compression-driven network design for frame interpolation – volume: 82 start-page: 4465 year: 2023 end-page: 4478 ident: bb0295 article-title: Improving precision of objective image/video quality meters publication-title: Multimed Tools Appl – start-page: 940 year: 2021 end-page: 944 ident: bb0200 article-title: Shuffleunet: Super resolution of diffusion-weighted mris using deep learning publication-title: 2021 29th European signal processing conference (EUSIPCO) – start-page: 251 year: 2013 end-page: 255 ident: bb0300 article-title: Development of improved ssim quality index for compressed medical images publication-title: 2013 IEEE second international conference on image information processing (ICIIP-2013) – volume: 43 start-page: 2480 year: 2021 end-page: 2495 ident: bb0130 article-title: Residual dense network for image restoration publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2018 ident: bb0270 article-title: Generative adversarial network-based image super-resolution using perceptual content losses publication-title: Proceedings of the European Conference on Computer Vision (ECCV) Workshops – start-page: 739 year: 2018 end-page: 742 ident: bb0195 article-title: Brain mri super resolution using 3d deep densely connected neural networks publication-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) – volume: 16 start-page: 479 year: 2007 end-page: 490 ident: bb0080 article-title: A map approach for joint motion estimation, segmentation, and super resolution publication-title: IEEE Trans Image Process – volume: 11 start-page: 95022 year: 2023 end-page: 95036 ident: bb0245 article-title: High-resolution 3d mri with deep generative networks via novel slice-profile transformation super-resolution publication-title: IEEE Access – volume: 43 start-page: 3365 year: 2021 end-page: 3387 ident: bb0105 article-title: Deep learning for image super-resolution: a survey publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 53 year: 2012 end-page: 56 ident: bb0060 article-title: Single image super-resolution in frequency domain publication-title: 2012 IEEE southwest symposium on image analysis and interpretation – volume: 352 year: 2023 ident: bb0235 article-title: Mriflow: magnetic resonance image super-resolution based on normalizing flow and frequency prior publication-title: J Magn Reson – volume: 11 start-page: 1817 year: 2019 ident: bb0140 article-title: Deep residual squeeze and excitation network for remote sensing image super-resolution publication-title: Remote Sens (Basel) – start-page: 63 year: 2018 end-page: 79 ident: bb0155 article-title: ESRGAN: enhanced super-resolution generative adversarial networks publication-title: Proceedings of the European conference on computer vision (ECCV) – start-page: 1 year: 2024 end-page: 13 ident: bb0185 article-title: Multi image super resolution of mri images using generative adversarial network publication-title: J Ambient Intell Humanized Comput – start-page: 197 year: 2017 end-page: 200 ident: bb0190 article-title: Brain mri super-resolution using deep 3d convolutional networks publication-title: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) – volume: 8 start-page: 905 year: March 2022 end-page: 919 ident: bb0205 article-title: Soup-gan: super-resolution mri using generative adversarial networks publication-title: Tomography – volume: 13 start-page: 277 year: 1991 end-page: 285 ident: bb0075 article-title: Fast b-spline transforms for continuous image representation and interpolation publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 1637 year: 2016 end-page: 1645 ident: bb0120 article-title: Deeply-recursive convolutional network for image super-resolution publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 80 start-page: 2139 year: 2018 end-page: 2154 ident: bb0180 article-title: Super-resolution musculoskeletal mri using deep learning publication-title: Magn Reson Med – year: November 2017 ident: bb0215 article-title: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning publication-title: arXiv e-prints – year: June 2019 ident: bb0145 article-title: Edvr: Video restoration with enhanced deformable convolutional networks publication-title: The IEEE conference on computer vision and pattern recognition (CVPR) workshops – volume: 1 start-page: 317 year: 1984 end-page: 339 ident: bb0055 article-title: Multiframe image restoration and registration publication-title: Adv Comput Vis Image Process – start-page: 1646 year: 2016 end-page: 1654 ident: bb0125 article-title: Accurate image super-resolution using very deep convolutional networks publication-title: 2016 IEEE conference on computer vision and pattern recognition (CVPR) – volume: 357 start-page: 1821 year: 2007 end-page: 1828 ident: bb0025 article-title: Incidental findings on brain mri in the general population publication-title: N Engl J Med – start-page: 391 year: 2016 end-page: 407 ident: bb0115 article-title: Accelerating the super-resolution convolutional neural network publication-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14 – volume: 32 start-page: 68 year: 2022 end-page: 79 ident: bb0250 article-title: Super-resolution reconstruction of t2-weighted thick-slice neonatal brain mri scans publication-title: J Neuroimaging – volume: 20 start-page: 21 year: 2003 end-page: 36 ident: bb0040 article-title: Super-resolution image reconstruction: a technical overview publication-title: IEEE Signal Process Mag – volume: 10 start-page: 1521 year: 2001 end-page: 1527 ident: bb0065 article-title: New edge-directed interpolation publication-title: IEEE Trans Image Process – volume: 21 start-page: 3467 year: 2012 end-page: 3478 ident: bb0095 article-title: Coupled dictionary training for image super-resolution publication-title: IEEE Trans Image Process – volume: 12 start-page: 406 year: 2022 ident: bb0170 article-title: Deep robust residual network for super-resolution of 2d fetal brain mri publication-title: Sci Rep – volume: 26 start-page: 508 year: 1978 end-page: 517 ident: bb0070 article-title: Cubic splines for image interpolation and digital filtering publication-title: IEEE Trans Acoust Speech Sign Proc – volume: 77 start-page: 08 year: 2019 ident: bb0230 article-title: Multiscale brain mri super-resolution using deep 3d convolutional networks publication-title: Comput Med Imaging Graph – volume: 20 start-page: 437 year: 2002 end-page: 446 ident: bb0035 article-title: Mri inter-slice reconstruction using super-resolution publication-title: Magn Reson Imaging – volume: 32 start-page: 68 issue: 1 year: 2022 ident: 10.1016/j.mri.2024.04.021_bb0250 article-title: Super-resolution reconstruction of t2-weighted thick-slice neonatal brain mri scans publication-title: J Neuroimaging doi: 10.1111/jon.12929 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0015 article-title: Image quality evaluation in clinical research: a case study on brain and cardiac mri images in multi-center clinical trials publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2018.2855213 – volume: 1 start-page: 317 year: 1984 ident: 10.1016/j.mri.2024.04.021_bb0055 article-title: Multiframe image restoration and registration publication-title: Adv Comput Vis Image Process – start-page: 1 year: 2020 ident: 10.1016/j.mri.2024.04.021_bb0165 article-title: Msg-capsgan: multi-scale gradient capsule gan for face super resolution – year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0270 article-title: Generative adversarial network-based image super-resolution using perceptual content losses – volume: 11 start-page: 1817 issue: 15 year: 2019 ident: 10.1016/j.mri.2024.04.021_bb0140 article-title: Deep residual squeeze and excitation network for remote sensing image super-resolution publication-title: Remote Sens (Basel) doi: 10.3390/rs11151817 – volume: 52 start-page: 43 issue: 1 year: 2008 ident: 10.1016/j.mri.2024.04.021_bb0020 article-title: Super-resolution in medical imaging publication-title: Comp J doi: 10.1093/comjnl/bxm075 – volume: 8 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.mri.2024.04.021_bb0265 article-title: Interpolated compressed sensing for 2d multiple slice fast mr imaging publication-title: PloS One doi: 10.1371/journal.pone.0056098 – start-page: 1 year: 2016 ident: 10.1016/j.mri.2024.04.021_bb0010 article-title: Introduction to research in magnetic resonance imaging – volume: 12 start-page: 406 issue: 1 year: 2022 ident: 10.1016/j.mri.2024.04.021_bb0170 article-title: Deep robust residual network for super-resolution of 2d fetal brain mri publication-title: Sci Rep doi: 10.1038/s41598-021-03979-1 – volume: 77 start-page: 08 year: 2019 ident: 10.1016/j.mri.2024.04.021_bb0230 article-title: Multiscale brain mri super-resolution using deep 3d convolutional networks publication-title: Comput Med Imaging Graph – volume: 88 start-page: 53 year: 2022 ident: 10.1016/j.mri.2024.04.021_bb0175 article-title: Dense channel splitting network for mr image super-resolution publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2022.01.016 – volume: 40 start-page: 805 issue: 3 year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0210 article-title: Smore: a self-supervised anti-aliasing and super-resolution algorithm for mri using deep learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3037187 – start-page: 739 year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0195 article-title: Brain mri super resolution using 3d deep densely connected neural networks – volume: 22 start-page: 56 issue: 2 year: 2002 ident: 10.1016/j.mri.2024.04.021_bb0085 article-title: Example-based super-resolution publication-title: IEEE Comput Graph Appl doi: 10.1109/38.988747 – start-page: 197 year: 2017 ident: 10.1016/j.mri.2024.04.021_bb0190 article-title: Brain mri super-resolution using deep 3d convolutional networks – start-page: 140 year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0310 article-title: Multi-contrast mri super-resolution via a multi-stage integration network – volume: 36 start-page: 1470 issue: 7 year: 2017 ident: 10.1016/j.mri.2024.04.021_bb0220 article-title: Convnet-based localization of anatomical structures in 3-d medical images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2673121 – volume: 11 start-page: 95022 year: 2023 ident: 10.1016/j.mri.2024.04.021_bb0245 article-title: High-resolution 3d mri with deep generative networks via novel slice-profile transformation super-resolution publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3307577 – start-page: 1 year: 2012 ident: 10.1016/j.mri.2024.04.021_bb0050 article-title: Image super resolution-a survey – start-page: 1637 year: 2016 ident: 10.1016/j.mri.2024.04.021_bb0120 article-title: Deeply-recursive convolutional network for image super-resolution – volume: 88 start-page: 101 year: 2022 ident: 10.1016/j.mri.2024.04.021_bb0240 article-title: Diffusion mri super-resolution reconstruction via sub-pixel convolution generative adversarial network publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2022.02.001 – volume: 34 start-page: 1993 issue: 10 year: 2015 ident: 10.1016/j.mri.2024.04.021_bb0290 article-title: The multimodal brain tumor image segmentation benchmark (brats) publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2377694 – start-page: 770 year: 2016 ident: 10.1016/j.mri.2024.04.021_bb0280 article-title: Deep residual learning for image recognition – year: 2019 ident: 10.1016/j.mri.2024.04.021_bb0145 article-title: Edvr: Video restoration with enhanced deformable convolutional networks – volume: 80 start-page: 2139 issue: 5 year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0180 article-title: Super-resolution musculoskeletal mri using deep learning publication-title: Magn Reson Med doi: 10.1002/mrm.27178 – start-page: 251 year: 2013 ident: 10.1016/j.mri.2024.04.021_bb0300 article-title: Development of improved ssim quality index for compressed medical images – start-page: 1646 year: 2016 ident: 10.1016/j.mri.2024.04.021_bb0125 article-title: Accurate image super-resolution using very deep convolutional networks – start-page: 943 year: 2002 ident: 10.1016/j.mri.2024.04.021_bb0225 article-title: Super-resolution in mri – volume: 43 start-page: 2480 issue: 7 year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0130 article-title: Residual dense network for image restoration publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2968521 – volume: 82 start-page: 4465 issue: 3 year: 2023 ident: 10.1016/j.mri.2024.04.021_bb0295 article-title: Improving precision of objective image/video quality meters publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13416-8 – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 10.1016/j.mri.2024.04.021_bb0110 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2439281 – volume: 20 start-page: 437 issue: 5 year: 2002 ident: 10.1016/j.mri.2024.04.021_bb0035 article-title: Mri inter-slice reconstruction using super-resolution publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(02)00511-8 – start-page: 105 year: 2017 ident: 10.1016/j.mri.2024.04.021_bb0150 article-title: Photo-realistic single image super-resolution using a generative adversarial network – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.mri.2024.04.021_bb0305 article-title: Fastmri: a publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction using machine learning publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020190007 – volume: 99 start-page: 133 year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0160 article-title: Simultaneous single- and multi-contrast super-resolution for brain mri images based on a convolutional neural network publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.010 – volume: 79 start-page: 683 issue: 2 year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0255 article-title: Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography publication-title: Magn Reson Med doi: 10.1002/mrm.26715 – start-page: 1132 year: 2017 ident: 10.1016/j.mri.2024.04.021_bb0275 – volume: 17 start-page: 1242 year: 2007 ident: 10.1016/j.mri.2024.04.021_bb0030 article-title: Artifacts in body mr imaging: their appearance and how to eliminate them publication-title: Eur Radiol doi: 10.1007/s00330-006-0470-4 – start-page: 1 year: 2024 ident: 10.1016/j.mri.2024.04.021_bb0185 article-title: Multi image super resolution of mri images using generative adversarial network publication-title: J Ambient Intell Humanized Comput – volume: 16 start-page: 479 issue: 2 year: 2007 ident: 10.1016/j.mri.2024.04.021_bb0080 article-title: A map approach for joint motion estimation, segmentation, and super resolution publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.888334 – volume: 209 year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0045 article-title: Residual dense network for medical magnetic resonance images super-resolution publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106330 – start-page: 53 year: 2012 ident: 10.1016/j.mri.2024.04.021_bb0060 article-title: Single image super-resolution in frequency domain – year: 2017 ident: 10.1016/j.mri.2024.04.021_bb0215 article-title: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning publication-title: arXiv e-prints – start-page: 391 year: 2016 ident: 10.1016/j.mri.2024.04.021_bb0115 article-title: Accelerating the super-resolution convolutional neural network – volume: 21 start-page: 3467 issue: 8 year: 2012 ident: 10.1016/j.mri.2024.04.021_bb0095 article-title: Coupled dictionary training for image super-resolution publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2192127 – volume: 13 start-page: 277 issue: 3 year: 1991 ident: 10.1016/j.mri.2024.04.021_bb0075 article-title: Fast b-spline transforms for continuous image representation and interpolation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.75515 – volume: 30 start-page: 3911 issue: 11 year: 2020 ident: 10.1016/j.mri.2024.04.021_bb0135 article-title: Channel-wise and spatial feature modulation network for single image super-resolution publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2019.2915238 – volume: 19 start-page: 2861 issue: 11 year: 2010 ident: 10.1016/j.mri.2024.04.021_bb0100 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2050625 – volume: 8 start-page: 905 issue: 2 year: 2022 ident: 10.1016/j.mri.2024.04.021_bb0205 article-title: Soup-gan: super-resolution mri using generative adversarial networks publication-title: Tomography doi: 10.3390/tomography8020073 – volume: 10 start-page: 1521 issue: 10 year: 2001 ident: 10.1016/j.mri.2024.04.021_bb0065 article-title: New edge-directed interpolation publication-title: IEEE Trans Image Process doi: 10.1109/83.951537 – volume: 43 start-page: 3365 issue: 10 year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0105 article-title: Deep learning for image super-resolution: a survey publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2982166 – volume: 26 start-page: 508 issue: 6 year: 1978 ident: 10.1016/j.mri.2024.04.021_bb0070 article-title: Cubic splines for image interpolation and digital filtering publication-title: IEEE Trans Acoust Speech Sign Proc doi: 10.1109/TASSP.1978.1163154 – start-page: 63 year: 2018 ident: 10.1016/j.mri.2024.04.021_bb0155 article-title: ESRGAN: enhanced super-resolution generative adversarial networks publication-title: Proceedings of the European conference on computer vision (ECCV) – volume: 20 start-page: 21 issue: 3 year: 2003 ident: 10.1016/j.mri.2024.04.021_bb0040 article-title: Super-resolution image reconstruction: a technical overview publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2003.1203207 – volume: 1 year: 2004 ident: 10.1016/j.mri.2024.04.021_bb0090 article-title: Super-resolution through neighbor embedding – start-page: 940 year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0200 article-title: Shuffleunet: Super resolution of diffusion-weighted mris using deep learning – ident: 10.1016/j.mri.2024.04.021_bb0285 – volume: 352 year: 2023 ident: 10.1016/j.mri.2024.04.021_bb0235 article-title: Mriflow: magnetic resonance image super-resolution based on normalizing flow and frequency prior publication-title: J Magn Reson doi: 10.1016/j.jmr.2023.107477 – volume: 40 start-page: 1038 issue: 5 year: 2012 ident: 10.1016/j.mri.2024.04.021_bb0005 article-title: Physics of mri: a primer publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23642 – volume: 357 start-page: 1821 issue: 18 year: 2007 ident: 10.1016/j.mri.2024.04.021_bb0025 article-title: Incidental findings on brain mri in the general population publication-title: N Engl J Med doi: 10.1056/NEJMoa070972 – year: 2021 ident: 10.1016/j.mri.2024.04.021_bb0260 |
SSID | ssj0005235 |
Score | 2.4420273 |
Snippet | Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 195 |
SubjectTerms | Deep learning Frame interpolation Generative adversarial networks In-plane and out-of-plane attention Magnetic resonance imaging Super-resolution |
Title | MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24001346 https://dx.doi.org/10.1016/j.mri.2024.04.021 https://www.ncbi.nlm.nih.gov/pubmed/38653336 https://www.proquest.com/docview/3045119636 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuCMprgVZG4oRk1mtPkt3jqmq7Be0egEq9WXHGQUE0Xe2jx_4J_jAzdrKCQ4uElEsiT-LYk5lv4s8zQrz3JcPyXKtJqccKKgtqUmWZQqzJIQZfFAVvFJ4v8tkFfLrMLvfEcb8XhmmVne1PNj1a6-7KsBvN4bJphl9ZOQtDwRYwjgFOuw1QsK5_vP2T5pGKbFJjxa37lc3I8bpaNRQiGojZTs3oLt90F_aMPuj0iXjcgUc5Tf17KvZCeyAezrvl8Wfi1_zLuVxvl2GlKIrulEoytf27XDdXDUWxBLolMmakF5VlizIyCtWapipIGgkmudwEGYltkl0cyjrE5J-y3vKfNXk2XURB5o_EAhPUhMAq3a5JNbsSu062iWD-XFycnnw7nqmu6oKqQNuNQhgbxEkR7KisMh-09Xld5AgeQoYF-lojhc3GVmPIMFjjjS09lpVGrb2e2Bdiv71uwyshadAJEZAJMVBDhVgSvEDezBvAeBzXA6H78XZVl5KcO_7T9dyzH46myPEUOU2HGQ3Eh53IMuXjuK-x6SfR9RtNyTQ68hb3CcFO6C9N_JfYu15LHH2hvOxStuF6u3a8Fj1iQ5cPxMukPruuc8VVa23--v8e-kY84rNEH34r9jerbTgkkLTxR_ErOBIPpuefZ4vfMskSnQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEviDfL00ickMx6bSfZPVYVZQvdPUAr9WbFGacKoulqHz3yJ_jDzNjJCg4tElJOiSdx7MnMN5nPHoB3vmRYnis5KdVY2spYOamyTCLW5BCDL4qCFwrP5vn01H4-y8524KBfC8O0ys72J5serXV3ZtiN5nDRNMNvrJyFpmDLMo6x-S24bbnMASn1h59_8jxSlU1qLbl5n9qMJK-LZUMxorZxu1M9us45XQc-oxM6vA_3OvQo9lMHH8BOaB_CnVmXH38Ev2Zfj8RqswhLSWF0p1WCue3nYtVcNBTGEuoWyKCR3lSULYpIKZQrmqsgaCiY5XIVRGS2CfZxKOoQd_8U9YZ_rYlP-_MoyASSWGGCmhBapds1qWhXoteJNjHMH8Pp4ceTg6nsyi7IyiqzlmjHGnFSBDMqq8wHZXxeFzlab0OGBfpaIcXN2lRjm2Ew2mtTeiwrhUp5NTFPYLe9bMMzEDToBAnIhmhb2wqxJHyBvJo3WO1xXA9A9ePtqm5Pcu74D9eTz747miLHU-QUHXo0gPdbkUXakOOmxrqfRNevNCXb6Mhd3CRkt0J_qeK_xN72WuLoE-W8S9mGy83KcTJ6xJYuH8DTpD7brnPJVWNM_vz_HvoG7k5PZsfu-Gj-5QXs8ZXEJX4Ju-vlJrwixLT2r-MX8RtB9xQm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+super-resolution+using+similarity+distance+and+multi-scale+receptive+field+based+feature+fusion+GAN+and+pre-trained+slice+interpolation+network&rft.jtitle=Magnetic+resonance+imaging&rft.au=U%2C+Nimitha&rft.au=P.M.%2C+Ameer&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=110&rft.spage=195&rft.epage=209&rft_id=info:doi/10.1016%2Fj.mri.2024.04.021&rft.externalDocID=S0730725X24001346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |