Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm

•A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further decompose the high frequency IMFs generated by FEEMD.•The BP model optimized by FA obtains better forecasting performance.•The proposed model is tes...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 190; pp. 390 - 407
Main Authors Wang, Deyun, Luo, Hongyuan, Grunder, Olivier, Lin, Yanbing, Guo, Haixiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2017
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2016.12.134

Cover

Abstract •A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further decompose the high frequency IMFs generated by FEEMD.•The BP model optimized by FA obtains better forecasting performance.•The proposed model is tested using the real-world data of Australian and French electricity markets. In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price.
AbstractList In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price.
•A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further decompose the high frequency IMFs generated by FEEMD.•The BP model optimized by FA obtains better forecasting performance.•The proposed model is tested using the real-world data of Australian and French electricity markets. In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price.
Author Wang, Deyun
Luo, Hongyuan
Grunder, Olivier
Guo, Haixiang
Lin, Yanbing
Author_xml – sequence: 1
  givenname: Deyun
  surname: Wang
  fullname: Wang, Deyun
  email: wang.deyun@hotmail.com
  organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Hongyuan
  surname: Luo
  fullname: Luo, Hongyuan
  organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Olivier
  surname: Grunder
  fullname: Grunder, Olivier
  organization: Université de Bourgogne Franche-Comté, UTBM, IRTES, Rue Thierry Mieg, Belfort cedex 90010, France
– sequence: 4
  givenname: Yanbing
  surname: Lin
  fullname: Lin, Yanbing
  organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China
– sequence: 5
  givenname: Haixiang
  surname: Guo
  fullname: Guo, Haixiang
  organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China
BookMark eNqFkcFu1DAQhi1UJLYtr4B85JLUdrLJrsQBqKAgFcEBztbYnux6cexgO6DwOn1RHC1cuPQyv2Y0_2j0_ZfkwgePhLzgrOaMdzenGib0GA9LLUpfc1Hzpn1CNnzXi2rP-e6CbFjDukp0fP-MXKZ0YowJLtiGPHyaXbZVyjhROCIYig51jlbbvNCpKNIhRNSQsvUHOqe1Aj0uKlpDx2DQUQUJDQ2e5l-hcrBgpAZ1GKeQbLbrHPXR2x8zUvCGvv1CPc4RXJHiiN9pmLId7e9yRC10sBEHt1BwhxBtPo7X5OkALuHzv3pFvr1_9_X2Q3X_-e7j7Zv7SresyaVuDbRM74XplWq3ot81grdcNFr1XYcCYD-Igau27bD0inegO9FvNTcKWN9ckZfnu1MM5deU5WiTRufAY5iTFCs11m_bdbU7r-oYUir_yoJqhLhIzuSaijzJf6nINRXJhSypFOOr_4wFNKyQcgTrHre_PtuxcPhpMcqkLXqNpkDTWZpgHzvxB8ROtCw
CitedBy_id crossref_primary_10_1016_j_eneco_2019_05_026
crossref_primary_10_1007_s10479_022_04908_9
crossref_primary_10_1016_j_enconman_2025_119501
crossref_primary_10_1002_apj_3057
crossref_primary_10_1016_j_gsf_2023_101670
crossref_primary_10_1142_S1469026818500013
crossref_primary_10_1016_j_energy_2019_07_134
crossref_primary_10_1080_23311916_2024_2316458
crossref_primary_10_1016_j_catena_2019_02_012
crossref_primary_10_1016_j_asoc_2024_112222
crossref_primary_10_1007_s00034_020_01393_y
crossref_primary_10_3390_en17010078
crossref_primary_10_1016_j_energy_2024_131709
crossref_primary_10_1016_j_resourpol_2021_102195
crossref_primary_10_1016_j_apenergy_2024_123233
crossref_primary_10_1016_j_eneco_2022_106471
crossref_primary_10_1016_j_apenergy_2019_01_213
crossref_primary_10_1016_j_energy_2018_01_112
crossref_primary_10_1016_j_apenergy_2019_113404
crossref_primary_10_1016_j_est_2022_104816
crossref_primary_10_1109_ACCESS_2022_3164077
crossref_primary_10_3390_en14217333
crossref_primary_10_1016_j_enconman_2017_08_014
crossref_primary_10_1016_j_jhydrol_2023_129205
crossref_primary_10_3390_en15228445
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_3390_en11051063
crossref_primary_10_1016_j_compeleceng_2020_106752
crossref_primary_10_1007_s10479_023_05327_0
crossref_primary_10_1007_s13369_019_03780_3
crossref_primary_10_1016_j_apenergy_2023_122430
crossref_primary_10_1088_1361_6501_aabcac
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_1016_j_cej_2018_09_129
crossref_primary_10_1016_j_jclepro_2019_118858
crossref_primary_10_3233_JIFS_189454
crossref_primary_10_1155_2021_7653091
crossref_primary_10_1007_s00607_019_00727_2
crossref_primary_10_1016_j_energy_2021_122812
crossref_primary_10_1109_ACCESS_2020_2978169
crossref_primary_10_1007_s12652_021_03444_x
crossref_primary_10_3390_s18113704
crossref_primary_10_1016_j_eneco_2019_05_006
crossref_primary_10_1063_1_5045172
crossref_primary_10_1016_j_energy_2021_121082
crossref_primary_10_1111_exsy_13672
crossref_primary_10_3390_electronics8010048
crossref_primary_10_1109_ACCESS_2021_3095335
crossref_primary_10_1016_j_jup_2022_101444
crossref_primary_10_1049_cmu2_12644
crossref_primary_10_1049_gtd2_12763
crossref_primary_10_3390_fi13100241
crossref_primary_10_3390_en10081186
crossref_primary_10_1016_j_jksuci_2018_06_010
crossref_primary_10_3390_su11030652
crossref_primary_10_3390_en17081864
crossref_primary_10_1016_j_ijepes_2020_106122
crossref_primary_10_3389_fbioe_2021_771255
crossref_primary_10_1016_j_apenergy_2020_114985
crossref_primary_10_1007_s00202_018_0732_6
crossref_primary_10_3390_su16219332
crossref_primary_10_1016_j_bspc_2018_12_020
crossref_primary_10_1007_s11269_024_04083_5
crossref_primary_10_2139_ssrn_4191275
crossref_primary_10_3390_s20174657
crossref_primary_10_1109_ACCESS_2022_3177604
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_3390_en11040825
crossref_primary_10_1007_s12667_023_00576_1
crossref_primary_10_1007_s10489_021_03083_x
crossref_primary_10_1016_j_apenergy_2018_02_069
crossref_primary_10_1016_j_energy_2018_10_076
crossref_primary_10_3390_en16196767
crossref_primary_10_1016_j_envpol_2021_118575
crossref_primary_10_1016_j_energy_2019_116610
crossref_primary_10_1016_j_measurement_2021_110058
crossref_primary_10_1155_2020_2604915
crossref_primary_10_3390_en12193603
crossref_primary_10_1016_j_apenergy_2021_116688
crossref_primary_10_1016_j_icheatmasstransfer_2021_105674
crossref_primary_10_3390_s19183937
crossref_primary_10_1016_j_apenergy_2018_12_061
crossref_primary_10_1177_0142331219826656
crossref_primary_10_3390_ijerph14070764
crossref_primary_10_1016_j_energy_2021_122052
crossref_primary_10_1007_s11227_019_03064_5
crossref_primary_10_1016_j_asoc_2019_02_006
crossref_primary_10_1016_j_enconman_2017_10_021
crossref_primary_10_1080_10807039_2024_2407149
crossref_primary_10_1016_j_najef_2024_102147
crossref_primary_10_3390_en11071848
crossref_primary_10_1049_iet_gtd_2018_5847
crossref_primary_10_1016_j_energy_2021_120797
crossref_primary_10_1016_j_eswa_2023_122971
crossref_primary_10_1016_j_chaos_2021_111453
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1016_j_jclepro_2020_125628
crossref_primary_10_1007_s11831_022_09860_2
crossref_primary_10_1016_j_apenergy_2019_03_094
crossref_primary_10_1371_journal_pone_0287433
crossref_primary_10_1016_j_energy_2019_116704
crossref_primary_10_1016_j_jclepro_2020_120171
crossref_primary_10_1088_1755_1315_811_1_012021
crossref_primary_10_1016_j_rser_2019_109293
crossref_primary_10_3390_en18051054
crossref_primary_10_1080_02522667_2022_2094551
crossref_primary_10_3390_en16041860
crossref_primary_10_1016_j_enconman_2018_01_010
crossref_primary_10_1016_j_asoc_2023_110018
crossref_primary_10_1016_j_apenergy_2017_11_098
crossref_primary_10_2298_CSIS220807013W
crossref_primary_10_21595_jve_2017_18068
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_1016_j_asoc_2019_105739
crossref_primary_10_1631_jzus_A1600753
crossref_primary_10_1016_j_asoc_2018_04_006
crossref_primary_10_1016_j_ijepes_2018_08_025
crossref_primary_10_1109_TSTE_2019_2926147
crossref_primary_10_1109_ACCESS_2022_3210974
crossref_primary_10_1088_1757_899X_782_3_032040
crossref_primary_10_1007_s11063_021_10651_2
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_1016_j_jhydrol_2022_128122
crossref_primary_10_1016_j_scitotenv_2018_08_221
crossref_primary_10_1016_j_energy_2018_08_180
crossref_primary_10_3390_math13071046
crossref_primary_10_1155_2023_5753023
crossref_primary_10_1016_j_measurement_2022_112324
crossref_primary_10_1016_j_ribaf_2023_102132
crossref_primary_10_1007_s12665_021_09696_2
crossref_primary_10_1155_2022_2128370
crossref_primary_10_1016_j_apenergy_2017_05_080
crossref_primary_10_1016_j_energy_2018_08_069
crossref_primary_10_1016_j_rser_2019_03_040
crossref_primary_10_3390_en14144378
crossref_primary_10_1016_j_renene_2021_04_041
crossref_primary_10_1016_j_cie_2023_109834
crossref_primary_10_1016_j_energy_2018_07_005
crossref_primary_10_3233_JCM_215783
crossref_primary_10_1063_1_5120470
crossref_primary_10_1177_09544089231160492
crossref_primary_10_1016_j_energy_2022_123366
crossref_primary_10_1088_1742_6596_1324_1_012013
crossref_primary_10_1016_j_enconman_2017_09_005
crossref_primary_10_1016_j_energy_2022_124212
crossref_primary_10_1016_j_heliyon_2023_e20839
crossref_primary_10_1088_1361_6501_acc67d
crossref_primary_10_1016_j_applthermaleng_2023_120040
crossref_primary_10_1016_j_ijepes_2019_03_056
crossref_primary_10_1007_s10661_018_7012_9
crossref_primary_10_3390_en13215675
crossref_primary_10_1016_j_energy_2020_118784
crossref_primary_10_1016_j_energy_2022_126099
crossref_primary_10_1016_j_mlwa_2023_100505
crossref_primary_10_1007_s11265_017_1278_y
crossref_primary_10_1016_j_epsr_2018_11_021
crossref_primary_10_1177_01423312211027027
crossref_primary_10_1016_j_egyr_2021_08_103
crossref_primary_10_1016_j_apenergy_2024_123058
crossref_primary_10_1016_j_jhydrol_2018_12_060
crossref_primary_10_1155_2021_1026978
crossref_primary_10_3390_land14030454
crossref_primary_10_1016_j_knosys_2021_107038
crossref_primary_10_1109_TIA_2022_3198393
crossref_primary_10_1016_j_engappai_2024_108435
crossref_primary_10_3390_w16111556
crossref_primary_10_1016_j_asoc_2023_111040
crossref_primary_10_3390_su11040987
crossref_primary_10_3390_ma18010139
crossref_primary_10_1016_j_apenergy_2023_122059
crossref_primary_10_1109_ACCESS_2023_3241239
crossref_primary_10_1016_j_ins_2024_121840
crossref_primary_10_1016_j_energy_2021_121587
crossref_primary_10_3390_su142315522
crossref_primary_10_1007_s00500_019_04161_6
crossref_primary_10_1016_j_apenergy_2020_115801
crossref_primary_10_1016_j_energy_2018_05_052
crossref_primary_10_1016_j_applthermaleng_2025_125761
crossref_primary_10_32604_cmc_2020_013131
crossref_primary_10_1016_j_apenergy_2022_118752
crossref_primary_10_1016_j_asoc_2019_105799
crossref_primary_10_1016_j_energy_2019_06_132
crossref_primary_10_1016_j_enpol_2020_111311
crossref_primary_10_1016_j_resourpol_2023_104059
crossref_primary_10_1016_j_energy_2018_04_133
crossref_primary_10_1108_JM2_11_2018_0184
crossref_primary_10_1016_j_energy_2024_132820
crossref_primary_10_1016_j_renene_2017_06_095
crossref_primary_10_3390_app15031055
crossref_primary_10_1016_j_energy_2022_126561
crossref_primary_10_3390_en12142665
crossref_primary_10_1016_j_applthermaleng_2018_12_048
crossref_primary_10_1155_2022_5597662
crossref_primary_10_1016_j_apenergy_2019_114087
crossref_primary_10_1007_s00521_020_04996_3
crossref_primary_10_1007_s11227_021_04082_y
crossref_primary_10_1016_j_eswa_2024_124690
crossref_primary_10_1007_s12145_023_01018_3
crossref_primary_10_1007_s12555_017_0085_3
crossref_primary_10_1109_ACCESS_2019_2906895
crossref_primary_10_1016_j_chaos_2023_113704
crossref_primary_10_1016_j_energy_2023_129925
crossref_primary_10_1016_j_egyai_2020_100009
crossref_primary_10_1016_j_resourpol_2018_07_012
crossref_primary_10_1177_0958305X18768819
crossref_primary_10_3390_app10010390
crossref_primary_10_1016_j_ijepes_2022_108092
crossref_primary_10_1088_1674_1056_ad9454
crossref_primary_10_1016_j_apenergy_2019_03_129
crossref_primary_10_1016_j_apenergy_2020_115460
crossref_primary_10_1016_j_epsr_2021_107762
crossref_primary_10_14201_ADCAIJ2020947182
crossref_primary_10_3390_info15120817
crossref_primary_10_1109_ACCESS_2020_3038863
crossref_primary_10_1016_j_apenergy_2021_116983
crossref_primary_10_3389_fsufs_2024_1334098
crossref_primary_10_1109_ACCESS_2020_3008797
crossref_primary_10_1016_j_renene_2024_120350
crossref_primary_10_1016_j_apenergy_2019_05_068
crossref_primary_10_1016_j_isci_2022_105804
crossref_primary_10_2139_ssrn_3270251
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1016_j_apenergy_2019_114183
crossref_primary_10_1016_j_enconman_2017_10_085
crossref_primary_10_1016_j_apenergy_2024_123920
crossref_primary_10_1016_j_apenergy_2018_02_140
crossref_primary_10_1016_j_resourpol_2022_102962
crossref_primary_10_1109_ACCESS_2019_2902510
crossref_primary_10_1016_j_epsr_2021_107416
crossref_primary_10_1109_ACCESS_2019_2943026
crossref_primary_10_1016_j_geoderma_2018_05_035
Cites_doi 10.1016/j.ins.2014.12.031
10.1016/j.ijepes.2016.03.001
10.1016/j.ijforecast.2014.08.008
10.1016/j.apenergy.2015.01.038
10.1016/j.swevo.2013.06.001
10.1016/j.renene.2016.03.103
10.1016/j.eneco.2013.06.017
10.1016/j.csda.2013.10.014
10.1016/j.solener.2016.04.020
10.1016/j.tourman.2008.10.016
10.1016/j.apenergy.2015.07.025
10.1016/j.rser.2008.02.002
10.1016/j.eneco.2012.12.010
10.1016/j.apenergy.2016.03.089
10.1016/j.jhydrol.2014.01.062
10.1016/j.enconman.2010.11.007
10.1016/j.renene.2013.08.011
10.1016/j.ijthermalsci.2015.12.002
10.1016/j.ijepes.2014.06.010
10.1142/S1793536909000047
10.1016/j.energy.2015.08.021
10.1016/j.enconman.2014.09.060
10.1016/j.atmosenv.2016.08.007
10.1016/j.enconman.2016.02.013
10.1016/j.physa.2014.01.020
10.1016/j.apenergy.2015.08.014
10.1016/j.eneco.2014.10.012
10.1016/j.energy.2016.03.070
10.1016/j.saa.2016.07.016
10.1109/TPWRS.2009.2019777
10.1016/j.rcim.2014.12.015
10.1016/j.eswa.2012.01.039
10.1109/TSP.2013.2288675
10.1007/s00521-012-1323-5
10.1504/IJBIC.2010.032124
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2016.12.134
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 407
ExternalDocumentID 10_1016_j_apenergy_2016_12_134
S030626191631916X
GeographicLocations Australia
France
GeographicLocations_xml – name: France
– name: Australia
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c403t-c45da40c92d7bb452783214123cb766e2aa9f2f1b446e66eb16ac6275c1dba073
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Mon Sep 29 02:36:09 EDT 2025
Thu Oct 09 00:40:10 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Fri Feb 23 02:32:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electricity price forecasting
Variational mode decomposition
Multi-step ahead
Back propagation neural network
Fast ensemble empirical mode decomposition
Firefly algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-c45da40c92d7bb452783214123cb766e2aa9f2f1b446e66eb16ac6275c1dba073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000207547
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2000207547
crossref_primary_10_1016_j_apenergy_2016_12_134
crossref_citationtrail_10_1016_j_apenergy_2016_12_134
elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_12_134
PublicationCentury 2000
PublicationDate 2017-03-15
PublicationDateYYYYMMDD 2017-03-15
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Huang (b0135) 2011; 1
Fister, Fister, Yang, Brest (b0165) 2013; 13
Wang, Wang, Jiang (b0090) 2015; 143
Chu (b0040) 2009; 30
Wang, Zhang, Wu, Wang (b0185) 2016; 94
Attia, Nassar, EI-Zeiny, Serag (b0175) 2017; 170
Lei, Luan, Jiang, Liu, Zhang (b0035) 2009; 13
Mohanty (b0170) 2016; 102
Taieb, Bontempi, Atiya, Sorjamaa (b0180) 2011; 39
Zugno, Morales, Pinson, Madsen (b0005) 2013; 36
Chen, Lee (b0085) 2015; 299
Weron (b0020) 2014; 30
Chase, Jacobs, Aquilano (b0025) 2001
He, Yu, Tang (b0030) 2015; 91
Hassan, Khosravi, Jaafar, Khanesar (b0075) 2016; 82
Gutierrez-Corea, Manso-Callejo, Moreno-Regidor, Manrique-Sancho (b0070) 2016; 134
Nyberg, Saikkonen (b0050) 2014; 76
Wang, Yeh, Young, Hu, Lo (b0130) 2014; 400
Ausati, Amanollahi (b0115) 2016; 142
Huang, Chang, Huang, Chen (b0125) 2014; 511
Carrión, Arroyo, Conejo (b0010) 2009; 24
Ziel, Steinert, Husmann (b0015) 2015; 47
Xiong, Bao, Hu (b0105) 2014; 63
Liu, Sun, Zeng (b0120) 2014; 24
Zhou, Jing, Gong (b0080) 2011; 52
Panapakidis, Dagoumas (b0065) 2016; 172
Meng, Ge, Chen (b0095) 2016; 114
Liu, Tian, Li (b0145) 2015; 89
Dragomiretskiy, Zosso (b0150) 2014; 62
Yang, He (b0160) 2013; 1
Takeda, Tamura, Sato (b0060) 2016; 104
Liu, Niu, Wang, Fan (b0100) 2014; 62
Yang (b0155) 2010; 2
Byun, Cho (b0055) 2013; 40
Lean, Wang, Tang (b0110) 2015; 156
Liu, Tian, Liang, Li (b0140) 2015; 157
Ramos, Santos, Rui (b0045) 2015; 34
Chu (10.1016/j.apenergy.2016.12.134_b0040) 2009; 30
Ramos (10.1016/j.apenergy.2016.12.134_b0045) 2015; 34
Wang (10.1016/j.apenergy.2016.12.134_b0090) 2015; 143
Zugno (10.1016/j.apenergy.2016.12.134_b0005) 2013; 36
Wang (10.1016/j.apenergy.2016.12.134_b0185) 2016; 94
Zhou (10.1016/j.apenergy.2016.12.134_b0080) 2011; 52
Byun (10.1016/j.apenergy.2016.12.134_b0055) 2013; 40
Gutierrez-Corea (10.1016/j.apenergy.2016.12.134_b0070) 2016; 134
Lean (10.1016/j.apenergy.2016.12.134_b0110) 2015; 156
Ausati (10.1016/j.apenergy.2016.12.134_b0115) 2016; 142
Nyberg (10.1016/j.apenergy.2016.12.134_b0050) 2014; 76
Lei (10.1016/j.apenergy.2016.12.134_b0035) 2009; 13
Weron (10.1016/j.apenergy.2016.12.134_b0020) 2014; 30
Taieb (10.1016/j.apenergy.2016.12.134_b0180) 2011; 39
Mohanty (10.1016/j.apenergy.2016.12.134_b0170) 2016; 102
Liu (10.1016/j.apenergy.2016.12.134_b0120) 2014; 24
Huang (10.1016/j.apenergy.2016.12.134_b0125) 2014; 511
Hassan (10.1016/j.apenergy.2016.12.134_b0075) 2016; 82
Dragomiretskiy (10.1016/j.apenergy.2016.12.134_b0150) 2014; 62
Carrión (10.1016/j.apenergy.2016.12.134_b0010) 2009; 24
Attia (10.1016/j.apenergy.2016.12.134_b0175) 2017; 170
Yang (10.1016/j.apenergy.2016.12.134_b0160) 2013; 1
Xiong (10.1016/j.apenergy.2016.12.134_b0105) 2014; 63
Liu (10.1016/j.apenergy.2016.12.134_b0145) 2015; 89
Fister (10.1016/j.apenergy.2016.12.134_b0165) 2013; 13
Yang (10.1016/j.apenergy.2016.12.134_b0155) 2010; 2
Liu (10.1016/j.apenergy.2016.12.134_b0140) 2015; 157
Chase (10.1016/j.apenergy.2016.12.134_b0025) 2001
He (10.1016/j.apenergy.2016.12.134_b0030) 2015; 91
Meng (10.1016/j.apenergy.2016.12.134_b0095) 2016; 114
Wu (10.1016/j.apenergy.2016.12.134_b0135) 2011; 1
Panapakidis (10.1016/j.apenergy.2016.12.134_b0065) 2016; 172
Wang (10.1016/j.apenergy.2016.12.134_b0130) 2014; 400
Takeda (10.1016/j.apenergy.2016.12.134_b0060) 2016; 104
Ziel (10.1016/j.apenergy.2016.12.134_b0015) 2015; 47
Chen (10.1016/j.apenergy.2016.12.134_b0085) 2015; 299
Liu (10.1016/j.apenergy.2016.12.134_b0100) 2014; 62
References_xml – volume: 62
  start-page: 592
  year: 2014
  end-page: 597
  ident: b0100
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renewable Energy
– volume: 1
  start-page: 36
  year: 2013
  end-page: 50
  ident: b0160
  article-title: Firefly algorithm: recent advances and applications
  publication-title: Int J Swarm Intell
– volume: 13
  start-page: 34
  year: 2013
  end-page: 46
  ident: b0165
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol Comput
– volume: 40
  start-page: 207
  year: 2013
  end-page: 221
  ident: b0055
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ
– volume: 156
  start-page: 251
  year: 2015
  end-page: 267
  ident: b0110
  article-title: A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
  publication-title: Appl Energy
– volume: 104
  start-page: 184
  year: 2016
  end-page: 198
  ident: b0060
  article-title: Using the ensemble kalman filter for electricity load forecasting and analysis
  publication-title: Energy
– volume: 24
  start-page: 973
  year: 2014
  end-page: 983
  ident: b0120
  article-title: A new short-term load forecasting method of power system based on EEMD and SS-PSO
  publication-title: Neural Comput Appl
– volume: 89
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0145
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
– volume: 114
  start-page: 75
  year: 2016
  end-page: 88
  ident: b0095
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manage
– volume: 170
  start-page: 117
  year: 2017
  end-page: 123
  ident: b0175
  article-title: Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: a comparative study
  publication-title: Spectrochim Acta Part A Mol Biomol Spectrosc
– volume: 91
  start-page: 601
  year: 2015
  end-page: 609
  ident: b0030
  article-title: Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology
  publication-title: Energy
– volume: 134
  start-page: 119
  year: 2016
  end-page: 131
  ident: b0070
  article-title: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations
  publication-title: Sol Energy
– volume: 36
  start-page: 182
  year: 2013
  end-page: 197
  ident: b0005
  article-title: A bilevel model for electricity retailers' participation in a demand response market environment
  publication-title: Energy Econ
– volume: 34
  start-page: 151
  year: 2015
  end-page: 163
  ident: b0045
  article-title: Performance of state space and ARIMA models for consumer retail sales forecasting
  publication-title: Robot Computer-Integrat Manuf
– volume: 76
  start-page: 536
  year: 2014
  end-page: 555
  ident: b0050
  article-title: Forecasting with a noncausal VAR model
  publication-title: Comput Stat Data Anal
– volume: 143
  start-page: 472
  year: 2015
  end-page: 488
  ident: b0090
  article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China
  publication-title: Appl Energy
– volume: 47
  start-page: 98
  year: 2015
  end-page: 111
  ident: b0015
  article-title: Efficient modeling and forecasting of electricity spot prices
  publication-title: Energy Econ
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b0155
  article-title: Firefly Algorithm, stochastic test functions and design optimization
  publication-title: Int J Bio-Inspired Comput
– volume: 102
  start-page: 228
  year: 2016
  end-page: 238
  ident: b0170
  article-title: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view
  publication-title: Int J Therm Sci
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0150
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0035
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 82
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0075
  article-title: A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting
  publication-title: Int J Electr Power Energy Syst
– volume: 172
  start-page: 132
  year: 2016
  end-page: 151
  ident: b0065
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
– volume: 63
  start-page: 353
  year: 2014
  end-page: 362
  ident: b0105
  article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework
  publication-title: Int J Electr Power Energy Syst
– volume: 30
  start-page: 1030
  year: 2014
  end-page: 1081
  ident: b0020
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
– volume: 39
  start-page: 7067
  year: 2011
  end-page: 7083
  ident: b0180
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst Appl
– volume: 1
  start-page: 1
  year: 2011
  end-page: 41
  ident: b0135
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv Adaptive Data Anal
– volume: 30
  start-page: 740
  year: 2009
  end-page: 751
  ident: b0040
  article-title: Forecasting tourism demand with ARMA-based methods
  publication-title: Tourism Manage
– volume: 299
  start-page: 99
  year: 2015
  end-page: 116
  ident: b0085
  article-title: A weighted LSSVM based learning system for time series forecasting
  publication-title: Inf Sci
– volume: 157
  start-page: 183
  year: 2015
  end-page: 194
  ident: b0140
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
– volume: 400
  start-page: 159
  year: 2014
  end-page: 167
  ident: b0130
  article-title: On the computational complexity of the empirical mode decomposition algorithm
  publication-title: Phys A Statist Mech Appl
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: b0185
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renewable Energy
– volume: 24
  start-page: 1446
  year: 2009
  end-page: 1456
  ident: b0010
  article-title: A bilevel stochastic programming approach for retailer futures market trading
  publication-title: Power Syst IEEE Trans
– volume: 511
  start-page: 764
  year: 2014
  end-page: 775
  ident: b0125
  article-title: Monthly stream flow prediction using modified EMD-based support vector machine
  publication-title: J Hydrol
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: b0080
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 142
  start-page: 465
  year: 2016
  end-page: 474
  ident: b0115
  article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM
  publication-title: Atmos Environ
– year: 2001
  ident: b0025
  article-title: Operations management for competitive advantage
– volume: 299
  start-page: 99
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0085
  article-title: A weighted LSSVM based learning system for time series forecasting
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.12.031
– volume: 82
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0075
  article-title: A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.03.001
– volume: 30
  start-page: 1030
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0020
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– volume: 143
  start-page: 472
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0090
  article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.038
– volume: 13
  start-page: 34
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2016.12.134_b0165
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.06.001
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0185
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.03.103
– year: 2001
  ident: 10.1016/j.apenergy.2016.12.134_b0025
– volume: 40
  start-page: 207
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2016.12.134_b0055
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2013.06.017
– volume: 76
  start-page: 536
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0050
  article-title: Forecasting with a noncausal VAR model
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.10.014
– volume: 134
  start-page: 119
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0070
  article-title: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.04.020
– volume: 30
  start-page: 740
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2016.12.134_b0040
  article-title: Forecasting tourism demand with ARMA-based methods
  publication-title: Tourism Manage
  doi: 10.1016/j.tourman.2008.10.016
– volume: 156
  start-page: 251
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0110
  article-title: A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.025
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2016.12.134_b0035
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 36
  start-page: 182
  year: 2013
  ident: 10.1016/j.apenergy.2016.12.134_b0005
  article-title: A bilevel model for electricity retailers' participation in a demand response market environment
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2012.12.010
– volume: 172
  start-page: 132
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0065
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.089
– volume: 511
  start-page: 764
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0125
  article-title: Monthly stream flow prediction using modified EMD-based support vector machine
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.01.062
– volume: 52
  start-page: 1990
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2016.12.134_b0080
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.11.007
– volume: 62
  start-page: 592
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0100
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2013.08.011
– volume: 102
  start-page: 228
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0170
  article-title: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2015.12.002
– volume: 63
  start-page: 353
  issue: 63
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0105
  article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.06.010
– volume: 1
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2016.12.134_b0135
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv Adaptive Data Anal
  doi: 10.1142/S1793536909000047
– volume: 1
  start-page: 36
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2016.12.134_b0160
  article-title: Firefly algorithm: recent advances and applications
  publication-title: Int J Swarm Intell
– volume: 91
  start-page: 601
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0030
  article-title: Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.021
– volume: 89
  start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0145
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.060
– volume: 142
  start-page: 465
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0115
  article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.08.007
– volume: 114
  start-page: 75
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0095
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.02.013
– volume: 400
  start-page: 159
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0130
  article-title: On the computational complexity of the empirical mode decomposition algorithm
  publication-title: Phys A Statist Mech Appl
  doi: 10.1016/j.physa.2014.01.020
– volume: 157
  start-page: 183
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0140
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.014
– volume: 47
  start-page: 98
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0015
  article-title: Efficient modeling and forecasting of electricity spot prices
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2014.10.012
– volume: 104
  start-page: 184
  year: 2016
  ident: 10.1016/j.apenergy.2016.12.134_b0060
  article-title: Using the ensemble kalman filter for electricity load forecasting and analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.070
– volume: 170
  start-page: 117
  year: 2017
  ident: 10.1016/j.apenergy.2016.12.134_b0175
  article-title: Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: a comparative study
  publication-title: Spectrochim Acta Part A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2016.07.016
– volume: 24
  start-page: 1446
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2016.12.134_b0010
  article-title: A bilevel stochastic programming approach for retailer futures market trading
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2009.2019777
– volume: 34
  start-page: 151
  year: 2015
  ident: 10.1016/j.apenergy.2016.12.134_b0045
  article-title: Performance of state space and ARIMA models for consumer retail sales forecasting
  publication-title: Robot Computer-Integrat Manuf
  doi: 10.1016/j.rcim.2014.12.015
– volume: 39
  start-page: 7067
  issue: 8
  year: 2011
  ident: 10.1016/j.apenergy.2016.12.134_b0180
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.039
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0150
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 24
  start-page: 973
  year: 2014
  ident: 10.1016/j.apenergy.2016.12.134_b0120
  article-title: A new short-term load forecasting method of power system based on EEMD and SS-PSO
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1323-5
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.apenergy.2016.12.134_b0155
  article-title: Firefly Algorithm, stochastic test functions and design optimization
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2010.032124
SSID ssj0002120
Score 2.6256082
Snippet •A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further...
In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 390
SubjectTerms algorithms
Australia
Back propagation neural network
electricity
electricity costs
Electricity price forecasting
Fast ensemble empirical mode decomposition
Firefly algorithm
France
markets
Multi-step ahead
neural networks
prices
supply balance
Variational mode decomposition
Title Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
URI https://dx.doi.org/10.1016/j.apenergy.2016.12.134
https://www.proquest.com/docview/2000207547
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvdBD1UJReRRNpV7DEq-dbI6AQFtQERIg7c3yKxC0JBEbVC2H_pn-UWYSh5eEOPRiKZFtWRln5nPyzTeM_ZSWj_Qo8ZF3ehQhpHaRsTEpI2ZW5NIntmVV_j5JxhfiaCInC2y_z4UhWmXw_Z1Pb711uDMIT3NQF8XgjNAu4X9EFNRMKINdpFTFYPvvE82DB2lG7BxR72dZwtfbuvZthh1RvBL6LBgPxVsB6pWrbuPP4Wf2KQBH2O3W9oUt-HKZfXwmJ7jMVg-estawa3htZyvsX5tmG6FBa9DofR101W8KixgcatIVAgSv3uoZsaCByPCXoOFqTvlc0FbLAYp3DqoSmj9VNNUI1cF5YqQH2hc8ysGCLh3snQJpZeI6yo5pDhV6p5viHicxc8jxsefTOejpZXVbNFc3X9nF4cH5_jgK1RkiK3aGDbbSabFjM-5SY4Skkh08FhgJrUmTxHOts5znscEDp8drEyfakiayjZ3R6FlW2WJZlf4bg0yaYZ5RaUEzbIlX3Ok4w16JzfDAadaY7E2ibJAupwoaU9Vz1K5Vb0pFplQxV2jKNTZ4HFd34h3vjsh6i6sX21BhhHl37I9-iyh8R-nHiy59dTejUp-IylMp0vX_mH-DLXHCFEQmlJtssbm9898RETVmq93yW-zD7q_j8ckD9IkQ9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUoHFoOVaFFQD-YSr2GJd442RwpAm1bQJUK0t4sfwWCliRig9By6J_pH2XGcYBWqjhwsZTIjiyPM_OcvHnD2Bdh-EiNUhc5q0YRQmobaROTMmJukkK41HhW5dFxOj5Nvk_EZIHt9bkwRKsMvr_z6d5bhzuDsJqDpiwHvwjtEv5HREHN5AVbSgTP6AS2_fuB58GDNiP2jqj7ozThi23VOJ9iRxyvlL4LxsPkfxHqH1_tA9DBG_Y6IEfY7Sa3whZctcqWH-kJrrK1_Ye0Newa3tvZW_bH59lGaNEGFLpfC135m9IgCIeGhIUA0aszakY0aCA2_BkoOJ9TQhf4cjlAAc9CXUF7U0dThVgdrCNKeuB9wb0eLKjKwtefQGKZOI-qo5pDje7psrzFh-g5FLjuxXQOanpWX5Xt-eU7dnqwf7I3jkJ5hsgkO8MWW2FVsmNybjOtael91SMMhUZnaeq4UnnBi1jjidPhtY5TZUgU2cRWK3Qta2yxqiu3ziAXeljkVFtQDz3zilsV59grNTmeOPUGE71JpAna5VRCYyp7ktqF7E0pyZQy5hJNucEG9-OaTr3jyRF5b3H51z6UGGKeHPu53yISX1L686IqV1_PqNYnwvJMJNnmM56_xV6OT44O5eG34x_v2StOAIOYheIDW2yvrt1HhEet_uS3_x0ehBKM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step+ahead+electricity+price+forecasting+using+a+hybrid+model+based+on+two-layer+decomposition+technique+and+BP+neural+network+optimized+by+firefly+algorithm&rft.jtitle=Applied+energy&rft.au=Wang%2C+Deyun&rft.au=Luo%2C+Hongyuan&rft.au=Grunder%2C+Olivier&rft.au=Lin%2C+Yanbing&rft.date=2017-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=190&rft.spage=390&rft.epage=407&rft_id=info:doi/10.1016%2Fj.apenergy.2016.12.134&rft.externalDocID=S030626191631916X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon