Automatic identification of atherosclerosis subjects in a heterogeneous MR brain imaging data set

Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to automatically identify subjects with CA from a heterogeneous cohort of magnetic resonance brain images. The cohort includes 190 subjects wit...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 62; pp. 18 - 27
Main Authors Bento, Mariana, Souza, Roberto, Salluzzi, Marina, Rittner, Letícia, Zhang, Yunyan, Frayne, Richard
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.10.2019
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2019.06.007

Cover

Abstract Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to automatically identify subjects with CA from a heterogeneous cohort of magnetic resonance brain images. The cohort includes 190 subjects with CA, white mater hyperintensites of presumed vascular origin or multiple sclerosis, as well as 211 presumed healthy subjects. We determined a set of handcrafted and convolutional discriminant features to perform this task. A support vector machine (SVM) was used to perform this four-class classification task. Our approach had an accuracy rate of 97.5% (higher than chance accuracy of 52.6% for guessing majority class), sensitivity of 96.4% and specificity of 97.9% in identifying subjects with CA, suggesting that the proposed combination of features may be used as an imaging biomarker for characterizing atherosclerotic disease on brain imaging.
AbstractList Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to automatically identify subjects with CA from a heterogeneous cohort of magnetic resonance brain images. The cohort includes 190 subjects with CA, white mater hyperintensites of presumed vascular origin or multiple sclerosis, as well as 211 presumed healthy subjects. We determined a set of handcrafted and convolutional discriminant features to perform this task. A support vector machine (SVM) was used to perform this four-class classification task. Our approach had an accuracy rate of 97.5% (higher than chance accuracy of 52.6% for guessing majority class), sensitivity of 96.4% and specificity of 97.9% in identifying subjects with CA, suggesting that the proposed combination of features may be used as an imaging biomarker for characterizing atherosclerotic disease on brain imaging.
Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to automatically identify subjects with CA from a heterogeneous cohort of magnetic resonance brain images. The cohort includes 190 subjects with CA, white mater hyperintensites of presumed vascular origin or multiple sclerosis, as well as 211 presumed healthy subjects. We determined a set of handcrafted and convolutional discriminant features to perform this task. A support vector machine (SVM) was used to perform this four-class classification task. Our approach had an accuracy rate of 97.5% (higher than chance accuracy of 52.6% for guessing majority class), sensitivity of 96.4% and specificity of 97.9% in identifying subjects with CA, suggesting that the proposed combination of features may be used as an imaging biomarker for characterizing atherosclerotic disease on brain imaging.Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to automatically identify subjects with CA from a heterogeneous cohort of magnetic resonance brain images. The cohort includes 190 subjects with CA, white mater hyperintensites of presumed vascular origin or multiple sclerosis, as well as 211 presumed healthy subjects. We determined a set of handcrafted and convolutional discriminant features to perform this task. A support vector machine (SVM) was used to perform this four-class classification task. Our approach had an accuracy rate of 97.5% (higher than chance accuracy of 52.6% for guessing majority class), sensitivity of 96.4% and specificity of 97.9% in identifying subjects with CA, suggesting that the proposed combination of features may be used as an imaging biomarker for characterizing atherosclerotic disease on brain imaging.
Author Souza, Roberto
Rittner, Letícia
Bento, Mariana
Salluzzi, Marina
Zhang, Yunyan
Frayne, Richard
Author_xml – sequence: 1
  givenname: Mariana
  surname: Bento
  fullname: Bento, Mariana
  email: mariana.pinheirobent@ucalgary.ca
  organization: Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
– sequence: 2
  givenname: Roberto
  surname: Souza
  fullname: Souza, Roberto
  organization: Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
– sequence: 3
  givenname: Marina
  surname: Salluzzi
  fullname: Salluzzi, Marina
  organization: Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
– sequence: 4
  givenname: Letícia
  surname: Rittner
  fullname: Rittner, Letícia
  organization: Medical Image Computing Laboratory (MICLab), School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil
– sequence: 5
  givenname: Yunyan
  surname: Zhang
  fullname: Zhang, Yunyan
  organization: Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
– sequence: 6
  givenname: Richard
  surname: Frayne
  fullname: Frayne, Richard
  organization: Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31228556$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P3DAQxa0KVHaBD9BL5WMvSf0njhP1tEKlrQRCQiBxsxx7snibOFvbqcS3x7sLFw5wseXx-41m3luiIz95QOgLJSUltP6-KcfgSkZoW5K6JER-QgvaSF6Ipq2O0IJITgrJxMMJWsa4IYQIxsVndMIpY40Q9QLp1ZymUSdnsLPgk-udya_J46nHOj1CmKIZdqeLOM7dBkyK2Hms8SOkXF-Dh2mO-PoWd0HnDzfqtfNrbHXSOEI6Q8e9HiKcv9yn6P7y593F7-Lq5tefi9VVYSrCU9FBHspWrbHGSis6KWzfsKqWDbV9q3ugBjgIbSk0vJNUEFFJ3erW0KrjtOen6Nuh7zZM_2aISY0uGhgGvR9QMVaJmknJZZZ-fZHO3QhWbUMeOjypV1uyQB4EJi8eA_TKuLS3JeUdB0WJ2gWgNioHoHYBKFKrHEAm6Rvytfl7zI8DA9me_w6CisaBN2BdyHYrO7l36fYNbQbnc4rDX3j6gH0GAGSyqg
CitedBy_id crossref_primary_10_1016_j_bspc_2022_103786
crossref_primary_10_3390_bioengineering9120783
crossref_primary_10_3389_fninf_2021_805669
crossref_primary_10_1109_ACCESS_2025_3549269
crossref_primary_10_3389_fneur_2023_1294723
crossref_primary_10_3390_s21248507
crossref_primary_10_1155_2022_2456550
crossref_primary_10_32725_jab_2022_008
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105162
Cites_doi 10.1117/1.JMI.2.1.014002
10.1109/TMI.2019.2905770
10.1371/journal.pone.0165719
10.1016/j.mri.2014.01.017
10.1080/01621459.1955.10501294
10.1007/978-3-319-67810-8
10.1259/bjr/74316620
10.1016/j.media.2005.09.004
10.1016/j.bspc.2006.05.002
10.1146/annurev-bioeng-071516-044442
10.1016/j.mri.2003.09.001
10.1016/j.mri.2014.04.016
10.1016/j.neuroimage.2016.07.027
10.1214/aoms/1177731944
10.1007/s13244-018-0639-9
10.1016/j.media.2017.07.005
10.1016/j.neuroimage.2016.07.018
10.1016/j.nicl.2017.10.007
10.1109/TMI.2016.2528162
10.1016/j.neuroimage.2011.09.015
10.1016/S1474-4422(13)70124-8
10.1109/TMI.2010.2046908
10.1016/j.crad.2004.07.008
10.1109/MCSE.2007.55
10.1007/978-3-319-93000-8_61
10.1159/000341410
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2019.06.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 27
ExternalDocumentID 31228556
10_1016_j_mri_2019_06_007
S0730725X19301018
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c403t-be312d49cdcd7d5b75df8246781df9afe1ce3e5ad1e83b7150547a9a9c14b31f3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Sat Sep 27 18:06:56 EDT 2025
Wed Feb 19 02:31:41 EST 2025
Thu Apr 24 23:08:24 EDT 2025
Thu Oct 16 04:27:48 EDT 2025
Fri Feb 23 02:22:55 EST 2024
Tue Oct 14 19:40:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-center data set
Feature extraction
Brain image processing
Machine learning
Carotid artery atherosclerotic disease
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-be312d49cdcd7d5b75df8246781df9afe1ce3e5ad1e83b7150547a9a9c14b31f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31228556
PQID 2245627737
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2245627737
pubmed_primary_31228556
crossref_citationtrail_10_1016_j_mri_2019_06_007
crossref_primary_10_1016_j_mri_2019_06_007
elsevier_sciencedirect_doi_10_1016_j_mri_2019_06_007
elsevier_clinicalkey_doi_10_1016_j_mri_2019_06_007
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References der Walt, Schonberger, Iglesias, Boulogne, Warner, Yager (bb0265) 2014; 2
Yichuan (bb0205) 2013
Yamashita, Nishio, Do, Togashi (bb0290) 2018; 9
Leite, Rittner, Appenzeller, Ruocco, Lotufo (bb0035) 2015; 2
Sandeep, Patnaik, Jagannathan (bb0190) 2006; 1
Kim, Magnotta, Liu, Johnson (bb0055) 2014; 32
Kohavi (bb0225) 1995; Vol. 2
Belaroussi, Milles, Carme, Zhu, Benoit-Cattin (bb0160) 2006; 10
Leite, Rittner, Lapa, Appenzeler, Lotufo (bb0020) 2014
Han, Kamber (bb0235) 2006
Flaherty, Kissela, Khoury, Alwell, Moomaw, Woo (bb0010) 2012; 40
Ammirati, Moroni, Magnoni, Rocca, Messina, Anzalone (bb0015) 2017; 7
Heinen, Bouvy, Mendrik, Viergever, Biessels, Bresser (bb0065) 2016; 11
Tardif, Spence, Heinonen, Moody, Pressacco, Frayne (bb0120) 2013; 29
Castellano, Bonilha, Cendes (bb0100) 2004; 59
Bergstra, Bengio (bb0215) 2012; 13
Bento, Souza, Salluzzi, Frayne (bb0175) 2018
Tofts, Collins (bb0040) 2011; 84
Kashif, Raza, Sirinukunwattana, Arif, Rajpoot (bb0095) 2016
Lu, Gobbi, Salluzzi (bb0110) 2014
Kuijf, Biesbroek, de Bresser, Heinen, Andermatt, Bento (bb0135) 2019
Bento, Souto, Salluzzi, Zhang, Frayne (bb0200) 2018
Dunnett (bb0250) 1955; 50
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bb0210) 2011; 12
Moeskops, de Bresser, Kuijf, Mendrik, Biessels, Pluim (bb0075) 2018; 17
Bishop (bb0220) 2007
Chalavi, Simmons, Dijkstra, Barker, Reinders (bb0045) 2012; 12
Davids, Zollner, Ruttorf, Nees, Flor, Schumann (bb0050) 2014; 32
Chollet (bb0270) 2015
Bento, Souza, Frayne, Rittner (bb0170) 2017
Leite, Gobbi, Salluzi, Frayne, Lotufo, Rittner (bb0030) 2016
Kim, MacFall, Payne (bb0145) 2009; 64
Woods, Gonzalez (bb0180) 2000
Komishke, Metz, Brown, Zhang (bb0125) 2014
He, Wang (bb0185) 1990; 28
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bb0165) 2012; 62
Collewet, Strzelecki, Mariette (bb0085) 2004; 22
Pearson (bb0240) 1901; 2
Friedman (bb0255) 1940; 11
Nelson, Swallen, Chung, Piper (bb0060) 2016; 57
Winkler, Hays (bb0245) 1975
Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, Frederic (bb0260) 2016
Tsang, Lebel, Bray, Goodyear, Hafeez, Sotero (bb0140) 2017; 9
Saba, Yuan, Hatsukami, Balu, Qiao, DeMarco (bb0005) 2018
Tustison, Avants, Cook, Zheng, Egan, Yushkevich (bb0155) 2010; 29
Griffanti, Zamboni, Khan, Li, Bonifacio, Sundaresan (bb0115) 2016; 141
Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne (bb0130) 2013; 12
Leite, Rittner, Gobbi, Saluzzi, Frayne, Lotufo (bb0150) 2015
Breiman, Friedman, Olshen, Stone (bb0230) 1984
Schwartz, Siqueira, Pedrini (bb0285) 2012; 21
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (bb0025) 2017; 42
Shen, Wu, Suk (bb0090) 2017; 19
Simonyan, Zisserman (bb0195) 2015
Shin, Roth, Gao, Lu, Xu, Nogues (bb0105) 2016; 35
Loizou, Pantziaris, Pattichis, Seimenis (bb0080) 2013; 3
Nieuwenhuis, Schnack, Haren, Lappin, Morgan, Reinders (bb0070) 2017; 145
Hunter (bb0275) 2007; 9
Helmer, Chou, Preciado, Gimi, N., Song (bb0280) 2016
Ammirati (10.1016/j.mri.2019.06.007_bb0015) 2017; 7
Yamashita (10.1016/j.mri.2019.06.007_bb0290) 2018; 9
Leite (10.1016/j.mri.2019.06.007_bb0035) 2015; 2
Jenkinson (10.1016/j.mri.2019.06.007_bb0165) 2012; 62
Sandeep (10.1016/j.mri.2019.06.007_bb0190) 2006; 1
Dunnett (10.1016/j.mri.2019.06.007_bb0250) 1955; 50
Belaroussi (10.1016/j.mri.2019.06.007_bb0160) 2006; 10
Heinen (10.1016/j.mri.2019.06.007_bb0065) 2016; 11
Saba (10.1016/j.mri.2019.06.007_bb0005) 2018
Litjens (10.1016/j.mri.2019.06.007_bb0025) 2017; 42
Bergstra (10.1016/j.mri.2019.06.007_bb0215) 2012; 13
Lu (10.1016/j.mri.2019.06.007_bb0110) 2014
He (10.1016/j.mri.2019.06.007_bb0185) 1990; 28
Davids (10.1016/j.mri.2019.06.007_bb0050) 2014; 32
Chollet (10.1016/j.mri.2019.06.007_bb0270)
Nelson (10.1016/j.mri.2019.06.007_bb0060) 2016; 57
Han (10.1016/j.mri.2019.06.007_bb0235) 2006
Schwartz (10.1016/j.mri.2019.06.007_bb0285) 2012; 21
Griffanti (10.1016/j.mri.2019.06.007_bb0115) 2016; 141
Bento (10.1016/j.mri.2019.06.007_bb0175) 2018
Loizou (10.1016/j.mri.2019.06.007_bb0080) 2013; 3
Wardlaw (10.1016/j.mri.2019.06.007_bb0130) 2013; 12
Moeskops (10.1016/j.mri.2019.06.007_bb0075) 2018; 17
Shen (10.1016/j.mri.2019.06.007_bb0090) 2017; 19
Helmer (10.1016/j.mri.2019.06.007_bb0280) 2016
Komishke (10.1016/j.mri.2019.06.007_bb0125) 2014
Leite (10.1016/j.mri.2019.06.007_bb0030) 2016
Kluyver (10.1016/j.mri.2019.06.007_bb0260) 2016
Kim (10.1016/j.mri.2019.06.007_bb0145) 2009; 64
Breiman (10.1016/j.mri.2019.06.007_bb0230) 1984
Pearson (10.1016/j.mri.2019.06.007_bb0240) 1901; 2
Shin (10.1016/j.mri.2019.06.007_bb0105) 2016; 35
Kashif (10.1016/j.mri.2019.06.007_bb0095) 2016
Kim (10.1016/j.mri.2019.06.007_bb0055) 2014; 32
Kuijf (10.1016/j.mri.2019.06.007_bb0135) 2019
Pedregosa (10.1016/j.mri.2019.06.007_bb0210) 2011; 12
Hunter (10.1016/j.mri.2019.06.007_bb0275) 2007; 9
Woods (10.1016/j.mri.2019.06.007_bb0180) 2000
Collewet (10.1016/j.mri.2019.06.007_bb0085) 2004; 22
Kohavi (10.1016/j.mri.2019.06.007_bb0225) 1995; Vol. 2
Bishop (10.1016/j.mri.2019.06.007_bb0220) 2007
Chalavi (10.1016/j.mri.2019.06.007_bb0045) 2012; 12
Castellano (10.1016/j.mri.2019.06.007_bb0100) 2004; 59
Leite (10.1016/j.mri.2019.06.007_bb0150) 2015
Friedman (10.1016/j.mri.2019.06.007_bb0255) 1940; 11
Bento (10.1016/j.mri.2019.06.007_bb0200) 2018
Simonyan (10.1016/j.mri.2019.06.007_bb0195) 2015
Flaherty (10.1016/j.mri.2019.06.007_bb0010) 2012; 40
Tustison (10.1016/j.mri.2019.06.007_bb0155) 2010; 29
Bento (10.1016/j.mri.2019.06.007_bb0170) 2017
Tsang (10.1016/j.mri.2019.06.007_bb0140) 2017; 9
Tofts (10.1016/j.mri.2019.06.007_bb0040) 2011; 84
Winkler (10.1016/j.mri.2019.06.007_bb0245) 1975
Leite (10.1016/j.mri.2019.06.007_bb0020) 2014
Tardif (10.1016/j.mri.2019.06.007_bb0120) 2013; 29
Yichuan (10.1016/j.mri.2019.06.007_bb0205) 2013
Nieuwenhuis (10.1016/j.mri.2019.06.007_bb0070) 2017; 145
der Walt (10.1016/j.mri.2019.06.007_bb0265) 2014; 2
References_xml – year: 2016
  ident: bb0095
  article-title: Handcrafted features with convolutional neural networks for detection of tumor cells in histology images
  publication-title: Proceedings of IEEE 13th International Symposium on Biomedical Imaging
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bb0155
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0015
  article-title: Relation between characteristics of carotid atherosclerotic plaques and brain white matter hyperintensities in asymptomatic patients
  publication-title: Sci Rep
– volume: 9
  start-page: 1
  year: 2017
  end-page: 13
  ident: bb0140
  article-title: White matter structural connectivity is not correlated to cortical resting-state functional connectivity over the healthy adult lifespan
  publication-title: Front Aging Neurosci
– volume: 17
  start-page: 251
  year: 2018
  end-page: 262
  ident: bb0075
  article-title: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in mri
  publication-title: NeuroImage: Clinical
– year: 2017
  ident: bb0170
  article-title: WMH segmentation challenge: a texture-based classification approach
  publication-title: Lecture Notes in Computer Science: International MICCAI Brain Lesion Workshop
– year: 2015
  ident: bb0150
  article-title: Influence of MR image intensity normalization on texture-based classification of brain white matter lesions
  publication-title: Proceedings of the Second Brain Congress
– volume: 3
  start-page: 20
  year: 2013
  ident: bb0080
  article-title: Brain MR image normalization in texture analysis of multiple sclerosis
  publication-title: Journal of Biomedical Graphics and Computing
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bb0025
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: bb0255
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann Math Stat
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: bb0275
  article-title: Matplotlib: A 2d graphics environment
  publication-title: Computing In Science & Engineering
– volume: 141
  start-page: 191
  year: 2016
  end-page: 205
  ident: bb0115
  article-title: BIANCA (Brain Intensity Abnormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities
  publication-title: NeuroImage
– year: 2013
  ident: bb0205
  article-title: Deep learning using linear support vector machines
  publication-title: Proceedings of International Conference on Machine Learning
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bb0215
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal Machine Learning Research
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: bb0290
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights into Imaging
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bb0165
  article-title: FSL
  publication-title: Neuroimage
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: bb0090
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
– volume: 11
  year: 2016
  ident: bb0065
  article-title: Robustness of automated methods for brain volume measurements across different MRI field strengths
  publication-title: Plos One
– volume: 2
  start-page: 301
  year: 1901
  ident: bb0240
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
– year: 2016
  ident: bb0030
  article-title: 3D texture-based classification applied on brain white matter lesions on MR images
  publication-title: Proceedings Volume 9785: Medical Imaging 2016: Computer-aided Diagnosis SPIE
– volume: 21
  start-page: 1
  year: 2012
  end-page: 17
  ident: bb0285
  article-title: Evaluation of feature descriptors for texture classification
  publication-title: Journal of Eletronic Imaging
– start-page: 1
  year: 2018
  end-page: 23
  ident: bb0005
  article-title: Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology
  publication-title: Am J Neuroradiol
– year: 2019
  ident: bb0135
  article-title: Standardized assessment of automatic segmentation of white matter hyperintensities; results of the wmh segmentation challenge
  publication-title: IEEE Trans Med Imaging
– year: 1975
  ident: bb0245
  article-title: Statistics: probability, inference, and decision
– start-page: 87
  year: 2016
  end-page: 90
  ident: bb0260
  article-title: Jupyter notebooks – a publishing format for reproducible computational workflows
  publication-title: Positioning and power in academic publishing: players, agents and agendas
– volume: 32
  start-page: 832
  year: 2014
  end-page: 844
  ident: bb0055
  article-title: Stable atlas-based mapped prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data
  publication-title: Magn Reson Imaging
– year: 2018
  ident: bb0175
  article-title: Normal brain aging: prediction of age, sex and white matter hyperintensities using a MR image-based machine learning technique
  publication-title: Lecture Notes in Computer Science: International Conference Image Analysis and Recognition
– year: 2015
  ident: bb0270
  article-title: Keras
– volume: 57
  start-page: 551
  year: 2016
  ident: bb0060
  article-title: Evaluation of a quantitative metric, volumetric statistical amyloid burden (VSAB), for Florbetapir PET, to classify amyloid positive and negative subjects using a cutoff derived from an independent dataset
  publication-title: The Journal of Nuclear Medicine
– volume: 84
  start-page: 213
  year: 2011
  end-page: 226
  ident: bb0040
  article-title: Multicentre imaging measurements for oncology and in the brain
  publication-title: Br J Radiol
– volume: 145
  start-page: 246
  year: 2017
  end-page: 253
  ident: bb0070
  article-title: Multi-center MRI prediction models: predicting sex and illness course in first episode psychosis patients
  publication-title: Neuroimage
– year: 2000
  ident: bb0180
  article-title: Digital image processing
– volume: 50
  start-page: 1096
  year: 1955
  end-page: 1121
  ident: bb0250
  article-title: A multiple comparisons procedure for comparing several treatments with a control
  publication-title: J Am Stat Assoc
– volume: 40
  start-page: 36
  year: 2012
  end-page: 41
  ident: bb0010
  article-title: Carotid artery stenosis as a cause of stroke
  publication-title: Neuroepidemiology
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bb0105
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– volume: 28
  start-page: 509
  year: 1990
  end-page: 512
  ident: bb0185
  article-title: Texture unit, texture spectrum, and texture analysis
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 12
  start-page: 1
  year: 2012
  end-page: 15
  ident: bb0045
  article-title: Quantitative and qualitative assessment of structural magnetic resonance imaging data in a two-center study
  publication-title: BMC Med Imaging
– volume: 59
  start-page: 1061
  year: 2004
  end-page: 1069
  ident: bb0100
  article-title: Texture analysis of medical images
  publication-title: Clin Radiol
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0210
  article-title: Scikit-learn: machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 81
  year: 2004
  end-page: 91
  ident: bb0085
  article-title: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification
  publication-title: Magn Reson Imaging
– year: 2018
  ident: bb0200
  article-title: Feature extraction using convolutional networks for identifying carotid artery atherosclerosis patients in a heterogeneous brain MR dataset
  publication-title: Proceedings of Joint Annual Meeting of International Society for Magnetic Resonance in Medicine
– volume: 29
  start-page: 297
  year: 2013
  end-page: 303
  ident: bb0120
  article-title: Atherosclerosis imaging and the Canadian Atherosclerosis Imaging Network
  publication-title: Can J Cardiol
– volume: 64
  start-page: 273
  year: 2009
  end-page: 280
  ident: bb0145
  article-title: Classification of white matter lesions on magnetic resonance imaging in the elderly
  publication-title: Biol Psychiatry
– volume: Vol. 2
  start-page: 1137
  year: 1995
  end-page: 1143
  ident: bb0225
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proceedings of the 14th International Joint Conference on Artificial Intelligence
– year: 2015
  ident: bb0195
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of 3rd International Conference on Learning Representations
– volume: 32
  start-page: 771
  year: 2014
  end-page: 780
  ident: bb0050
  article-title: Fully-automated quality assurance in multi-center studies using MRI phantom measurements
  publication-title: Magn Reson Imaging
– volume: 12
  start-page: 822
  year: 2013
  end-page: 838
  ident: bb0130
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to aging and neurodegeneration
  publication-title: Lancet Neurol
– year: 2007
  ident: bb0220
  article-title: Pattern recognition and machine learning
– year: 2016
  ident: bb0280
  article-title: Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses
  publication-title: Proceedings of SPIE–the International Society for Optical Engineering
– year: 2014
  ident: bb0020
  article-title: Classification of brain white matter lesion on MR imaging
  publication-title: Proceedings of the 15th Annual Alberta Biomedical Engineering Conference
– year: 1984
  ident: bb0230
  article-title: Classification and regression trees
– year: 2006
  ident: bb0235
  article-title: Data mining: concepts and techniques
– volume: 2
  year: 2015
  ident: bb0035
  article-title: Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging
  publication-title: Journal of Medical Imaging
– year: 2014
  ident: bb0110
  article-title: Cerebra-WML: a stand-alone application for quantification of white matter lesion
  publication-title: Proceedings of Imaging Network Ontario Symposium
– volume: 2
  start-page: e453
  year: 2014
  ident: bb0265
  article-title: Scikit-image: image processing in python
  publication-title: PeerJ the Journal of Life and Environmental Sciences
– volume: 10
  start-page: 234
  year: 2006
  end-page: 246
  ident: bb0160
  article-title: Intensity nonuniformity correction in MRI: existing methods and their validation
  publication-title: Med Image Anal
– year: 2014
  ident: bb0125
  article-title: Preferably large fiber damage in the corpus callosum of progressive MS compared with relapsing MS and controls
  publication-title: Proceedings of the 22nd International Society for Magnetic Resonance in Medicine
– volume: 1
  start-page: 86
  year: 2006
  end-page: 92
  ident: bb0190
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomedical Signal Processing and Control
– year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0095
  article-title: Handcrafted features with convolutional neural networks for detection of tumor cells in histology images
– volume: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.mri.2019.06.007_bb0035
  article-title: Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.2.1.014002
– volume: Vol. 2
  start-page: 1137
  year: 1995
  ident: 10.1016/j.mri.2019.06.007_bb0225
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– year: 2019
  ident: 10.1016/j.mri.2019.06.007_bb0135
  article-title: Standardized assessment of automatic segmentation of white matter hyperintensities; results of the wmh segmentation challenge
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2905770
– volume: 11
  issue: 10
  year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0065
  article-title: Robustness of automated methods for brain volume measurements across different MRI field strengths
  publication-title: Plos One
  doi: 10.1371/journal.pone.0165719
– volume: 32
  start-page: 771
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2019.06.007_bb0050
  article-title: Fully-automated quality assurance in multi-center studies using MRI phantom measurements
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2014.01.017
– volume: 50
  start-page: 1096
  issue: 272
  year: 1955
  ident: 10.1016/j.mri.2019.06.007_bb0250
  article-title: A multiple comparisons procedure for comparing several treatments with a control
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1955.10501294
– year: 2015
  ident: 10.1016/j.mri.2019.06.007_bb0150
  article-title: Influence of MR image intensity normalization on texture-based classification of brain white matter lesions
– year: 2013
  ident: 10.1016/j.mri.2019.06.007_bb0205
  article-title: Deep learning using linear support vector machines
– year: 1975
  ident: 10.1016/j.mri.2019.06.007_bb0245
– start-page: 1
  year: 2018
  ident: 10.1016/j.mri.2019.06.007_bb0005
  article-title: Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology
  publication-title: Am J Neuroradiol
– year: 2017
  ident: 10.1016/j.mri.2019.06.007_bb0170
  article-title: WMH segmentation challenge: a texture-based classification approach
  doi: 10.1007/978-3-319-67810-8
– volume: 84
  start-page: 213
  year: 2011
  ident: 10.1016/j.mri.2019.06.007_bb0040
  article-title: Multicentre imaging measurements for oncology and in the brain
  publication-title: Br J Radiol
  doi: 10.1259/bjr/74316620
– volume: 10
  start-page: 234
  issue: 2
  year: 2006
  ident: 10.1016/j.mri.2019.06.007_bb0160
  article-title: Intensity nonuniformity correction in MRI: existing methods and their validation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2005.09.004
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.mri.2019.06.007_bb0190
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2006.05.002
– year: 2014
  ident: 10.1016/j.mri.2019.06.007_bb0020
  article-title: Classification of brain white matter lesion on MR imaging
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.mri.2019.06.007_bb0090
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 12
  start-page: 2825
  issue: 1
  year: 2011
  ident: 10.1016/j.mri.2019.06.007_bb0210
  article-title: Scikit-learn: machine learning in Python
  publication-title: Journal of Machine Learning Research
– year: 2014
  ident: 10.1016/j.mri.2019.06.007_bb0125
  article-title: Preferably large fiber damage in the corpus callosum of progressive MS compared with relapsing MS and controls
– volume: 22
  start-page: 81
  issue: 1
  year: 2004
  ident: 10.1016/j.mri.2019.06.007_bb0085
  article-title: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2003.09.001
– volume: 32
  start-page: 832
  issue: 7
  year: 2014
  ident: 10.1016/j.mri.2019.06.007_bb0055
  article-title: Stable atlas-based mapped prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2014.04.016
– volume: 145
  start-page: 246
  issue: Pt B
  year: 2017
  ident: 10.1016/j.mri.2019.06.007_bb0070
  article-title: Multi-center MRI prediction models: predicting sex and illness course in first episode psychosis patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.027
– volume: 3
  start-page: 20
  issue: 1
  year: 2013
  ident: 10.1016/j.mri.2019.06.007_bb0080
  article-title: Brain MR image normalization in texture analysis of multiple sclerosis
  publication-title: Journal of Biomedical Graphics and Computing
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.mri.2019.06.007_bb0255
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2019.06.007_bb0290
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights into Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 2
  start-page: e453
  year: 2014
  ident: 10.1016/j.mri.2019.06.007_bb0265
  article-title: Scikit-image: image processing in python
  publication-title: PeerJ the Journal of Life and Environmental Sciences
– year: 2000
  ident: 10.1016/j.mri.2019.06.007_bb0180
– volume: 42
  start-page: 60
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.mri.2019.06.007_bb0025
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 141
  start-page: 191
  year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0115
  article-title: BIANCA (Brain Intensity Abnormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.018
– ident: 10.1016/j.mri.2019.06.007_bb0270
– volume: 17
  start-page: 251
  year: 2018
  ident: 10.1016/j.mri.2019.06.007_bb0075
  article-title: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in mri
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.10.007
– year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0030
  article-title: 3D texture-based classification applied on brain white matter lesions on MR images
– volume: 21
  start-page: 1
  issue: 2
  year: 2012
  ident: 10.1016/j.mri.2019.06.007_bb0285
  article-title: Evaluation of feature descriptors for texture classification
  publication-title: Journal of Eletronic Imaging
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0105
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0280
  article-title: Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses
– year: 2014
  ident: 10.1016/j.mri.2019.06.007_bb0110
  article-title: Cerebra-WML: a stand-alone application for quantification of white matter lesion
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.mri.2019.06.007_bb0165
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 12
  start-page: 1
  issue: 27
  year: 2012
  ident: 10.1016/j.mri.2019.06.007_bb0045
  article-title: Quantitative and qualitative assessment of structural magnetic resonance imaging data in a two-center study
  publication-title: BMC Med Imaging
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.1016/j.mri.2019.06.007_bb0215
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal Machine Learning Research
– year: 2018
  ident: 10.1016/j.mri.2019.06.007_bb0200
  article-title: Feature extraction using convolutional networks for identifying carotid artery atherosclerosis patients in a heterogeneous brain MR dataset
– volume: 12
  start-page: 822
  year: 2013
  ident: 10.1016/j.mri.2019.06.007_bb0130
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to aging and neurodegeneration
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(13)70124-8
– volume: 29
  start-page: 297
  issue: 3
  year: 2013
  ident: 10.1016/j.mri.2019.06.007_bb0120
  article-title: Atherosclerosis imaging and the Canadian Atherosclerosis Imaging Network
  publication-title: Can J Cardiol
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.mri.2019.06.007_bb0155
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
– start-page: 87
  year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0260
  article-title: Jupyter notebooks – a publishing format for reproducible computational workflows
– volume: 7
  start-page: 1
  issue: 10559
  year: 2017
  ident: 10.1016/j.mri.2019.06.007_bb0015
  article-title: Relation between characteristics of carotid atherosclerotic plaques and brain white matter hyperintensities in asymptomatic patients
  publication-title: Sci Rep
– year: 2015
  ident: 10.1016/j.mri.2019.06.007_bb0195
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 9
  start-page: 1
  issue: 144
  year: 2017
  ident: 10.1016/j.mri.2019.06.007_bb0140
  article-title: White matter structural connectivity is not correlated to cortical resting-state functional connectivity over the healthy adult lifespan
  publication-title: Front Aging Neurosci
– volume: 2
  start-page: 301
  issue: 11
  year: 1901
  ident: 10.1016/j.mri.2019.06.007_bb0240
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
– year: 2006
  ident: 10.1016/j.mri.2019.06.007_bb0235
– volume: 59
  start-page: 1061
  issue: 12
  year: 2004
  ident: 10.1016/j.mri.2019.06.007_bb0100
  article-title: Texture analysis of medical images
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2004.07.008
– volume: 28
  start-page: 509
  issue: 1
  year: 1990
  ident: 10.1016/j.mri.2019.06.007_bb0185
  article-title: Texture unit, texture spectrum, and texture analysis
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2007
  ident: 10.1016/j.mri.2019.06.007_bb0220
– volume: 57
  start-page: 551
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2019.06.007_bb0060
  article-title: Evaluation of a quantitative metric, volumetric statistical amyloid burden (VSAB), for Florbetapir PET, to classify amyloid positive and negative subjects using a cutoff derived from an independent dataset
  publication-title: The Journal of Nuclear Medicine
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.mri.2019.06.007_bb0275
  article-title: Matplotlib: A 2d graphics environment
  publication-title: Computing In Science & Engineering
  doi: 10.1109/MCSE.2007.55
– year: 2018
  ident: 10.1016/j.mri.2019.06.007_bb0175
  article-title: Normal brain aging: prediction of age, sex and white matter hyperintensities using a MR image-based machine learning technique
  doi: 10.1007/978-3-319-93000-8_61
– volume: 40
  start-page: 36
  issue: 1
  year: 2012
  ident: 10.1016/j.mri.2019.06.007_bb0010
  article-title: Carotid artery stenosis as a cause of stroke
  publication-title: Neuroepidemiology
  doi: 10.1159/000341410
– volume: 64
  start-page: 273
  issue: 1
  year: 2009
  ident: 10.1016/j.mri.2019.06.007_bb0145
  article-title: Classification of white matter lesions on magnetic resonance imaging in the elderly
  publication-title: Biol Psychiatry
– year: 1984
  ident: 10.1016/j.mri.2019.06.007_bb0230
SSID ssj0005235
Score 2.3597035
Snippet Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Adult
Aged
Aged, 80 and over
Atherosclerosis - diagnostic imaging
Atherosclerosis - pathology
Brain - diagnostic imaging
Brain - pathology
Brain image processing
Carotid Arteries - diagnostic imaging
Carotid artery atherosclerotic disease
Cohort Studies
Feature extraction
Female
Humans
Machine learning
Magnetic Resonance Imaging
Male
Middle Aged
Multi-center data set
Multiple Sclerosis - diagnostic imaging
Neuroimaging
Pattern Recognition, Automated
Reproducibility of Results
Sensitivity and Specificity
Support Vector Machine
White Matter - diagnostic imaging
Title Automatic identification of atherosclerosis subjects in a heterogeneous MR brain imaging data set
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19301018
https://dx.doi.org/10.1016/j.mri.2019.06.007
https://www.ncbi.nlm.nih.gov/pubmed/31228556
https://www.proquest.com/docview/2245627737
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iIPdy-HHn-UkEn4TebtNk0zwuoqzK-uCdsG8hX8UeuhXbffVvdyZtFw9OhXsptJ2hYWY6-bX5ZYaQEwYwN4jCJ6kbuYQH7xPlMpOYkLocbuS5wc3J05vR5I5fzcRshZz1e2GQVtnl_janx2zdXRl01hw8leXgFwanZGIGEAQLpeGGX84ldjH4-fKW5tE22QThBKX7lc3I8Xp8LpHdpWIJT-wo---56T3sGeegiw3ytQOPdNyOb5OshPkWWZ92y-PbxIwXTRVrsNLSdzSgaHlaFTRCvaoGRTiWNa0XFv_B1LScU0PvkRZTQTSFalHT6S212DuClo-xixFFIimtQ_ON3F2c_z6bJF0PhcTxYdYkNmQp81w577z0wkrhi5xBdgScWihTgEtCFoTxacgzKwEeCi6NMsql3GZpkX0nq_NqHn4QOrQA_QBOOsVHPA1WOcXgmjTwkSiE97tk2FtPu67AOPa5eNA9k-yPBoNrNLiObDq5S06XKk9tdY2PhFnvEt1vG4VEpyH3f6TEl0p_xdVnase9zzW8b7iIYqIDNMOVYiZlBjI7bTAshw6mZrkQo73_e-g--YJnLVXwgKw2z4twCJCnsUcxpo_I2vjyenLzCrq5AOU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgKxUuiEIpy6O4Uk-Vwm4cexMfEQJtC8uBgrQ3y6-IVOwGkeyV386Mk6yKREHqJQd7RrHGk_Hn-PMMId8ZwFwvchfFdmQj7p2LpE10pH1sM-jIMo2XkydXo_Et_zUV0xVy2t2FQVplG_ubmB6iddsyaK05eCiKwW90zpSJKUAQTJSWrZIPXLAUd2DHT3_zPJoqmyAdoXh3tBlIXrPHAuldMuTwxJKyry9O_wKfYRE63yQbLXqkJ80AP5EVP98iHyft-fg20SeLugxJWGnhWh5QMD0tcxqwXlmBIjyLilYLgz9hKlrMqaZ3yIspwZ18uajo5JoaLB5Bi1koY0SRSUorX38mt-dnN6fjqC2iEFk-TOrI-CRmjkvrrEudMKlwecYgPAJQzaXOYU584oV2sc8SkwI-FDzVUksbc5PEebJDevNy7ncJHRrAfoAnreQjHnsjrWTQlmrYJQrhXJ8MO-sp22YYx0IX96qjkv1RYHCFBleBTpf2yY-lykOTXuMtYdZNierujUKkUxD831LiS6UXjvWe2rduzhV8cHiKosMEKIZHxeBmCch8aZxhOXQwNcuEGO3930uPyNr4ZnKpLn9eXeyTdexpeIMHpFc_Lvwh4J_afA3-_QyeSgJ6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+atherosclerosis+subjects+in+a+heterogeneous+MR+brain+imaging+data+set&rft.jtitle=Magnetic+resonance+imaging&rft.au=Bento%2C+Mariana&rft.au=Souza%2C+Roberto&rft.au=Salluzzi%2C+Marina&rft.au=Rittner%2C+Let%C3%ADcia&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=62&rft.spage=18&rft.epage=27&rft_id=info:doi/10.1016%2Fj.mri.2019.06.007&rft.externalDocID=S0730725X19301018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon