High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video)

EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelli...

Full description

Saved in:
Bibliographic Details
Published inGastrointestinal endoscopy Vol. 94; no. 1; pp. 78 - 87.e2
Main Authors Machicado, Jorge D., Chao, Wei-Lun, Carlyn, David E., Pan, Tai-Yu, Poland, Sarah, Alexander, Victoria L., Maloof, Tassiana G., Dubay, Kelly, Ueltschi, Olivia, Middendorf, Dana M., Jajeh, Muhammed O., Vishwanath, Aadit B., Porter, Kyle, Hart, Phil A., Papachristou, Georgios I., Cruz-Monserrate, Zobeida, Conwell, Darwin L., Krishna, Somashekar G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2021
Subjects
Online AccessGet full text
ISSN0016-5107
1097-6779
1097-6779
DOI10.1016/j.gie.2020.12.054

Cover

Abstract EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelligence (AI) algorithms to facilitate accurate diagnosis and risk stratification of IPMNs. A post hoc analysis of a single-center prospective study evaluating EUS-nCLE (2015-2019; INDEX study) was conducted using 15,027 video frames from 35 consecutive patients with histopathologically proven IPMNs (18 with HGD-Ca). We designed 2 CAD-convolutional neural network (CNN) algorithms: (1) a guided segmentation-based model (SBM), where the CNN-AI system was trained to detect and measure papillary epithelial thickness and darkness (indicative of cellular and nuclear stratification), and (2) a reasonably agnostic holistic-based model (HBM) where the CNN-AI system automatically extracted nCLE features for risk stratification. For the detection of HGD-Ca in IPMNs, the diagnostic performance of the CNN-CAD algorithms was compared with that of the American Gastroenterological Association (AGA) and revised Fukuoka guidelines. Compared with the guidelines, both n-CLE-guided CNN-CAD algorithms yielded higher sensitivity (HBM, 83.3%; SBM, 83.3%; AGA, 55.6%; Fukuoka, 55.6%) and accuracy (SBM, 82.9%; HBM, 85.7%; AGA, 68.6%; Fukuoka, 74.3%) for diagnosing HGD-Ca, with comparable specificity (SBM, 82.4%; HBM, 88.2%; AGA, 82.4%; Fukuoka, 94.1%). Both CNN-CAD algorithms, the guided (SBM) and agnostic (HBM) models, were comparable in risk stratifying IPMNs. EUS-nCLE-based CNN-CAD algorithms can accurately risk stratify IPMNs. Future multicenter validation studies and AI model improvements could enhance the accuracy and fully automatize the process for real-time interpretation.
AbstractList EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelligence (AI) algorithms to facilitate accurate diagnosis and risk stratification of IPMNs. A post hoc analysis of a single-center prospective study evaluating EUS-nCLE (2015-2019; INDEX study) was conducted using 15,027 video frames from 35 consecutive patients with histopathologically proven IPMNs (18 with HGD-Ca). We designed 2 CAD-convolutional neural network (CNN) algorithms: (1) a guided segmentation-based model (SBM), where the CNN-AI system was trained to detect and measure papillary epithelial thickness and darkness (indicative of cellular and nuclear stratification), and (2) a reasonably agnostic holistic-based model (HBM) where the CNN-AI system automatically extracted nCLE features for risk stratification. For the detection of HGD-Ca in IPMNs, the diagnostic performance of the CNN-CAD algorithms was compared with that of the American Gastroenterological Association (AGA) and revised Fukuoka guidelines. Compared with the guidelines, both n-CLE-guided CNN-CAD algorithms yielded higher sensitivity (HBM, 83.3%; SBM, 83.3%; AGA, 55.6%; Fukuoka, 55.6%) and accuracy (SBM, 82.9%; HBM, 85.7%; AGA, 68.6%; Fukuoka, 74.3%) for diagnosing HGD-Ca, with comparable specificity (SBM, 82.4%; HBM, 88.2%; AGA, 82.4%; Fukuoka, 94.1%). Both CNN-CAD algorithms, the guided (SBM) and agnostic (HBM) models, were comparable in risk stratifying IPMNs. EUS-nCLE-based CNN-CAD algorithms can accurately risk stratify IPMNs. Future multicenter validation studies and AI model improvements could enhance the accuracy and fully automatize the process for real-time interpretation.
EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelligence (AI) algorithms to facilitate accurate diagnosis and risk stratification of IPMNs.BACKGROUND AND AIMSEUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary mucinous neoplasms (IPMNs) but requires manual interpretation. We sought to derive predictive computer-aided diagnosis (CAD) and artificial intelligence (AI) algorithms to facilitate accurate diagnosis and risk stratification of IPMNs.A post hoc analysis of a single-center prospective study evaluating EUS-nCLE (2015-2019; INDEX study) was conducted using 15,027 video frames from 35 consecutive patients with histopathologically proven IPMNs (18 with HGD-Ca). We designed 2 CAD-convolutional neural network (CNN) algorithms: (1) a guided segmentation-based model (SBM), where the CNN-AI system was trained to detect and measure papillary epithelial thickness and darkness (indicative of cellular and nuclear stratification), and (2) a reasonably agnostic holistic-based model (HBM) where the CNN-AI system automatically extracted nCLE features for risk stratification. For the detection of HGD-Ca in IPMNs, the diagnostic performance of the CNN-CAD algorithms was compared with that of the American Gastroenterological Association (AGA) and revised Fukuoka guidelines.METHODSA post hoc analysis of a single-center prospective study evaluating EUS-nCLE (2015-2019; INDEX study) was conducted using 15,027 video frames from 35 consecutive patients with histopathologically proven IPMNs (18 with HGD-Ca). We designed 2 CAD-convolutional neural network (CNN) algorithms: (1) a guided segmentation-based model (SBM), where the CNN-AI system was trained to detect and measure papillary epithelial thickness and darkness (indicative of cellular and nuclear stratification), and (2) a reasonably agnostic holistic-based model (HBM) where the CNN-AI system automatically extracted nCLE features for risk stratification. For the detection of HGD-Ca in IPMNs, the diagnostic performance of the CNN-CAD algorithms was compared with that of the American Gastroenterological Association (AGA) and revised Fukuoka guidelines.Compared with the guidelines, both n-CLE-guided CNN-CAD algorithms yielded higher sensitivity (HBM, 83.3%; SBM, 83.3%; AGA, 55.6%; Fukuoka, 55.6%) and accuracy (SBM, 82.9%; HBM, 85.7%; AGA, 68.6%; Fukuoka, 74.3%) for diagnosing HGD-Ca, with comparable specificity (SBM, 82.4%; HBM, 88.2%; AGA, 82.4%; Fukuoka, 94.1%). Both CNN-CAD algorithms, the guided (SBM) and agnostic (HBM) models, were comparable in risk stratifying IPMNs.RESULTSCompared with the guidelines, both n-CLE-guided CNN-CAD algorithms yielded higher sensitivity (HBM, 83.3%; SBM, 83.3%; AGA, 55.6%; Fukuoka, 55.6%) and accuracy (SBM, 82.9%; HBM, 85.7%; AGA, 68.6%; Fukuoka, 74.3%) for diagnosing HGD-Ca, with comparable specificity (SBM, 82.4%; HBM, 88.2%; AGA, 82.4%; Fukuoka, 94.1%). Both CNN-CAD algorithms, the guided (SBM) and agnostic (HBM) models, were comparable in risk stratifying IPMNs.EUS-nCLE-based CNN-CAD algorithms can accurately risk stratify IPMNs. Future multicenter validation studies and AI model improvements could enhance the accuracy and fully automatize the process for real-time interpretation.CONCLUSIONEUS-nCLE-based CNN-CAD algorithms can accurately risk stratify IPMNs. Future multicenter validation studies and AI model improvements could enhance the accuracy and fully automatize the process for real-time interpretation.
Author Jajeh, Muhammed O.
Cruz-Monserrate, Zobeida
Machicado, Jorge D.
Papachristou, Georgios I.
Vishwanath, Aadit B.
Alexander, Victoria L.
Dubay, Kelly
Middendorf, Dana M.
Conwell, Darwin L.
Maloof, Tassiana G.
Pan, Tai-Yu
Porter, Kyle
Carlyn, David E.
Hart, Phil A.
Poland, Sarah
Ueltschi, Olivia
Krishna, Somashekar G.
Chao, Wei-Lun
Author_xml – sequence: 1
  givenname: Jorge D.
  surname: Machicado
  fullname: Machicado, Jorge D.
  organization: Division of Gastroenterology and Hepatology, Mayo Clinic Health System, Eau Claire, Wisconsin, USA
– sequence: 2
  givenname: Wei-Lun
  surname: Chao
  fullname: Chao, Wei-Lun
  organization: Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
– sequence: 3
  givenname: David E.
  surname: Carlyn
  fullname: Carlyn, David E.
  organization: Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
– sequence: 4
  givenname: Tai-Yu
  surname: Pan
  fullname: Pan, Tai-Yu
  organization: Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
– sequence: 5
  givenname: Sarah
  surname: Poland
  fullname: Poland, Sarah
  organization: The Ohio State University College of Medicine, Columbus, Ohio, USA
– sequence: 6
  givenname: Victoria L.
  surname: Alexander
  fullname: Alexander, Victoria L.
  organization: The Ohio State University College of Medicine, Columbus, Ohio, USA
– sequence: 7
  givenname: Tassiana G.
  surname: Maloof
  fullname: Maloof, Tassiana G.
  organization: The Ohio State University College of Medicine, Columbus, Ohio, USA
– sequence: 8
  givenname: Kelly
  surname: Dubay
  fullname: Dubay, Kelly
  organization: The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
– sequence: 9
  givenname: Olivia
  surname: Ueltschi
  fullname: Ueltschi, Olivia
  organization: The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
– sequence: 10
  givenname: Dana M.
  surname: Middendorf
  fullname: Middendorf, Dana M.
  organization: The Ohio State University College of Medicine, Columbus, Ohio, USA
– sequence: 11
  givenname: Muhammed O.
  surname: Jajeh
  fullname: Jajeh, Muhammed O.
  organization: Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
– sequence: 12
  givenname: Aadit B.
  surname: Vishwanath
  fullname: Vishwanath, Aadit B.
  organization: Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 13
  givenname: Kyle
  surname: Porter
  fullname: Porter, Kyle
  organization: Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
– sequence: 14
  givenname: Phil A.
  surname: Hart
  fullname: Hart, Phil A.
  organization: Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
– sequence: 15
  givenname: Georgios I.
  surname: Papachristou
  fullname: Papachristou, Georgios I.
  organization: Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
– sequence: 16
  givenname: Zobeida
  surname: Cruz-Monserrate
  fullname: Cruz-Monserrate, Zobeida
  organization: Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
– sequence: 17
  givenname: Darwin L.
  surname: Conwell
  fullname: Conwell, Darwin L.
  organization: Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
– sequence: 18
  givenname: Somashekar G.
  orcidid: 0000-0001-5748-7890
  surname: Krishna
  fullname: Krishna, Somashekar G.
  organization: Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33465354$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu3CAQhlGVqtmkfYBeKo7pYbeAjR2rpypqm0qRemnPCONhM7sYXLA38nP1BYt3k0sO6QXE8H-D5v-5IGc-eCDkPWcbznj1abfZImwEE_ksNkyWr8iKs6ZeV3XdnJEVy6K15Kw-Jxcp7Rhj16Lgb8h5UZSVLGS5In9vcXtPB4g2xF57AxQ9jZj2NI1Rj2jR5DV4Gmy-yaVuMqN2dNADOqfjTPvJoA9Toh7C4HTqE21naoK3wWRhrkCk4LvQo4khmTDMFHu9Baq9dnPCRB9wvF-IQ3DT8ljGPEzxuI0PIe4TvTpqDthB-PiWvLbaJXj3uF-S39--_rq5Xd_9_P7j5svd2pSsGNfaggHOoa5sAUILY5mEprOiakFq0ZS2Yl0jWyGttI1glWwLAN4aKVmpq6q4JFenvkMMfyZIo-oxGchj51GnpERZNyW_FrXI0g-P0qntoVNDzCPGWT0ZnQX1SbB4kCJYZXA8Ops9Rac4U0ukaqdypGqJVHGh2JHkz8in5i8xn08MZHsOCFElg5DT7TCCGVUX8EW6eUYbhz5_BLeH-T_sP6dd0kE
CitedBy_id crossref_primary_10_1177_26317745211045769
crossref_primary_10_1007_s12204_024_2786_0
crossref_primary_10_3390_cancers15061722
crossref_primary_10_1016_j_gastha_2021_11_003
crossref_primary_10_3390_cancers15133385
crossref_primary_10_15279_kpba_2022_27_4_145
crossref_primary_10_17235_reed_2024_10456_2024
crossref_primary_10_1016_j_gie_2023_07_019
crossref_primary_10_1016_j_amjoto_2022_103779
crossref_primary_10_1007_s10620_021_07084_1
crossref_primary_10_35712_aig_v2_i2_56
crossref_primary_10_3389_fonc_2022_894023
crossref_primary_10_3390_diagnostics13122015
crossref_primary_10_1097_MOG_0000000000001026
crossref_primary_10_3389_fonc_2022_960056
crossref_primary_10_3390_cancers17030379
crossref_primary_10_14309_ctg_0000000000000771
crossref_primary_10_1097_MOG_0000000000000770
crossref_primary_10_1080_17474124_2022_2083604
crossref_primary_10_1016_j_pdpdt_2022_102826
crossref_primary_10_1002_ueg2_12723
crossref_primary_10_5946_ce_2023_157
crossref_primary_10_3390_cancers16061183
crossref_primary_10_3390_diagnostics13030344
crossref_primary_10_3390_diagnostics14050564
crossref_primary_10_3390_jcm13092599
crossref_primary_10_1097_eus_0000000000000102
crossref_primary_10_3748_wjg_v28_i6_624
crossref_primary_10_3390_diagnostics13040705
crossref_primary_10_3390_jcm10061284
crossref_primary_10_1007_s13304_022_01255_z
crossref_primary_10_1016_j_gie_2024_11_023
crossref_primary_10_3390_cancers16061238
crossref_primary_10_1002_deo2_267
crossref_primary_10_1016_j_tige_2021_10_002
crossref_primary_10_3390_cancers13050945
crossref_primary_10_3390_cancers15092410
crossref_primary_10_1053_j_gastro_2025_01_226
crossref_primary_10_3390_diagnostics13071289
crossref_primary_10_1016_j_gie_2021_03_012
crossref_primary_10_47892_rgp_2024_441_1675
crossref_primary_10_3390_biomimetics7020079
crossref_primary_10_1016_j_gie_2021_09_035
crossref_primary_10_3390_diagnostics13010065
crossref_primary_10_3390_cancers16244268
crossref_primary_10_3390_diagnostics13172815
crossref_primary_10_3390_diagnostics12092041
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1016_j_bpg_2022_101814
crossref_primary_10_1016_j_ijmedinf_2023_105044
crossref_primary_10_3390_biomimetics8060496
crossref_primary_10_15279_kpba_2023_28_3_53
Cites_doi 10.1038/ajg.2018.14
10.1053/j.gastro.2019.01.259
10.1016/j.gie.2015.12.009
10.1097/MD.0000000000007900
10.1016/j.pan.2012.04.004
10.1016/j.gie.2019.09.014
10.1097/MPA.0000000000001327
10.1053/j.gastro.2015.01.015
10.1016/j.gie.2014.10.025
10.1038/nrclinonc.2017.141
10.1016/j.cgh.2019.06.010
10.3748/wjg.v26.i23.3201
10.1055/a-0732-5356
10.3748/wjg.v23.i18.3338
10.1016/j.gie.2019.10.028
10.1016/j.pan.2018.11.014
10.1053/j.gastro.2015.01.014
10.1016/j.vgie.2016.07.002
10.1016/j.pan.2017.07.007
10.1126/scitranslmed.aav4772
10.1016/j.gie.2017.03.002
10.1055/s-0033-1344714
10.1097/SLA.0b013e3182a18f48
10.3390/diagnostics10070505
10.1097/PAS.0000000000000533
10.1002/jso.24882
ContentType Journal Article
Copyright 2021 American Society for Gastrointestinal Endoscopy
Copyright © 2021 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 American Society for Gastrointestinal Endoscopy
– notice: Copyright © 2021 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.gie.2020.12.054
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6779
EndPage 87.e2
ExternalDocumentID 33465354
10_1016_j_gie_2020_12_054
S0016510721000304
Genre Journal Article
GrantInformation_xml – fundername: Mauna Kea Technologies
  funderid: https://doi.org/10.13039/100010478
– fundername: Ohio State University
  funderid: https://doi.org/10.13039/100006928
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FD8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M28
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OC.
ON0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WH7
WOW
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c403t-afece11e76f3e2a2cf05e9df26be5a294f60d95b25f5f92065b3ee1bc5504a663
IEDL.DBID .~1
ISSN 0016-5107
1097-6779
IngestDate Thu Oct 02 20:29:44 EDT 2025
Wed Feb 19 02:28:08 EST 2025
Wed Oct 01 05:25:54 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Feb 23 02:44:41 EST 2024
Tue Oct 14 19:35:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CNN
HGD-Ca
CI
LR
CAD
AI
LGD
IPMN
ROI
AUC
SD
HBM
PCL
AGA
nCLE
SBM
Language English
License Copyright © 2021 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-afece11e76f3e2a2cf05e9df26be5a294f60d95b25f5f92065b3ee1bc5504a663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-5748-7890
PMID 33465354
PQID 2479418272
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2479418272
pubmed_primary_33465354
crossref_citationtrail_10_1016_j_gie_2020_12_054
crossref_primary_10_1016_j_gie_2020_12_054
elsevier_sciencedirect_doi_10_1016_j_gie_2020_12_054
elsevier_clinicalkey_doi_10_1016_j_gie_2020_12_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastrointestinal endoscopy
PublicationTitleAlternate Gastrointest Endosc
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Konda, Meining, Jamil (bib12) 2013; 45
Corral, Hussein, Kandel (bib19) 2019; 48
Zerboni, Signoretti, Crippa (bib1) 2019; 19
Nakai, Iwashita, Park (bib11) 2015; 81
Tanaka, Fernandez-del Castillo, Adsay (bib3) 2012; 12
Krishna, Hart, DeWitt (bib17) 2020; 91
Vege, Ziring, Jain, Moayyedi (bib4) 2015; 148
Coban, Brugge (bib18) 2020; 91
Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. Proceedings of Advances in Neural Information Processing Systems 32, Vancouver, BC, Canada; 2019:8024-8035.
Eiterman, Lahooti, Krishna (bib29) 2020; 26
Tanaka, Fernandez-Del Castillo, Kamisawa (bib6) 2017; 17
Krishna, Brugge, Dewitt (bib16) 2017; 86
Singhi, Zeh, Brand (bib28) 2016; 83
Elta, Enestvedt, Sauer (bib5) 2018; 113
Zhou, Xu, Rong (bib27) 2018; 117
Krishna, Hart, Malli (bib14) 2020; 18
Kamboj, Modi, Swanson (bib10) 2016; 1
Basturk, Hong, Wood (bib21) 2015; 39
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:14091556 2014.
Krishna, Modi, Kamboj (bib15) 2017; 23
Springer, Masica, Dal Molin (bib8) 2019; 11
Machicado, Koay, Krishna (bib20) 2020; 10
Sahora, Mino-Kenudson, Brugge (bib7) 2013; 258
Scheiman, Hwang, Moayyedi (bib9) 2015; 148
Lambin, Leijenaar, Deist (bib24) 2017; 14
Xu, Yin, Siddiqui (bib26) 2017; 96
He, Gkioxari, Dollar (bib25) 2017
Singhi, Koay, Chari (bib2) 2019; 156
Napoleon, Palazzo, Lemaistre (bib13) 2019; 51
Napoleon (10.1016/j.gie.2020.12.054_bib13) 2019; 51
Krishna (10.1016/j.gie.2020.12.054_bib16) 2017; 86
Nakai (10.1016/j.gie.2020.12.054_bib11) 2015; 81
Machicado (10.1016/j.gie.2020.12.054_bib20) 2020; 10
Scheiman (10.1016/j.gie.2020.12.054_bib9) 2015; 148
Xu (10.1016/j.gie.2020.12.054_bib26) 2017; 96
Kamboj (10.1016/j.gie.2020.12.054_bib10) 2016; 1
Krishna (10.1016/j.gie.2020.12.054_bib17) 2020; 91
Vege (10.1016/j.gie.2020.12.054_bib4) 2015; 148
Singhi (10.1016/j.gie.2020.12.054_bib2) 2019; 156
Krishna (10.1016/j.gie.2020.12.054_bib15) 2017; 23
10.1016/j.gie.2020.12.054_bib23
10.1016/j.gie.2020.12.054_bib22
Konda (10.1016/j.gie.2020.12.054_bib12) 2013; 45
Tanaka (10.1016/j.gie.2020.12.054_bib3) 2012; 12
Basturk (10.1016/j.gie.2020.12.054_bib21) 2015; 39
Sahora (10.1016/j.gie.2020.12.054_bib7) 2013; 258
He (10.1016/j.gie.2020.12.054_bib25) 2017
Eiterman (10.1016/j.gie.2020.12.054_bib29) 2020; 26
Krishna (10.1016/j.gie.2020.12.054_bib14) 2020; 18
Corral (10.1016/j.gie.2020.12.054_bib19) 2019; 48
Tanaka (10.1016/j.gie.2020.12.054_bib6) 2017; 17
Zerboni (10.1016/j.gie.2020.12.054_bib1) 2019; 19
Springer (10.1016/j.gie.2020.12.054_bib8) 2019; 11
Lambin (10.1016/j.gie.2020.12.054_bib24) 2017; 14
Elta (10.1016/j.gie.2020.12.054_bib5) 2018; 113
Coban (10.1016/j.gie.2020.12.054_bib18) 2020; 91
Zhou (10.1016/j.gie.2020.12.054_bib27) 2018; 117
Singhi (10.1016/j.gie.2020.12.054_bib28) 2016; 83
References_xml – volume: 11
  year: 2019
  ident: bib8
  article-title: A multimodality test to guide the management of patients with a pancreatic cyst
  publication-title: Sci Transl Med
– volume: 91
  start-page: 564
  year: 2020
  end-page: 567
  ident: bib18
  article-title: EUS-guided confocal laser endomicroscopy: can we use thick and wide for diagnosis of early cancer?
  publication-title: Gastrointest Endosc
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib25
  article-title: Mask R-CNN. Proceedings of the International Conference on Computer Vision (ICCV)
– volume: 26
  start-page: 3201
  year: 2020
  end-page: 3212
  ident: bib29
  article-title: Endosonographic diagnosis of advanced neoplasia in intraductal papillary mucinous neoplasms
  publication-title: World J Gastroenterol
– volume: 156
  start-page: 2024
  year: 2019
  end-page: 2040
  ident: bib2
  article-title: Early detection of pancreatic cancer: opportunities and challenges
  publication-title: Gastroenterology
– volume: 12
  start-page: 183
  year: 2012
  end-page: 197
  ident: bib3
  article-title: International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas
  publication-title: Pancreatology
– volume: 17
  start-page: 738
  year: 2017
  end-page: 753
  ident: bib6
  article-title: Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas
  publication-title: Pancreatology
– volume: 148
  start-page: 824
  year: 2015
  end-page: 848.e22
  ident: bib9
  article-title: American gastroenterological association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts
  publication-title: Gastroenterology
– volume: 45
  start-page: 1006
  year: 2013
  end-page: 1013
  ident: bib12
  article-title: A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance
  publication-title: Endoscopy
– volume: 148
  start-page: 819
  year: 2015
  end-page: 822
  ident: bib4
  article-title: American Gastroenterological Association Institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts
  publication-title: Gastroenterology
– volume: 39
  start-page: 1730
  year: 2015
  ident: bib21
  article-title: A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas
  publication-title: Am J Surg Pathol
– volume: 117
  start-page: 409
  year: 2018
  end-page: 416
  ident: bib27
  article-title: Validation of Sendai and Fukuoka consensus guidelines in predicting malignancy in patients with preoperatively diagnosed mucinous pancreatic cystic neoplasms
  publication-title: J Surg Oncol
– volume: 1
  start-page: 6
  year: 2016
  end-page: 7
  ident: bib10
  article-title: A comprehensive examination of the novel techniques used for in vivo and ex vivo confocal laser endomicroscopy of pancreatic cystic lesions
  publication-title: VideoGIE
– volume: 19
  start-page: 2
  year: 2019
  end-page: 9
  ident: bib1
  article-title: Systematic review and meta-analysis: prevalence of incidentally detected pancreatic cystic lesions in asymptomatic individuals
  publication-title: Pancreatology
– volume: 91
  start-page: 551
  year: 2020
  end-page: 563.e5
  ident: bib17
  article-title: EUS-guided confocal laser endomicroscopy: prediction of dysplasia in intraductal papillary mucinous neoplasms (with video)
  publication-title: Gastrointest Endosc
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: bib24
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 23
  start-page: 3338
  year: 2017
  end-page: 3348
  ident: bib15
  article-title: In vivo and ex vivo confocal endomicroscopy of pancreatic cystic lesions: a prospective study
  publication-title: World J Gastroenterol
– reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:14091556 2014.
– volume: 51
  start-page: 825
  year: 2019
  end-page: 835
  ident: bib13
  article-title: Needle-based confocal laser endomicroscopy of pancreatic cystic lesions: a prospective multicenter validation study in patients with definite diagnosis
  publication-title: Endoscopy
– volume: 81
  start-page: 1204
  year: 2015
  end-page: 1214
  ident: bib11
  article-title: Diagnosis of pancreatic cysts: EUS-guided, through-the-needle confocal laser-induced endomicroscopy and cystoscopy trial: DETECT study
  publication-title: Gastrointest Endosc
– volume: 10
  start-page: 505
  year: 2020
  ident: bib20
  article-title: Radiomics for the diagnosis and differentiation of pancreatic cystic lesions
  publication-title: Diagnostics (Basel)
– volume: 48
  start-page: 805
  year: 2019
  end-page: 810
  ident: bib19
  article-title: Deep learning to classify intraductal papillary mucinous neoplasms using magnetic resonance imaging
  publication-title: Pancreas
– volume: 83
  start-page: 1107
  year: 2016
  end-page: 1117.e2
  ident: bib28
  article-title: American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data
  publication-title: Gastrointest Endosc
– volume: 86
  start-page: 644
  year: 2017
  end-page: 654.e2
  ident: bib16
  article-title: Needle-based confocal laser endomicroscopy for the diagnosis of pancreatic cystic lesions: an international external interobserver and intraobserver study (with videos)
  publication-title: Gastrointest Endosc
– volume: 18
  start-page: 432
  year: 2020
  end-page: 440 e6
  ident: bib14
  article-title: Endoscopic ultrasound-guided confocal laser endomicroscopy increases accuracy of differentiation of pancreatic cystic lesions
  publication-title: Clin Gastroenterol Hepatol
– volume: 258
  start-page: 466
  year: 2013
  end-page: 475
  ident: bib7
  article-title: Branch duct intraductal papillary mucinous neoplasms: does cyst size change the tip of the scale? A critical analysis of the revised international consensus guidelines in a large single-institutional series
  publication-title: Ann Surg
– reference: Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. Proceedings of Advances in Neural Information Processing Systems 32, Vancouver, BC, Canada; 2019:8024-8035.
– volume: 113
  start-page: 464
  year: 2018
  end-page: 479
  ident: bib5
  article-title: ACG Clinical Guideline: diagnosis and management of pancreatic cysts
  publication-title: Am J Gastroenterol
– volume: 96
  start-page: e7900
  year: 2017
  ident: bib26
  article-title: Comparison of the diagnostic accuracy of three current guidelines for the evaluation of asymptomatic pancreatic cystic neoplasms
  publication-title: Medicine (Baltimore)
– volume: 113
  start-page: 464
  year: 2018
  ident: 10.1016/j.gie.2020.12.054_bib5
  article-title: ACG Clinical Guideline: diagnosis and management of pancreatic cysts
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2018.14
– volume: 156
  start-page: 2024
  year: 2019
  ident: 10.1016/j.gie.2020.12.054_bib2
  article-title: Early detection of pancreatic cancer: opportunities and challenges
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.01.259
– volume: 83
  start-page: 1107
  year: 2016
  ident: 10.1016/j.gie.2020.12.054_bib28
  article-title: American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2015.12.009
– ident: 10.1016/j.gie.2020.12.054_bib23
– volume: 96
  start-page: e7900
  year: 2017
  ident: 10.1016/j.gie.2020.12.054_bib26
  article-title: Comparison of the diagnostic accuracy of three current guidelines for the evaluation of asymptomatic pancreatic cystic neoplasms
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000007900
– volume: 12
  start-page: 183
  year: 2012
  ident: 10.1016/j.gie.2020.12.054_bib3
  article-title: International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas
  publication-title: Pancreatology
  doi: 10.1016/j.pan.2012.04.004
– volume: 91
  start-page: 551
  year: 2020
  ident: 10.1016/j.gie.2020.12.054_bib17
  article-title: EUS-guided confocal laser endomicroscopy: prediction of dysplasia in intraductal papillary mucinous neoplasms (with video)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.09.014
– volume: 48
  start-page: 805
  year: 2019
  ident: 10.1016/j.gie.2020.12.054_bib19
  article-title: Deep learning to classify intraductal papillary mucinous neoplasms using magnetic resonance imaging
  publication-title: Pancreas
  doi: 10.1097/MPA.0000000000001327
– volume: 148
  start-page: 819
  year: 2015
  ident: 10.1016/j.gie.2020.12.054_bib4
  article-title: American Gastroenterological Association Institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.01.015
– volume: 81
  start-page: 1204
  year: 2015
  ident: 10.1016/j.gie.2020.12.054_bib11
  article-title: Diagnosis of pancreatic cysts: EUS-guided, through-the-needle confocal laser-induced endomicroscopy and cystoscopy trial: DETECT study
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2014.10.025
– volume: 14
  start-page: 749
  year: 2017
  ident: 10.1016/j.gie.2020.12.054_bib24
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 18
  start-page: 432
  year: 2020
  ident: 10.1016/j.gie.2020.12.054_bib14
  article-title: Endoscopic ultrasound-guided confocal laser endomicroscopy increases accuracy of differentiation of pancreatic cystic lesions
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2019.06.010
– volume: 26
  start-page: 3201
  year: 2020
  ident: 10.1016/j.gie.2020.12.054_bib29
  article-title: Endosonographic diagnosis of advanced neoplasia in intraductal papillary mucinous neoplasms
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v26.i23.3201
– volume: 51
  start-page: 825
  year: 2019
  ident: 10.1016/j.gie.2020.12.054_bib13
  article-title: Needle-based confocal laser endomicroscopy of pancreatic cystic lesions: a prospective multicenter validation study in patients with definite diagnosis
  publication-title: Endoscopy
  doi: 10.1055/a-0732-5356
– volume: 23
  start-page: 3338
  year: 2017
  ident: 10.1016/j.gie.2020.12.054_bib15
  article-title: In vivo and ex vivo confocal endomicroscopy of pancreatic cystic lesions: a prospective study
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v23.i18.3338
– volume: 91
  start-page: 564
  year: 2020
  ident: 10.1016/j.gie.2020.12.054_bib18
  article-title: EUS-guided confocal laser endomicroscopy: can we use thick and wide for diagnosis of early cancer?
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.10.028
– volume: 19
  start-page: 2
  year: 2019
  ident: 10.1016/j.gie.2020.12.054_bib1
  article-title: Systematic review and meta-analysis: prevalence of incidentally detected pancreatic cystic lesions in asymptomatic individuals
  publication-title: Pancreatology
  doi: 10.1016/j.pan.2018.11.014
– start-page: 2961
  year: 2017
  ident: 10.1016/j.gie.2020.12.054_bib25
– volume: 148
  start-page: 824
  year: 2015
  ident: 10.1016/j.gie.2020.12.054_bib9
  article-title: American gastroenterological association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.01.014
– volume: 1
  start-page: 6
  year: 2016
  ident: 10.1016/j.gie.2020.12.054_bib10
  article-title: A comprehensive examination of the novel techniques used for in vivo and ex vivo confocal laser endomicroscopy of pancreatic cystic lesions
  publication-title: VideoGIE
  doi: 10.1016/j.vgie.2016.07.002
– volume: 17
  start-page: 738
  year: 2017
  ident: 10.1016/j.gie.2020.12.054_bib6
  article-title: Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas
  publication-title: Pancreatology
  doi: 10.1016/j.pan.2017.07.007
– volume: 11
  year: 2019
  ident: 10.1016/j.gie.2020.12.054_bib8
  article-title: A multimodality test to guide the management of patients with a pancreatic cyst
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aav4772
– volume: 86
  start-page: 644
  year: 2017
  ident: 10.1016/j.gie.2020.12.054_bib16
  article-title: Needle-based confocal laser endomicroscopy for the diagnosis of pancreatic cystic lesions: an international external interobserver and intraobserver study (with videos)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2017.03.002
– volume: 45
  start-page: 1006
  year: 2013
  ident: 10.1016/j.gie.2020.12.054_bib12
  article-title: A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance
  publication-title: Endoscopy
  doi: 10.1055/s-0033-1344714
– ident: 10.1016/j.gie.2020.12.054_bib22
– volume: 258
  start-page: 466
  year: 2013
  ident: 10.1016/j.gie.2020.12.054_bib7
  article-title: Branch duct intraductal papillary mucinous neoplasms: does cyst size change the tip of the scale? A critical analysis of the revised international consensus guidelines in a large single-institutional series
  publication-title: Ann Surg
  doi: 10.1097/SLA.0b013e3182a18f48
– volume: 10
  start-page: 505
  year: 2020
  ident: 10.1016/j.gie.2020.12.054_bib20
  article-title: Radiomics for the diagnosis and differentiation of pancreatic cystic lesions
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics10070505
– volume: 39
  start-page: 1730
  year: 2015
  ident: 10.1016/j.gie.2020.12.054_bib21
  article-title: A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas
  publication-title: Am J Surg Pathol
  doi: 10.1097/PAS.0000000000000533
– volume: 117
  start-page: 409
  year: 2018
  ident: 10.1016/j.gie.2020.12.054_bib27
  article-title: Validation of Sendai and Fukuoka consensus guidelines in predicting malignancy in patients with preoperatively diagnosed mucinous pancreatic cystic neoplasms
  publication-title: J Surg Oncol
  doi: 10.1002/jso.24882
SSID ssj0008231
Score 2.5748649
Snippet EUS-guided needle-based confocal laser endomicroscopy (EUS-nCLE) can differentiate high-grade dysplasia/adenocarcinoma (HGD-Ca) in intraductal papillary...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 78
Title High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016510721000304
https://dx.doi.org/10.1016/j.gie.2020.12.054
https://www.ncbi.nlm.nih.gov/pubmed/33465354
https://www.proquest.com/docview/2479418272
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: ACRLP
  dateStart: 20200601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AIKHN
  dateStart: 20200601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AKRWK
  dateStart: 19710801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhgdJLadKvTdOgQA9twY0tS_L6GJaETdqEUhrITUi2VFyytlnvBvaSP5U_2BlZ3pBDUujJoNV4jWc8mpHevCHk4zhmWrOxjmxpbcRlKaI802mktYTgJNNZ4jvPnV_I6SU_uxJXG2Qy1MIgrDL4_t6ne28dRg7D2zxsqwprfBMJFgUpjA_skROU8wy7GHy9vYd54DFX741lhLOHk02P8fpdIVMmi_2OoOCPrU2PxZ5-DTp5SV6E4JEe9c-3TTZsvUOenYfj8VfkDlEbtL2vBaBVTRE8Tnt2XBc26Gjj4BcYQrJXuGGrW2w-NF_R2RLu1Cw7WiOyXHezjpoVhZzZ4ZpHYcTOqa1LrGVGHsymXdFqBj6J6sBuQnFnFyVuglGDGJJm-ouHnHf0k5-DFYDN59fk8uT412Qaha4MUcHjdBFpZwubJDaTLrVMs8LFwualY9JYoVnOnYzLXBgmnHA5gxDHpNYmpoBciGsIcN6Qzbqp7TtCx2PQYOYKYbKEQyZqwNkyIxOZO2ONLEYkHvShikBZjp0zrtWATfujQIUKVagSpkCFI_JlLdL2fB1PTWaDktVQiAquU8Fq8pQQXws9sNR_iR0MVqTgC8ZjGQ2qXHaKIck_pHkZG5G3vXmtHz1Nkf9O8N3_-9P35DlDDI6HF--RzcV8aT9AELUw-_4r2SdbR5Of33_g9fTb9OIvuJkhaw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSLSXCkof2wc1Eoe2Ukri2M7miBBoaVlOIHGz7MRGqbpJtNmttJf-qf7BzjjOoh6gEqdIjiexMpPxjP3NZ0IOxzHTmo11ZEtrIy5LEeWZTiOtJQQnmc4Sf_Lc9FJOrvm3G3GzQU6GWhiEVQbf3_t0761Dy1H4mkdtVWGNbyLBoiCF8YE9f0K2uGAZZmBff9_hPHCfq3fHMsLuw9amB3ndVkiVyWK_JCj4fZPTfcGnn4TOdsjzED3S436Au2TD1i_I9jTsj--RPwjboO1dMQCtaorocdrT47qwQkcbB3egCdle4YGtbvH0ofmKzpbwpGbZ0Rqh5bqbddSsKCTNDic9Ci12Tm1dYjEzEmE27YpWM3BKVAd6E4pLuyjxK1g1iCFrpr94zHlHP_k-WALYfH5Jrs9Or04mUTiWISp4nC4i7Wxhk8Rm0qWWaVa4WNi8dEwaKzTLuZNxmQvDhBMuZxDjmNTaxBSQDHENEc4rslk3tX1D6HgMKsxcIUyWcEhFDXhbZmQic2eskcWIxIM-VBE4y_HojJ9qAKf9UKBChSpUCVOgwhH5shZpe8KOhzqzQclqqEQF36lgOnlIiK-F_jHV_4kdDFak4BfGfRkNqlx2iiHLP-R5GRuR1715rYeepkiAJ_jbx730I3k6uZpeqIvzy-_vyDOGgByPNX5PNhfzpf0AEdXC7Ps_5i8k3SFr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+performance+in+risk+stratification+of+intraductal+papillary+mucinous+neoplasms+by+confocal+laser+endomicroscopy+image+analysis+with+convolutional+neural+networks+%28with+video%29&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Machicado%2C+Jorge+D&rft.au=Chao%2C+Wei-Lun&rft.au=Carlyn%2C+David+E&rft.au=Pan%2C+Tai-Yu&rft.date=2021-07-01&rft.issn=1097-6779&rft.eissn=1097-6779&rft.volume=94&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1016%2Fj.gie.2020.12.054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon