Enhancing Human Key Point Identification: A Comparative Study of the High-Resolution VICON Dataset and COCO Dataset Using BPNET
Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the training of neu...
Saved in:
| Published in | Applied sciences Vol. 14; no. 11; p. 4351 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app14114351 |
Cover
| Abstract | Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the training of neural networks to estimate 2D key joint positions from images and videos. The study involved 25 healthy adults (17 males, 8 females), executing normal gait for 2 to 3 s. The VICON system captured 3D ground truth data, while the three 2D cameras collected images from different perspectives (0°, 45°, and 135°). The dataset was used to train the Body Pose Network (BPNET), a popular neural network model developed by NVIDIA TAO. Additionally, a comparison entails another BPNET model trained on the COCO 2017 dataset, featuring over 118,000 annotated images. Notably, the proposed dataset exhibited a higher level of accuracy (14.5%) than COCO 2017, despite comprising one-fourth of the image count (23,741 annotated image). This substantial reduction in data size translates to improvements in computational efficiency during model training. Furthermore, the unique dataset’s emphasis on gait and precise prediction of key joint positions during normal gait movements distinguish it from existing alternatives. This study has implications ranging from gait-based person identification, and non-invasive concussion detection through sports temporal analysis, to pathologic gait pattern identification. |
|---|---|
| AbstractList | Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the training of neural networks to estimate 2D key joint positions from images and videos. The study involved 25 healthy adults (17 males, 8 females), executing normal gait for 2 to 3 s. The VICON system captured 3D ground truth data, while the three 2D cameras collected images from different perspectives (0°, 45°, and 135°). The dataset was used to train the Body Pose Network (BPNET), a popular neural network model developed by NVIDIA TAO. Additionally, a comparison entails another BPNET model trained on the COCO 2017 dataset, featuring over 118,000 annotated images. Notably, the proposed dataset exhibited a higher level of accuracy (14.5%) than COCO 2017, despite comprising one-fourth of the image count (23,741 annotated image). This substantial reduction in data size translates to improvements in computational efficiency during model training. Furthermore, the unique dataset’s emphasis on gait and precise prediction of key joint positions during normal gait movements distinguish it from existing alternatives. This study has implications ranging from gait-based person identification, and non-invasive concussion detection through sports temporal analysis, to pathologic gait pattern identification. |
| Audience | Academic |
| Author | Lama, Bibash Lee, Yunju Kwon, Jaerock Joo, Sunghwan |
| Author_xml | – sequence: 1 givenname: Yunju orcidid: 0000-0001-7445-6148 surname: Lee fullname: Lee, Yunju – sequence: 2 givenname: Bibash surname: Lama fullname: Lama, Bibash – sequence: 3 givenname: Sunghwan orcidid: 0000-0003-0060-2207 surname: Joo fullname: Joo, Sunghwan – sequence: 4 givenname: Jaerock orcidid: 0000-0002-5687-6998 surname: Kwon fullname: Kwon, Jaerock |
| BookMark | eNqFkV1v0zAUhiM0JMbYFX_AEpeQ4a85CXcllLViWico3EYn_mhdpXbmOKBe7a_jLmiaEBL2he2j533Psd6X2YnzTmfZa4IvGKvwe-h7wgnh7JI8y04pLkTOOClOntxfZOfDsMNpVYSVBJ9m93O3BSet26DFuAeHvugDuvXWRbRU2kVrrIRovfuAZqj2-x5Cev7U6Fsc1QF5g-JWo4XdbPOvevDdeGTRj2W9ukGfIMKgIwKnUL2qV4-F78Ox38fbm_n6VfbcQDfo8z_nWbb-PF_Xi_x6dbWsZ9e55JjFXJJCqIJLDsRwjHWJoaCaltiwUlPgBjMoBZBCUykrrjUm0Cot2wpz3mp2li0nW-Vh1_TB7iEcGg-2eSj4sGkgRCs73QgjSqYqoVpBOb1koFirMG1NCUJJQZPXu8lrdD0cfkHXPRoS3ByjaJ5EkfA3E94HfzfqITY7PwaXPtswLAqOK1pWibqYqA2kGawzPgaQaSu9tzIFbWyqz4qqqDCmnCfB20kggx-GoM1_hiB_0dLGh1xTG9v9U_MbBNy3RQ |
| CitedBy_id | crossref_primary_10_1080_09544828_2025_2481537 |
| Cites_doi | 10.1016/j.jmsy.2018.01.003 10.1186/s40798-018-0139-y 10.1109/CVPR.2018.00762 10.1001/jamainternmed.2018.7117 10.1097/00002060-199905000-00019 10.4324/9781003217732 10.1109/CVPR.2019.00584 10.1109/TPAMI.2022.3222784 10.1155/2018/7068349 10.1109/EMBC44109.2020.9176120 10.3390/app9081526 10.1109/ACCESS.2020.3003652 10.1002/asmb.2209 10.1093/ptj/pzz097 10.1007/s11263-009-0273-6 10.1016/j.jobe.2020.101827 10.1016/j.gaitpost.2022.03.008 10.1109/ICCMC48092.2020.ICCMC-0001 10.1007/s10462-018-09679-z 10.1016/j.tust.2020.103677 10.1007/s40747-020-00244-2 10.1109/34.888718 10.1016/j.cviu.2021.103275 10.1109/JSEN.2018.2876624 10.1109/CVPR.2011.5995316 10.1109/CVPR52688.2022.01959 10.1007/978-3-030-17795-9 10.1007/978-3-319-10602-1_48 10.1038/s41746-020-00376-2 10.1109/TPAMI.2013.248 10.1109/COMITCon.2019.8862448 10.1109/CVPR.2014.471 10.3390/s19235297 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app14114351 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_6f683d96db624253ad3bd02bf8a6dc62 10.3390/app14114351 A797900244 10_3390_app14114351 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c403t-c176d74c4a1f400e80a72e280f38e2a4f03a86a17e2cc94ee01abdecb9044be3 |
| IEDL.DBID | UNPAY |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:43:07 EDT 2025 Sun Sep 07 11:00:05 EDT 2025 Mon Jun 30 05:52:45 EDT 2025 Mon Oct 20 16:59:20 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Thu Oct 16 04:27:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-c176d74c4a1f400e80a72e280f38e2a4f03a86a17e2cc94ee01abdecb9044be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0060-2207 0000-0002-5687-6998 0000-0001-7445-6148 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/app14114351 |
| PQID | 3067409289 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6f683d96db624253ad3bd02bf8a6dc62 unpaywall_primary_10_3390_app14114351 proquest_journals_3067409289 gale_infotracacademiconefile_A797900244 crossref_primary_10_3390_app14114351 crossref_citationtrail_10_3390_app14114351 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Desmarais (ref_43) 2021; 212 ref_50 Sigal (ref_40) 2010; 87 ref_14 ref_13 ref_12 ref_11 ref_10 ref_52 ref_51 Naeemabadi (ref_15) 2019; 19 ref_18 ref_17 ref_16 Colyer (ref_3) 2018; 4 Nguyen (ref_9) 2019; 52 ref_21 ref_20 ref_29 ref_27 Wang (ref_22) 2018; 48 Fang (ref_7) 2022; 45 Huang (ref_25) 2021; 108 Liu (ref_44) 2022; 55 ref_36 ref_35 ref_31 Cui (ref_34) 2020; 8 Esteva (ref_30) 2021; 4 Voulodimos (ref_28) 2018; 2018 Ionescu (ref_39) 2014; 36 Cooper (ref_2) 1999; 78 ref_38 ref_37 Akinosho (ref_24) 2020; 32 Zhang (ref_49) 2000; 22 Heaton (ref_23) 2017; 33 Parks (ref_19) 2019; 99 ref_47 ref_46 ref_45 Khan (ref_33) 2021; 9 ref_42 ref_41 Wang (ref_26) 2019; 179 ref_1 ref_48 Vafadar (ref_32) 2022; 94 ref_8 ref_5 ref_4 ref_6 |
| References_xml | – volume: 48 start-page: 144 year: 2018 ident: ref_22 article-title: Deep learning for smart manufacturing: Methods and applications publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.01.003 – volume: 4 start-page: 24 year: 2018 ident: ref_3 article-title: A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System publication-title: Sports Med. Open doi: 10.1186/s40798-018-0139-y – ident: ref_5 – ident: ref_6 doi: 10.1109/CVPR.2018.00762 – volume: 179 start-page: 293 year: 2019 ident: ref_26 article-title: Deep Learning in Medicine—Promise, Progress, and Challenges publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2018.7117 – ident: ref_51 – volume: 78 start-page: 278 year: 1999 ident: ref_2 article-title: Gait Analysis in Rehabilitation Medicine: A Brief Report: 1 publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/00002060-199905000-00019 – ident: ref_27 doi: 10.4324/9781003217732 – ident: ref_14 doi: 10.1109/CVPR.2019.00584 – volume: 45 start-page: 7157 year: 2022 ident: ref_7 article-title: AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3222784 – ident: ref_16 – volume: 2018 start-page: 7068349 year: 2018 ident: ref_28 article-title: Deep Learning for Computer Vision: A Brief Review publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7068349 – ident: ref_31 doi: 10.1109/EMBC44109.2020.9176120 – ident: ref_29 doi: 10.3390/app9081526 – ident: ref_42 – ident: ref_35 – volume: 8 start-page: 115848 year: 2020 ident: ref_34 article-title: Deep Learning Based Advanced Spatio-Temporal Extraction Model in Medical Sports Rehabilitation for Motion Analysis and Data Processing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003652 – volume: 33 start-page: 3 year: 2017 ident: ref_23 article-title: Deep learning for finance: Deep portfolios publication-title: Appl. Stochastic Models Bus. Ind. doi: 10.1002/asmb.2209 – ident: ref_8 – ident: ref_4 – volume: 99 start-page: 1405 year: 2019 ident: ref_19 article-title: Ka-Chun Siu, Current Low-Cost Video-Based Motion Analysis Options for Clinical Rehabilitation: A Systematic Review publication-title: Phys. Ther. doi: 10.1093/ptj/pzz097 – ident: ref_52 – ident: ref_48 – ident: ref_10 – volume: 87 start-page: 4 year: 2010 ident: ref_40 article-title: HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0273-6 – ident: ref_45 – volume: 32 start-page: 101827 year: 2020 ident: ref_24 article-title: Deep learning in the construction industry: A review of present status and future innovations publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101827 – volume: 94 start-page: 138 year: 2022 ident: ref_32 article-title: Assessment of a novel deep learning-based marker-less motion capture system for gait study publication-title: Gait Posture doi: 10.1016/j.gaitpost.2022.03.008 – ident: ref_18 doi: 10.1109/ICCMC48092.2020.ICCMC-0001 – volume: 52 start-page: 77 year: 2019 ident: ref_9 article-title: Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-09679-z – volume: 108 start-page: 103677 year: 2021 ident: ref_25 article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103677 – volume: 9 start-page: 2665 year: 2021 ident: ref_33 article-title: Human gait analysis for osteoarthritis prediction: A framework of deep learning and kernel extreme learning machine publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00244-2 – ident: ref_47 – volume: 22 start-page: 1330 year: 2000 ident: ref_49 article-title: A flexible new technique for camera calibration publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.888718 – ident: ref_11 – volume: 212 start-page: 103275 year: 2021 ident: ref_43 article-title: A review of 3D human pose estimation algorithms for markerless motion capture publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2021.103275 – volume: 55 start-page: 80 year: 2022 ident: ref_44 article-title: Recent Advances of Monocular 2D and 3D Human Pose Estimation: A Deep Learning Perspective publication-title: ACM Comput. Surv. – volume: 19 start-page: 171 year: 2019 ident: ref_15 article-title: Influence of a Marker-Based Motion Capture System on the Performance of Microsoft Kinect v2 Skeleton Algorithm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2876624 – ident: ref_37 – ident: ref_1 doi: 10.1109/CVPR.2011.5995316 – ident: ref_41 doi: 10.1109/CVPR52688.2022.01959 – ident: ref_50 – ident: ref_21 doi: 10.1007/978-3-030-17795-9 – ident: ref_46 – ident: ref_12 – ident: ref_13 doi: 10.1007/978-3-319-10602-1_48 – volume: 4 start-page: 5 year: 2021 ident: ref_30 article-title: Deep learning-enabled medical computer vision publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-00376-2 – volume: 36 start-page: 1325 year: 2014 ident: ref_39 article-title: Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.248 – ident: ref_36 – ident: ref_20 doi: 10.1109/COMITCon.2019.8862448 – ident: ref_38 doi: 10.1109/CVPR.2014.471 – ident: ref_17 doi: 10.3390/s19235297 |
| SSID | ssj0000913810 |
| Score | 2.314686 |
| Snippet | Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4351 |
| SubjectTerms | Accuracy Algorithms Biomechanics Body Pose Net (BPNET) COCO2017 dataset Comparative analysis Datasets Deep learning Gait high-resolution dataset Human body human key point identification Human mechanics Identification Libraries Machine learning Motion capture Neural networks NVIDIA TAO Performance evaluation Semiconductor industry Sensors VICON motion capture system |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADogVEoCAfinhIEXHs-NHbNmxVQOz2sKDeIj8L0ipb0VRoT_z1euJ0SVUEF66WD2PPjGc-e-YzQvuk0MHHOJBLZuCZsTK5pDYCV2N8IEFp3nd4f57x4y_s42l1OvrqC2rCEj1w2rh3PHBJneLOQCdDRbWjxhWlCVJzZ9PpW0g1AlP9GawIUFelhjwacT28BxNGIDsgN0JQz9R_-zzeRncv23O9_qmXy1HAOXqA7g-ZIp4kCXfQHd_uou0Rf-Au2hk88wK_Huij3zxEv6btNyDRaM9wf0OPP_k1Pll9bzucunLDcE13gCe4_k3-jaGkcI1XAcecEEP9Rw53-8ky8dcP9XyG3-suRr0O69bhel7PNwN95QE-PJlNF4_Q4mi6qI_z4ZuF3LKCdrklgjvBLNMkRI_2stCi9KUsApW-1CwUVEuuifCltYp5XxBtnLdGFYwZTx-jrXbV-icIc8UEF4F46SirnDSCeVX2WU6ltNUZenu98Y0dKMjhJ4xlE6EIaKkZaSlD-5vJ54l548_TDkGDmylAl90PRCNqBiNq_mVEGXoF-m_AqaNAVg-9CXFZQI_VTIQSCtIZlqG9axNpBm-_aAB2RZwcsWuGXm7M5m9SP_0fUj9D98ooUypc20Nb3Y9L_zymSJ150XvDFT-MDHA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gNgArTCQH4b4kCLixHUcJITa0mmAaCtU0N4ifw6kKilbJtQn_nV8idMVgfZqWYmT-z7f_Q7gmMbSWW8HIsEUXjMOVCRS7QNXpayjLpe86fD-POWnX9nHs8HZDky7Xhgsq-x0YqOoTaUxR_4aXVsfi_j44N3qZ4RTo_B2tRuhIcNoBfO2gRi7BbsJImP1YHc0mc6_bLIuiIIpaNw26qU-3sd7Ysooeg30L9PUIPj_q6f34PZVuZLrX3K53DJEJ_fgbvAgybAl-T7s2PIA9rZwBQ9gP0jsJXkRYKVf3offk_I7gmuU56TJ3JNPdk3m1Y-yJm23rgvpuzdkSMbXoOAESw3XpHLE-4oE60IizPm3HEu-fRjPpuS9rL01rIksDRnPxrPNQlORQEbz6WTxABYnk8X4NArjFyLN4rSONM24yZhmkjov6VbEMktsImKXCptI5uJUCi5pZhOtc2ZtTKUyVqs8ZkzZ9CH0yqq0h0B4zjKeOWqFSdnACJUxmyeN9zPIpZZ9eNX9-EIHaHKckLEsfIiCVCq2qNSH483mVYvI8f9tI6TgZgvCaDcL1cV5EaSy4I6L1OTcKGyTGaTSpMrEiXJCcqN50ofnSP8Chd0fSMvQs-A_C2GzimGWZzm6OawPRx2LFEELXBbXPNuHZxu2uenUj25-zGO4k_i3taVqR9CrL67sE-8U1epp4PQ_PEEKBQ priority: 102 providerName: ProQuest |
| Title | Enhancing Human Key Point Identification: A Comparative Study of the High-Resolution VICON Dataset and COCO Dataset Using BPNET |
| URI | https://www.proquest.com/docview/3067409289 https://doi.org/10.3390/app14114351 https://doaj.org/article/6f683d96db624253ad3bd02bf8a6dc62 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9gH2AGyACIzKEkN8SJmS2HEc3tqsZYBoK9Sh8RT5ExBVOrFUqLzwr2MnbikDAa_WRXHi8939fHc_AxzGETfa-oGQEeHSjKkIGZYWuAqhTWxyTpsO7zdjenJKXp2lZzvwcN0Ls5W_xxaOuzRuTGLn1C3E6dLUBtwd6J6Op_337to4i8JDa4eztvPu8hO_-JqGkv93w7sLV5fVOV995fP5lmcZ3YDj9ZzagpLPR8taHMlvl-ga_zHpm3DdR5ao36rCHuzoah92t_gG92HP7-QL9MTTTT-9Bd-H1UdHulF9QM2JPnqtV2i6-FTVqO3iNf5Y7znqo-InWThyJYgrtDDIxpDI1YuELhfQajJ697KYjNExr62XrBGvFComxWQz0FQqoMF0PJzdhtloOCtOQn8tQyhJhOtQxhlVGZGEx8ZaAM0iniU6YZHBTCecmAhzRnmc6UTKnGgdxVwoLUUeESI0vgOdalHpu4BoTjKamVgzhUmqmMiIzpMmKkpzLnkAz9brV0pPWe5uzpiXFrq4P11u_ekADjfC5y1Tx5_FBk4RNiKOXrsZsAtY-t1aUkMZVjlVwrXPpJgrLFSUCMM4VZImATx2alQ6I2AnJLnvZbCf5ei0yn6WZ7kLf0gAB2tNK711uCgdTLO42mLdAB5ttO9vs773n3L34VpiX9vWsh1Ap_6y1A9s1FSLHlxhoxc96A6G4-nbXnP20PM76Qf-vxQR |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeyg9IFpABAr40IqHtGK9drw2UoWSNFVC26RCoerN8rMgRZvQbFXlxC_jv2HvOmkQqLdeLcvr9Yzn4Zn5BoA9lEpnvR5IGFEhzNhUCcPaO65KWYccl7Sq8D4d0N438uWiebEGfi9qYUJa5UImVoLaTHR4I_8YTFvvi3j_4PP0ZxK6RoXo6qKFhoytFcxBBTEWCzuO7fzGu3Czg_6hp_d-lh11R51eErsMJJqkuEw0yqnJiSYSOc_QlqUyz2zGUoeZzSRxKZaMSpTbTGtOrE2RVMZqxVNClMV-2Qdgg2DCve-30e4Ozr4uH3kC6CZDaV0XiDFPQ1gaERSMFPSXJqwaBvyrFrbA5nUxlfMbOR6v6L2jx-BRNFhhq-awbbBmix2wtQJjuAO2o4CYwXcRxfr9E_CrW3wPWB7FJawCBdAfEzyb_ChKWBcHu_ha-Am2YOcWgxyGzMY5nDjoTVMY0lCSEGKoLwg873eGA3goS698SygLAzvDznA5UCVAwPbZoDt6Ckb3QYdnYL2YFPY5gJSTnOYOWWYwaRqmcmJ5VhlbTS61bIAPi4MXOiKhh4YcY-E9okAlsUKlBthbTp7WACD_n9YOFFxOCajd1cDk6lJEISCoowwbTo0KVTlNLA1WJs2UY5IaTbMGeBvoL4Js8RvSMpZI-N8KKF2ilfOcB6uKNMDugkVEFDozcXtFGmB_yTZ37frF3cu8AZu90emJOOkPjl-Ch5n_cp0ltwvWy6tr-8rbY6V6HbkeAnHP9-wPYI9HNw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAeEC0gUgr40IqHtOp67Xi9SAiledBQSHIIqDfLz1Ip2oRmqyonfhf_Ds_uJg0C9darZe3D8_bMfIPQPomVd8EORIJpSDM2dSSoCYGr1s4Tnylednh_HfDjb-zzafN0A_1e9sJAWeVSJ5aK2k4N3JEfgmsbYpEQHxz6uixi1Ol9nP2MYIIUZFqX4zQqFjlxi6sQvs0_9DuB1gdJ0uuO28dRPWEgMiymRWRIym3KDFPEB2Z2IlZp4hIReypcopiPqRJckdQlxmTMuZgobZ3RWcyYdjQ89g66mwKIOzSp9z6trncAblOQuOoIpDSLISFNGAH3hPxlA8tRAf8ahC10_zKfqcWVmkzWLF7vEXpYu6q4VfHWNtpw-Q7aWgMw3EHbtWqY4zc1fvXbx-hXN_8BKB75GS5TBDgcEh5Nz_MCV23Bvr4nfI9buH2NPo6hpnGBpx4HpxRDAUoEyYVKNPD3fns4wB1VBLNbYJVb3B62h6uFsvQBH40G3fETNL4NKjxFm_k0d88Q5hlLeeqJE5ayphU6ZS5LSjermSmjGujd8uClqTHQYRTHRIZYCKgk16jUQPurzbMK-uP_246AgqstgNddLkwvzmQt_pJ7LqjNuNXQj9OkylJt40R7obg1PGmg10B_CVolfJBRdXNE-C3A55KtNEsz8KdYA-0tWUTW6mYur4WjgQ5WbHPTV-_e_JhX6F6QLvmlPzh5jh4k4cVVedwe2iwuLt2L4IgV-mXJ8hjJWxaxP2zERNE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N3QPsYbABIrAhSwzxIWVKYsd29tZlnQaItg8dGk-RPxmiSieWCpUX_nXsxC1lIODVuihOfL67n-_uZ4CDNBHWOD8QcyJ9mjGXMcfKAVcpjU1tIWjb4f1uSM_OyZuL_GIDni57Ydby99jBcZ_GTUnqnbqDOJs0dwF3DzbPh-P-B39tnEPhsbPDrOu8u_nEL76mpeT_3fBuwa15fSUWX8V0uuZZTu_AyXJOXUHJ58N5Iw_Vtxt0jf-Y9F3YDpEl6neqsAMbpt6FrTW-wV3YCTv5Gr0IdNMv78H3QX3pSTfqj6g90UdvzQKNZ5_qBnVdvDYc6x2hPip_koUjX4K4QDOLXAyJfL1I7HMBnSaj96_L0RCdiMZ5yQaJWqNyVI5WA22lAjoeDweT-zA5HUzKszhcyxArkuAmVimjmhFFRGqdBTA8ESwzGU8s5iYTxCZYcCpSZjKlCmJMkgqpjZJFQog0-AH06lltHgKiBWGU2dRwjUmuuWTEFFkbFeWFUCKCV8v1q1SgLPc3Z0wrB138n67W_nQEByvhq46p489ix14RViKeXrsdcAtYhd1aUUs51gXV0rfP5FhoLHWSScsF1YpmETz3alR5I-AmpEToZXCf5em0qj4rWOHDHxLB3lLTqmAdrisP0xyudlg3gmcr7fvbrB_9p9xjuJ2513a1bHvQa77Mzb6Lmhr5JOyaH5h6EJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Human+Key+Point+Identification%3A+A+Comparative+Study+of+the+High-Resolution+VICON+Dataset+and+COCO+Dataset+Using+BPNET&rft.jtitle=Applied+sciences&rft.au=Lee%2C+Yunju&rft.au=Lama%2C+Bibash&rft.au=Joo%2C+Sunghwan&rft.au=Kwon%2C+Jaerock&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fapp14114351&rft.externalDocID=A797900244 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |