MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network

Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolu...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 110; pp. 195 - 209
Main Authors U, Nimitha, P.M., Ameer
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2024.04.021

Cover

Abstract Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.
AbstractList Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.
Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.
Author U, Nimitha
P.M., Ameer
Author_xml – sequence: 1
  givenname: Nimitha
  surname: U
  fullname: U, Nimitha
  email: nimithau@gmail.com
– sequence: 2
  givenname: Ameer
  surname: P.M.
  fullname: P.M., Ameer
  email: ameer@nitc.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38653336$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G3tD3AjWbqZaz7mE1elaC1UhVKhu5BJzsi5zWTGJFO5v8M_bO697aaLCoFAeJ83nPOckCM_eSDkHWdrznj9cbMeA64FE-Wa5SP4K7LibSOLqu3KI7JijWRFI6q7Y3IS44YxVglZvSHHsq0rKWW9In-_3VzRuMwQigBxckvCydMlov9FI47odMC0pRZj0t4A1d7ScXEJi2i0AxrAwJzwAeiA4CztdQRLB9BpCfktF-W6y_Pve3AOUKSg0edIdJjr0CcI8-T0_lsP6c8U7t-S14N2Ec4e71Py88vn24uvxfWPy6uL8-vClEymwpatsLZrQHJtqh6Y7OuhqW3Zl1DZxvYDs23bCmnasrIgRS-k7q02zDLWs06ekg-H3jlMvxeISY0YDTinPUxLVJKVFeddLescff8YXfoRrJoDjjps1dMic6A5BEyYYgwwKINpP9VuYKc4UztlaqOyMrVTplg-gmeSPyOfyl9iPh0YyOt5QAgqGoTsx2IWkpSd8EW6e0Ybhx6zz3vY_of9B3ytxXU
CitedBy_id crossref_primary_10_1109_JBHI_2024_3429291
Cites_doi 10.1111/jon.12929
10.1109/JTEHM.2018.2855213
10.3390/rs11151817
10.1093/comjnl/bxm075
10.1371/journal.pone.0056098
10.1038/s41598-021-03979-1
10.1016/j.mri.2022.01.016
10.1109/TMI.2020.3037187
10.1109/38.988747
10.1109/TMI.2017.2673121
10.1109/ACCESS.2023.3307577
10.1016/j.mri.2022.02.001
10.1109/TMI.2014.2377694
10.1002/mrm.27178
10.1109/TPAMI.2020.2968521
10.1007/s11042-022-13416-8
10.1109/TPAMI.2015.2439281
10.1016/S0730-725X(02)00511-8
10.1148/ryai.2020190007
10.1016/j.compbiomed.2018.06.010
10.1002/mrm.26715
10.1007/s00330-006-0470-4
10.1109/TIP.2006.888334
10.1016/j.cmpb.2021.106330
10.1109/TIP.2012.2192127
10.1109/34.75515
10.1109/TCSVT.2019.2915238
10.1109/TIP.2010.2050625
10.3390/tomography8020073
10.1109/83.951537
10.1109/TPAMI.2020.2982166
10.1109/TASSP.1978.1163154
10.1109/MSP.2003.1203207
10.1016/j.jmr.2023.107477
10.1002/jmri.23642
10.1056/NEJMoa070972
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mri.2024.04.021
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 209
ExternalDocumentID 38653336
10_1016_j_mri_2024_04_021
S0730725X24001346
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
G8K
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
EFLBG
ID FETCH-LOGICAL-c403t-d482dd97e31ac5be03b6f76d4b4e5d7dbf0d88823c845de32b23abdac0d00b093
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Sep 04 18:03:14 EDT 2025
Mon Jul 21 06:04:27 EDT 2025
Thu Apr 24 22:53:25 EDT 2025
Tue Jul 01 01:55:29 EDT 2025
Sat May 04 15:44:32 EDT 2024
Tue Aug 26 16:33:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Generative adversarial networks
Super-resolution
Magnetic resonance imaging
In-plane and out-of-plane attention
Frame interpolation
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-d482dd97e31ac5be03b6f76d4b4e5d7dbf0d88823c845de32b23abdac0d00b093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38653336
PQID 3045119636
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3045119636
pubmed_primary_38653336
crossref_citationtrail_10_1016_j_mri_2024_04_021
crossref_primary_10_1016_j_mri_2024_04_021
elsevier_sciencedirect_doi_10_1016_j_mri_2024_04_021
elsevier_clinicalkey_doi_10_1016_j_mri_2024_04_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dong, Loy, He, Tang (bb0110) 2016; 38
Kim, Lee, Lee (bb0125) 2016
Hayit Greenspan, Oz, Peled (bb0035) 2002; 20
Knoll, Zbontar, Sriram, Muckley, Bruno, Defazio (bb0305) 2020; 2
Osadebey, Pedersen, Arnold, Wendel-Mitoraj (bb0015) 2018; 6
Ding, Liang, Zhu, Zharkov (bb0260) 2021
Vernooij, Arfan Ikram, Tanghe, Vincent, Hofman, Krestin (bb0025) 2007; 357
Song, Wang, Liu, Li, Fan, Yang (bb0170) 2022; 12
Stadler, Schima, Ba’ssalamah, Kettenbach, Eisenhuber (bb0030) 2007; 17
He, Tang, Jin, Li, Zhang, Liu (bb0175) 2022; 88
Díez, Meunier, Bednarek, Fablet, Passat, Rousseau (bb0230) 2019; 77
Cheon, Kim, Choi, Lee (bb0270) 2018
Ceren Askin Incebacak, Sui, Levy, Merlini, Sa, de Almeida (bb0250) 2022; 32
He, Zhang, Ren, Sun (bb0280) 2016
Park, Park, Kang (bb0040) 2003; 20
Yang, Wang, Lin, Cohen, Huang (bb0095) 2012; 21
Yanting, Li, Huang, Gao (bb0135) 2020; 30
Pang, Zhang (bb0265) 2013; 8
Tsai (bb0055) 1984; 1
Kumar, Kumar, Kumar (bb0300) 2013
Behzadpour, Ghanbari (bb0295) 2023; 82
Wang, Ke, Shixiang, Jinjin, Liu, Dong (bb0155) 2018
Luo, Zhou, Yang, Wei, Ying (bb0240) 2022; 88
Wang, Chan, Yu, Dong, Loy (bb0145) June 2019
de Vos, Wolterink, de Jong, Leiner, Viergever, Išgum (bb0220) 2017; 36
Hou, Andrews (bb0070) 1978; 26
Shen, Zhang, Huang, Li (bb0080) 2007; 16
Jun, Sun, Zhang, Kun, Wang (bb0140) 2019; 11
Pham, Ducournau, Fablet, Rousseau (bb0190) 2017
Freeman, Jones, Pasztor (bb0085) 2002; 22
Chen, Xie, Zhou, Shi, Christodoulou, Li (bb0195) 2018
Rajpurkar, Irvin, Zhu, Yang, Mehta, Duan (bb0215) November 2017
Ko, Lee, Hong, Kim, Ko (bb0235) 2023; 352
Chang, Yeung, Xiong (bb0090) 2004; 1
Shah, Gupta (bb0050) 2012
Kim, Lee, Lee (bb0120) 2016
Koktzoglou, Edelman (bb0255) 2018; 79
Plewes, Kucharczyk (bb0005) 2012; 40
Lim, Son, Kim, Nah, Lee (bb0275) 07 2017
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby (bb0290) 2015; 34
Nimitha, Ameer (bb0185) 2024
Cappabianco, Shida, Ide (bb0010) 2016
Yang, Wright, Huang, Ma (bb0100) 2010; 19
Chaudhari, Fang, Kogan, Wood, Stevens, Gibbons (bb0180) 2018; 80
Ixi dataset (bb0285)
Greenspan, Oz, Kiryati, Peled (bb0225) 2002
Lin, Miao, Surawech, Raman, Zhao, Wu (bb0245) 2023; 11
Chatterjee, Sciarra, Dünnwald, Mushunuri, Podishetti, Rao (bb0200) 2021
Ledig, Theis, Huszár, Caballero, Cunningham, Acosta (bb0150) 2017
Greenspan (bb0020) 2008; 52
Dong, Loy, Tang (bb0115) 2016
Zhang, Haoji, Philbrick, Conte, Sobek, Rouzrokh (bb0205) March 2022; 8
Unser, Aldroubi, Eden (bb0075) 1991; 13
Islam, Asari, Islam, Karim (bb0060) 2012
Majdabadi, Ko (bb0165) 2020
Zhu, Qiu (bb0045) 2021; 209
Wang, Chen, Hoi (bb0105) 2021; 43
Zhao, Dewey, Pham, Calabresi, Reich, Prince (bb0210) 2021; 40
Feng, Huazhu, Yuan, Xu (bb0310) 2021
Zeng, Zheng, Congbo Cai, Yang, Chen (bb0160) 2018; 99
Zhang, Yapeng Tian, Kong, Yun (bb0130) 2021; 43
Li, Orchard (bb0065) 2001; 10
Behzadpour (10.1016/j.mri.2024.04.021_bb0295) 2023; 82
Zhang (10.1016/j.mri.2024.04.021_bb0130) 2021; 43
He (10.1016/j.mri.2024.04.021_bb0280) 2016
Yang (10.1016/j.mri.2024.04.021_bb0095) 2012; 21
Zhao (10.1016/j.mri.2024.04.021_bb0210) 2021; 40
Hayit Greenspan (10.1016/j.mri.2024.04.021_bb0035) 2002; 20
Chatterjee (10.1016/j.mri.2024.04.021_bb0200) 2021
Koktzoglou (10.1016/j.mri.2024.04.021_bb0255) 2018; 79
Song (10.1016/j.mri.2024.04.021_bb0170) 2022; 12
Nimitha (10.1016/j.mri.2024.04.021_bb0185) 2024
Pham (10.1016/j.mri.2024.04.021_bb0190) 2017
Kim (10.1016/j.mri.2024.04.021_bb0125) 2016
Zhu (10.1016/j.mri.2024.04.021_bb0045) 2021; 209
Li (10.1016/j.mri.2024.04.021_bb0065) 2001; 10
Chang (10.1016/j.mri.2024.04.021_bb0090) 2004; 1
Pang (10.1016/j.mri.2024.04.021_bb0265) 2013; 8
Hou (10.1016/j.mri.2024.04.021_bb0070) 1978; 26
Unser (10.1016/j.mri.2024.04.021_bb0075) 1991; 13
Zeng (10.1016/j.mri.2024.04.021_bb0160) 2018; 99
Stadler (10.1016/j.mri.2024.04.021_bb0030) 2007; 17
Luo (10.1016/j.mri.2024.04.021_bb0240) 2022; 88
Ko (10.1016/j.mri.2024.04.021_bb0235) 2023; 352
Greenspan (10.1016/j.mri.2024.04.021_bb0020) 2008; 52
Yanting (10.1016/j.mri.2024.04.021_bb0135) 2020; 30
Chaudhari (10.1016/j.mri.2024.04.021_bb0180) 2018; 80
Feng (10.1016/j.mri.2024.04.021_bb0310) 2021
Tsai (10.1016/j.mri.2024.04.021_bb0055) 1984; 1
Chen (10.1016/j.mri.2024.04.021_bb0195) 2018
Wang (10.1016/j.mri.2024.04.021_bb0155) 2018
Rajpurkar (10.1016/j.mri.2024.04.021_bb0215) 2017
Shen (10.1016/j.mri.2024.04.021_bb0080) 2007; 16
Kumar (10.1016/j.mri.2024.04.021_bb0300) 2013
He (10.1016/j.mri.2024.04.021_bb0175) 2022; 88
Zhang (10.1016/j.mri.2024.04.021_bb0205) 2022; 8
Lin (10.1016/j.mri.2024.04.021_bb0245) 2023; 11
Ceren Askin Incebacak (10.1016/j.mri.2024.04.021_bb0250) 2022; 32
Wang (10.1016/j.mri.2024.04.021_bb0145) 2019
Knoll (10.1016/j.mri.2024.04.021_bb0305) 2020; 2
Ixi dataset (10.1016/j.mri.2024.04.021_bb0285)
Dong (10.1016/j.mri.2024.04.021_bb0115) 2016
Cheon (10.1016/j.mri.2024.04.021_bb0270) 2018
Plewes (10.1016/j.mri.2024.04.021_bb0005) 2012; 40
Cappabianco (10.1016/j.mri.2024.04.021_bb0010) 2016
de Vos (10.1016/j.mri.2024.04.021_bb0220) 2017; 36
Ding (10.1016/j.mri.2024.04.021_bb0260) 2021
Kim (10.1016/j.mri.2024.04.021_bb0120) 2016
Ledig (10.1016/j.mri.2024.04.021_bb0150) 2017
Osadebey (10.1016/j.mri.2024.04.021_bb0015) 2018; 6
Dong (10.1016/j.mri.2024.04.021_bb0110) 2016; 38
Freeman (10.1016/j.mri.2024.04.021_bb0085) 2002; 22
Lim (10.1016/j.mri.2024.04.021_bb0275) 2017
Yang (10.1016/j.mri.2024.04.021_bb0100) 2010; 19
Wang (10.1016/j.mri.2024.04.021_bb0105) 2021; 43
Jun (10.1016/j.mri.2024.04.021_bb0140) 2019; 11
Menze (10.1016/j.mri.2024.04.021_bb0290) 2015; 34
Islam (10.1016/j.mri.2024.04.021_bb0060) 2012
Majdabadi (10.1016/j.mri.2024.04.021_bb0165) 2020
Vernooij (10.1016/j.mri.2024.04.021_bb0025) 2007; 357
Díez (10.1016/j.mri.2024.04.021_bb0230) 2019; 77
Shah (10.1016/j.mri.2024.04.021_bb0050) 2012
Greenspan (10.1016/j.mri.2024.04.021_bb0225) 2002
Park (10.1016/j.mri.2024.04.021_bb0040) 2003; 20
References_xml – volume: 17
  start-page: 1242
  year: 2007
  end-page: 1255
  ident: bb0030
  article-title: Artifacts in body mr imaging: their appearance and how to eliminate them
  publication-title: Eur Radiol
– volume: 88
  start-page: 53
  year: 2022
  end-page: 61
  ident: bb0175
  article-title: Dense channel splitting network for mr image super-resolution
  publication-title: Magn Reson Imaging
– start-page: 943
  year: 2002
  end-page: 946
  ident: bb0225
  article-title: Super-resolution in mri
  publication-title: Proceedings IEEE international symposium on biomedical imaging
– volume: 6
  start-page: 1
  year: 2018
  end-page: 15
  ident: bb0015
  article-title: Image quality evaluation in clinical research: a case study on brain and cardiac mri images in multi-center clinical trials
  publication-title: IEEE J Transl Eng Health Med
– volume: 99
  start-page: 133
  year: 2018
  end-page: 141
  ident: bb0160
  article-title: Simultaneous single- and multi-contrast super-resolution for brain mri images based on a convolutional neural network
  publication-title: Comput Biol Med
– volume: 1
  year: 2004
  ident: bb0090
  article-title: Super-resolution through neighbor embedding
  publication-title: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004
– volume: 40
  start-page: 805
  year: 2021
  end-page: 817
  ident: bb0210
  article-title: Smore: a self-supervised anti-aliasing and super-resolution algorithm for mri using deep learning
  publication-title: IEEE Trans Med Imaging
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bb0110
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: bb0285
– start-page: 105
  year: 2017
  end-page: 114
  ident: bb0150
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: 2017 IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 40
  start-page: 1038
  year: 2012
  end-page: 1054
  ident: bb0005
  article-title: Physics of mri: a primer
  publication-title: J Magn Reson Imaging
– volume: 8
  start-page: 1
  year: 2013
  end-page: 5
  ident: bb0265
  article-title: Interpolated compressed sensing for 2d multiple slice fast mr imaging
  publication-title: PloS One
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0280
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 52
  start-page: 43
  year: 2008
  end-page: 63
  ident: bb0020
  article-title: Super-resolution in medical imaging
  publication-title: Comp J
– start-page: 140
  year: 2021
  end-page: 149
  ident: bb0310
  article-title: Multi-contrast mri super-resolution via a multi-stage integration network
  publication-title: Medical image computing and computer assisted intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI
– start-page: 1
  year: 2016
  end-page: 14
  ident: bb0010
  article-title: Introduction to research in magnetic resonance imaging
  publication-title: 2016 29th SIBGRAPI conference on graphics, patterns and images tutorials (SIBGRAPI-T)
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bb0290
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans Med Imaging
– start-page: 1
  year: 2012
  end-page: 6
  ident: bb0050
  article-title: Image super resolution-a survey
  publication-title: 2012 1st international conference on emerging technology trends in electronics, communication networking
– volume: 36
  start-page: 1470
  year: 2017
  end-page: 1481
  ident: bb0220
  article-title: Convnet-based localization of anatomical structures in 3-d medical images
  publication-title: IEEE Trans Med Imaging
– volume: 2
  year: 2020
  ident: bb0305
  article-title: Fastmri: a publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction using machine learning
  publication-title: Radiol Artif Intell
– volume: 22
  start-page: 56
  year: 2002
  end-page: 65
  ident: bb0085
  article-title: Example-based super-resolution
  publication-title: IEEE Comput Graph Appl
– volume: 209
  year: 2021
  ident: bb0045
  article-title: Residual dense network for medical magnetic resonance images super-resolution
  publication-title: Comput Methods Programs Biomed
– start-page: 1
  year: 2020
  end-page: 3
  ident: bb0165
  article-title: Msg-capsgan: multi-scale gradient capsule gan for face super resolution
  publication-title: 2020 international conference on electronics, information, and communication (ICEIC)
– volume: 79
  start-page: 683
  year: 2018
  end-page: 691
  ident: bb0255
  article-title: Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography
  publication-title: Magn Reson Med
– start-page: 1132
  year: 07 2017
  end-page: 1140
  ident: bb0275
  article-title: Enhanced deep residual networks for single image super-resolution
– volume: 30
  start-page: 3911
  year: 2020
  end-page: 3927
  ident: bb0135
  article-title: Channel-wise and spatial feature modulation network for single image super-resolution
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: bb0100
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans Image Process
– volume: 88
  start-page: 101
  year: 2022
  end-page: 107
  ident: bb0240
  article-title: Diffusion mri super-resolution reconstruction via sub-pixel convolution generative adversarial network
  publication-title: Magn Reson Imaging
– year: 2021
  ident: bb0260
  article-title: Cdfi: Compression-driven network design for frame interpolation
– volume: 82
  start-page: 4465
  year: 2023
  end-page: 4478
  ident: bb0295
  article-title: Improving precision of objective image/video quality meters
  publication-title: Multimed Tools Appl
– start-page: 940
  year: 2021
  end-page: 944
  ident: bb0200
  article-title: Shuffleunet: Super resolution of diffusion-weighted mris using deep learning
  publication-title: 2021 29th European signal processing conference (EUSIPCO)
– start-page: 251
  year: 2013
  end-page: 255
  ident: bb0300
  article-title: Development of improved ssim quality index for compressed medical images
  publication-title: 2013 IEEE second international conference on image information processing (ICIIP-2013)
– volume: 43
  start-page: 2480
  year: 2021
  end-page: 2495
  ident: bb0130
  article-title: Residual dense network for image restoration
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2018
  ident: bb0270
  article-title: Generative adversarial network-based image super-resolution using perceptual content losses
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV) Workshops
– start-page: 739
  year: 2018
  end-page: 742
  ident: bb0195
  article-title: Brain mri super resolution using 3d deep densely connected neural networks
  publication-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018)
– volume: 16
  start-page: 479
  year: 2007
  end-page: 490
  ident: bb0080
  article-title: A map approach for joint motion estimation, segmentation, and super resolution
  publication-title: IEEE Trans Image Process
– volume: 11
  start-page: 95022
  year: 2023
  end-page: 95036
  ident: bb0245
  article-title: High-resolution 3d mri with deep generative networks via novel slice-profile transformation super-resolution
  publication-title: IEEE Access
– volume: 43
  start-page: 3365
  year: 2021
  end-page: 3387
  ident: bb0105
  article-title: Deep learning for image super-resolution: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 53
  year: 2012
  end-page: 56
  ident: bb0060
  article-title: Single image super-resolution in frequency domain
  publication-title: 2012 IEEE southwest symposium on image analysis and interpretation
– volume: 352
  year: 2023
  ident: bb0235
  article-title: Mriflow: magnetic resonance image super-resolution based on normalizing flow and frequency prior
  publication-title: J Magn Reson
– volume: 11
  start-page: 1817
  year: 2019
  ident: bb0140
  article-title: Deep residual squeeze and excitation network for remote sensing image super-resolution
  publication-title: Remote Sens (Basel)
– start-page: 63
  year: 2018
  end-page: 79
  ident: bb0155
  article-title: ESRGAN: enhanced super-resolution generative adversarial networks
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– start-page: 1
  year: 2024
  end-page: 13
  ident: bb0185
  article-title: Multi image super resolution of mri images using generative adversarial network
  publication-title: J Ambient Intell Humanized Comput
– start-page: 197
  year: 2017
  end-page: 200
  ident: bb0190
  article-title: Brain mri super-resolution using deep 3d convolutional networks
  publication-title: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017)
– volume: 8
  start-page: 905
  year: March 2022
  end-page: 919
  ident: bb0205
  article-title: Soup-gan: super-resolution mri using generative adversarial networks
  publication-title: Tomography
– volume: 13
  start-page: 277
  year: 1991
  end-page: 285
  ident: bb0075
  article-title: Fast b-spline transforms for continuous image representation and interpolation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 1637
  year: 2016
  end-page: 1645
  ident: bb0120
  article-title: Deeply-recursive convolutional network for image super-resolution
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 80
  start-page: 2139
  year: 2018
  end-page: 2154
  ident: bb0180
  article-title: Super-resolution musculoskeletal mri using deep learning
  publication-title: Magn Reson Med
– year: November 2017
  ident: bb0215
  article-title: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning
  publication-title: arXiv e-prints
– year: June 2019
  ident: bb0145
  article-title: Edvr: Video restoration with enhanced deformable convolutional networks
  publication-title: The IEEE conference on computer vision and pattern recognition (CVPR) workshops
– volume: 1
  start-page: 317
  year: 1984
  end-page: 339
  ident: bb0055
  article-title: Multiframe image restoration and registration
  publication-title: Adv Comput Vis Image Process
– start-page: 1646
  year: 2016
  end-page: 1654
  ident: bb0125
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: 2016 IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 357
  start-page: 1821
  year: 2007
  end-page: 1828
  ident: bb0025
  article-title: Incidental findings on brain mri in the general population
  publication-title: N Engl J Med
– start-page: 391
  year: 2016
  end-page: 407
  ident: bb0115
  article-title: Accelerating the super-resolution convolutional neural network
  publication-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14
– volume: 32
  start-page: 68
  year: 2022
  end-page: 79
  ident: bb0250
  article-title: Super-resolution reconstruction of t2-weighted thick-slice neonatal brain mri scans
  publication-title: J Neuroimaging
– volume: 20
  start-page: 21
  year: 2003
  end-page: 36
  ident: bb0040
  article-title: Super-resolution image reconstruction: a technical overview
  publication-title: IEEE Signal Process Mag
– volume: 10
  start-page: 1521
  year: 2001
  end-page: 1527
  ident: bb0065
  article-title: New edge-directed interpolation
  publication-title: IEEE Trans Image Process
– volume: 21
  start-page: 3467
  year: 2012
  end-page: 3478
  ident: bb0095
  article-title: Coupled dictionary training for image super-resolution
  publication-title: IEEE Trans Image Process
– volume: 12
  start-page: 406
  year: 2022
  ident: bb0170
  article-title: Deep robust residual network for super-resolution of 2d fetal brain mri
  publication-title: Sci Rep
– volume: 26
  start-page: 508
  year: 1978
  end-page: 517
  ident: bb0070
  article-title: Cubic splines for image interpolation and digital filtering
  publication-title: IEEE Trans Acoust Speech Sign Proc
– volume: 77
  start-page: 08
  year: 2019
  ident: bb0230
  article-title: Multiscale brain mri super-resolution using deep 3d convolutional networks
  publication-title: Comput Med Imaging Graph
– volume: 20
  start-page: 437
  year: 2002
  end-page: 446
  ident: bb0035
  article-title: Mri inter-slice reconstruction using super-resolution
  publication-title: Magn Reson Imaging
– volume: 32
  start-page: 68
  issue: 1
  year: 2022
  ident: 10.1016/j.mri.2024.04.021_bb0250
  article-title: Super-resolution reconstruction of t2-weighted thick-slice neonatal brain mri scans
  publication-title: J Neuroimaging
  doi: 10.1111/jon.12929
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0015
  article-title: Image quality evaluation in clinical research: a case study on brain and cardiac mri images in multi-center clinical trials
  publication-title: IEEE J Transl Eng Health Med
  doi: 10.1109/JTEHM.2018.2855213
– volume: 1
  start-page: 317
  year: 1984
  ident: 10.1016/j.mri.2024.04.021_bb0055
  article-title: Multiframe image restoration and registration
  publication-title: Adv Comput Vis Image Process
– start-page: 1
  year: 2020
  ident: 10.1016/j.mri.2024.04.021_bb0165
  article-title: Msg-capsgan: multi-scale gradient capsule gan for face super resolution
– year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0270
  article-title: Generative adversarial network-based image super-resolution using perceptual content losses
– volume: 11
  start-page: 1817
  issue: 15
  year: 2019
  ident: 10.1016/j.mri.2024.04.021_bb0140
  article-title: Deep residual squeeze and excitation network for remote sensing image super-resolution
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs11151817
– volume: 52
  start-page: 43
  issue: 1
  year: 2008
  ident: 10.1016/j.mri.2024.04.021_bb0020
  article-title: Super-resolution in medical imaging
  publication-title: Comp J
  doi: 10.1093/comjnl/bxm075
– volume: 8
  start-page: 1
  issue: 2
  year: 2013
  ident: 10.1016/j.mri.2024.04.021_bb0265
  article-title: Interpolated compressed sensing for 2d multiple slice fast mr imaging
  publication-title: PloS One
  doi: 10.1371/journal.pone.0056098
– start-page: 1
  year: 2016
  ident: 10.1016/j.mri.2024.04.021_bb0010
  article-title: Introduction to research in magnetic resonance imaging
– volume: 12
  start-page: 406
  issue: 1
  year: 2022
  ident: 10.1016/j.mri.2024.04.021_bb0170
  article-title: Deep robust residual network for super-resolution of 2d fetal brain mri
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-03979-1
– volume: 77
  start-page: 08
  year: 2019
  ident: 10.1016/j.mri.2024.04.021_bb0230
  article-title: Multiscale brain mri super-resolution using deep 3d convolutional networks
  publication-title: Comput Med Imaging Graph
– volume: 88
  start-page: 53
  year: 2022
  ident: 10.1016/j.mri.2024.04.021_bb0175
  article-title: Dense channel splitting network for mr image super-resolution
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2022.01.016
– volume: 40
  start-page: 805
  issue: 3
  year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0210
  article-title: Smore: a self-supervised anti-aliasing and super-resolution algorithm for mri using deep learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3037187
– start-page: 739
  year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0195
  article-title: Brain mri super resolution using 3d deep densely connected neural networks
– volume: 22
  start-page: 56
  issue: 2
  year: 2002
  ident: 10.1016/j.mri.2024.04.021_bb0085
  article-title: Example-based super-resolution
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/38.988747
– start-page: 197
  year: 2017
  ident: 10.1016/j.mri.2024.04.021_bb0190
  article-title: Brain mri super-resolution using deep 3d convolutional networks
– start-page: 140
  year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0310
  article-title: Multi-contrast mri super-resolution via a multi-stage integration network
– volume: 36
  start-page: 1470
  issue: 7
  year: 2017
  ident: 10.1016/j.mri.2024.04.021_bb0220
  article-title: Convnet-based localization of anatomical structures in 3-d medical images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2673121
– volume: 11
  start-page: 95022
  year: 2023
  ident: 10.1016/j.mri.2024.04.021_bb0245
  article-title: High-resolution 3d mri with deep generative networks via novel slice-profile transformation super-resolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3307577
– start-page: 1
  year: 2012
  ident: 10.1016/j.mri.2024.04.021_bb0050
  article-title: Image super resolution-a survey
– start-page: 1637
  year: 2016
  ident: 10.1016/j.mri.2024.04.021_bb0120
  article-title: Deeply-recursive convolutional network for image super-resolution
– volume: 88
  start-page: 101
  year: 2022
  ident: 10.1016/j.mri.2024.04.021_bb0240
  article-title: Diffusion mri super-resolution reconstruction via sub-pixel convolution generative adversarial network
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2022.02.001
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 10.1016/j.mri.2024.04.021_bb0290
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– start-page: 770
  year: 2016
  ident: 10.1016/j.mri.2024.04.021_bb0280
  article-title: Deep residual learning for image recognition
– year: 2019
  ident: 10.1016/j.mri.2024.04.021_bb0145
  article-title: Edvr: Video restoration with enhanced deformable convolutional networks
– volume: 80
  start-page: 2139
  issue: 5
  year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0180
  article-title: Super-resolution musculoskeletal mri using deep learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27178
– start-page: 251
  year: 2013
  ident: 10.1016/j.mri.2024.04.021_bb0300
  article-title: Development of improved ssim quality index for compressed medical images
– start-page: 1646
  year: 2016
  ident: 10.1016/j.mri.2024.04.021_bb0125
  article-title: Accurate image super-resolution using very deep convolutional networks
– start-page: 943
  year: 2002
  ident: 10.1016/j.mri.2024.04.021_bb0225
  article-title: Super-resolution in mri
– volume: 43
  start-page: 2480
  issue: 7
  year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0130
  article-title: Residual dense network for image restoration
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2968521
– volume: 82
  start-page: 4465
  issue: 3
  year: 2023
  ident: 10.1016/j.mri.2024.04.021_bb0295
  article-title: Improving precision of objective image/video quality meters
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13416-8
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2024.04.021_bb0110
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2439281
– volume: 20
  start-page: 437
  issue: 5
  year: 2002
  ident: 10.1016/j.mri.2024.04.021_bb0035
  article-title: Mri inter-slice reconstruction using super-resolution
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(02)00511-8
– start-page: 105
  year: 2017
  ident: 10.1016/j.mri.2024.04.021_bb0150
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– volume: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2024.04.021_bb0305
  article-title: Fastmri: a publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction using machine learning
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190007
– volume: 99
  start-page: 133
  year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0160
  article-title: Simultaneous single- and multi-contrast super-resolution for brain mri images based on a convolutional neural network
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.010
– volume: 79
  start-page: 683
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0255
  article-title: Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26715
– start-page: 1132
  year: 2017
  ident: 10.1016/j.mri.2024.04.021_bb0275
– volume: 17
  start-page: 1242
  year: 2007
  ident: 10.1016/j.mri.2024.04.021_bb0030
  article-title: Artifacts in body mr imaging: their appearance and how to eliminate them
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0470-4
– start-page: 1
  year: 2024
  ident: 10.1016/j.mri.2024.04.021_bb0185
  article-title: Multi image super resolution of mri images using generative adversarial network
  publication-title: J Ambient Intell Humanized Comput
– volume: 16
  start-page: 479
  issue: 2
  year: 2007
  ident: 10.1016/j.mri.2024.04.021_bb0080
  article-title: A map approach for joint motion estimation, segmentation, and super resolution
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.888334
– volume: 209
  year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0045
  article-title: Residual dense network for medical magnetic resonance images super-resolution
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106330
– start-page: 53
  year: 2012
  ident: 10.1016/j.mri.2024.04.021_bb0060
  article-title: Single image super-resolution in frequency domain
– year: 2017
  ident: 10.1016/j.mri.2024.04.021_bb0215
  article-title: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning
  publication-title: arXiv e-prints
– start-page: 391
  year: 2016
  ident: 10.1016/j.mri.2024.04.021_bb0115
  article-title: Accelerating the super-resolution convolutional neural network
– volume: 21
  start-page: 3467
  issue: 8
  year: 2012
  ident: 10.1016/j.mri.2024.04.021_bb0095
  article-title: Coupled dictionary training for image super-resolution
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2192127
– volume: 13
  start-page: 277
  issue: 3
  year: 1991
  ident: 10.1016/j.mri.2024.04.021_bb0075
  article-title: Fast b-spline transforms for continuous image representation and interpolation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.75515
– volume: 30
  start-page: 3911
  issue: 11
  year: 2020
  ident: 10.1016/j.mri.2024.04.021_bb0135
  article-title: Channel-wise and spatial feature modulation network for single image super-resolution
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2019.2915238
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  ident: 10.1016/j.mri.2024.04.021_bb0100
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2050625
– volume: 8
  start-page: 905
  issue: 2
  year: 2022
  ident: 10.1016/j.mri.2024.04.021_bb0205
  article-title: Soup-gan: super-resolution mri using generative adversarial networks
  publication-title: Tomography
  doi: 10.3390/tomography8020073
– volume: 10
  start-page: 1521
  issue: 10
  year: 2001
  ident: 10.1016/j.mri.2024.04.021_bb0065
  article-title: New edge-directed interpolation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.951537
– volume: 43
  start-page: 3365
  issue: 10
  year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0105
  article-title: Deep learning for image super-resolution: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2982166
– volume: 26
  start-page: 508
  issue: 6
  year: 1978
  ident: 10.1016/j.mri.2024.04.021_bb0070
  article-title: Cubic splines for image interpolation and digital filtering
  publication-title: IEEE Trans Acoust Speech Sign Proc
  doi: 10.1109/TASSP.1978.1163154
– start-page: 63
  year: 2018
  ident: 10.1016/j.mri.2024.04.021_bb0155
  article-title: ESRGAN: enhanced super-resolution generative adversarial networks
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– volume: 20
  start-page: 21
  issue: 3
  year: 2003
  ident: 10.1016/j.mri.2024.04.021_bb0040
  article-title: Super-resolution image reconstruction: a technical overview
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2003.1203207
– volume: 1
  year: 2004
  ident: 10.1016/j.mri.2024.04.021_bb0090
  article-title: Super-resolution through neighbor embedding
– start-page: 940
  year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0200
  article-title: Shuffleunet: Super resolution of diffusion-weighted mris using deep learning
– ident: 10.1016/j.mri.2024.04.021_bb0285
– volume: 352
  year: 2023
  ident: 10.1016/j.mri.2024.04.021_bb0235
  article-title: Mriflow: magnetic resonance image super-resolution based on normalizing flow and frequency prior
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2023.107477
– volume: 40
  start-page: 1038
  issue: 5
  year: 2012
  ident: 10.1016/j.mri.2024.04.021_bb0005
  article-title: Physics of mri: a primer
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23642
– volume: 357
  start-page: 1821
  issue: 18
  year: 2007
  ident: 10.1016/j.mri.2024.04.021_bb0025
  article-title: Incidental findings on brain mri in the general population
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa070972
– year: 2021
  ident: 10.1016/j.mri.2024.04.021_bb0260
SSID ssj0005235
Score 2.4420273
Snippet Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms Deep learning
Frame interpolation
Generative adversarial networks
In-plane and out-of-plane attention
Magnetic resonance imaging
Super-resolution
Title MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24001346
https://dx.doi.org/10.1016/j.mri.2024.04.021
https://www.ncbi.nlm.nih.gov/pubmed/38653336
https://www.proquest.com/docview/3045119636
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuCMprgVZG4oRk1mtPkt3jqmq7Be0egEq9WXHGQUE0Xe2jx_4J_jAzdrKCQ4uElEsiT-LYk5lv4s8zQrz3JcPyXKtJqccKKgtqUmWZQqzJIQZfFAVvFJ4v8tkFfLrMLvfEcb8XhmmVne1PNj1a6-7KsBvN4bJphl9ZOQtDwRYwjgFOuw1QsK5_vP2T5pGKbFJjxa37lc3I8bpaNRQiGojZTs3oLt90F_aMPuj0iXjcgUc5Tf17KvZCeyAezrvl8Wfi1_zLuVxvl2GlKIrulEoytf27XDdXDUWxBLolMmakF5VlizIyCtWapipIGgkmudwEGYltkl0cyjrE5J-y3vKfNXk2XURB5o_EAhPUhMAq3a5JNbsSu062iWD-XFycnnw7nqmu6oKqQNuNQhgbxEkR7KisMh-09Xld5AgeQoYF-lojhc3GVmPIMFjjjS09lpVGrb2e2Bdiv71uwyshadAJEZAJMVBDhVgSvEDezBvAeBzXA6H78XZVl5KcO_7T9dyzH46myPEUOU2HGQ3Eh53IMuXjuK-x6SfR9RtNyTQ68hb3CcFO6C9N_JfYu15LHH2hvOxStuF6u3a8Fj1iQ5cPxMukPruuc8VVa23--v8e-kY84rNEH34r9jerbTgkkLTxR_ErOBIPpuefZ4vfMskSnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEviDfL00ickMx6bSfZPVYVZQvdPUAr9WbFGacKoulqHz3yJ_jDzNjJCg4tElJOiSdx7MnMN5nPHoB3vmRYnis5KdVY2spYOamyTCLW5BCDL4qCFwrP5vn01H4-y8524KBfC8O0ys72J5serXV3ZtiN5nDRNMNvrJyFpmDLMo6x-S24bbnMASn1h59_8jxSlU1qLbl5n9qMJK-LZUMxorZxu1M9us45XQc-oxM6vA_3OvQo9lMHH8BOaB_CnVmXH38Ev2Zfj8RqswhLSWF0p1WCue3nYtVcNBTGEuoWyKCR3lSULYpIKZQrmqsgaCiY5XIVRGS2CfZxKOoQd_8U9YZ_rYlP-_MoyASSWGGCmhBapds1qWhXoteJNjHMH8Pp4ceTg6nsyi7IyiqzlmjHGnFSBDMqq8wHZXxeFzlab0OGBfpaIcXN2lRjm2Ew2mtTeiwrhUp5NTFPYLe9bMMzEDToBAnIhmhb2wqxJHyBvJo3WO1xXA9A9ePtqm5Pcu74D9eTz747miLHU-QUHXo0gPdbkUXakOOmxrqfRNevNCXb6Mhd3CRkt0J_qeK_xN72WuLoE-W8S9mGy83KcTJ6xJYuH8DTpD7brnPJVWNM_vz_HvoG7k5PZsfu-Gj-5QXs8ZXEJX4Ju-vlJrwixLT2r-MX8RtB9xQm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+super-resolution+using+similarity+distance+and+multi-scale+receptive+field+based+feature+fusion+GAN+and+pre-trained+slice+interpolation+network&rft.jtitle=Magnetic+resonance+imaging&rft.au=U%2C+Nimitha&rft.au=P.M.%2C+Ameer&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=110&rft.spage=195&rft.epage=209&rft_id=info:doi/10.1016%2Fj.mri.2024.04.021&rft.externalDocID=S0730725X24001346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon