A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy
We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-itera...
Saved in:
| Published in | Physics in medicine & biology Vol. 66; no. 13; pp. 135003 - 135017 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
07.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/1361-6560/ac03ca |
Cover
| Abstract | We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2
with 10
incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2
with 10
incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2
with 10
incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF. |
|---|---|
| AbstractList | We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σwith 108incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σwith 108incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σwith 109incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σwith 108incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σwith 108incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σwith 109incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF. We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2 with 10 incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2 with 10 incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2 with 10 incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF. We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors’ counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σ with 108 incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σ with 108 incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σ with 109 incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF. |
| Author | Morel, Christian Muraz, Jean-François Dauvergne, Denis Dupont, Mathieu Testa, Étienne Jacquet, Maxime Hérault, Joël Boursier, Yannick Bouly, Jean-Luc Gallin-Martel, Laurent Manéval, Daniel Létang, Jean-Michel Gallin-Martel, Marie-Laure Marcatili, Sara |
| Author_xml | – sequence: 1 givenname: Maxime surname: Jacquet fullname: Jacquet, Maxime organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 2 givenname: Sara orcidid: 0000-0002-7305-0119 surname: Marcatili fullname: Marcatili, Sara organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 3 givenname: Marie-Laure surname: Gallin-Martel fullname: Gallin-Martel, Marie-Laure organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 4 givenname: Jean-Luc surname: Bouly fullname: Bouly, Jean-Luc organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 5 givenname: Yannick surname: Boursier fullname: Boursier, Yannick organization: Aix-Marseille Univ , CNRS/IN2P3, CPPM, Marseille, France – sequence: 6 givenname: Denis orcidid: 0000-0002-6190-6311 surname: Dauvergne fullname: Dauvergne, Denis organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 7 givenname: Mathieu surname: Dupont fullname: Dupont, Mathieu organization: Aix-Marseille Univ , CNRS/IN2P3, CPPM, Marseille, France – sequence: 8 givenname: Laurent surname: Gallin-Martel fullname: Gallin-Martel, Laurent organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 9 givenname: Joël surname: Hérault fullname: Hérault, Joël organization: Centre Antoine Lacassagne, F-06200 Nice, France – sequence: 10 givenname: Jean-Michel orcidid: 0000-0003-2583-782X surname: Létang fullname: Létang, Jean-Michel organization: University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1 , UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373 Lyon, France – sequence: 11 givenname: Daniel orcidid: 0000-0002-8143-9992 surname: Manéval fullname: Manéval, Daniel organization: Centre Antoine Lacassagne, F-06200 Nice, France – sequence: 12 givenname: Christian orcidid: 0000-0001-5359-6504 surname: Morel fullname: Morel, Christian organization: Aix-Marseille Univ , CNRS/IN2P3, CPPM, Marseille, France – sequence: 13 givenname: Jean-François surname: Muraz fullname: Muraz, Jean-François organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France – sequence: 14 givenname: Étienne orcidid: 0000-0003-0815-7056 surname: Testa fullname: Testa, Étienne organization: Univ. Lyon, Univ. Claude Bernard Lyon 1 , CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34020438$$D View this record in MEDLINE/PubMed https://hal.science/hal-03319261$$DView record in HAL |
| BookMark | eNp9kkFr3DAQhUVJaDZp7z0VH1OoEsmytPZxCW1TWOglufQixvJoV8G2XEku5N9XxukeSgkIBI_vjYb3dEnORj8iIR84u-Gsrm-5UJwqqdgtGCYMvCGbk3RGNowJThsu5QW5jPGJMc7rsnpLLkTFSlaJekN-7orkBqTeUtu7wzHRFiJ2RUDjx5jCbJLzY2F9yBL0dIGLKfhhSvQAwwCFG-DgxkPhxkVPGU5HDDA9vyPnFvqI71_uK_L49cvD3T3d__j2_W63p6ZiIr8nttuOYWmYBKEqCQarsrKLAjVii2ga2UBnZcu6reyMamxGuQKGFjojrsinde4Rej2FvE941h6cvt_t9aIxIXhTKv6bZ_Z6ZfOqv2aMSQ8uGux7GNHPUZdS8FJUVSMy-vEFndsBu9Pkv9llgK2ACT7GgPaEcKaXevTShV660Gs92aL-sRiXYEk4BXD9a8bPq9H5ST_5OYw50dfw6__g09BqpTKdj8x_Q0-dFX8ACGOwOw |
| CODEN | PHMBA7 |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ada681 crossref_primary_10_3389_fphy_2022_961162 crossref_primary_10_1088_1361_6560_ad4f43 crossref_primary_10_1088_1361_6560_ac5765 crossref_primary_10_1038_s41598_023_30712_x crossref_primary_10_1088_1361_6560_ad5d4b crossref_primary_10_1088_1361_6560_acd237 crossref_primary_10_1016_j_apradiso_2021_110055 crossref_primary_10_3389_fphy_2022_971767 crossref_primary_10_3389_fphy_2022_932950 crossref_primary_10_1088_1361_6560_ad8c96 crossref_primary_10_1109_TRPMS_2024_3498959 crossref_primary_10_3389_fphy_2024_1295683 crossref_primary_10_1140_epjp_s13360_024_05664_4 crossref_primary_10_3389_fphy_2024_1356572 crossref_primary_10_1088_1361_6560_ad4a01 crossref_primary_10_1016_j_nimb_2024_165464 crossref_primary_10_1109_TRPMS_2023_3259464 crossref_primary_10_1109_TRPMS_2024_3372189 crossref_primary_10_1016_j_nima_2024_169339 |
| Cites_doi | 10.1088/1748-0221/10/01/P01011 10.1088/1361-6560/aad513 10.1051/epjconf/201611705005 10.1002/acm2.12225 10.1086/340545 10.1088/0031-9155/60/16/6247 10.1088/0031-9155/58/15/R131 10.1088/0031-9155/57/17/5459 10.1002/mp.12960 10.1088/0031-9155/61/6/2432 10.1016/j.nima.2014.11.042 10.1016/j.radonc.2016.01.004 10.1051/epjconf/201817009005 10.1063/1.2378561 10.1002/mp.13193 10.1016/j.nima.2018.09.062 10.1088/1361-6560/ab7a6c 10.1088/1361-6560/ab176d 10.1016/j.nima.2016.06.125 10.1016/j.nima.2011.01.069 10.1002/mp.14226 10.1088/0031-9155/59/24/7653 10.1259/bjr.20190619 10.1002/mp.12348 10.1016/j.ijrobp.2017.04.027 10.1088/1361-6560/aaa203 10.1016/j.nima.2017.07.063 10.1016/j.radonc.2018.03.014 10.1088/0031-9155/54/3/017 10.1063/1.4980103 10.1088/0031-9155/59/23/7089 10.1088/0031-9155/59/19/5849 10.3389/fonc.2016.00010 10.1109/NSS/MIC42101.2019.9059815 10.1088/0031-9155/57/11/3371 10.1038/s41598-018-22325-6 10.1088/0031-9155/59/18/5399 10.1109/TNS.2016.2527822 10.3389/fonc.2015.00150 10.1088/0031-9155/60/12/4849 10.1088/0031-9155/57/20/6429 10.1016/S0167-8140(04)80024-0 10.1088/1361-6560/aa8070 10.1088/0031-9155/57/11/R99 10.1088/1748-0221/10/11/P11001 10.3389/fphy.2020.567215 10.1016/S0168-9002(03)01368-8 10.1117/1.JMI.4.1.011005 |
| ContentType | Journal Article |
| Copyright | 2021 Institute of Physics and Engineering in Medicine 2021 Institute of Physics and Engineering in Medicine. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 Institute of Physics and Engineering in Medicine – notice: 2021 Institute of Physics and Engineering in Medicine. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
| DOI | 10.1088/1361-6560/ac03ca |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| ExternalDocumentID | oai:HAL:hal-03319261v1 34020438 10_1088_1361_6560_ac03ca pmbac03ca |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-15-IDEX-02 funderid: https://doi.org/10.13039/501100001665 – fundername: Institut National de la Santé et de la Recherche Médicale funderid: https://doi.org/10.13039/501100001677 |
| GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 .GJ .HR 02O 1WK 1XC 29O 3O- 53G 5ZI 9BW AAGCF AALHV ABUFD ACARI ACWPO AERVB AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF H~9 J5H JCGBZ NT- NT. Q02 RKQ S3P T37 VOOES X7L ZGI ZMT ZXP ZY4 |
| ID | FETCH-LOGICAL-c403t-b377d0e2c05a3645ace424f0e2ca8eebeec959adf5b0d75dc69f05a16a0efadc3 |
| IEDL.DBID | IOP |
| ISSN | 0031-9155 1361-6560 |
| IngestDate | Tue Oct 14 20:51:13 EDT 2025 Fri Sep 05 13:54:10 EDT 2025 Thu Jan 02 22:55:37 EST 2025 Wed Oct 01 00:30:39 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Wed Aug 21 03:34:57 EDT 2024 Wed Jun 07 11:19:01 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | proton therapy image reconstruction prompt-gamma imging prompt-gamma timing range monitoring |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. 2021 Institute of Physics and Engineering in Medicine. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-b377d0e2c05a3645ace424f0e2ca8eebeec959adf5b0d75dc69f05a16a0efadc3 |
| Notes | PMB-111417.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5359-6504 0000-0003-2583-782X 0000-0003-0815-7056 0000-0002-6190-6311 0000-0002-8143-9992 0000-0002-7305-0119 |
| OpenAccessLink | https://hal.science/hal-03319261 |
| PMID | 34020438 |
| PQID | 2531234493 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | iop_journals_10_1088_1361_6560_ac03ca crossref_primary_10_1088_1361_6560_ac03ca proquest_miscellaneous_2531234493 pubmed_primary_34020438 crossref_citationtrail_10_1088_1361_6560_ac03ca hal_primary_oai_HAL_hal_03319261v1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-07 |
| PublicationDateYYYYMMDD | 2021-07-07 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAbbrev | PMB |
| PublicationTitleAlternate | Phys. Med. Biol |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Arce (pmbac03cabib3) 2020; 48 Pidikiti (pmbac03cabib35) 2018; 19 Richter (pmbac03cabib40) 2016; 118 Marcatili (pmbac03cabib26) 2020; 65 Dosanjh (pmbac03cabib7) 2018; 128 Hueso-González (pmbac03cabib14) 2015; 60 Vanstalle (pmbac03cabib44) 2017; 44 Verburg (pmbac03cabib46) 2014; 59 Priegnitz (pmbac03cabib39) 2015; 60 Kozlovsky (pmbac03cabib19) 2002; 141 Ferrero (pmbac03cabib11) 2018; 8 (pmbac03cabib16) 2009; vol 39 Krimmer (pmbac03cabib23) 2017; 110 Pinto (pmbac03cabib36) 2014; 59 Min (pmbac03cabib27) 2006; 89 Pausch (pmbac03cabib31) 2016; 63 Draeger (pmbac03cabib8) 2018; 63 Kishimoto (pmbac03cabib17) 2015; 10 Krimmer (pmbac03cabib21) 2015a; 787 Roellinghoff (pmbac03cabib41) 2011; 648 Krimmer (pmbac03cabib24) 2018; 878 Enghardt (pmbac03cabib9) 2004; 73 Pausch (pmbac03cabib32) 2020; 954 Xie (pmbac03cabib48) 2017; 99 Polf (pmbac03cabib38) 2009; 54 Biegun (pmbac03cabib4) 2012; 57 Dauvergne (pmbac03cabib6) 2020; 8 Thirolf (pmbac03cabib43) 2017; 117 Verburg (pmbac03cabib45) 2012; 57 Kraan (pmbac03cabib20) 2015; 5 Marcatili (pmbac03cabib25) 2019 Pinto (pmbac03cabib37) 2016; 6 Farr (pmbac03cabib10) 2018; 45 Golnik (pmbac03cabib13) 2014; 59 Agostinelli (pmbac03cabib1) 2003; 506 Knopf (pmbac03cabib18) 2013; 58 Perali (pmbac03cabib33) 2014; 59 Paganetti (pmbac03cabib29) 2012; 57 Xie (pmbac03cabib49) 2020; 93 Hueso-González (pmbac03cabib15) 2018; 63 Krimmer (pmbac03cabib22) 2015b; 10 Parodi (pmbac03cabib30) 2018; 45 Gallin-Martel (pmbac03cabib12) 2018; 170 Allison (pmbac03cabib2) 2016; 835 Bisogni (pmbac03cabib5) 2016; 4 Petzoldt (pmbac03cabib34) 2016; 61 Werner (pmbac03cabib47) 2019; 64 Muñoz (pmbac03cabib28) 2017; 62 Smeets (pmbac03cabib42) 2012; 57 |
| References_xml | – volume: 10 year: 2015b ident: pmbac03cabib22 article-title: Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations publication-title: J. Instrum. doi: 10.1088/1748-0221/10/01/P01011 – volume: 63 year: 2018 ident: pmbac03cabib15 article-title: A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aad513 – volume: 117 start-page: 05005 year: 2017 ident: pmbac03cabib43 article-title: A Compton camera prototype for prompt gamma medical imaging publication-title: EPJ Web Conf. doi: 10.1051/epjconf/201611705005 – volume: 19 start-page: 94 year: 2018 ident: pmbac03cabib35 article-title: Commissioning of the world’s first compact pencil-beam scanning proton therapy system publication-title: J. Appl. Clin. Med. Phys. doi: 10.1002/acm2.12225 – volume: 141 start-page: 523 year: 2002 ident: pmbac03cabib19 article-title: Nuclear deexcitation gamma-ray lines from accelerated particle interactions publication-title: Astrophys. J. Suppl. Ser. doi: 10.1086/340545 – volume: 60 start-page: 6247 year: 2015 ident: pmbac03cabib14 article-title: First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/16/6247 – volume: 58 start-page: 131 year: 2013 ident: pmbac03cabib18 article-title: A in vivo proton range verification: a review publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/15/R131 – volume: 57 start-page: 5459 year: 2012 ident: pmbac03cabib45 article-title: Simulation of prompt gamma-ray emission during proton radiotherapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/17/5459 – volume: 45 start-page: 1036 year: 2018 ident: pmbac03cabib30 article-title: In vivo range verification in particle therapy publication-title: Med. Phys. doi: 10.1002/mp.12960 – volume: 61 start-page: 2432 year: 2016 ident: pmbac03cabib34 article-title: Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/6/2432 – volume: 787 start-page: 98 year: 2015a ident: pmbac03cabib21 article-title: Development of a Compton camera for medical applications based on silicon strip and scintillation detectors publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2014.11.042 – volume: 118 start-page: 232 year: 2016 ident: pmbac03cabib40 article-title: First clinical application of a prompt gamma based in vivo proton range verification system publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2016.01.004 – volume: 170 start-page: 09005 year: 2018 ident: pmbac03cabib12 article-title: A large area diamond-based beam tagging hodoscope for ion therapy monitoring publication-title: EPJ Web Conf. doi: 10.1051/epjconf/201817009005 – volume: 89 year: 2006 ident: pmbac03cabib27 article-title: Prompt gamma measurements for locating the dose falloff region in the proton therapy publication-title: Appl. Phys. Lett. doi: 10.1063/1.2378561 – volume: 45 start-page: e953 year: 2018 ident: pmbac03cabib10 article-title: New horizons in particle therapy systems publication-title: Med. Phys. doi: 10.1002/mp.13193 – volume: 954 year: 2020 ident: pmbac03cabib32 article-title: Detection systems for range monitoring in proton therapy: needs and challenges publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2018.09.062 – volume: 65 year: 2020 ident: pmbac03cabib26 article-title: Ultra-fast prompt gamma detection in single proton counting regime for range monitoring in particle therapy publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab7a6c – volume: 64 year: 2019 ident: pmbac03cabib47 article-title: Processing of prompt gamma-ray timing data for proton range measurements at a clinical beam delivery publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab176d – volume: 835 start-page: 186 year: 2016 ident: pmbac03cabib2 article-title: Recent developments in Geant4 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2016.06.125 – volume: 648 start-page: 20 year: 2011 ident: pmbac03cabib41 article-title: Design of a Compton camera for 3D prompt-imaging during ion beam therapy publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2011.01.069 – volume: 48 start-page: 19 year: 2020 ident: pmbac03cabib3 article-title: Report on G4-Med a Geant4 benchmarking system for medical physics applications developed by the Geant4 medical simulation benchmarking group publication-title: Med. Phys. doi: 10.1002/mp.14226 – volume: 59 start-page: 7653 year: 2014 ident: pmbac03cabib36 article-title: Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/24/7653 – volume: 93 year: 2020 ident: pmbac03cabib49 article-title: Prompt gamma imaging for the identification of regional proton range deviations due to anatomic change in a heterogeneous region publication-title: Br. J. Radiol. doi: 10.1259/bjr.20190619 – volume: 44 start-page: 4276 year: 2017 ident: pmbac03cabib44 article-title: Benchmarking Geant4 hadronic models for prompt-γ monitoring in carbon ion therapy publication-title: Med. Phys. doi: 10.1002/mp.12348 – volume: 99 start-page: 210 year: 2017 ident: pmbac03cabib48 article-title: Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2017.04.027 – volume: 63 year: 2018 ident: pmbac03cabib8 article-title: 3D prompt gamma imaging for proton beam range verification publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aaa203 – volume: 878 start-page: 58 year: 2018 ident: pmbac03cabib24 article-title: Prompt-gamma monitoring in hadrontherapy: a review publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2017.07.063 – volume: 128 start-page: 76 year: 2018 ident: pmbac03cabib7 article-title: ENLIGHT: European network for light ion hadron therapy publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2018.03.014 – volume: 54 start-page: 731 year: 2009 ident: pmbac03cabib38 article-title: Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/3/017 – volume: 110 year: 2017 ident: pmbac03cabib23 article-title: A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration publication-title: Appl. Phys. Lett. doi: 10.1063/1.4980103 – volume: 59 start-page: 7089 year: 2014 ident: pmbac03cabib46 article-title: Proton range verification through prompt gamma-ray spectroscopy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/23/7089 – volume: 59 start-page: 5849 year: 2014 ident: pmbac03cabib33 article-title: Prompt gamma imaging of proton pencil beams at clinical dose rate publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/19/5849 – volume: 6 start-page: 10-1-7 year: 2016 ident: pmbac03cabib37 article-title: Assessment of Geant4 prompt-gamma emission yields in the context of proton therapy monitoring publication-title: Frontiers Oncol. doi: 10.3389/fonc.2016.00010 – start-page: 1 year: 2019 ident: pmbac03cabib25 article-title: A 100 ps TOF detection system for on-line range-monitoring in hadrontherapy doi: 10.1109/NSS/MIC42101.2019.9059815 – volume: 57 start-page: 3371 year: 2012 ident: pmbac03cabib42 article-title: Prompt gamma imaging with a slit camera for real-time range control in proton therapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/11/3371 – volume: 8 start-page: 1 year: 2018 ident: pmbac03cabib11 article-title: Online proton therapy monitoring: clinical test of a silicon-photodetector-based in-beam PET publication-title: Sci. Rep. doi: 10.1038/s41598-018-22325-6 – volume: 59 start-page: 5399 year: 2014 ident: pmbac03cabib13 article-title: Range assessment in particle therapy based on prompt γ-ray timing measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/18/5399 – volume: 63 start-page: 664 year: 2016 ident: pmbac03cabib31 article-title: Scintillator-based high-throughput fast timing spectroscopy for real-time range verification in particle therapy publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2016.2527822 – volume: 5 start-page: 150 year: 2015 ident: pmbac03cabib20 article-title: Range verification methods in particle therapy: underlying physics and Monte Carlo modeling publication-title: Frontiers Oncol. doi: 10.3389/fonc.2015.00150 – volume: 60 start-page: 4849 year: 2015 ident: pmbac03cabib39 article-title: Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/12/4849 – volume: 57 start-page: 6429 year: 2012 ident: pmbac03cabib4 article-title: Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/20/6429 – volume: 73 start-page: S96 year: 2004 ident: pmbac03cabib9 article-title: Dose quantification from in-beam positron emission tomography publication-title: Radiother. Oncol. doi: 10.1016/S0167-8140(04)80024-0 – volume: vol 39 start-page: 1 year: 2009 ident: pmbac03cabib16 article-title: Adult reference computational phantoms. ICRP publication 110 – volume: 62 start-page: 7321 year: 2017 ident: pmbac03cabib28 article-title: Performance evaluation of MACACO: a multilayer Compton camera publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa8070 – volume: 57 start-page: 99 year: 2012 ident: pmbac03cabib29 article-title: Range uncertainties in proton therapy and the role of Monte-Carlo simulations publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/11/R99 – volume: 10 start-page: 11001 year: 2015 ident: pmbac03cabib17 article-title: Demonstration of three-dimensional imaging based on handheld Compton camera publication-title: J. Instrum. doi: 10.1088/1748-0221/10/11/P11001 – volume: 8 start-page: 1 year: 2020 ident: pmbac03cabib6 article-title: On the role of single particle irradiation and fast timing for efficient online-control in particle therapy publication-title: Frontiers Phys. doi: 10.3389/fphy.2020.567215 – volume: 506 start-page: 250 year: 2003 ident: pmbac03cabib1 article-title: GEANT4 simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(03)01368-8 – volume: 4 year: 2016 ident: pmbac03cabib5 article-title: INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.1.011005 |
| SSID | ssj0011824 |
| Score | 2.4767034 |
| Snippet | We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF)... |
| SourceID | hal proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 135003 |
| SubjectTerms | Bioengineering Diagnostic Imaging Gamma Rays image reconstruction Life Sciences Medical Physics Monte Carlo Method Nuclear medicine Phantoms, Imaging Physics prompt-gamma imging prompt-gamma timing Proton Therapy Protons range monitoring |
| Title | A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy |
| URI | https://iopscience.iop.org/article/10.1088/1361-6560/ac03ca https://www.ncbi.nlm.nih.gov/pubmed/34020438 https://www.proquest.com/docview/2531234493 https://hal.science/hal-03319261 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcGgrSl-sVq3nF1H0wYfc7W6yuV36dIjlEL8eLBQRQjbJ2tLbvYW7CvXXO5PsLVS0iLAPyzDJJpPJZLLzBfDSeqqGZHJe1rjJpa0MNyQMXUq1ClWwPJG3xUc1P5bvTvKTLTgcYmGWXS_6x_gaEwVHEvYOccUkFSrllDNmYmwiLCpHN0SBijFF7336PJgQUHGWvV3yT62unEPbp-QFuY1f_LuiGQ6coz34thlq9DM5H1-sq7H9-VsWx_-cyx243SuibBZR78KWb_fhZixNebkPtz70RncEBi9Ru7oHX2eMatHzZc3rRchAQoegY-FWPWSiZagHI8gsOCEznEDTrfl30zSGnTWhKhI7awmOeieLAWCX9-H46O2XN3PeF2fgViYC-xfTqUt8ZpPckCnTWC8zWRPEFB5Zw9syL42r8ypx09xZVdaImiqT-No4Kx7ATrts_UNgzuaFVZVLpTHSZ6K0tSpLmRrlUiedHcFks1Ta9pnLqYDGQgcLelFoIqMmMupIxhG8Hlp0MWvHNbgvcPUHNEq3PZ-91wRLBAoovGL-SEfwCpdQ9_t7dU1nz6_gdU2llUI0fHIUoLpzNeJsWEzjXiYDjWn98mKlMxSImZCyFCM4iLw3jEvIEMZcPPrHkTyG3Yzcb8Kf6Cewgzzgn6L-tK6ehX3yCwSuE1A |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RISZeGIyvwoCA4IGHtEnsuMljtVEVGGMPTJp4MY4_YKJJI7VDGn89d3YaaQgmJKQ8RKez44_z-Zw7_w7gpbaUDUnlcelwkXNdqViRMjQp5SoU3vNE0RZHYn7C353mp12eU38XZtl2qn-ErwEoOAxhFxBXjFMm0pgwY8ZKJ0yrcWvcAK57nBK6wffxuHcjoPHMO9_kn0pe2osG3ygScoBf_bux6Ted2Q582TQ3xJp8H52vq5H--RuS43_05zbc6gzSaBrY78A12-zCjZCi8mIXtj90znck-mhRvboLn6cR5aSPly52C49EQpuhifzpukekjdAeRpJaxMQcYSfqdh1_VXWtorPaZ0eKzhqio_0ZhYtgF_fgZPbm0_487pI0xJonDOtnk4lJbKaTXJFLU2nLM-6IogqLImJ1mZfKuLxKzCQ3WpQOWVOhEuuU0ew-bDXLxj6EyOi80KIyKVeK24yV2omy5KkSJjXc6CGMN9MldYdgTok0FtJ70otC0lBKGkoZhnIIr_sSbUDvuIL3BUpAz0aw2_PpoSRawlBR4VHzRzqEVziNslvnqysqe36Jr60rKQSy4ZOjIpU4x8izETOJa5ocNaqxy_OVzFAxZozzkg3hQZC_vl2M--vMxaN_bMkz2D4-mMnDt0fvH8PNjCJy_M_pPdhCcbBP0KRaV0_9svkF3dIYsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-of-flight-based+reconstruction+for+real-time+prompt-gamma+imaging+in+proton+therapy&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Jacquet%2C+Maxime&rft.au=Marcatili%2C+Sara&rft.au=Gallin-Martel%2C+Marie-Laure&rft.au=Bouly%2C+Jean-Luc&rft.date=2021-07-07&rft.issn=1361-6560&rft.eissn=1361-6560&rft.volume=66&rft.issue=13&rft_id=info:doi/10.1088%2F1361-6560%2Fac03ca&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |