High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video)
EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelli...
Saved in:
| Published in | Gastrointestinal endoscopy Vol. 94; no. 1; pp. 78 - 87.e2 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-5107 1097-6779 1097-6779 |
| DOI | 10.1016/j.gie.2020.12.054 |
Cover
| Summary: | EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelligence (AI) algorithms to facilitate accurate diagnosis and risk stratification of IPMNs.
A post hoc analysis of a single-center prospective study evaluating EUS-nCLE (2015-2019; INDEX study) was conducted using 15,027 video frames from 35 consecutive patients with histopathologically proven IPMNs (18 with HGD-Ca). We designed 2 CAD-convolutional neural network (CNN) algorithms: (1) a guided segmentation-based model (SBM), where the CNN-AI system was trained to detect and measure papillary epithelial thickness and darkness (indicative of cellular and nuclear stratification), and (2) a reasonably agnostic holistic-based model (HBM) where the CNN-AI system automatically extracted nCLE features for risk stratification. For the detection of HGD-Ca in IPMNs, the diagnostic performance of the CNN-CAD algorithms was compared with that of the American Gastroenterological Association (AGA) and revised Fukuoka guidelines.
Compared with the guidelines, both n-CLE-guided CNN-CAD algorithms yielded higher sensitivity (HBM, 83.3%; SBM, 83.3%; AGA, 55.6%; Fukuoka, 55.6%) and accuracy (SBM, 82.9%; HBM, 85.7%; AGA, 68.6%; Fukuoka, 74.3%) for diagnosing HGD-Ca, with comparable specificity (SBM, 82.4%; HBM, 88.2%; AGA, 82.4%; Fukuoka, 94.1%). Both CNN-CAD algorithms, the guided (SBM) and agnostic (HBM) models, were comparable in risk stratifying IPMNs.
EUS-nCLE-based CNN-CAD algorithms can accurately risk stratify IPMNs. Future multicenter validation studies and AI model improvements could enhance the accuracy and fully automatize the process for real-time interpretation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ISSN: | 0016-5107 1097-6779 1097-6779 |
| DOI: | 10.1016/j.gie.2020.12.054 |