A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy

We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-itera...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 66; no. 13; pp. 135003 - 135017
Main Authors Jacquet, Maxime, Marcatili, Sara, Gallin-Martel, Marie-Laure, Bouly, Jean-Luc, Boursier, Yannick, Dauvergne, Denis, Dupont, Mathieu, Gallin-Martel, Laurent, Hérault, Joël, Létang, Jean-Michel, Manéval, Daniel, Morel, Christian, Muraz, Jean-François, Testa, Étienne
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.07.2021
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/ac03ca

Cover

Abstract We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2 with 10 incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2 with 10 incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2 with 10 incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.
AbstractList We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σwith 108incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σwith 108incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σwith 109incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σwith 108incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σwith 108incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σwith 109incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.
We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2 with 10 incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2 with 10 incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2 with 10 incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.
We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors’ counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σ with 108 incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σ with 108 incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σ with 109 incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.
Author Morel, Christian
Muraz, Jean-François
Dauvergne, Denis
Dupont, Mathieu
Testa, Étienne
Jacquet, Maxime
Hérault, Joël
Boursier, Yannick
Bouly, Jean-Luc
Gallin-Martel, Laurent
Manéval, Daniel
Létang, Jean-Michel
Gallin-Martel, Marie-Laure
Marcatili, Sara
Author_xml – sequence: 1
  givenname: Maxime
  surname: Jacquet
  fullname: Jacquet, Maxime
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 2
  givenname: Sara
  orcidid: 0000-0002-7305-0119
  surname: Marcatili
  fullname: Marcatili, Sara
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 3
  givenname: Marie-Laure
  surname: Gallin-Martel
  fullname: Gallin-Martel, Marie-Laure
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 4
  givenname: Jean-Luc
  surname: Bouly
  fullname: Bouly, Jean-Luc
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 5
  givenname: Yannick
  surname: Boursier
  fullname: Boursier, Yannick
  organization: Aix-Marseille Univ , CNRS/IN2P3, CPPM, Marseille, France
– sequence: 6
  givenname: Denis
  orcidid: 0000-0002-6190-6311
  surname: Dauvergne
  fullname: Dauvergne, Denis
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 7
  givenname: Mathieu
  surname: Dupont
  fullname: Dupont, Mathieu
  organization: Aix-Marseille Univ , CNRS/IN2P3, CPPM, Marseille, France
– sequence: 8
  givenname: Laurent
  surname: Gallin-Martel
  fullname: Gallin-Martel, Laurent
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 9
  givenname: Joël
  surname: Hérault
  fullname: Hérault, Joël
  organization: Centre Antoine Lacassagne, F-06200 Nice, France
– sequence: 10
  givenname: Jean-Michel
  orcidid: 0000-0003-2583-782X
  surname: Létang
  fullname: Létang, Jean-Michel
  organization: University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1 , UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373 Lyon, France
– sequence: 11
  givenname: Daniel
  orcidid: 0000-0002-8143-9992
  surname: Manéval
  fullname: Manéval, Daniel
  organization: Centre Antoine Lacassagne, F-06200 Nice, France
– sequence: 12
  givenname: Christian
  orcidid: 0000-0001-5359-6504
  surname: Morel
  fullname: Morel, Christian
  organization: Aix-Marseille Univ , CNRS/IN2P3, CPPM, Marseille, France
– sequence: 13
  givenname: Jean-François
  surname: Muraz
  fullname: Muraz, Jean-François
  organization: Université Grenoble Alpes , CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
– sequence: 14
  givenname: Étienne
  orcidid: 0000-0003-0815-7056
  surname: Testa
  fullname: Testa, Étienne
  organization: Univ. Lyon, Univ. Claude Bernard Lyon 1 , CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34020438$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03319261$$DView record in HAL
BookMark eNp9kkFr3DAQhUVJaDZp7z0VH1OoEsmytPZxCW1TWOglufQixvJoV8G2XEku5N9XxukeSgkIBI_vjYb3dEnORj8iIR84u-Gsrm-5UJwqqdgtGCYMvCGbk3RGNowJThsu5QW5jPGJMc7rsnpLLkTFSlaJekN-7orkBqTeUtu7wzHRFiJ2RUDjx5jCbJLzY2F9yBL0dIGLKfhhSvQAwwCFG-DgxkPhxkVPGU5HDDA9vyPnFvqI71_uK_L49cvD3T3d__j2_W63p6ZiIr8nttuOYWmYBKEqCQarsrKLAjVii2ga2UBnZcu6reyMamxGuQKGFjojrsinde4Rej2FvE941h6cvt_t9aIxIXhTKv6bZ_Z6ZfOqv2aMSQ8uGux7GNHPUZdS8FJUVSMy-vEFndsBu9Pkv9llgK2ACT7GgPaEcKaXevTShV660Gs92aL-sRiXYEk4BXD9a8bPq9H5ST_5OYw50dfw6__g09BqpTKdj8x_Q0-dFX8ACGOwOw
CODEN PHMBA7
CitedBy_id crossref_primary_10_1088_1361_6560_ada681
crossref_primary_10_3389_fphy_2022_961162
crossref_primary_10_1088_1361_6560_ad4f43
crossref_primary_10_1088_1361_6560_ac5765
crossref_primary_10_1038_s41598_023_30712_x
crossref_primary_10_1088_1361_6560_ad5d4b
crossref_primary_10_1088_1361_6560_acd237
crossref_primary_10_1016_j_apradiso_2021_110055
crossref_primary_10_3389_fphy_2022_971767
crossref_primary_10_3389_fphy_2022_932950
crossref_primary_10_1088_1361_6560_ad8c96
crossref_primary_10_1109_TRPMS_2024_3498959
crossref_primary_10_3389_fphy_2024_1295683
crossref_primary_10_1140_epjp_s13360_024_05664_4
crossref_primary_10_3389_fphy_2024_1356572
crossref_primary_10_1088_1361_6560_ad4a01
crossref_primary_10_1016_j_nimb_2024_165464
crossref_primary_10_1109_TRPMS_2023_3259464
crossref_primary_10_1109_TRPMS_2024_3372189
crossref_primary_10_1016_j_nima_2024_169339
Cites_doi 10.1088/1748-0221/10/01/P01011
10.1088/1361-6560/aad513
10.1051/epjconf/201611705005
10.1002/acm2.12225
10.1086/340545
10.1088/0031-9155/60/16/6247
10.1088/0031-9155/58/15/R131
10.1088/0031-9155/57/17/5459
10.1002/mp.12960
10.1088/0031-9155/61/6/2432
10.1016/j.nima.2014.11.042
10.1016/j.radonc.2016.01.004
10.1051/epjconf/201817009005
10.1063/1.2378561
10.1002/mp.13193
10.1016/j.nima.2018.09.062
10.1088/1361-6560/ab7a6c
10.1088/1361-6560/ab176d
10.1016/j.nima.2016.06.125
10.1016/j.nima.2011.01.069
10.1002/mp.14226
10.1088/0031-9155/59/24/7653
10.1259/bjr.20190619
10.1002/mp.12348
10.1016/j.ijrobp.2017.04.027
10.1088/1361-6560/aaa203
10.1016/j.nima.2017.07.063
10.1016/j.radonc.2018.03.014
10.1088/0031-9155/54/3/017
10.1063/1.4980103
10.1088/0031-9155/59/23/7089
10.1088/0031-9155/59/19/5849
10.3389/fonc.2016.00010
10.1109/NSS/MIC42101.2019.9059815
10.1088/0031-9155/57/11/3371
10.1038/s41598-018-22325-6
10.1088/0031-9155/59/18/5399
10.1109/TNS.2016.2527822
10.3389/fonc.2015.00150
10.1088/0031-9155/60/12/4849
10.1088/0031-9155/57/20/6429
10.1016/S0167-8140(04)80024-0
10.1088/1361-6560/aa8070
10.1088/0031-9155/57/11/R99
10.1088/1748-0221/10/11/P11001
10.3389/fphy.2020.567215
10.1016/S0168-9002(03)01368-8
10.1117/1.JMI.4.1.011005
ContentType Journal Article
Copyright 2021 Institute of Physics and Engineering in Medicine
2021 Institute of Physics and Engineering in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Institute of Physics and Engineering in Medicine
– notice: 2021 Institute of Physics and Engineering in Medicine.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1088/1361-6560/ac03ca
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID oai:HAL:hal-03319261v1
34020438
10_1088_1361_6560_ac03ca
pmbac03ca
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-15-IDEX-02
  funderid: https://doi.org/10.13039/501100001665
– fundername: Institut National de la Santé et de la Recherche Médicale
  funderid: https://doi.org/10.13039/501100001677
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
.GJ
.HR
02O
1WK
1XC
29O
3O-
53G
5ZI
9BW
AAGCF
AALHV
ABUFD
ACARI
ACWPO
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
H~9
J5H
JCGBZ
NT-
NT.
Q02
RKQ
S3P
T37
VOOES
X7L
ZGI
ZMT
ZXP
ZY4
ID FETCH-LOGICAL-c403t-b377d0e2c05a3645ace424f0e2ca8eebeec959adf5b0d75dc69f05a16a0efadc3
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Tue Oct 14 20:51:13 EDT 2025
Fri Sep 05 13:54:10 EDT 2025
Thu Jan 02 22:55:37 EST 2025
Wed Oct 01 00:30:39 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Wed Aug 21 03:34:57 EDT 2024
Wed Jun 07 11:19:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords proton therapy
image reconstruction
prompt-gamma imging
prompt-gamma timing
range monitoring
Language English
License This article is available under the terms of the IOP-Standard License.
2021 Institute of Physics and Engineering in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-b377d0e2c05a3645ace424f0e2ca8eebeec959adf5b0d75dc69f05a16a0efadc3
Notes PMB-111417.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5359-6504
0000-0003-2583-782X
0000-0003-0815-7056
0000-0002-6190-6311
0000-0002-8143-9992
0000-0002-7305-0119
OpenAccessLink https://hal.science/hal-03319261
PMID 34020438
PQID 2531234493
PQPubID 23479
PageCount 15
ParticipantIDs iop_journals_10_1088_1361_6560_ac03ca
crossref_primary_10_1088_1361_6560_ac03ca
proquest_miscellaneous_2531234493
pubmed_primary_34020438
crossref_citationtrail_10_1088_1361_6560_ac03ca
hal_primary_oai_HAL_hal_03319261v1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-07
PublicationDateYYYYMMDD 2021-07-07
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Arce (pmbac03cabib3) 2020; 48
Pidikiti (pmbac03cabib35) 2018; 19
Richter (pmbac03cabib40) 2016; 118
Marcatili (pmbac03cabib26) 2020; 65
Dosanjh (pmbac03cabib7) 2018; 128
Hueso-González (pmbac03cabib14) 2015; 60
Vanstalle (pmbac03cabib44) 2017; 44
Verburg (pmbac03cabib46) 2014; 59
Priegnitz (pmbac03cabib39) 2015; 60
Kozlovsky (pmbac03cabib19) 2002; 141
Ferrero (pmbac03cabib11) 2018; 8
(pmbac03cabib16) 2009; vol 39
Krimmer (pmbac03cabib23) 2017; 110
Pinto (pmbac03cabib36) 2014; 59
Min (pmbac03cabib27) 2006; 89
Pausch (pmbac03cabib31) 2016; 63
Draeger (pmbac03cabib8) 2018; 63
Kishimoto (pmbac03cabib17) 2015; 10
Krimmer (pmbac03cabib21) 2015a; 787
Roellinghoff (pmbac03cabib41) 2011; 648
Krimmer (pmbac03cabib24) 2018; 878
Enghardt (pmbac03cabib9) 2004; 73
Pausch (pmbac03cabib32) 2020; 954
Xie (pmbac03cabib48) 2017; 99
Polf (pmbac03cabib38) 2009; 54
Biegun (pmbac03cabib4) 2012; 57
Dauvergne (pmbac03cabib6) 2020; 8
Thirolf (pmbac03cabib43) 2017; 117
Verburg (pmbac03cabib45) 2012; 57
Kraan (pmbac03cabib20) 2015; 5
Marcatili (pmbac03cabib25) 2019
Pinto (pmbac03cabib37) 2016; 6
Farr (pmbac03cabib10) 2018; 45
Golnik (pmbac03cabib13) 2014; 59
Agostinelli (pmbac03cabib1) 2003; 506
Knopf (pmbac03cabib18) 2013; 58
Perali (pmbac03cabib33) 2014; 59
Paganetti (pmbac03cabib29) 2012; 57
Xie (pmbac03cabib49) 2020; 93
Hueso-González (pmbac03cabib15) 2018; 63
Krimmer (pmbac03cabib22) 2015b; 10
Parodi (pmbac03cabib30) 2018; 45
Gallin-Martel (pmbac03cabib12) 2018; 170
Allison (pmbac03cabib2) 2016; 835
Bisogni (pmbac03cabib5) 2016; 4
Petzoldt (pmbac03cabib34) 2016; 61
Werner (pmbac03cabib47) 2019; 64
Muñoz (pmbac03cabib28) 2017; 62
Smeets (pmbac03cabib42) 2012; 57
References_xml – volume: 10
  year: 2015b
  ident: pmbac03cabib22
  article-title: Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/10/01/P01011
– volume: 63
  year: 2018
  ident: pmbac03cabib15
  article-title: A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aad513
– volume: 117
  start-page: 05005
  year: 2017
  ident: pmbac03cabib43
  article-title: A Compton camera prototype for prompt gamma medical imaging
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201611705005
– volume: 19
  start-page: 94
  year: 2018
  ident: pmbac03cabib35
  article-title: Commissioning of the world’s first compact pencil-beam scanning proton therapy system
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.12225
– volume: 141
  start-page: 523
  year: 2002
  ident: pmbac03cabib19
  article-title: Nuclear deexcitation gamma-ray lines from accelerated particle interactions
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/340545
– volume: 60
  start-page: 6247
  year: 2015
  ident: pmbac03cabib14
  article-title: First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/16/6247
– volume: 58
  start-page: 131
  year: 2013
  ident: pmbac03cabib18
  article-title: A in vivo proton range verification: a review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/15/R131
– volume: 57
  start-page: 5459
  year: 2012
  ident: pmbac03cabib45
  article-title: Simulation of prompt gamma-ray emission during proton radiotherapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/17/5459
– volume: 45
  start-page: 1036
  year: 2018
  ident: pmbac03cabib30
  article-title: In vivo range verification in particle therapy
  publication-title: Med. Phys.
  doi: 10.1002/mp.12960
– volume: 61
  start-page: 2432
  year: 2016
  ident: pmbac03cabib34
  article-title: Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/6/2432
– volume: 787
  start-page: 98
  year: 2015a
  ident: pmbac03cabib21
  article-title: Development of a Compton camera for medical applications based on silicon strip and scintillation detectors
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2014.11.042
– volume: 118
  start-page: 232
  year: 2016
  ident: pmbac03cabib40
  article-title: First clinical application of a prompt gamma based in vivo proton range verification system
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2016.01.004
– volume: 170
  start-page: 09005
  year: 2018
  ident: pmbac03cabib12
  article-title: A large area diamond-based beam tagging hodoscope for ion therapy monitoring
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201817009005
– volume: 89
  year: 2006
  ident: pmbac03cabib27
  article-title: Prompt gamma measurements for locating the dose falloff region in the proton therapy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2378561
– volume: 45
  start-page: e953
  year: 2018
  ident: pmbac03cabib10
  article-title: New horizons in particle therapy systems
  publication-title: Med. Phys.
  doi: 10.1002/mp.13193
– volume: 954
  year: 2020
  ident: pmbac03cabib32
  article-title: Detection systems for range monitoring in proton therapy: needs and challenges
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2018.09.062
– volume: 65
  year: 2020
  ident: pmbac03cabib26
  article-title: Ultra-fast prompt gamma detection in single proton counting regime for range monitoring in particle therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab7a6c
– volume: 64
  year: 2019
  ident: pmbac03cabib47
  article-title: Processing of prompt gamma-ray timing data for proton range measurements at a clinical beam delivery
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab176d
– volume: 835
  start-page: 186
  year: 2016
  ident: pmbac03cabib2
  article-title: Recent developments in Geant4
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.06.125
– volume: 648
  start-page: 20
  year: 2011
  ident: pmbac03cabib41
  article-title: Design of a Compton camera for 3D prompt-imaging during ion beam therapy
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2011.01.069
– volume: 48
  start-page: 19
  year: 2020
  ident: pmbac03cabib3
  article-title: Report on G4-Med a Geant4 benchmarking system for medical physics applications developed by the Geant4 medical simulation benchmarking group
  publication-title: Med. Phys.
  doi: 10.1002/mp.14226
– volume: 59
  start-page: 7653
  year: 2014
  ident: pmbac03cabib36
  article-title: Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/24/7653
– volume: 93
  year: 2020
  ident: pmbac03cabib49
  article-title: Prompt gamma imaging for the identification of regional proton range deviations due to anatomic change in a heterogeneous region
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20190619
– volume: 44
  start-page: 4276
  year: 2017
  ident: pmbac03cabib44
  article-title: Benchmarking Geant4 hadronic models for prompt-γ monitoring in carbon ion therapy
  publication-title: Med. Phys.
  doi: 10.1002/mp.12348
– volume: 99
  start-page: 210
  year: 2017
  ident: pmbac03cabib48
  article-title: Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2017.04.027
– volume: 63
  year: 2018
  ident: pmbac03cabib8
  article-title: 3D prompt gamma imaging for proton beam range verification
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaa203
– volume: 878
  start-page: 58
  year: 2018
  ident: pmbac03cabib24
  article-title: Prompt-gamma monitoring in hadrontherapy: a review
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2017.07.063
– volume: 128
  start-page: 76
  year: 2018
  ident: pmbac03cabib7
  article-title: ENLIGHT: European network for light ion hadron therapy
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2018.03.014
– volume: 54
  start-page: 731
  year: 2009
  ident: pmbac03cabib38
  article-title: Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/3/017
– volume: 110
  year: 2017
  ident: pmbac03cabib23
  article-title: A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4980103
– volume: 59
  start-page: 7089
  year: 2014
  ident: pmbac03cabib46
  article-title: Proton range verification through prompt gamma-ray spectroscopy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/23/7089
– volume: 59
  start-page: 5849
  year: 2014
  ident: pmbac03cabib33
  article-title: Prompt gamma imaging of proton pencil beams at clinical dose rate
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/19/5849
– volume: 6
  start-page: 10-1-7
  year: 2016
  ident: pmbac03cabib37
  article-title: Assessment of Geant4 prompt-gamma emission yields in the context of proton therapy monitoring
  publication-title: Frontiers Oncol.
  doi: 10.3389/fonc.2016.00010
– start-page: 1
  year: 2019
  ident: pmbac03cabib25
  article-title: A 100 ps TOF detection system for on-line range-monitoring in hadrontherapy
  doi: 10.1109/NSS/MIC42101.2019.9059815
– volume: 57
  start-page: 3371
  year: 2012
  ident: pmbac03cabib42
  article-title: Prompt gamma imaging with a slit camera for real-time range control in proton therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/11/3371
– volume: 8
  start-page: 1
  year: 2018
  ident: pmbac03cabib11
  article-title: Online proton therapy monitoring: clinical test of a silicon-photodetector-based in-beam PET
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22325-6
– volume: 59
  start-page: 5399
  year: 2014
  ident: pmbac03cabib13
  article-title: Range assessment in particle therapy based on prompt γ-ray timing measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/18/5399
– volume: 63
  start-page: 664
  year: 2016
  ident: pmbac03cabib31
  article-title: Scintillator-based high-throughput fast timing spectroscopy for real-time range verification in particle therapy
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2016.2527822
– volume: 5
  start-page: 150
  year: 2015
  ident: pmbac03cabib20
  article-title: Range verification methods in particle therapy: underlying physics and Monte Carlo modeling
  publication-title: Frontiers Oncol.
  doi: 10.3389/fonc.2015.00150
– volume: 60
  start-page: 4849
  year: 2015
  ident: pmbac03cabib39
  article-title: Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/12/4849
– volume: 57
  start-page: 6429
  year: 2012
  ident: pmbac03cabib4
  article-title: Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/20/6429
– volume: 73
  start-page: S96
  year: 2004
  ident: pmbac03cabib9
  article-title: Dose quantification from in-beam positron emission tomography
  publication-title: Radiother. Oncol.
  doi: 10.1016/S0167-8140(04)80024-0
– volume: vol 39
  start-page: 1
  year: 2009
  ident: pmbac03cabib16
  article-title: Adult reference computational phantoms. ICRP publication 110
– volume: 62
  start-page: 7321
  year: 2017
  ident: pmbac03cabib28
  article-title: Performance evaluation of MACACO: a multilayer Compton camera
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa8070
– volume: 57
  start-page: 99
  year: 2012
  ident: pmbac03cabib29
  article-title: Range uncertainties in proton therapy and the role of Monte-Carlo simulations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/11/R99
– volume: 10
  start-page: 11001
  year: 2015
  ident: pmbac03cabib17
  article-title: Demonstration of three-dimensional imaging based on handheld Compton camera
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/10/11/P11001
– volume: 8
  start-page: 1
  year: 2020
  ident: pmbac03cabib6
  article-title: On the role of single particle irradiation and fast timing for efficient online-control in particle therapy
  publication-title: Frontiers Phys.
  doi: 10.3389/fphy.2020.567215
– volume: 506
  start-page: 250
  year: 2003
  ident: pmbac03cabib1
  article-title: GEANT4 simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 4
  year: 2016
  ident: pmbac03cabib5
  article-title: INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.1.011005
SSID ssj0011824
Score 2.4767034
Snippet We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF)...
SourceID hal
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135003
SubjectTerms Bioengineering
Diagnostic Imaging
Gamma Rays
image reconstruction
Life Sciences
Medical Physics
Monte Carlo Method
Nuclear medicine
Phantoms, Imaging
Physics
prompt-gamma imging
prompt-gamma timing
Proton Therapy
Protons
range monitoring
Title A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy
URI https://iopscience.iop.org/article/10.1088/1361-6560/ac03ca
https://www.ncbi.nlm.nih.gov/pubmed/34020438
https://www.proquest.com/docview/2531234493
https://hal.science/hal-03319261
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcGgrSl-sVq3nF1H0wYfc7W6yuV36dIjlEL8eLBQRQjbJ2tLbvYW7CvXXO5PsLVS0iLAPyzDJJpPJZLLzBfDSeqqGZHJe1rjJpa0MNyQMXUq1ClWwPJG3xUc1P5bvTvKTLTgcYmGWXS_6x_gaEwVHEvYOccUkFSrllDNmYmwiLCpHN0SBijFF7336PJgQUHGWvV3yT62unEPbp-QFuY1f_LuiGQ6coz34thlq9DM5H1-sq7H9-VsWx_-cyx243SuibBZR78KWb_fhZixNebkPtz70RncEBi9Ru7oHX2eMatHzZc3rRchAQoegY-FWPWSiZagHI8gsOCEznEDTrfl30zSGnTWhKhI7awmOeieLAWCX9-H46O2XN3PeF2fgViYC-xfTqUt8ZpPckCnTWC8zWRPEFB5Zw9syL42r8ypx09xZVdaImiqT-No4Kx7ATrts_UNgzuaFVZVLpTHSZ6K0tSpLmRrlUiedHcFks1Ta9pnLqYDGQgcLelFoIqMmMupIxhG8Hlp0MWvHNbgvcPUHNEq3PZ-91wRLBAoovGL-SEfwCpdQ9_t7dU1nz6_gdU2llUI0fHIUoLpzNeJsWEzjXiYDjWn98mKlMxSImZCyFCM4iLw3jEvIEMZcPPrHkTyG3Yzcb8Kf6Cewgzzgn6L-tK6ehX3yCwSuE1A
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RISZeGIyvwoCA4IGHtEnsuMljtVEVGGMPTJp4MY4_YKJJI7VDGn89d3YaaQgmJKQ8RKez44_z-Zw7_w7gpbaUDUnlcelwkXNdqViRMjQp5SoU3vNE0RZHYn7C353mp12eU38XZtl2qn-ErwEoOAxhFxBXjFMm0pgwY8ZKJ0yrcWvcAK57nBK6wffxuHcjoPHMO9_kn0pe2osG3ygScoBf_bux6Ted2Q582TQ3xJp8H52vq5H--RuS43_05zbc6gzSaBrY78A12-zCjZCi8mIXtj90znck-mhRvboLn6cR5aSPly52C49EQpuhifzpukekjdAeRpJaxMQcYSfqdh1_VXWtorPaZ0eKzhqio_0ZhYtgF_fgZPbm0_487pI0xJonDOtnk4lJbKaTXJFLU2nLM-6IogqLImJ1mZfKuLxKzCQ3WpQOWVOhEuuU0ew-bDXLxj6EyOi80KIyKVeK24yV2omy5KkSJjXc6CGMN9MldYdgTok0FtJ70otC0lBKGkoZhnIIr_sSbUDvuIL3BUpAz0aw2_PpoSRawlBR4VHzRzqEVziNslvnqysqe36Jr60rKQSy4ZOjIpU4x8izETOJa5ocNaqxy_OVzFAxZozzkg3hQZC_vl2M--vMxaN_bMkz2D4-mMnDt0fvH8PNjCJy_M_pPdhCcbBP0KRaV0_9svkF3dIYsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-of-flight-based+reconstruction+for+real-time+prompt-gamma+imaging+in+proton+therapy&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Jacquet%2C+Maxime&rft.au=Marcatili%2C+Sara&rft.au=Gallin-Martel%2C+Marie-Laure&rft.au=Bouly%2C+Jean-Luc&rft.date=2021-07-07&rft.issn=1361-6560&rft.eissn=1361-6560&rft.volume=66&rft.issue=13&rft_id=info:doi/10.1088%2F1361-6560%2Fac03ca&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon