Performance Analysis of Iterative Decoding Algorithms with Memory over Memoryless Channels

Density evolution is often used to determine the performance of an ensemble of low-density parity-check (LDPC) codes under iterative message-passing algorithms. Conventional density evolution techniques over memoryless channels are based on the assumption that messages at iteration ℓ are only a func...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 60; no. 12; pp. 3556 - 3566
Main Authors Janulewicz, E., Banihashemi, A. H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0090-6778
1558-0857
DOI10.1109/TCOMM.2012.082812.110838

Cover

Abstract Density evolution is often used to determine the performance of an ensemble of low-density parity-check (LDPC) codes under iterative message-passing algorithms. Conventional density evolution techniques over memoryless channels are based on the assumption that messages at iteration ℓ are only a function of the messages at iteration ℓ -1 and possibly the channel output. This assumption is valid for many algorithms such as standard belief propagation (BP) and min-sum (MS) algorithms. However, there are other important iterative algorithms such as successive relaxation (SR) versions of BP and MS, and differential decoding with binary message passing (DD-BMP) algorithm of Mobini et al., for which this assumption is not valid. The reason is the introduction of memory in these algorithms. In this work, we propose a model for iterative decoding algorithms with memory which covers SR and DD-BMP algorithms as special cases. Based on this model, we derive a Bayesian network for iterative algorithms with memory over memoryless channels and use this representation to analyze the performance of the algorithms using density evolution. The density evolution technique is developed based on truncating the memory of the decoding process and approximating it with a finite order Markov process, and can be implemented efficiently. As an example, we apply our technique to analyze the performance of DD-BMP on regular LDPC code ensembles, and make a number of interesting observations with regard to the performance/complexity tradeoff of DD-BMP in comparison with BP and MS algorithms. The model presented in this paper is based on certain simplifying assumptions about the memory structure of iterative algorithms such as the existence of memory only at the output of variable nodes in the code's Tanner graph rather than at both outputs of variable and check nodes. The Bayesian network framework introduced here however, can still be used to analyze the more general scenarios.
AbstractList Density evolution is often used to determine the performance of an ensemble of low-density parity-check (LDPC) codes under iterative message-passing algorithms. Conventional density evolution techniques over memoryless channels are based on the assumption that messages at iteration \ell are only a function of the messages at iteration \ell -1 and possibly the channel output. This assumption is valid for many algorithms such as standard belief propagation (BP) and min-sum (MS) algorithms. However, there are other important iterative algorithms such as successive relaxation (SR) versions of BP and MS, and differential decoding with binary message passing (DD-BMP) algorithm of Mobini et al., for which this assumption is not valid. The reason is the introduction of memory in these algorithms. In this work, we propose a model for iterative decoding algorithms with memory which covers SR and DD-BMP algorithms as special cases. Based on this model, we derive a Bayesian network for iterative algorithms with memory over memoryless channels and use this representation to analyze the performance of the algorithms using density evolution. The density evolution technique is developed based on truncating the memory of the decoding process and approximating it with a finite order Markov process, and can be implemented efficiently. As an example, we apply our technique to analyze the performance of DD-BMP on regular LDPC code ensembles, and make a number of interesting observations with regard to the performance/complexity tradeoff of DD-BMP in comparison with BP and MS algorithms. The model presented in this paper is based on certain simplifying assumptions about the memory structure of iterative algorithms such as the existence of memory only at the output of variable nodes in the code's Tanner graph rather than at both outputs of variable and check nodes. The Bayesian network framework introduced here however, can still be used to analyze the more general scenarios.
Density evolution is often used to determine the performance of an ensemble of low-density parity-check (LDPC) codes under iterative message-passing algorithms. Conventional density evolution techniques over memoryless channels are based on the assumption that messages at iteration ℓ are only a function of the messages at iteration ℓ -1 and possibly the channel output. This assumption is valid for many algorithms such as standard belief propagation (BP) and min-sum (MS) algorithms. However, there are other important iterative algorithms such as successive relaxation (SR) versions of BP and MS, and differential decoding with binary message passing (DD-BMP) algorithm of Mobini et al., for which this assumption is not valid. The reason is the introduction of memory in these algorithms. In this work, we propose a model for iterative decoding algorithms with memory which covers SR and DD-BMP algorithms as special cases. Based on this model, we derive a Bayesian network for iterative algorithms with memory over memoryless channels and use this representation to analyze the performance of the algorithms using density evolution. The density evolution technique is developed based on truncating the memory of the decoding process and approximating it with a finite order Markov process, and can be implemented efficiently. As an example, we apply our technique to analyze the performance of DD-BMP on regular LDPC code ensembles, and make a number of interesting observations with regard to the performance/complexity tradeoff of DD-BMP in comparison with BP and MS algorithms. The model presented in this paper is based on certain simplifying assumptions about the memory structure of iterative algorithms such as the existence of memory only at the output of variable nodes in the code's Tanner graph rather than at both outputs of variable and check nodes. The Bayesian network framework introduced here however, can still be used to analyze the more general scenarios.
Author Janulewicz, E.
Banihashemi, A. H.
Author_xml – sequence: 1
  givenname: E.
  surname: Janulewicz
  fullname: Janulewicz, E.
  email: ejanulewicz@gmail.com
  organization: Ericsson Canada Inc., Montreal, QC, Canada
– sequence: 2
  givenname: A. H.
  surname: Banihashemi
  fullname: Banihashemi, A. H.
  email: ahashemi@sce.carleton.ca
  organization: Syst. & Comput. Eng. Dept., Carleton Univ., Ottawa, ON, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28149826$$DView record in Pascal Francis
BookMark eNqNkc1uEzEUhS1UJNLCE7CxhJDYTPDP2GNvkKIU2kqNyqJs2FiO507rymMXe1KUt8dhAotuYHWvrO8cX51zik5iioAQpmRJKdEfb9c3m82SEcqWRDFVR31WXL1ACyqEaogS3QlaEKJJI7tOvUKnpTwQQlrC-QJ9_wp5SHm00QFeRRv2xRecBnw1QbaTfwJ8Di71Pt7hVbhL2U_3Y8E_68AbGFPe4_QE-bgHKAWv722MEMpr9HKwocCb4zxD3758vl1fNtc3F1fr1XXj6glT03PCaQ8KOjbwjsCWiY6yXgFnXDPBmbUC-g4Ic1utuOZSU9Y5qdSgBNtKfoY-zL6POf3YQZnM6IuDEGyEtCuGcipk9ZHq3yhTXLZCa13Rd8_Qh7TLNaAD1bZSKinaSr0_UrY4G4Zcc_TFPGY_2rw3tY9WK3a48dPMuZxKyTAY56cab4pTtj4YSsyhTfO7TXNo08xtmrnNaqCeGfz54z-kb2epB4C_Msl029KO_wJ6Aa1F
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3383104
crossref_primary_10_1109_LCOMM_2015_2442981
crossref_primary_10_1109_LCOMM_2021_3075110
crossref_primary_10_1109_LCOMM_2014_2366095
crossref_primary_10_1109_LCOMM_2017_2647804
crossref_primary_10_1109_LCOMM_2024_3492711
Cites_doi 10.1109/TCOMM.2009.10.080005
10.1109/18.910578
10.1109/GLOCOM.2007.300
10.1109/TIT.1962.1057683
10.1109/TCOMM.2005.861668
10.1109/18.910580
10.1109/18.910577
10.1007/978-0-387-68282-2
10.1109/TIT.1981.1056404
10.1109/TCOMM.2009.09.070617
10.1109/ITWKSPS.2010.5503202
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SP
8FD
L7M
F28
FR3
DOI 10.1109/TCOMM.2012.082812.110838
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-0857
EndPage 3566
ExternalDocumentID 2851362481
28149826
10_1109_TCOMM_2012_082812_110838
6294417
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
AAYOK
IQODW
RIG
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c403t-d3031de8e72f370eb25712d8e32392532aa5ed7e02cb9839369127c688f852b63
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Sat Sep 27 21:16:29 EDT 2025
Wed Oct 01 14:54:24 EDT 2025
Mon Jun 30 10:22:50 EDT 2025
Wed Apr 02 07:25:13 EDT 2025
Wed Oct 01 00:48:16 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Wed Aug 27 02:49:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Performance evaluation
Markov process
belief propagation (BP)
Iterative method
Iterative decoding
Implementation
Relaxation
Credal approach
low-density parity-check (LDPC) codes
Coding
min-sum (MS)
iterative decoding algorithms with memory
Bayes network
Parity check codes
differential decoding with binary message passing (DD-BMP)
Iterative coding schemes
Bayes estimation
density evolution
Tanner graph
memoryless channels
Algorithm
Memoryless channel
Message passing
Algorithm performance
Error correcting code
Bayesian networks
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-d3031de8e72f370eb25712d8e32392532aa5ed7e02cb9839369127c688f852b63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 1244668654
PQPubID 23500
PageCount 11
ParticipantIDs ieee_primary_6294417
proquest_miscellaneous_1315653268
proquest_miscellaneous_1283645999
pascalfrancis_primary_28149826
proquest_journals_1244668654
crossref_primary_10_1109_TCOMM_2012_082812_110838
crossref_citationtrail_10_1109_TCOMM_2012_082812_110838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref1
ref8
ref7
pearl (ref10) 1988
ref9
ref4
ref3
cole (ref2) 0
ref6
ref5
shachter (ref13) 0
References_xml – ident: ref15
  doi: 10.1109/TCOMM.2009.10.080005
– year: 1988
  ident: ref10
  article-title: Probabilistic Reasoning in Intelligent Systems; Networks of Plausible Inference
– ident: ref11
  doi: 10.1109/18.910578
– start-page: 480
  year: 0
  ident: ref13
  article-title: Bayes-ball: the rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams)
  publication-title: Proc 1998 Conf Uncertainty Artificial Intelligence
– ident: ref8
  doi: 10.1109/GLOCOM.2007.300
– ident: ref3
  doi: 10.1109/TIT.1962.1057683
– ident: ref4
  doi: 10.1109/TCOMM.2005.861668
– year: 0
  ident: ref2
  article-title: A general method for finding low error rates of LDPC codes
– ident: ref1
  doi: 10.1109/18.910580
– ident: ref12
  doi: 10.1109/18.910577
– ident: ref7
  doi: 10.1007/978-0-387-68282-2
– ident: ref14
  doi: 10.1109/TIT.1981.1056404
– ident: ref9
  doi: 10.1109/TCOMM.2009.09.070617
– ident: ref6
  doi: 10.1109/ITWKSPS.2010.5503202
– ident: ref5
  doi: 10.1109/ITWKSPS.2010.5503202
SSID ssj0004033
Score 2.09514
Snippet Density evolution is often used to determine the performance of an ensemble of low-density parity-check (LDPC) codes under iterative message-passing...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3556
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Back propagation
Bayesian methods
Bayesian networks
belief propagation (BP)
Channels
Codes
Coding, codes
Decoding
Density
density evolution
differential decoding with binary message passing (DD-BMP)
Evolution
Exact sciences and technology
Information, signal and communications theory
Iterative algorithms
Iterative coding schemes
Iterative decoding
iterative decoding algorithms with memory
Iterative methods
low-density parity-check (LDPC) codes
memoryless channels
min-sum (MS)
Random variables
Signal and communications theory
Studies
Telecommunications and information theory
Title Performance Analysis of Iterative Decoding Algorithms with Memory over Memoryless Channels
URI https://ieeexplore.ieee.org/document/6294417
https://www.proquest.com/docview/1244668654
https://www.proquest.com/docview/1283645999
https://www.proquest.com/docview/1315653268
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT90wEB4Bp3KgC1SkLHKlHptH4sRLjoiCaKW0PYCEuESJY0PV16Ti5R3or--Ms0ChQpxixbbkeGzPTPzNNwAfKrQKpHEmTISrwhR1WoivVKgyq3kdO8d9fEX-VZ6ep18uxMUKfJxiYay1HnxmZ1T0d_l1a5b0q-xA8owyZq3CqtKyj9W6i4GMkoFxkuDsSo-onSg7ODv6lueE4uIzImzDB2HfKSLlniryuVUIGVkucHJcn9Xi0QHttc7JS8jH8fZgk5-zZVfNzJ8HVI7P_aBXsDGYn-ywXy-vYcU2b2D9HinhJlx-v4slYCNnCWsd--wJmPF0ZJ_QZyWdxw7nV-3Nj-7614LRD12WE273lhEsdCjP8SRlFMLQoBLegvOT47Oj03DIwBAanM8urFHBxbXVVnGXqAi9cKFiXmubcLSrRMLLUtha2YibKkNTK5FZzJWRWjsteCWTt7DWtI3dBia4ki6T2pSSp0qVleA6Moa4hExdWRGAGoVRmIGenLJkzAvvpkRZ4cVYkBiLXoxFL8YA4qnn756i4xl9NkkaU_tBEAHs_yP_qR67phl6YgHsjguiGDb7oiATSUotRRrA-6katyndvZSNbZfURtOFL5rjT7RJ0JnGSZX63f-HtwMv6FN6NM0urHU3S7uHNlFX7fvN8BetVAT8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUQClG4ki2iRM_cqwK1RaawmErVVysxLELYklQN3uAX89MXi0PoZ5ixbbkeGzPTPzNNwCvSrQKpPU2TIQvwxR1WoivVKgyp3kVe8-7-Ir8VM7P0nfn4nwDXk-xMM65DnzmZlTs7vKrxq7pV9m-5BllzLoFt0WapqKP1rqKgoySgXOSAO1Kj7idKNtfHH7Ic8Jx8RlRtuGD0O8Uk3JNGXXZVQgbWaxwenyf1-KvI7rTO0f3IR9H3MNNvs7WbTmzP_8gc7zpJz2Ae4MByg76FfMQNlz9CLau0RJuw6ePV9EEbGQtYY1nxx0FM56P7A16raT12MHyorn80n7-tmL0S5flhNz9wQgYOpSXeJYyCmKoUQ0_hrOjt4vDeTjkYAgtzmcbVqji4sppp7hPVIR-uFAxr7RLOFpWIuFFIVylXMRtmaGxlcgs5spKrb0WvJTJE9ism9rtABNcSZ9JbQvJU6WKUnAdWUtsQrYqnQhAjcIwdiAopzwZS9M5KlFmOjEaEqPpxWh6MQYQTz2_9yQdN-izTdKY2g-CCGDvN_lP9dg1zdAXC2B3XBBm2O4rQ0aSlFqKNICXUzVuVLp9KWrXrKmNpitfNMj_0yZBdxonVeqn_x7eC7gzX-Qn5uT49P0zuEuf1WNrdmGzvVy752ghteVetzF-AXjeCEk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+Iterative+Decoding+Algorithms+with+Memory+over+Memoryless+Channels&rft.jtitle=IEEE+transactions+on+communications&rft.au=Janulewicz%2C+E.&rft.au=Banihashemi%2C+A.+H.&rft.date=2012-12-01&rft.pub=IEEE&rft.issn=0090-6778&rft.volume=60&rft.issue=12&rft.spage=3556&rft.epage=3566&rft_id=info:doi/10.1109%2FTCOMM.2012.082812.110838&rft.externalDocID=6294417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon