Enhancing Human Key Point Identification: A Comparative Study of the High-Resolution VICON Dataset and COCO Dataset Using BPNET

Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the training of neu...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 11; p. 4351
Main Authors Lee, Yunju, Lama, Bibash, Joo, Sunghwan, Kwon, Jaerock
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14114351

Cover

Abstract Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the training of neural networks to estimate 2D key joint positions from images and videos. The study involved 25 healthy adults (17 males, 8 females), executing normal gait for 2 to 3 s. The VICON system captured 3D ground truth data, while the three 2D cameras collected images from different perspectives (0°, 45°, and 135°). The dataset was used to train the Body Pose Network (BPNET), a popular neural network model developed by NVIDIA TAO. Additionally, a comparison entails another BPNET model trained on the COCO 2017 dataset, featuring over 118,000 annotated images. Notably, the proposed dataset exhibited a higher level of accuracy (14.5%) than COCO 2017, despite comprising one-fourth of the image count (23,741 annotated image). This substantial reduction in data size translates to improvements in computational efficiency during model training. Furthermore, the unique dataset’s emphasis on gait and precise prediction of key joint positions during normal gait movements distinguish it from existing alternatives. This study has implications ranging from gait-based person identification, and non-invasive concussion detection through sports temporal analysis, to pathologic gait pattern identification.
AbstractList Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the training of neural networks to estimate 2D key joint positions from images and videos. The study involved 25 healthy adults (17 males, 8 females), executing normal gait for 2 to 3 s. The VICON system captured 3D ground truth data, while the three 2D cameras collected images from different perspectives (0°, 45°, and 135°). The dataset was used to train the Body Pose Network (BPNET), a popular neural network model developed by NVIDIA TAO. Additionally, a comparison entails another BPNET model trained on the COCO 2017 dataset, featuring over 118,000 annotated images. Notably, the proposed dataset exhibited a higher level of accuracy (14.5%) than COCO 2017, despite comprising one-fourth of the image count (23,741 annotated image). This substantial reduction in data size translates to improvements in computational efficiency during model training. Furthermore, the unique dataset’s emphasis on gait and precise prediction of key joint positions during normal gait movements distinguish it from existing alternatives. This study has implications ranging from gait-based person identification, and non-invasive concussion detection through sports temporal analysis, to pathologic gait pattern identification.
Audience Academic
Author Lama, Bibash
Lee, Yunju
Kwon, Jaerock
Joo, Sunghwan
Author_xml – sequence: 1
  givenname: Yunju
  orcidid: 0000-0001-7445-6148
  surname: Lee
  fullname: Lee, Yunju
– sequence: 2
  givenname: Bibash
  surname: Lama
  fullname: Lama, Bibash
– sequence: 3
  givenname: Sunghwan
  orcidid: 0000-0003-0060-2207
  surname: Joo
  fullname: Joo, Sunghwan
– sequence: 4
  givenname: Jaerock
  orcidid: 0000-0002-5687-6998
  surname: Kwon
  fullname: Kwon, Jaerock
BookMark eNqFkV1v0zAUhiM0JMbYFX_AEpeQ4a85CXcllLViWico3EYn_mhdpXbmOKBe7a_jLmiaEBL2he2j533Psd6X2YnzTmfZa4IvGKvwe-h7wgnh7JI8y04pLkTOOClOntxfZOfDsMNpVYSVBJ9m93O3BSet26DFuAeHvugDuvXWRbRU2kVrrIRovfuAZqj2-x5Cev7U6Fsc1QF5g-JWo4XdbPOvevDdeGTRj2W9ukGfIMKgIwKnUL2qV4-F78Ox38fbm_n6VfbcQDfo8z_nWbb-PF_Xi_x6dbWsZ9e55JjFXJJCqIJLDsRwjHWJoaCaltiwUlPgBjMoBZBCUykrrjUm0Cot2wpz3mp2li0nW-Vh1_TB7iEcGg-2eSj4sGkgRCs73QgjSqYqoVpBOb1koFirMG1NCUJJQZPXu8lrdD0cfkHXPRoS3ByjaJ5EkfA3E94HfzfqITY7PwaXPtswLAqOK1pWibqYqA2kGawzPgaQaSu9tzIFbWyqz4qqqDCmnCfB20kggx-GoM1_hiB_0dLGh1xTG9v9U_MbBNy3RQ
CitedBy_id crossref_primary_10_1080_09544828_2025_2481537
Cites_doi 10.1016/j.jmsy.2018.01.003
10.1186/s40798-018-0139-y
10.1109/CVPR.2018.00762
10.1001/jamainternmed.2018.7117
10.1097/00002060-199905000-00019
10.4324/9781003217732
10.1109/CVPR.2019.00584
10.1109/TPAMI.2022.3222784
10.1155/2018/7068349
10.1109/EMBC44109.2020.9176120
10.3390/app9081526
10.1109/ACCESS.2020.3003652
10.1002/asmb.2209
10.1093/ptj/pzz097
10.1007/s11263-009-0273-6
10.1016/j.jobe.2020.101827
10.1016/j.gaitpost.2022.03.008
10.1109/ICCMC48092.2020.ICCMC-0001
10.1007/s10462-018-09679-z
10.1016/j.tust.2020.103677
10.1007/s40747-020-00244-2
10.1109/34.888718
10.1016/j.cviu.2021.103275
10.1109/JSEN.2018.2876624
10.1109/CVPR.2011.5995316
10.1109/CVPR52688.2022.01959
10.1007/978-3-030-17795-9
10.1007/978-3-319-10602-1_48
10.1038/s41746-020-00376-2
10.1109/TPAMI.2013.248
10.1109/COMITCon.2019.8862448
10.1109/CVPR.2014.471
10.3390/s19235297
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app14114351
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_6f683d96db624253ad3bd02bf8a6dc62
10.3390/app14114351
A797900244
10_3390_app14114351
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c403t-c176d74c4a1f400e80a72e280f38e2a4f03a86a17e2cc94ee01abdecb9044be3
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Fri Oct 03 12:43:07 EDT 2025
Sun Sep 07 11:00:05 EDT 2025
Mon Jun 30 05:52:45 EDT 2025
Mon Oct 20 16:59:20 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Thu Oct 16 04:27:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-c176d74c4a1f400e80a72e280f38e2a4f03a86a17e2cc94ee01abdecb9044be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0060-2207
0000-0002-5687-6998
0000-0001-7445-6148
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/app14114351
PQID 3067409289
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_6f683d96db624253ad3bd02bf8a6dc62
unpaywall_primary_10_3390_app14114351
proquest_journals_3067409289
gale_infotracacademiconefile_A797900244
crossref_primary_10_3390_app14114351
crossref_citationtrail_10_3390_app14114351
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Desmarais (ref_43) 2021; 212
ref_50
Sigal (ref_40) 2010; 87
ref_14
ref_13
ref_12
ref_11
ref_10
ref_52
ref_51
Naeemabadi (ref_15) 2019; 19
ref_18
ref_17
ref_16
Colyer (ref_3) 2018; 4
Nguyen (ref_9) 2019; 52
ref_21
ref_20
ref_29
ref_27
Wang (ref_22) 2018; 48
Fang (ref_7) 2022; 45
Huang (ref_25) 2021; 108
Liu (ref_44) 2022; 55
ref_36
ref_35
ref_31
Cui (ref_34) 2020; 8
Esteva (ref_30) 2021; 4
Voulodimos (ref_28) 2018; 2018
Ionescu (ref_39) 2014; 36
Cooper (ref_2) 1999; 78
ref_38
ref_37
Akinosho (ref_24) 2020; 32
Zhang (ref_49) 2000; 22
Heaton (ref_23) 2017; 33
Parks (ref_19) 2019; 99
ref_47
ref_46
ref_45
Khan (ref_33) 2021; 9
ref_42
ref_41
Wang (ref_26) 2019; 179
ref_1
ref_48
Vafadar (ref_32) 2022; 94
ref_8
ref_5
ref_4
ref_6
References_xml – volume: 48
  start-page: 144
  year: 2018
  ident: ref_22
  article-title: Deep learning for smart manufacturing: Methods and applications
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 4
  start-page: 24
  year: 2018
  ident: ref_3
  article-title: A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System
  publication-title: Sports Med. Open
  doi: 10.1186/s40798-018-0139-y
– ident: ref_5
– ident: ref_6
  doi: 10.1109/CVPR.2018.00762
– volume: 179
  start-page: 293
  year: 2019
  ident: ref_26
  article-title: Deep Learning in Medicine—Promise, Progress, and Challenges
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2018.7117
– ident: ref_51
– volume: 78
  start-page: 278
  year: 1999
  ident: ref_2
  article-title: Gait Analysis in Rehabilitation Medicine: A Brief Report: 1
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/00002060-199905000-00019
– ident: ref_27
  doi: 10.4324/9781003217732
– ident: ref_14
  doi: 10.1109/CVPR.2019.00584
– volume: 45
  start-page: 7157
  year: 2022
  ident: ref_7
  article-title: AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3222784
– ident: ref_16
– volume: 2018
  start-page: 7068349
  year: 2018
  ident: ref_28
  article-title: Deep Learning for Computer Vision: A Brief Review
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
– ident: ref_31
  doi: 10.1109/EMBC44109.2020.9176120
– ident: ref_29
  doi: 10.3390/app9081526
– ident: ref_42
– ident: ref_35
– volume: 8
  start-page: 115848
  year: 2020
  ident: ref_34
  article-title: Deep Learning Based Advanced Spatio-Temporal Extraction Model in Medical Sports Rehabilitation for Motion Analysis and Data Processing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003652
– volume: 33
  start-page: 3
  year: 2017
  ident: ref_23
  article-title: Deep learning for finance: Deep portfolios
  publication-title: Appl. Stochastic Models Bus. Ind.
  doi: 10.1002/asmb.2209
– ident: ref_8
– ident: ref_4
– volume: 99
  start-page: 1405
  year: 2019
  ident: ref_19
  article-title: Ka-Chun Siu, Current Low-Cost Video-Based Motion Analysis Options for Clinical Rehabilitation: A Systematic Review
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/pzz097
– ident: ref_52
– ident: ref_48
– ident: ref_10
– volume: 87
  start-page: 4
  year: 2010
  ident: ref_40
  article-title: HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0273-6
– ident: ref_45
– volume: 32
  start-page: 101827
  year: 2020
  ident: ref_24
  article-title: Deep learning in the construction industry: A review of present status and future innovations
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101827
– volume: 94
  start-page: 138
  year: 2022
  ident: ref_32
  article-title: Assessment of a novel deep learning-based marker-less motion capture system for gait study
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.03.008
– ident: ref_18
  doi: 10.1109/ICCMC48092.2020.ICCMC-0001
– volume: 52
  start-page: 77
  year: 2019
  ident: ref_9
  article-title: Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-09679-z
– volume: 108
  start-page: 103677
  year: 2021
  ident: ref_25
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103677
– volume: 9
  start-page: 2665
  year: 2021
  ident: ref_33
  article-title: Human gait analysis for osteoarthritis prediction: A framework of deep learning and kernel extreme learning machine
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00244-2
– ident: ref_47
– volume: 22
  start-page: 1330
  year: 2000
  ident: ref_49
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.888718
– ident: ref_11
– volume: 212
  start-page: 103275
  year: 2021
  ident: ref_43
  article-title: A review of 3D human pose estimation algorithms for markerless motion capture
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103275
– volume: 55
  start-page: 80
  year: 2022
  ident: ref_44
  article-title: Recent Advances of Monocular 2D and 3D Human Pose Estimation: A Deep Learning Perspective
  publication-title: ACM Comput. Surv.
– volume: 19
  start-page: 171
  year: 2019
  ident: ref_15
  article-title: Influence of a Marker-Based Motion Capture System on the Performance of Microsoft Kinect v2 Skeleton Algorithm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2876624
– ident: ref_37
– ident: ref_1
  doi: 10.1109/CVPR.2011.5995316
– ident: ref_41
  doi: 10.1109/CVPR52688.2022.01959
– ident: ref_50
– ident: ref_21
  doi: 10.1007/978-3-030-17795-9
– ident: ref_46
– ident: ref_12
– ident: ref_13
  doi: 10.1007/978-3-319-10602-1_48
– volume: 4
  start-page: 5
  year: 2021
  ident: ref_30
  article-title: Deep learning-enabled medical computer vision
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00376-2
– volume: 36
  start-page: 1325
  year: 2014
  ident: ref_39
  article-title: Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.248
– ident: ref_36
– ident: ref_20
  doi: 10.1109/COMITCon.2019.8862448
– ident: ref_38
  doi: 10.1109/CVPR.2014.471
– ident: ref_17
  doi: 10.3390/s19235297
SSID ssj0000913810
Score 2.314686
Snippet Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4351
SubjectTerms Accuracy
Algorithms
Biomechanics
Body Pose Net (BPNET)
COCO2017 dataset
Comparative analysis
Datasets
Deep learning
Gait
high-resolution dataset
Human body
human key point identification
Human mechanics
Identification
Libraries
Machine learning
Motion capture
Neural networks
NVIDIA TAO
Performance evaluation
Semiconductor industry
Sensors
VICON motion capture system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADogVEoCAfinhIEXHs-NHbNmxVQOz2sKDeIj8L0ipb0VRoT_z1euJ0SVUEF66WD2PPjGc-e-YzQvuk0MHHOJBLZuCZsTK5pDYCV2N8IEFp3nd4f57x4y_s42l1OvrqC2rCEj1w2rh3PHBJneLOQCdDRbWjxhWlCVJzZ9PpW0g1AlP9GawIUFelhjwacT28BxNGIDsgN0JQz9R_-zzeRncv23O9_qmXy1HAOXqA7g-ZIp4kCXfQHd_uou0Rf-Au2hk88wK_Huij3zxEv6btNyDRaM9wf0OPP_k1Pll9bzucunLDcE13gCe4_k3-jaGkcI1XAcecEEP9Rw53-8ky8dcP9XyG3-suRr0O69bhel7PNwN95QE-PJlNF4_Q4mi6qI_z4ZuF3LKCdrklgjvBLNMkRI_2stCi9KUsApW-1CwUVEuuifCltYp5XxBtnLdGFYwZTx-jrXbV-icIc8UEF4F46SirnDSCeVX2WU6ltNUZenu98Y0dKMjhJ4xlE6EIaKkZaSlD-5vJ54l548_TDkGDmylAl90PRCNqBiNq_mVEGXoF-m_AqaNAVg-9CXFZQI_VTIQSCtIZlqG9axNpBm-_aAB2RZwcsWuGXm7M5m9SP_0fUj9D98ooUypc20Nb3Y9L_zymSJ150XvDFT-MDHA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gNgArTCQH4b4kCLixHUcJITa0mmAaCtU0N4ifw6kKilbJtQn_nV8idMVgfZqWYmT-z7f_Q7gmMbSWW8HIsEUXjMOVCRS7QNXpayjLpe86fD-POWnX9nHs8HZDky7Xhgsq-x0YqOoTaUxR_4aXVsfi_j44N3qZ4RTo_B2tRuhIcNoBfO2gRi7BbsJImP1YHc0mc6_bLIuiIIpaNw26qU-3sd7Ysooeg30L9PUIPj_q6f34PZVuZLrX3K53DJEJ_fgbvAgybAl-T7s2PIA9rZwBQ9gP0jsJXkRYKVf3offk_I7gmuU56TJ3JNPdk3m1Y-yJm23rgvpuzdkSMbXoOAESw3XpHLE-4oE60IizPm3HEu-fRjPpuS9rL01rIksDRnPxrPNQlORQEbz6WTxABYnk8X4NArjFyLN4rSONM24yZhmkjov6VbEMktsImKXCptI5uJUCi5pZhOtc2ZtTKUyVqs8ZkzZ9CH0yqq0h0B4zjKeOWqFSdnACJUxmyeN9zPIpZZ9eNX9-EIHaHKckLEsfIiCVCq2qNSH483mVYvI8f9tI6TgZgvCaDcL1cV5EaSy4I6L1OTcKGyTGaTSpMrEiXJCcqN50ofnSP8Chd0fSMvQs-A_C2GzimGWZzm6OawPRx2LFEELXBbXPNuHZxu2uenUj25-zGO4k_i3taVqR9CrL67sE-8U1epp4PQ_PEEKBQ
  priority: 102
  providerName: ProQuest
Title Enhancing Human Key Point Identification: A Comparative Study of the High-Resolution VICON Dataset and COCO Dataset Using BPNET
URI https://www.proquest.com/docview/3067409289
https://doi.org/10.3390/app14114351
https://doaj.org/article/6f683d96db624253ad3bd02bf8a6dc62
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9gH2AGyACIzKEkN8SJmS2HEc3tqsZYBoK9Sh8RT5ExBVOrFUqLzwr2MnbikDAa_WRXHi8939fHc_AxzGETfa-oGQEeHSjKkIGZYWuAqhTWxyTpsO7zdjenJKXp2lZzvwcN0Ls5W_xxaOuzRuTGLn1C3E6dLUBtwd6J6Op_337to4i8JDa4eztvPu8hO_-JqGkv93w7sLV5fVOV995fP5lmcZ3YDj9ZzagpLPR8taHMlvl-ga_zHpm3DdR5ao36rCHuzoah92t_gG92HP7-QL9MTTTT-9Bd-H1UdHulF9QM2JPnqtV2i6-FTVqO3iNf5Y7znqo-InWThyJYgrtDDIxpDI1YuELhfQajJ697KYjNExr62XrBGvFComxWQz0FQqoMF0PJzdhtloOCtOQn8tQyhJhOtQxhlVGZGEx8ZaAM0iniU6YZHBTCecmAhzRnmc6UTKnGgdxVwoLUUeESI0vgOdalHpu4BoTjKamVgzhUmqmMiIzpMmKkpzLnkAz9brV0pPWe5uzpiXFrq4P11u_ekADjfC5y1Tx5_FBk4RNiKOXrsZsAtY-t1aUkMZVjlVwrXPpJgrLFSUCMM4VZImATx2alQ6I2AnJLnvZbCf5ei0yn6WZ7kLf0gAB2tNK711uCgdTLO42mLdAB5ttO9vs773n3L34VpiX9vWsh1Ap_6y1A9s1FSLHlxhoxc96A6G4-nbXnP20PM76Qf-vxQR
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeyg9IFpABAr40IqHtGK9drw2UoWSNFVC26RCoerN8rMgRZvQbFXlxC_jv2HvOmkQqLdeLcvr9Yzn4Zn5BoA9lEpnvR5IGFEhzNhUCcPaO65KWYccl7Sq8D4d0N438uWiebEGfi9qYUJa5UImVoLaTHR4I_8YTFvvi3j_4PP0ZxK6RoXo6qKFhoytFcxBBTEWCzuO7fzGu3Czg_6hp_d-lh11R51eErsMJJqkuEw0yqnJiSYSOc_QlqUyz2zGUoeZzSRxKZaMSpTbTGtOrE2RVMZqxVNClMV-2Qdgg2DCve-30e4Ozr4uH3kC6CZDaV0XiDFPQ1gaERSMFPSXJqwaBvyrFrbA5nUxlfMbOR6v6L2jx-BRNFhhq-awbbBmix2wtQJjuAO2o4CYwXcRxfr9E_CrW3wPWB7FJawCBdAfEzyb_ChKWBcHu_ha-Am2YOcWgxyGzMY5nDjoTVMY0lCSEGKoLwg873eGA3goS698SygLAzvDznA5UCVAwPbZoDt6Ckb3QYdnYL2YFPY5gJSTnOYOWWYwaRqmcmJ5VhlbTS61bIAPi4MXOiKhh4YcY-E9okAlsUKlBthbTp7WACD_n9YOFFxOCajd1cDk6lJEISCoowwbTo0KVTlNLA1WJs2UY5IaTbMGeBvoL4Js8RvSMpZI-N8KKF2ilfOcB6uKNMDugkVEFDozcXtFGmB_yTZ37frF3cu8AZu90emJOOkPjl-Ch5n_cp0ltwvWy6tr-8rbY6V6HbkeAnHP9-wPYI9HNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAeEC0gUgr40IqHtOp67Xi9SAiledBQSHIIqDfLz1Ip2oRmqyonfhf_Ds_uJg0C9darZe3D8_bMfIPQPomVd8EORIJpSDM2dSSoCYGr1s4Tnylednh_HfDjb-zzafN0A_1e9sJAWeVSJ5aK2k4N3JEfgmsbYpEQHxz6uixi1Ol9nP2MYIIUZFqX4zQqFjlxi6sQvs0_9DuB1gdJ0uuO28dRPWEgMiymRWRIym3KDFPEB2Z2IlZp4hIReypcopiPqRJckdQlxmTMuZgobZ3RWcyYdjQ89g66mwKIOzSp9z6trncAblOQuOoIpDSLISFNGAH3hPxlA8tRAf8ahC10_zKfqcWVmkzWLF7vEXpYu6q4VfHWNtpw-Q7aWgMw3EHbtWqY4zc1fvXbx-hXN_8BKB75GS5TBDgcEh5Nz_MCV23Bvr4nfI9buH2NPo6hpnGBpx4HpxRDAUoEyYVKNPD3fns4wB1VBLNbYJVb3B62h6uFsvQBH40G3fETNL4NKjxFm_k0d88Q5hlLeeqJE5ayphU6ZS5LSjermSmjGujd8uClqTHQYRTHRIZYCKgk16jUQPurzbMK-uP_246AgqstgNddLkwvzmQt_pJ7LqjNuNXQj9OkylJt40R7obg1PGmg10B_CVolfJBRdXNE-C3A55KtNEsz8KdYA-0tWUTW6mYur4WjgQ5WbHPTV-_e_JhX6F6QLvmlPzh5jh4k4cVVedwe2iwuLt2L4IgV-mXJ8hjJWxaxP2zERNE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N3QPsYbABIrAhSwzxIWVKYsd29tZlnQaItg8dGk-RPxmiSieWCpUX_nXsxC1lIODVuihOfL67n-_uZ4CDNBHWOD8QcyJ9mjGXMcfKAVcpjU1tIWjb4f1uSM_OyZuL_GIDni57Ydby99jBcZ_GTUnqnbqDOJs0dwF3DzbPh-P-B39tnEPhsbPDrOu8u_nEL76mpeT_3fBuwa15fSUWX8V0uuZZTu_AyXJOXUHJ58N5Iw_Vtxt0jf-Y9F3YDpEl6neqsAMbpt6FrTW-wV3YCTv5Gr0IdNMv78H3QX3pSTfqj6g90UdvzQKNZ5_qBnVdvDYc6x2hPip_koUjX4K4QDOLXAyJfL1I7HMBnSaj96_L0RCdiMZ5yQaJWqNyVI5WA22lAjoeDweT-zA5HUzKszhcyxArkuAmVimjmhFFRGqdBTA8ESwzGU8s5iYTxCZYcCpSZjKlCmJMkgqpjZJFQog0-AH06lltHgKiBWGU2dRwjUmuuWTEFFkbFeWFUCKCV8v1q1SgLPc3Z0wrB138n67W_nQEByvhq46p489ix14RViKeXrsdcAtYhd1aUUs51gXV0rfP5FhoLHWSScsF1YpmETz3alR5I-AmpEToZXCf5em0qj4rWOHDHxLB3lLTqmAdrisP0xyudlg3gmcr7fvbrB_9p9xjuJ2513a1bHvQa77Mzb6Lmhr5JOyaH5h6EJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Human+Key+Point+Identification%3A+A+Comparative+Study+of+the+High-Resolution+VICON+Dataset+and+COCO+Dataset+Using+BPNET&rft.jtitle=Applied+sciences&rft.au=Lee%2C+Yunju&rft.au=Lama%2C+Bibash&rft.au=Joo%2C+Sunghwan&rft.au=Kwon%2C+Jaerock&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fapp14114351&rft.externalDocID=A797900244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon