Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
•A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further decompose the high frequency IMFs generated by FEEMD.•The BP model optimized by FA obtains better forecasting performance.•The proposed model is tes...
Saved in:
| Published in | Applied energy Vol. 190; pp. 390 - 407 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.03.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-2619 1872-9118 |
| DOI | 10.1016/j.apenergy.2016.12.134 |
Cover
| Abstract | •A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further decompose the high frequency IMFs generated by FEEMD.•The BP model optimized by FA obtains better forecasting performance.•The proposed model is tested using the real-world data of Australian and French electricity markets.
In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price. |
|---|---|
| AbstractList | In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price. •A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further decompose the high frequency IMFs generated by FEEMD.•The BP model optimized by FA obtains better forecasting performance.•The proposed model is tested using the real-world data of Australian and French electricity markets. In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price. |
| Author | Wang, Deyun Luo, Hongyuan Grunder, Olivier Guo, Haixiang Lin, Yanbing |
| Author_xml | – sequence: 1 givenname: Deyun surname: Wang fullname: Wang, Deyun email: wang.deyun@hotmail.com organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Hongyuan surname: Luo fullname: Luo, Hongyuan organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China – sequence: 3 givenname: Olivier surname: Grunder fullname: Grunder, Olivier organization: Université de Bourgogne Franche-Comté, UTBM, IRTES, Rue Thierry Mieg, Belfort cedex 90010, France – sequence: 4 givenname: Yanbing surname: Lin fullname: Lin, Yanbing organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China – sequence: 5 givenname: Haixiang surname: Guo fullname: Guo, Haixiang organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China |
| BookMark | eNqFkcFu1DAQhi1UJLYtr4B85JLUdrLJrsQBqKAgFcEBztbYnux6cexgO6DwOn1RHC1cuPQyv2Y0_2j0_ZfkwgePhLzgrOaMdzenGib0GA9LLUpfc1Hzpn1CNnzXi2rP-e6CbFjDukp0fP-MXKZ0YowJLtiGPHyaXbZVyjhROCIYig51jlbbvNCpKNIhRNSQsvUHOqe1Aj0uKlpDx2DQUQUJDQ2e5l-hcrBgpAZ1GKeQbLbrHPXR2x8zUvCGvv1CPc4RXJHiiN9pmLId7e9yRC10sBEHt1BwhxBtPo7X5OkALuHzv3pFvr1_9_X2Q3X_-e7j7Zv7SresyaVuDbRM74XplWq3ot81grdcNFr1XYcCYD-Igau27bD0inegO9FvNTcKWN9ckZfnu1MM5deU5WiTRufAY5iTFCs11m_bdbU7r-oYUir_yoJqhLhIzuSaijzJf6nINRXJhSypFOOr_4wFNKyQcgTrHre_PtuxcPhpMcqkLXqNpkDTWZpgHzvxB8ROtCw |
| CitedBy_id | crossref_primary_10_1016_j_eneco_2019_05_026 crossref_primary_10_1007_s10479_022_04908_9 crossref_primary_10_1016_j_enconman_2025_119501 crossref_primary_10_1002_apj_3057 crossref_primary_10_1016_j_gsf_2023_101670 crossref_primary_10_1142_S1469026818500013 crossref_primary_10_1016_j_energy_2019_07_134 crossref_primary_10_1080_23311916_2024_2316458 crossref_primary_10_1016_j_catena_2019_02_012 crossref_primary_10_1016_j_asoc_2024_112222 crossref_primary_10_1007_s00034_020_01393_y crossref_primary_10_3390_en17010078 crossref_primary_10_1016_j_energy_2024_131709 crossref_primary_10_1016_j_resourpol_2021_102195 crossref_primary_10_1016_j_apenergy_2024_123233 crossref_primary_10_1016_j_eneco_2022_106471 crossref_primary_10_1016_j_apenergy_2019_01_213 crossref_primary_10_1016_j_energy_2018_01_112 crossref_primary_10_1016_j_apenergy_2019_113404 crossref_primary_10_1016_j_est_2022_104816 crossref_primary_10_1109_ACCESS_2022_3164077 crossref_primary_10_3390_en14217333 crossref_primary_10_1016_j_enconman_2017_08_014 crossref_primary_10_1016_j_jhydrol_2023_129205 crossref_primary_10_3390_en15228445 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_3390_en11051063 crossref_primary_10_1016_j_compeleceng_2020_106752 crossref_primary_10_1007_s10479_023_05327_0 crossref_primary_10_1007_s13369_019_03780_3 crossref_primary_10_1016_j_apenergy_2023_122430 crossref_primary_10_1088_1361_6501_aabcac crossref_primary_10_1007_s11831_024_10182_8 crossref_primary_10_1016_j_cej_2018_09_129 crossref_primary_10_1016_j_jclepro_2019_118858 crossref_primary_10_3233_JIFS_189454 crossref_primary_10_1155_2021_7653091 crossref_primary_10_1007_s00607_019_00727_2 crossref_primary_10_1016_j_energy_2021_122812 crossref_primary_10_1109_ACCESS_2020_2978169 crossref_primary_10_1007_s12652_021_03444_x crossref_primary_10_3390_s18113704 crossref_primary_10_1016_j_eneco_2019_05_006 crossref_primary_10_1063_1_5045172 crossref_primary_10_1016_j_energy_2021_121082 crossref_primary_10_1111_exsy_13672 crossref_primary_10_3390_electronics8010048 crossref_primary_10_1109_ACCESS_2021_3095335 crossref_primary_10_1016_j_jup_2022_101444 crossref_primary_10_1049_cmu2_12644 crossref_primary_10_1049_gtd2_12763 crossref_primary_10_3390_fi13100241 crossref_primary_10_3390_en10081186 crossref_primary_10_1016_j_jksuci_2018_06_010 crossref_primary_10_3390_su11030652 crossref_primary_10_3390_en17081864 crossref_primary_10_1016_j_ijepes_2020_106122 crossref_primary_10_3389_fbioe_2021_771255 crossref_primary_10_1016_j_apenergy_2020_114985 crossref_primary_10_1007_s00202_018_0732_6 crossref_primary_10_3390_su16219332 crossref_primary_10_1016_j_bspc_2018_12_020 crossref_primary_10_1007_s11269_024_04083_5 crossref_primary_10_2139_ssrn_4191275 crossref_primary_10_3390_s20174657 crossref_primary_10_1109_ACCESS_2022_3177604 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_3390_en11040825 crossref_primary_10_1007_s12667_023_00576_1 crossref_primary_10_1007_s10489_021_03083_x crossref_primary_10_1016_j_apenergy_2018_02_069 crossref_primary_10_1016_j_energy_2018_10_076 crossref_primary_10_3390_en16196767 crossref_primary_10_1016_j_envpol_2021_118575 crossref_primary_10_1016_j_energy_2019_116610 crossref_primary_10_1016_j_measurement_2021_110058 crossref_primary_10_1155_2020_2604915 crossref_primary_10_3390_en12193603 crossref_primary_10_1016_j_apenergy_2021_116688 crossref_primary_10_1016_j_icheatmasstransfer_2021_105674 crossref_primary_10_3390_s19183937 crossref_primary_10_1016_j_apenergy_2018_12_061 crossref_primary_10_1177_0142331219826656 crossref_primary_10_3390_ijerph14070764 crossref_primary_10_1016_j_energy_2021_122052 crossref_primary_10_1007_s11227_019_03064_5 crossref_primary_10_1016_j_asoc_2019_02_006 crossref_primary_10_1016_j_enconman_2017_10_021 crossref_primary_10_1080_10807039_2024_2407149 crossref_primary_10_1016_j_najef_2024_102147 crossref_primary_10_3390_en11071848 crossref_primary_10_1049_iet_gtd_2018_5847 crossref_primary_10_1016_j_energy_2021_120797 crossref_primary_10_1016_j_eswa_2023_122971 crossref_primary_10_1016_j_chaos_2021_111453 crossref_primary_10_1016_j_apenergy_2021_117446 crossref_primary_10_1016_j_jclepro_2020_125628 crossref_primary_10_1007_s11831_022_09860_2 crossref_primary_10_1016_j_apenergy_2019_03_094 crossref_primary_10_1371_journal_pone_0287433 crossref_primary_10_1016_j_energy_2019_116704 crossref_primary_10_1016_j_jclepro_2020_120171 crossref_primary_10_1088_1755_1315_811_1_012021 crossref_primary_10_1016_j_rser_2019_109293 crossref_primary_10_3390_en18051054 crossref_primary_10_1080_02522667_2022_2094551 crossref_primary_10_3390_en16041860 crossref_primary_10_1016_j_enconman_2018_01_010 crossref_primary_10_1016_j_asoc_2023_110018 crossref_primary_10_1016_j_apenergy_2017_11_098 crossref_primary_10_2298_CSIS220807013W crossref_primary_10_21595_jve_2017_18068 crossref_primary_10_1016_j_asoc_2020_106900 crossref_primary_10_1016_j_asoc_2019_105739 crossref_primary_10_1631_jzus_A1600753 crossref_primary_10_1016_j_asoc_2018_04_006 crossref_primary_10_1016_j_ijepes_2018_08_025 crossref_primary_10_1109_TSTE_2019_2926147 crossref_primary_10_1109_ACCESS_2022_3210974 crossref_primary_10_1088_1757_899X_782_3_032040 crossref_primary_10_1007_s11063_021_10651_2 crossref_primary_10_1016_j_apenergy_2019_114345 crossref_primary_10_1016_j_jhydrol_2022_128122 crossref_primary_10_1016_j_scitotenv_2018_08_221 crossref_primary_10_1016_j_energy_2018_08_180 crossref_primary_10_3390_math13071046 crossref_primary_10_1155_2023_5753023 crossref_primary_10_1016_j_measurement_2022_112324 crossref_primary_10_1016_j_ribaf_2023_102132 crossref_primary_10_1007_s12665_021_09696_2 crossref_primary_10_1155_2022_2128370 crossref_primary_10_1016_j_apenergy_2017_05_080 crossref_primary_10_1016_j_energy_2018_08_069 crossref_primary_10_1016_j_rser_2019_03_040 crossref_primary_10_3390_en14144378 crossref_primary_10_1016_j_renene_2021_04_041 crossref_primary_10_1016_j_cie_2023_109834 crossref_primary_10_1016_j_energy_2018_07_005 crossref_primary_10_3233_JCM_215783 crossref_primary_10_1063_1_5120470 crossref_primary_10_1177_09544089231160492 crossref_primary_10_1016_j_energy_2022_123366 crossref_primary_10_1088_1742_6596_1324_1_012013 crossref_primary_10_1016_j_enconman_2017_09_005 crossref_primary_10_1016_j_energy_2022_124212 crossref_primary_10_1016_j_heliyon_2023_e20839 crossref_primary_10_1088_1361_6501_acc67d crossref_primary_10_1016_j_applthermaleng_2023_120040 crossref_primary_10_1016_j_ijepes_2019_03_056 crossref_primary_10_1007_s10661_018_7012_9 crossref_primary_10_3390_en13215675 crossref_primary_10_1016_j_energy_2020_118784 crossref_primary_10_1016_j_energy_2022_126099 crossref_primary_10_1016_j_mlwa_2023_100505 crossref_primary_10_1007_s11265_017_1278_y crossref_primary_10_1016_j_epsr_2018_11_021 crossref_primary_10_1177_01423312211027027 crossref_primary_10_1016_j_egyr_2021_08_103 crossref_primary_10_1016_j_apenergy_2024_123058 crossref_primary_10_1016_j_jhydrol_2018_12_060 crossref_primary_10_1155_2021_1026978 crossref_primary_10_3390_land14030454 crossref_primary_10_1016_j_knosys_2021_107038 crossref_primary_10_1109_TIA_2022_3198393 crossref_primary_10_1016_j_engappai_2024_108435 crossref_primary_10_3390_w16111556 crossref_primary_10_1016_j_asoc_2023_111040 crossref_primary_10_3390_su11040987 crossref_primary_10_3390_ma18010139 crossref_primary_10_1016_j_apenergy_2023_122059 crossref_primary_10_1109_ACCESS_2023_3241239 crossref_primary_10_1016_j_ins_2024_121840 crossref_primary_10_1016_j_energy_2021_121587 crossref_primary_10_3390_su142315522 crossref_primary_10_1007_s00500_019_04161_6 crossref_primary_10_1016_j_apenergy_2020_115801 crossref_primary_10_1016_j_energy_2018_05_052 crossref_primary_10_1016_j_applthermaleng_2025_125761 crossref_primary_10_32604_cmc_2020_013131 crossref_primary_10_1016_j_apenergy_2022_118752 crossref_primary_10_1016_j_asoc_2019_105799 crossref_primary_10_1016_j_energy_2019_06_132 crossref_primary_10_1016_j_enpol_2020_111311 crossref_primary_10_1016_j_resourpol_2023_104059 crossref_primary_10_1016_j_energy_2018_04_133 crossref_primary_10_1108_JM2_11_2018_0184 crossref_primary_10_1016_j_energy_2024_132820 crossref_primary_10_1016_j_renene_2017_06_095 crossref_primary_10_3390_app15031055 crossref_primary_10_1016_j_energy_2022_126561 crossref_primary_10_3390_en12142665 crossref_primary_10_1016_j_applthermaleng_2018_12_048 crossref_primary_10_1155_2022_5597662 crossref_primary_10_1016_j_apenergy_2019_114087 crossref_primary_10_1007_s00521_020_04996_3 crossref_primary_10_1007_s11227_021_04082_y crossref_primary_10_1016_j_eswa_2024_124690 crossref_primary_10_1007_s12145_023_01018_3 crossref_primary_10_1007_s12555_017_0085_3 crossref_primary_10_1109_ACCESS_2019_2906895 crossref_primary_10_1016_j_chaos_2023_113704 crossref_primary_10_1016_j_energy_2023_129925 crossref_primary_10_1016_j_egyai_2020_100009 crossref_primary_10_1016_j_resourpol_2018_07_012 crossref_primary_10_1177_0958305X18768819 crossref_primary_10_3390_app10010390 crossref_primary_10_1016_j_ijepes_2022_108092 crossref_primary_10_1088_1674_1056_ad9454 crossref_primary_10_1016_j_apenergy_2019_03_129 crossref_primary_10_1016_j_apenergy_2020_115460 crossref_primary_10_1016_j_epsr_2021_107762 crossref_primary_10_14201_ADCAIJ2020947182 crossref_primary_10_3390_info15120817 crossref_primary_10_1109_ACCESS_2020_3038863 crossref_primary_10_1016_j_apenergy_2021_116983 crossref_primary_10_3389_fsufs_2024_1334098 crossref_primary_10_1109_ACCESS_2020_3008797 crossref_primary_10_1016_j_renene_2024_120350 crossref_primary_10_1016_j_apenergy_2019_05_068 crossref_primary_10_1016_j_isci_2022_105804 crossref_primary_10_2139_ssrn_3270251 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1016_j_apenergy_2019_114183 crossref_primary_10_1016_j_enconman_2017_10_085 crossref_primary_10_1016_j_apenergy_2024_123920 crossref_primary_10_1016_j_apenergy_2018_02_140 crossref_primary_10_1016_j_resourpol_2022_102962 crossref_primary_10_1109_ACCESS_2019_2902510 crossref_primary_10_1016_j_epsr_2021_107416 crossref_primary_10_1109_ACCESS_2019_2943026 crossref_primary_10_1016_j_geoderma_2018_05_035 |
| Cites_doi | 10.1016/j.ins.2014.12.031 10.1016/j.ijepes.2016.03.001 10.1016/j.ijforecast.2014.08.008 10.1016/j.apenergy.2015.01.038 10.1016/j.swevo.2013.06.001 10.1016/j.renene.2016.03.103 10.1016/j.eneco.2013.06.017 10.1016/j.csda.2013.10.014 10.1016/j.solener.2016.04.020 10.1016/j.tourman.2008.10.016 10.1016/j.apenergy.2015.07.025 10.1016/j.rser.2008.02.002 10.1016/j.eneco.2012.12.010 10.1016/j.apenergy.2016.03.089 10.1016/j.jhydrol.2014.01.062 10.1016/j.enconman.2010.11.007 10.1016/j.renene.2013.08.011 10.1016/j.ijthermalsci.2015.12.002 10.1016/j.ijepes.2014.06.010 10.1142/S1793536909000047 10.1016/j.energy.2015.08.021 10.1016/j.enconman.2014.09.060 10.1016/j.atmosenv.2016.08.007 10.1016/j.enconman.2016.02.013 10.1016/j.physa.2014.01.020 10.1016/j.apenergy.2015.08.014 10.1016/j.eneco.2014.10.012 10.1016/j.energy.2016.03.070 10.1016/j.saa.2016.07.016 10.1109/TPWRS.2009.2019777 10.1016/j.rcim.2014.12.015 10.1016/j.eswa.2012.01.039 10.1109/TSP.2013.2288675 10.1007/s00521-012-1323-5 10.1504/IJBIC.2010.032124 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2016.12.134 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 407 |
| ExternalDocumentID | 10_1016_j_apenergy_2016_12_134 S030626191631916X |
| GeographicLocations | Australia France |
| GeographicLocations_xml | – name: France – name: Australia |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c403t-c45da40c92d7bb452783214123cb766e2aa9f2f1b446e66eb16ac6275c1dba073 |
| IEDL.DBID | .~1 |
| ISSN | 0306-2619 |
| IngestDate | Mon Sep 29 02:36:09 EDT 2025 Thu Oct 09 00:40:10 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Fri Feb 23 02:32:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electricity price forecasting Variational mode decomposition Multi-step ahead Back propagation neural network Fast ensemble empirical mode decomposition Firefly algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-c45da40c92d7bb452783214123cb766e2aa9f2f1b446e66eb16ac6275c1dba073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000207547 |
| PQPubID | 24069 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2000207547 crossref_primary_10_1016_j_apenergy_2016_12_134 crossref_citationtrail_10_1016_j_apenergy_2016_12_134 elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_12_134 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-15 |
| PublicationDateYYYYMMDD | 2017-03-15 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu, Huang (b0135) 2011; 1 Fister, Fister, Yang, Brest (b0165) 2013; 13 Wang, Wang, Jiang (b0090) 2015; 143 Chu (b0040) 2009; 30 Wang, Zhang, Wu, Wang (b0185) 2016; 94 Attia, Nassar, EI-Zeiny, Serag (b0175) 2017; 170 Lei, Luan, Jiang, Liu, Zhang (b0035) 2009; 13 Mohanty (b0170) 2016; 102 Taieb, Bontempi, Atiya, Sorjamaa (b0180) 2011; 39 Zugno, Morales, Pinson, Madsen (b0005) 2013; 36 Chen, Lee (b0085) 2015; 299 Weron (b0020) 2014; 30 Chase, Jacobs, Aquilano (b0025) 2001 He, Yu, Tang (b0030) 2015; 91 Hassan, Khosravi, Jaafar, Khanesar (b0075) 2016; 82 Gutierrez-Corea, Manso-Callejo, Moreno-Regidor, Manrique-Sancho (b0070) 2016; 134 Nyberg, Saikkonen (b0050) 2014; 76 Wang, Yeh, Young, Hu, Lo (b0130) 2014; 400 Ausati, Amanollahi (b0115) 2016; 142 Huang, Chang, Huang, Chen (b0125) 2014; 511 Carrión, Arroyo, Conejo (b0010) 2009; 24 Ziel, Steinert, Husmann (b0015) 2015; 47 Xiong, Bao, Hu (b0105) 2014; 63 Liu, Sun, Zeng (b0120) 2014; 24 Zhou, Jing, Gong (b0080) 2011; 52 Panapakidis, Dagoumas (b0065) 2016; 172 Meng, Ge, Chen (b0095) 2016; 114 Liu, Tian, Li (b0145) 2015; 89 Dragomiretskiy, Zosso (b0150) 2014; 62 Yang, He (b0160) 2013; 1 Takeda, Tamura, Sato (b0060) 2016; 104 Liu, Niu, Wang, Fan (b0100) 2014; 62 Yang (b0155) 2010; 2 Byun, Cho (b0055) 2013; 40 Lean, Wang, Tang (b0110) 2015; 156 Liu, Tian, Liang, Li (b0140) 2015; 157 Ramos, Santos, Rui (b0045) 2015; 34 Chu (10.1016/j.apenergy.2016.12.134_b0040) 2009; 30 Ramos (10.1016/j.apenergy.2016.12.134_b0045) 2015; 34 Wang (10.1016/j.apenergy.2016.12.134_b0090) 2015; 143 Zugno (10.1016/j.apenergy.2016.12.134_b0005) 2013; 36 Wang (10.1016/j.apenergy.2016.12.134_b0185) 2016; 94 Zhou (10.1016/j.apenergy.2016.12.134_b0080) 2011; 52 Byun (10.1016/j.apenergy.2016.12.134_b0055) 2013; 40 Gutierrez-Corea (10.1016/j.apenergy.2016.12.134_b0070) 2016; 134 Lean (10.1016/j.apenergy.2016.12.134_b0110) 2015; 156 Ausati (10.1016/j.apenergy.2016.12.134_b0115) 2016; 142 Nyberg (10.1016/j.apenergy.2016.12.134_b0050) 2014; 76 Lei (10.1016/j.apenergy.2016.12.134_b0035) 2009; 13 Weron (10.1016/j.apenergy.2016.12.134_b0020) 2014; 30 Taieb (10.1016/j.apenergy.2016.12.134_b0180) 2011; 39 Mohanty (10.1016/j.apenergy.2016.12.134_b0170) 2016; 102 Liu (10.1016/j.apenergy.2016.12.134_b0120) 2014; 24 Huang (10.1016/j.apenergy.2016.12.134_b0125) 2014; 511 Hassan (10.1016/j.apenergy.2016.12.134_b0075) 2016; 82 Dragomiretskiy (10.1016/j.apenergy.2016.12.134_b0150) 2014; 62 Carrión (10.1016/j.apenergy.2016.12.134_b0010) 2009; 24 Attia (10.1016/j.apenergy.2016.12.134_b0175) 2017; 170 Yang (10.1016/j.apenergy.2016.12.134_b0160) 2013; 1 Xiong (10.1016/j.apenergy.2016.12.134_b0105) 2014; 63 Liu (10.1016/j.apenergy.2016.12.134_b0145) 2015; 89 Fister (10.1016/j.apenergy.2016.12.134_b0165) 2013; 13 Yang (10.1016/j.apenergy.2016.12.134_b0155) 2010; 2 Liu (10.1016/j.apenergy.2016.12.134_b0140) 2015; 157 Chase (10.1016/j.apenergy.2016.12.134_b0025) 2001 He (10.1016/j.apenergy.2016.12.134_b0030) 2015; 91 Meng (10.1016/j.apenergy.2016.12.134_b0095) 2016; 114 Wu (10.1016/j.apenergy.2016.12.134_b0135) 2011; 1 Panapakidis (10.1016/j.apenergy.2016.12.134_b0065) 2016; 172 Wang (10.1016/j.apenergy.2016.12.134_b0130) 2014; 400 Takeda (10.1016/j.apenergy.2016.12.134_b0060) 2016; 104 Ziel (10.1016/j.apenergy.2016.12.134_b0015) 2015; 47 Chen (10.1016/j.apenergy.2016.12.134_b0085) 2015; 299 Liu (10.1016/j.apenergy.2016.12.134_b0100) 2014; 62 |
| References_xml | – volume: 62 start-page: 592 year: 2014 end-page: 597 ident: b0100 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renewable Energy – volume: 1 start-page: 36 year: 2013 end-page: 50 ident: b0160 article-title: Firefly algorithm: recent advances and applications publication-title: Int J Swarm Intell – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: b0165 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol Comput – volume: 40 start-page: 207 year: 2013 end-page: 221 ident: b0055 article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities publication-title: Energy Econ – volume: 156 start-page: 251 year: 2015 end-page: 267 ident: b0110 article-title: A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting publication-title: Appl Energy – volume: 104 start-page: 184 year: 2016 end-page: 198 ident: b0060 article-title: Using the ensemble kalman filter for electricity load forecasting and analysis publication-title: Energy – volume: 24 start-page: 973 year: 2014 end-page: 983 ident: b0120 article-title: A new short-term load forecasting method of power system based on EEMD and SS-PSO publication-title: Neural Comput Appl – volume: 89 start-page: 1 year: 2015 end-page: 11 ident: b0145 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage – volume: 114 start-page: 75 year: 2016 end-page: 88 ident: b0095 article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm publication-title: Energy Convers Manage – volume: 170 start-page: 117 year: 2017 end-page: 123 ident: b0175 article-title: Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: a comparative study publication-title: Spectrochim Acta Part A Mol Biomol Spectrosc – volume: 91 start-page: 601 year: 2015 end-page: 609 ident: b0030 article-title: Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology publication-title: Energy – volume: 134 start-page: 119 year: 2016 end-page: 131 ident: b0070 article-title: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations publication-title: Sol Energy – volume: 36 start-page: 182 year: 2013 end-page: 197 ident: b0005 article-title: A bilevel model for electricity retailers' participation in a demand response market environment publication-title: Energy Econ – volume: 34 start-page: 151 year: 2015 end-page: 163 ident: b0045 article-title: Performance of state space and ARIMA models for consumer retail sales forecasting publication-title: Robot Computer-Integrat Manuf – volume: 76 start-page: 536 year: 2014 end-page: 555 ident: b0050 article-title: Forecasting with a noncausal VAR model publication-title: Comput Stat Data Anal – volume: 143 start-page: 472 year: 2015 end-page: 488 ident: b0090 article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China publication-title: Appl Energy – volume: 47 start-page: 98 year: 2015 end-page: 111 ident: b0015 article-title: Efficient modeling and forecasting of electricity spot prices publication-title: Energy Econ – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b0155 article-title: Firefly Algorithm, stochastic test functions and design optimization publication-title: Int J Bio-Inspired Comput – volume: 102 start-page: 228 year: 2016 end-page: 238 ident: b0170 article-title: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view publication-title: Int J Therm Sci – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0150 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process – volume: 13 start-page: 915 year: 2009 end-page: 920 ident: b0035 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev – volume: 82 start-page: 1 year: 2016 end-page: 10 ident: b0075 article-title: A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting publication-title: Int J Electr Power Energy Syst – volume: 172 start-page: 132 year: 2016 end-page: 151 ident: b0065 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy – volume: 63 start-page: 353 year: 2014 end-page: 362 ident: b0105 article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework publication-title: Int J Electr Power Energy Syst – volume: 30 start-page: 1030 year: 2014 end-page: 1081 ident: b0020 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast – volume: 39 start-page: 7067 year: 2011 end-page: 7083 ident: b0180 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst Appl – volume: 1 start-page: 1 year: 2011 end-page: 41 ident: b0135 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv Adaptive Data Anal – volume: 30 start-page: 740 year: 2009 end-page: 751 ident: b0040 article-title: Forecasting tourism demand with ARMA-based methods publication-title: Tourism Manage – volume: 299 start-page: 99 year: 2015 end-page: 116 ident: b0085 article-title: A weighted LSSVM based learning system for time series forecasting publication-title: Inf Sci – volume: 157 start-page: 183 year: 2015 end-page: 194 ident: b0140 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energy – volume: 400 start-page: 159 year: 2014 end-page: 167 ident: b0130 article-title: On the computational complexity of the empirical mode decomposition algorithm publication-title: Phys A Statist Mech Appl – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: b0185 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renewable Energy – volume: 24 start-page: 1446 year: 2009 end-page: 1456 ident: b0010 article-title: A bilevel stochastic programming approach for retailer futures market trading publication-title: Power Syst IEEE Trans – volume: 511 start-page: 764 year: 2014 end-page: 775 ident: b0125 article-title: Monthly stream flow prediction using modified EMD-based support vector machine publication-title: J Hydrol – volume: 52 start-page: 1990 year: 2011 end-page: 1998 ident: b0080 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers Manage – volume: 142 start-page: 465 year: 2016 end-page: 474 ident: b0115 article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM publication-title: Atmos Environ – year: 2001 ident: b0025 article-title: Operations management for competitive advantage – volume: 299 start-page: 99 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0085 article-title: A weighted LSSVM based learning system for time series forecasting publication-title: Inf Sci doi: 10.1016/j.ins.2014.12.031 – volume: 82 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0075 article-title: A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.03.001 – volume: 30 start-page: 1030 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0020 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2014.08.008 – volume: 143 start-page: 472 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0090 article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.038 – volume: 13 start-page: 34 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2016.12.134_b0165 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.06.001 – volume: 94 start-page: 629 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0185 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renewable Energy doi: 10.1016/j.renene.2016.03.103 – year: 2001 ident: 10.1016/j.apenergy.2016.12.134_b0025 – volume: 40 start-page: 207 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2016.12.134_b0055 article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities publication-title: Energy Econ doi: 10.1016/j.eneco.2013.06.017 – volume: 76 start-page: 536 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0050 article-title: Forecasting with a noncausal VAR model publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.10.014 – volume: 134 start-page: 119 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0070 article-title: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations publication-title: Sol Energy doi: 10.1016/j.solener.2016.04.020 – volume: 30 start-page: 740 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2016.12.134_b0040 article-title: Forecasting tourism demand with ARMA-based methods publication-title: Tourism Manage doi: 10.1016/j.tourman.2008.10.016 – volume: 156 start-page: 251 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0110 article-title: A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.025 – volume: 13 start-page: 915 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2016.12.134_b0035 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.02.002 – volume: 36 start-page: 182 year: 2013 ident: 10.1016/j.apenergy.2016.12.134_b0005 article-title: A bilevel model for electricity retailers' participation in a demand response market environment publication-title: Energy Econ doi: 10.1016/j.eneco.2012.12.010 – volume: 172 start-page: 132 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0065 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.089 – volume: 511 start-page: 764 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0125 article-title: Monthly stream flow prediction using modified EMD-based support vector machine publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.01.062 – volume: 52 start-page: 1990 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2016.12.134_b0080 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.11.007 – volume: 62 start-page: 592 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0100 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renewable Energy doi: 10.1016/j.renene.2013.08.011 – volume: 102 start-page: 228 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0170 article-title: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2015.12.002 – volume: 63 start-page: 353 issue: 63 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0105 article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.06.010 – volume: 1 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2016.12.134_b0135 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv Adaptive Data Anal doi: 10.1142/S1793536909000047 – volume: 1 start-page: 36 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2016.12.134_b0160 article-title: Firefly algorithm: recent advances and applications publication-title: Int J Swarm Intell – volume: 91 start-page: 601 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0030 article-title: Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology publication-title: Energy doi: 10.1016/j.energy.2015.08.021 – volume: 89 start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0145 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.09.060 – volume: 142 start-page: 465 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0115 article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2016.08.007 – volume: 114 start-page: 75 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0095 article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.02.013 – volume: 400 start-page: 159 issue: 2 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0130 article-title: On the computational complexity of the empirical mode decomposition algorithm publication-title: Phys A Statist Mech Appl doi: 10.1016/j.physa.2014.01.020 – volume: 157 start-page: 183 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0140 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.014 – volume: 47 start-page: 98 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0015 article-title: Efficient modeling and forecasting of electricity spot prices publication-title: Energy Econ doi: 10.1016/j.eneco.2014.10.012 – volume: 104 start-page: 184 year: 2016 ident: 10.1016/j.apenergy.2016.12.134_b0060 article-title: Using the ensemble kalman filter for electricity load forecasting and analysis publication-title: Energy doi: 10.1016/j.energy.2016.03.070 – volume: 170 start-page: 117 year: 2017 ident: 10.1016/j.apenergy.2016.12.134_b0175 article-title: Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: a comparative study publication-title: Spectrochim Acta Part A Mol Biomol Spectrosc doi: 10.1016/j.saa.2016.07.016 – volume: 24 start-page: 1446 issue: 3 year: 2009 ident: 10.1016/j.apenergy.2016.12.134_b0010 article-title: A bilevel stochastic programming approach for retailer futures market trading publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2009.2019777 – volume: 34 start-page: 151 year: 2015 ident: 10.1016/j.apenergy.2016.12.134_b0045 article-title: Performance of state space and ARIMA models for consumer retail sales forecasting publication-title: Robot Computer-Integrat Manuf doi: 10.1016/j.rcim.2014.12.015 – volume: 39 start-page: 7067 issue: 8 year: 2011 ident: 10.1016/j.apenergy.2016.12.134_b0180 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.01.039 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0150 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – volume: 24 start-page: 973 year: 2014 ident: 10.1016/j.apenergy.2016.12.134_b0120 article-title: A new short-term load forecasting method of power system based on EEMD and SS-PSO publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1323-5 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.apenergy.2016.12.134_b0155 article-title: Firefly Algorithm, stochastic test functions and design optimization publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2010.032124 |
| SSID | ssj0002120 |
| Score | 2.6256082 |
| Snippet | •A hybrid two-layer decomposition-ensemble model is proposed for multi-step ahead electricity price forecasting.•VMD is specifically applied to further... In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 390 |
| SubjectTerms | algorithms Australia Back propagation neural network electricity electricity costs Electricity price forecasting Fast ensemble empirical mode decomposition Firefly algorithm France markets Multi-step ahead neural networks prices supply balance Variational mode decomposition |
| Title | Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm |
| URI | https://dx.doi.org/10.1016/j.apenergy.2016.12.134 https://www.proquest.com/docview/2000207547 |
| Volume | 190 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvdBD1UJReRRNpV7DEq-dbI6AQFtQERIg7c3yKxC0JBEbVC2H_pn-UWYSh5eEOPRiKZFtWRln5nPyzTeM_ZSWj_Qo8ZF3ehQhpHaRsTEpI2ZW5NIntmVV_j5JxhfiaCInC2y_z4UhWmXw_Z1Pb711uDMIT3NQF8XgjNAu4X9EFNRMKINdpFTFYPvvE82DB2lG7BxR72dZwtfbuvZthh1RvBL6LBgPxVsB6pWrbuPP4Wf2KQBH2O3W9oUt-HKZfXwmJ7jMVg-estawa3htZyvsX5tmG6FBa9DofR101W8KixgcatIVAgSv3uoZsaCByPCXoOFqTvlc0FbLAYp3DqoSmj9VNNUI1cF5YqQH2hc8ysGCLh3snQJpZeI6yo5pDhV6p5viHicxc8jxsefTOejpZXVbNFc3X9nF4cH5_jgK1RkiK3aGDbbSabFjM-5SY4Skkh08FhgJrUmTxHOts5znscEDp8drEyfakiayjZ3R6FlW2WJZlf4bg0yaYZ5RaUEzbIlX3Ok4w16JzfDAadaY7E2ibJAupwoaU9Vz1K5Vb0pFplQxV2jKNTZ4HFd34h3vjsh6i6sX21BhhHl37I9-iyh8R-nHiy59dTejUp-IylMp0vX_mH-DLXHCFEQmlJtssbm9898RETVmq93yW-zD7q_j8ckD9IkQ9w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUoHFoOVaFFQD-YSr2GJd442RwpAm1bQJUK0t4sfwWCliRig9By6J_pH2XGcYBWqjhwsZTIjiyPM_OcvHnD2Bdh-EiNUhc5q0YRQmobaROTMmJukkK41HhW5dFxOj5Nvk_EZIHt9bkwRKsMvr_z6d5bhzuDsJqDpiwHvwjtEv5HREHN5AVbSgTP6AS2_fuB58GDNiP2jqj7ozThi23VOJ9iRxyvlL4LxsPkfxHqH1_tA9DBG_Y6IEfY7Sa3whZctcqWH-kJrrK1_Ye0Newa3tvZW_bH59lGaNEGFLpfC135m9IgCIeGhIUA0aszakY0aCA2_BkoOJ9TQhf4cjlAAc9CXUF7U0dThVgdrCNKeuB9wb0eLKjKwtefQGKZOI-qo5pDje7psrzFh-g5FLjuxXQOanpWX5Xt-eU7dnqwf7I3jkJ5hsgkO8MWW2FVsmNybjOtael91SMMhUZnaeq4UnnBi1jjidPhtY5TZUgU2cRWK3Qta2yxqiu3ziAXeljkVFtQDz3zilsV59grNTmeOPUGE71JpAna5VRCYyp7ktqF7E0pyZQy5hJNucEG9-OaTr3jyRF5b3H51z6UGGKeHPu53yISX1L686IqV1_PqNYnwvJMJNnmM56_xV6OT44O5eG34x_v2StOAIOYheIDW2yvrt1HhEet_uS3_x0ehBKM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step+ahead+electricity+price+forecasting+using+a+hybrid+model+based+on+two-layer+decomposition+technique+and+BP+neural+network+optimized+by+firefly+algorithm&rft.jtitle=Applied+energy&rft.au=Wang%2C+Deyun&rft.au=Luo%2C+Hongyuan&rft.au=Grunder%2C+Olivier&rft.au=Lin%2C+Yanbing&rft.date=2017-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=190&rft.spage=390&rft.epage=407&rft_id=info:doi/10.1016%2Fj.apenergy.2016.12.134&rft.externalDocID=S030626191631916X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |