Porphyrin-based supramolecular polymers
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile che...
Saved in:
Published in | Chemical Society reviews Vol. 52; no. 5; pp. 1947 - 1974 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/d2cs01066f |
Cover
Abstract | Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have
C
4
symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
The versatile chemical and physical properties of porphyrin derivatives endow them with the potential to serve as powerful motifs for the design of functional supramolecular polymers. |
---|---|
AbstractList | Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have
C
4
symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
The versatile chemical and physical properties of porphyrin derivatives endow them with the potential to serve as powerful motifs for the design of functional supramolecular polymers. Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host–guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures. Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures. Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C 4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host–guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures. Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures. |
Author | Park, Hyunjun Jang, Woo-Dong Ryu, Du Yeol Lee, Hosoowi |
AuthorAffiliation | Department of Chemistry 50 Yonsei-ro Seodaemun-gu Yonsei University Department of Chemical and Biomolecular Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Seodaemun-gu – sequence: 0 name: Yonsei University – sequence: 0 name: Department of Chemistry – sequence: 0 name: Department of Chemical and Biomolecular Engineering – sequence: 0 name: 50 Yonsei-ro |
Author_xml | – sequence: 1 givenname: Hosoowi surname: Lee fullname: Lee, Hosoowi – sequence: 2 givenname: Hyunjun surname: Park fullname: Park, Hyunjun – sequence: 3 givenname: Du Yeol surname: Ryu fullname: Ryu, Du Yeol – sequence: 4 givenname: Woo-Dong surname: Jang fullname: Jang, Woo-Dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36786672$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0U1LxDAQBuAgK-6HXrwrggdFqE6SNskeZXVVWFBQzyFNp9ilbWrSHvbfW91dhcXTzOGZYXhnTAa1q5GQYwrXFPj0JmM2AAUh8j0yorGAKJZxPCAj4CAiAMqGZBzCsu-oFOyADLmQSgjJRuTixfnmY-WLOkpNwOwsdI03lSvRdqXxZ40rVxX6cEj2c1MGPNrUCXmf37_NHqPF88PT7HYR2Rh4GxklOacUGZOoEmlswvIstcizPM445Kml0mYmRZwqbqmARFkBNklSMRXGKD4hl-u9jXefHYZWV0WwWJamRtcFzaQUCVWxmvb0fIcuXefr_rpeKQ40oYL36nSjurTCTDe-qIxf6W0EPYA1sN6F4DHXtmhNW7i69aYoNQX9nbK-Y7PXn5Tn_cjVzsh267_4ZI19sL_u72X8C6pAhN0 |
CitedBy_id | crossref_primary_10_1002_cplu_202400014 crossref_primary_10_1007_s11224_025_02458_x crossref_primary_10_1002_syst_202400068 crossref_primary_10_1007_s13369_023_08648_1 crossref_primary_10_1016_j_inoche_2024_112352 crossref_primary_10_1002_asia_202400359 crossref_primary_10_1134_S2635167623601250 crossref_primary_10_1002_poc_4673 crossref_primary_10_1002_anie_202421310 crossref_primary_10_1002_slct_202403956 crossref_primary_10_1002_adma_202304848 crossref_primary_10_1016_j_ccr_2024_216379 crossref_primary_10_1002_bio_4655 crossref_primary_10_1002_smll_202400220 crossref_primary_10_1016_j_synthmet_2024_117824 crossref_primary_10_1039_D4CC02003K crossref_primary_10_1002_chem_202403569 crossref_primary_10_1007_s10895_023_03396_9 crossref_primary_10_1039_D3CC02990E crossref_primary_10_1002_chem_202403287 crossref_primary_10_1021_acsanm_4c00249 crossref_primary_10_1016_j_molstruc_2024_137665 crossref_primary_10_1016_j_snb_2025_137385 crossref_primary_10_3390_molecules29143424 crossref_primary_10_1039_D3CS00581J crossref_primary_10_1021_acsnano_4c18724 crossref_primary_10_1063_5_0189579 crossref_primary_10_1002_advs_202303818 crossref_primary_10_1002_chem_202303353 crossref_primary_10_1039_D3SC06909E crossref_primary_10_1038_s41598_024_63304_4 crossref_primary_10_1002_adhm_202401211 crossref_primary_10_1016_j_ccr_2024_216264 crossref_primary_10_1021_acs_jpclett_4c01873 crossref_primary_10_1016_j_tet_2023_133718 crossref_primary_10_1016_j_ica_2024_122343 crossref_primary_10_1021_acs_inorgchem_4c03070 crossref_primary_10_1002_ange_202421310 crossref_primary_10_3390_ijms25031831 crossref_primary_10_1039_D4CC02695K crossref_primary_10_1002_adma_202312488 crossref_primary_10_1002_chem_202301717 crossref_primary_10_1002_chem_202404425 crossref_primary_10_1007_s41061_024_00471_y crossref_primary_10_1016_j_chemosphere_2024_141801 crossref_primary_10_1002_cjoc_202300256 crossref_primary_10_1016_j_optmat_2024_115805 |
Cites_doi | 10.1039/C9TC06829E 10.1021/acs.chemrev.6b00361 10.1021/ma981950w 10.1002/cctc.202001179 10.1002/adfm.201601831 10.1126/science.aaa4249 10.1039/D0SM01345E 10.1021/jacs.0c04962 10.1021/ja075981v 10.1021/ja0169015 10.1021/ja211334k 10.1002/chem.201000803 10.1021/acsami.7b02611 10.1246/cl.2001.1138 10.1039/C6CS00619A 10.1039/C6QO00310A 10.1016/j.jcis.2011.12.042 10.1002/anie.201000162 10.1021/acs.joc.1c02742 10.1021/nl072563f 10.1039/C9CS00268E 10.1039/c39930000728 10.1016/S0040-4039(00)01544-6 10.1021/acsanm.2c00831 10.1016/j.ccr.2021.213875 10.1073/pnas.0809602106 10.1021/ja1077602 10.1039/C7SC01275F 10.1021/acs.chemrev.5b00244 10.1016/j.electacta.2019.05.077 10.1002/anie.202007459 10.1021/jacs.8b06016 10.1021/jacs.9b04133 10.1021/ja304674d 10.1039/C9CC01613A 10.1021/acs.chemrev.6b00002 10.1038/nchem.2812 10.1039/b818727d 10.1002/anie.200461431 10.1021/acsami.8b14577 10.1016/j.progpolymsci.2019.05.002 10.1002/anie.201909880 10.1002/(SICI)1521-3773(20000218)39:4<764::AID-ANIE764>3.0.CO;2-6 10.1002/anie.201409149 10.1002/anie.201905724 10.1021/jacs.5b08092 10.1039/C39940000681 10.1039/C0CC04654J 10.31635/ccschem.020.202000163 10.1038/nchem.825 10.1002/anie.201806192 10.1002/adma.201502598 10.1002/chem.202101036 10.1002/chem.201301133 10.1002/anie.201400835 10.1016/S0010-8545(00)80041-7 10.1021/jacs.9b12044 10.1039/C9SC02151E 10.1021/ja045068j 10.1021/ar2003418 10.1038/s41570-019-0153-8 10.1002/chem.201903608 10.1039/C7CS00554G 10.1002/anie.202016395 10.1039/c2cc31156a 10.1021/ja1010527 10.1038/nrm.2017.75 10.1016/j.ccr.2020.213615 10.1021/cr970328j 10.1016/j.polymer.2011.11.045 10.1021/ar040168f 10.1038/nchem.1861 10.1002/chem.200902415 10.1039/C1CS15220C 10.1021/cr990125q 10.1039/C5TB01537E 10.1021/ja054406t 10.1039/a910339m 10.1021/ja204543f 10.1021/acs.chemrev.6b00427 10.1021/ma0518914 10.1021/ic900198h 10.1039/C3PY01036H 10.1038/nature10720 10.18632/oncotarget.20189 10.1039/C8QM00309B 10.1002/anie.201508475 10.1002/chem.201402612 10.1002/anie.201205085 10.1021/ma400806s 10.1021/cr900181u 10.1039/C0CS00070A 10.1039/C7CC01670K 10.1021/acs.chemrev.5b00341 10.1039/C7TA11274B 10.1038/nchem.1849 10.1021/jo052224b 10.1002/chem.201303530 10.1021/acs.macromol.9b01012 10.1038/s41467-020-17356-5 10.1039/C6CC06675E 10.1039/C8TC02979B 10.1021/acsami.1c17335 10.1021/ic2001255 10.1021/acs.macromol.2c00923 10.1021/ja1014713 10.1002/chem.201405943 10.1039/C8TA06392C 10.1039/C5CS00315F 10.1021/ja308480x 10.1002/anie.201407302 10.1021/cr970022c 10.1039/C6BM00482B 10.1016/j.jorganchem.2006.08.041 10.1039/C5CC03717D 10.1016/j.tet.2008.05.126 10.1021/ja042869d 10.1002/anie.201107067 10.1021/acs.macromol.7b00316 10.1002/anie.201107655 10.1039/C5PY00683J 10.1021/acsami.1c00146 10.1038/s41428-018-0126-7 10.1016/j.ccr.2019.213157 10.1021/ja1030722 10.1039/C7CS00121E 10.1002/adfm.202100367 10.1021/jacs.1c02481 10.1002/anie.201809165 10.1002/chem.201605872 10.1021/acs.macromol.0c01446 10.1039/D2BM00173J 10.1002/anie.201800980 10.1021/cr500633b 10.1039/c2cs35084j 10.1021/cr5001964 10.1021/jacs.8b02388 10.1021/acs.chemrev.1c00140 10.1038/s41467-018-07882-8 10.1021/acs.accounts.1c00114 10.1021/ja038178j 10.1016/j.ccr.2017.06.008 10.1038/s41467-021-27831-2 10.1002/chem.202000126 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cs01066f |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 1974 |
ExternalDocumentID | 36786672 10_1039_D2CS01066F d2cs01066f |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-a873311e227e857ac52fdbce3df4d30fbc17cdabee983c16058c60c55b696aa83 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 08:42:12 EDT 2025 Mon Jun 30 06:26:24 EDT 2025 Wed Feb 19 02:24:34 EST 2025 Tue Jul 01 04:28:18 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Dec 17 20:58:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-a873311e227e857ac52fdbce3df4d30fbc17cdabee983c16058c60c55b696aa83 |
Notes | Du Yeol Ryu is a professor of Chemical and Biomolecular Engineering at Yonsei University, Korea. He received his BS degree with a major in Polymer Science from Kyungpook National University, Korea in 1986. He received MS and PhD degrees with a major in Chemical Engineering from Pohang University of Science and Technology (POSTECH), Korea, in 1999 and 2003, respectively. He was then appointed as a post-doctoral researcher at the University of Massachusetts, Amherst (2003.09-2005.08), and became an assistant professor in Chemical and Biomolecular Engineering at Yonsei University (2005.09). His research mainly focuses on polymer self-assembly and transition behaviours, particularly in block copolymers and thin films. Hosoowi Lee received a BS degree with a major in Chemistry from Sungkyunkwan University, Korea, in 2011. She received her PhD degree in chemistry from Yonsei University, Korea, in 2021 under the supervision of Prof. Woo-Dong Jang. She is now a postdoctoral researcher in the SAMS research group with Prof. Nicolas Giuseppone at the University of Strasbourg, France. Her research interests focus on the design and development of supramolecular assemblies. Woo-Dong Jang is a professor at Yonsei University, Korea. He received his BS degree with a major in Polymer Science from Kyungpook National University, Korea in 1987. He received MS and PhD degrees with a major in Chemistry and Biotechnology from The University of Tokyo, Japan in 2000 and 2003, respectively, under the supervision of Prof. Takuzo Aida. He was then appointed as a post-doctoral researcher at Japan Science and Technology Agency (2003.04-2005.01), and an assistant professor at the Department of Materials Engineering, The University of Tokyo (2005.02-2006.02). He came back to Korea in 2006, and since then, he has been working as a professor at Yonsei University. His research mainly focuses on supramolecular chemistry, including porphyrin-based functional materials design, functional stimuli-responsive polymeric materials, and photo-functional materials. Hyunjun Park received his BS degree with a major in Chemistry from Dongguk University, Korea, in 2017. He is currently pursuing his PhD study in Chemistry at Yonsei University, Korea, under the supervision of Prof. Woo-Dong Jang. His research interest focuses on the development of functional nanomaterials and porphyrin-based supramolecular assemblies. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1281-6037 0000-0002-0929-7934 |
PMID | 36786672 |
PQID | 2783015163 |
PQPubID | 2047503 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1039_D2CS01066F crossref_primary_10_1039_D2CS01066F proquest_miscellaneous_2776518489 proquest_journals_2783015163 pubmed_primary_36786672 rsc_primary_d2cs01066f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-06 |
PublicationDateYYYYMMDD | 2023-03-06 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D2CS01066F/cit92/1) 2021; 31 Chen (D2CS01066F/cit110/1) 2021; 60 Mathew (D2CS01066F/cit135/1) 2014; 6 Liu (D2CS01066F/cit131/1) 2015; 54 Asselin (D2CS01066F/cit109/1) 2022; 5 Mabesoone (D2CS01066F/cit26/1) 2018; 140 Kinjo (D2CS01066F/cit118/1) 2015; 54 Hirose (D2CS01066F/cit24/1) 2013; 52 Nadamoto (D2CS01066F/cit71/1) 2018; 57 Ji (D2CS01066F/cit19/1) 2021; 439 Shirakawa (D2CS01066F/cit22/1) 2005; 127 Xiao (D2CS01066F/cit81/1) 2013; 19 Cao (D2CS01066F/cit10/1) 2021; 13 Hadmojo (D2CS01066F/cit7/1) 2018; 10 Barrow (D2CS01066F/cit120/1) 2015; 115 Boyd (D2CS01066F/cit76/1) 2005; 38 Yang (D2CS01066F/cit95/1) 2015; 115 Szejtli (D2CS01066F/cit119/1) 1998; 98 Rebek Jr. (D2CS01066F/cit121/1) 2000 Wang (D2CS01066F/cit142/1) 2017; 5 Mabesoone (D2CS01066F/cit23/1) 2020; 142 Vela (D2CS01066F/cit28/1) 2017; 53 Liu (D2CS01066F/cit84/1) 2014; 5 Casellas (D2CS01066F/cit143/1) 2022; 10 Fathalla (D2CS01066F/cit91/1) 2010; 132 Michelsen (D2CS01066F/cit51/1) 2000; 39 Komatsu (D2CS01066F/cit129/1) 1993 Haino (D2CS01066F/cit67/1) 2006; 71 Fukui (D2CS01066F/cit39/1) 2019; 10 Otsuki (D2CS01066F/cit18/1) 2018; 6 Hambright (D2CS01066F/cit11/1) 1971; 6 Liu (D2CS01066F/cit102/1) 2012; 41 Xue (D2CS01066F/cit122/1) 2012; 45 Lee (D2CS01066F/cit16/1) 2018; 354 Mirkovic (D2CS01066F/cit2/1) 2017; 117 Hirao (D2CS01066F/cit70/1) 2019; 52 Satake (D2CS01066F/cit55/1) 2020; 26 Ogi (D2CS01066F/cit36/1) 2014; 6 Jung (D2CS01066F/cit38/1) 2018; 140 Haino (D2CS01066F/cit72/1) 2009; 106 Tuccitto (D2CS01066F/cit79/1) 2016; 52 Huang (D2CS01066F/cit49/1) 2018; 2 van Der Weegen (D2CS01066F/cit27/1) 2017; 23 Fukui (D2CS01066F/cit37/1) 2018; 57 Wang (D2CS01066F/cit93/1) 2019; 10 Shimizu (D2CS01066F/cit3/1) 2019; 48 Yuan (D2CS01066F/cit133/1) 2020; 59 Ikeda (D2CS01066F/cit112/1) 2001 Korevaar (D2CS01066F/cit25/1) 2012; 481 Wolffs (D2CS01066F/cit74/1) 2005; 127 Lee (D2CS01066F/cit59/1) 2020; 53 Li (D2CS01066F/cit124/1) 2017; 46 Haino (D2CS01066F/cit69/1) 2012; 51 Tian (D2CS01066F/cit21/1) 2019; 95 Gaeta (D2CS01066F/cit86/1) 2020; 26 Paolesse (D2CS01066F/cit15/1) 2017; 117 Kou (D2CS01066F/cit141/1) 2017; 8 Jin (D2CS01066F/cit9/1) 2021; 13 Hirschberg (D2CS01066F/cit108/1) 1999; 32 Veling (D2CS01066F/cit44/1) 2012; 48 Charvet (D2CS01066F/cit73/1) 2012; 134 Gao (D2CS01066F/cit82/1) 2016; 3 Helmich (D2CS01066F/cit32/1) 2010; 49 Zhang (D2CS01066F/cit144/1) 2015; 27 Tsuda (D2CS01066F/cit47/1) 2010; 2 Satake (D2CS01066F/cit53/1) 2009 Li (D2CS01066F/cit64/1) 2021; 60 Lu (D2CS01066F/cit17/1) 2011; 40 Li (D2CS01066F/cit45/1) 2019; 141 Xiao (D2CS01066F/cit137/1) 2020; 2 Liu (D2CS01066F/cit132/1) 2012; 369 Knoben (D2CS01066F/cit104/1) 2006; 39 Mahmood (D2CS01066F/cit5/1) 2018; 6 Lee (D2CS01066F/cit61/1) 2015; 137 Sun (D2CS01066F/cit87/1) 2015; 6 Roostalu (D2CS01066F/cit98/1) 2017; 18 Hisano (D2CS01066F/cit68/1) 2022; 87 Liu (D2CS01066F/cit136/1) 2018; 6 Park (D2CS01066F/cit4/1) 2021; 54 Zheng (D2CS01066F/cit123/1) 2012; 41 Singh (D2CS01066F/cit13/1) 2015; 115 Ogawa (D2CS01066F/cit54/1) 2002; 124 Smulders (D2CS01066F/cit99/1) 2010; 16 Rao (D2CS01066F/cit34/1) 2020; 142 Hu (D2CS01066F/cit140/1) 2019; 55 Hiroto (D2CS01066F/cit20/1) 2017; 117 Jeong (D2CS01066F/cit78/1) 2014; 53 Satake (D2CS01066F/cit52/1) 2007; 692 Helmich (D2CS01066F/cit43/1) 2011; 133 Urbani (D2CS01066F/cit12/1) 2014; 114 Yamaguchi (D2CS01066F/cit46/1) 2003; 125 Ribó (D2CS01066F/cit128/1) 1994 Zhao (D2CS01066F/cit90/1) 2015; 21 Wang (D2CS01066F/cit48/1) 2016; 26 Zhang (D2CS01066F/cit111/1) 2021; 429 Ogi (D2CS01066F/cit35/1) 2014; 53 Weyandt (D2CS01066F/cit29/1) 2021; 27 Morisue (D2CS01066F/cit57/1) 2017; 50 Oohora (D2CS01066F/cit125/1) 2012; 51 Peters (D2CS01066F/cit127/1) 2020; 8 Gellman (D2CS01066F/cit113/1) 1997; 97 Robayo-Molina (D2CS01066F/cit105/1) 2021; 143 Hizume (D2CS01066F/cit75/1) 2010; 132 García-Simón (D2CS01066F/cit77/1) 2016; 45 Su (D2CS01066F/cit138/1) 2021; 13 Helmich (D2CS01066F/cit31/1) 2010; 132 Haino (D2CS01066F/cit117/1) 2019; 51 Almeida-Marrero (D2CS01066F/cit14/1) 2018; 47 Chowdhury (D2CS01066F/cit85/1) 2019; 316 Kim (D2CS01066F/cit41/1) 2011; 47 Archer (D2CS01066F/cit103/1) 2020; 16 Liu (D2CS01066F/cit89/1) 2008; 130 Wehner (D2CS01066F/cit100/1) 2020; 4 Fathalla (D2CS01066F/cit126/1) 2015; 51 Liu (D2CS01066F/cit65/1) 2009; 48 Clark (D2CS01066F/cit106/1) 2012; 53 Alam (D2CS01066F/cit66/1) 2008; 64 Gaeta (D2CS01066F/cit134/1) 2018; 57 Venkata Rao (D2CS01066F/cit33/1) 2017; 9 Roberts (D2CS01066F/cit58/1) 2013; 19 Brunsveld (D2CS01066F/cit107/1) 2001; 101 Yamaguchi (D2CS01066F/cit139/1) 2004; 43 Shinmori (D2CS01066F/cit88/1) 2000; 41 Sorrenti (D2CS01066F/cit97/1) 2017; 46 Kang (D2CS01066F/cit101/1) 2015; 347 Brzezinski (D2CS01066F/cit1/1) 2021; 121 Lee (D2CS01066F/cit60/1) 2022; 55 Adisoejoso (D2CS01066F/cit63/1) 2012; 134 Fry (D2CS01066F/cit50/1) 2012; 134 D'Urso (D2CS01066F/cit80/1) 2010; 16 Matern (D2CS01066F/cit96/1) 2019; 58 Weyandt (D2CS01066F/cit30/1) 2022; 13 Sasaki (D2CS01066F/cit40/1) 2020; 11 Chen (D2CS01066F/cit83/1) 2017; 9 Sun (D2CS01066F/cit114/1) 2013; 46 Sun (D2CS01066F/cit115/1) 2015; 3 Koepf (D2CS01066F/cit56/1) 2011; 50 Park (D2CS01066F/cit6/1) 2020; 407 Hadmojo (D2CS01066F/cit8/1) 2017; 8 Li (D2CS01066F/cit116/1) 2014; 20 Wang (D2CS01066F/cit130/1) 2004; 126 Heim (D2CS01066F/cit62/1) 2010; 132 De Greef (D2CS01066F/cit94/1) 2009; 109 van Hameren (D2CS01066F/cit42/1) 2008; 8 |
References_xml | – volume: 8 start-page: 4675 year: 2020 ident: D2CS01066F/cit127/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06829E – volume: 117 start-page: 2517 year: 2017 ident: D2CS01066F/cit15/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00361 – volume: 32 start-page: 2696 year: 1999 ident: D2CS01066F/cit108/1 publication-title: Macromolecules doi: 10.1021/ma981950w – volume: 13 start-page: 140 year: 2021 ident: D2CS01066F/cit9/1 publication-title: ChemCatChem doi: 10.1002/cctc.202001179 – volume: 26 start-page: 5419 year: 2016 ident: D2CS01066F/cit48/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601831 – volume: 347 start-page: 646 year: 2015 ident: D2CS01066F/cit101/1 publication-title: Science doi: 10.1126/science.aaa4249 – volume: 16 start-page: 8760 year: 2020 ident: D2CS01066F/cit103/1 publication-title: Soft Matter doi: 10.1039/D0SM01345E – volume: 142 start-page: 12400 year: 2020 ident: D2CS01066F/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04962 – volume: 130 start-page: 600 year: 2008 ident: D2CS01066F/cit89/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075981v – volume: 124 start-page: 22 year: 2002 ident: D2CS01066F/cit54/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0169015 – volume: 134 start-page: 2524 year: 2012 ident: D2CS01066F/cit73/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211334k – volume: 16 start-page: 10439 year: 2010 ident: D2CS01066F/cit80/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201000803 – volume: 9 start-page: 13950 year: 2017 ident: D2CS01066F/cit83/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02611 – start-page: 1138 year: 2001 ident: D2CS01066F/cit112/1 publication-title: Chem. Lett. doi: 10.1246/cl.2001.1138 – volume: 46 start-page: 2437 year: 2017 ident: D2CS01066F/cit124/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00619A – volume: 3 start-page: 1144 year: 2016 ident: D2CS01066F/cit82/1 publication-title: Org. Chem. Front. doi: 10.1039/C6QO00310A – volume: 369 start-page: 267 year: 2012 ident: D2CS01066F/cit132/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.12.042 – volume: 49 start-page: 3939 year: 2010 ident: D2CS01066F/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000162 – volume: 87 start-page: 4001 year: 2022 ident: D2CS01066F/cit68/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c02742 – volume: 8 start-page: 253 year: 2008 ident: D2CS01066F/cit42/1 publication-title: Nano Lett. doi: 10.1021/nl072563f – volume: 48 start-page: 5624 year: 2019 ident: D2CS01066F/cit3/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00268E – start-page: 728 year: 1993 ident: D2CS01066F/cit129/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39930000728 – volume: 41 start-page: 8527 year: 2000 ident: D2CS01066F/cit88/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)01544-6 – volume: 5 start-page: 6055 year: 2022 ident: D2CS01066F/cit109/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00831 – volume: 439 start-page: 213875 year: 2021 ident: D2CS01066F/cit19/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213875 – volume: 106 start-page: 10477 year: 2009 ident: D2CS01066F/cit72/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0809602106 – volume: 132 start-page: 16753 year: 2010 ident: D2CS01066F/cit31/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1077602 – volume: 8 start-page: 5095 year: 2017 ident: D2CS01066F/cit8/1 publication-title: Chem. Sci. doi: 10.1039/C7SC01275F – volume: 115 start-page: 10261 year: 2015 ident: D2CS01066F/cit13/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00244 – volume: 316 start-page: 79 year: 2019 ident: D2CS01066F/cit85/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.077 – volume: 59 start-page: 17456 year: 2020 ident: D2CS01066F/cit133/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007459 – volume: 140 start-page: 10570 year: 2018 ident: D2CS01066F/cit38/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06016 – volume: 141 start-page: 12610 year: 2019 ident: D2CS01066F/cit45/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04133 – volume: 134 start-page: 14646 year: 2012 ident: D2CS01066F/cit50/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304674d – volume: 55 start-page: 4953 year: 2019 ident: D2CS01066F/cit140/1 publication-title: Chem. Commun. doi: 10.1039/C9CC01613A – volume: 117 start-page: 249 year: 2017 ident: D2CS01066F/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00002 – volume: 9 start-page: 1133 year: 2017 ident: D2CS01066F/cit33/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2812 – start-page: 1231 year: 2009 ident: D2CS01066F/cit53/1 publication-title: Chem. Commun. doi: 10.1039/b818727d – volume: 43 start-page: 6350 year: 2004 ident: D2CS01066F/cit139/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461431 – volume: 10 start-page: 41344 year: 2018 ident: D2CS01066F/cit7/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14577 – volume: 95 start-page: 65 year: 2019 ident: D2CS01066F/cit21/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.05.002 – volume: 60 start-page: 5010 year: 2021 ident: D2CS01066F/cit110/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909880 – volume: 39 start-page: 764 year: 2000 ident: D2CS01066F/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(20000218)39:4<764::AID-ANIE764>3.0.CO;2-6 – volume: 54 start-page: 500 year: 2015 ident: D2CS01066F/cit131/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409149 – volume: 58 start-page: 16730 year: 2019 ident: D2CS01066F/cit96/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905724 – volume: 137 start-page: 12394 year: 2015 ident: D2CS01066F/cit61/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08092 – start-page: 681 year: 1994 ident: D2CS01066F/cit128/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/C39940000681 – volume: 47 start-page: 2405 year: 2011 ident: D2CS01066F/cit41/1 publication-title: Chem. Commun. doi: 10.1039/C0CC04654J – volume: 2 start-page: 488 year: 2020 ident: D2CS01066F/cit137/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000163 – volume: 2 start-page: 977 year: 2010 ident: D2CS01066F/cit47/1 publication-title: Nat. Chem. doi: 10.1038/nchem.825 – volume: 57 start-page: 10656 year: 2018 ident: D2CS01066F/cit134/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806192 – volume: 27 start-page: 6125 year: 2015 ident: D2CS01066F/cit144/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502598 – volume: 27 start-page: 9700 year: 2021 ident: D2CS01066F/cit29/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202101036 – volume: 19 start-page: 12759 year: 2013 ident: D2CS01066F/cit58/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201301133 – volume: 53 start-page: 6925 year: 2014 ident: D2CS01066F/cit78/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400835 – volume: 6 start-page: 247 year: 1971 ident: D2CS01066F/cit11/1 publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(00)80041-7 – volume: 142 start-page: 598 year: 2020 ident: D2CS01066F/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12044 – volume: 10 start-page: 6770 year: 2019 ident: D2CS01066F/cit39/1 publication-title: Chem. Sci. doi: 10.1039/C9SC02151E – volume: 126 start-page: 15954 year: 2004 ident: D2CS01066F/cit130/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045068j – volume: 45 start-page: 1294 year: 2012 ident: D2CS01066F/cit122/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar2003418 – volume: 4 start-page: 38 year: 2020 ident: D2CS01066F/cit100/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0153-8 – volume: 26 start-page: 669 year: 2020 ident: D2CS01066F/cit55/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201903608 – volume: 47 start-page: 7369 year: 2018 ident: D2CS01066F/cit14/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00554G – volume: 60 start-page: 11370 year: 2021 ident: D2CS01066F/cit64/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016395 – volume: 48 start-page: 4371 year: 2012 ident: D2CS01066F/cit44/1 publication-title: Chem. Commun. doi: 10.1039/c2cc31156a – volume: 132 start-page: 6783 year: 2010 ident: D2CS01066F/cit62/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1010527 – volume: 18 start-page: 702 year: 2017 ident: D2CS01066F/cit98/1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.75 – volume: 429 start-page: 213615 year: 2021 ident: D2CS01066F/cit111/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213615 – volume: 97 start-page: 1231 year: 1997 ident: D2CS01066F/cit113/1 publication-title: Chem. Rev. doi: 10.1021/cr970328j – volume: 53 start-page: 536 year: 2012 ident: D2CS01066F/cit106/1 publication-title: Polymer doi: 10.1016/j.polymer.2011.11.045 – volume: 38 start-page: 235 year: 2005 ident: D2CS01066F/cit76/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar040168f – volume: 6 start-page: 242 year: 2014 ident: D2CS01066F/cit135/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1861 – volume: 16 start-page: 362 year: 2010 ident: D2CS01066F/cit99/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.200902415 – volume: 41 start-page: 1621 year: 2012 ident: D2CS01066F/cit123/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15220C – volume: 101 start-page: 4071 year: 2001 ident: D2CS01066F/cit107/1 publication-title: Chem. Rev. doi: 10.1021/cr990125q – volume: 3 start-page: 8170 year: 2015 ident: D2CS01066F/cit115/1 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01537E – volume: 127 start-page: 13484 year: 2005 ident: D2CS01066F/cit74/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054406t – start-page: 637 year: 2000 ident: D2CS01066F/cit121/1 publication-title: Chem. Commun. doi: 10.1039/a910339m – volume: 133 start-page: 12238 year: 2011 ident: D2CS01066F/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204543f – volume: 117 start-page: 2910 year: 2017 ident: D2CS01066F/cit20/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00427 – volume: 39 start-page: 2643 year: 2006 ident: D2CS01066F/cit104/1 publication-title: Macromolecules doi: 10.1021/ma0518914 – volume: 48 start-page: 5891 year: 2009 ident: D2CS01066F/cit65/1 publication-title: Inorg. Chem. doi: 10.1021/ic900198h – volume: 5 start-page: 53 year: 2014 ident: D2CS01066F/cit84/1 publication-title: Polym. Chem. doi: 10.1039/C3PY01036H – volume: 481 start-page: 492 year: 2012 ident: D2CS01066F/cit25/1 publication-title: Nature doi: 10.1038/nature10720 – volume: 8 start-page: 81591 year: 2017 ident: D2CS01066F/cit141/1 publication-title: Oncotarget doi: 10.18632/oncotarget.20189 – volume: 2 start-page: 1893 year: 2018 ident: D2CS01066F/cit49/1 publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00309B – volume: 54 start-page: 14830 year: 2015 ident: D2CS01066F/cit118/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508475 – volume: 20 start-page: 8566 year: 2014 ident: D2CS01066F/cit116/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201402612 – volume: 52 start-page: 304 year: 2013 ident: D2CS01066F/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205085 – volume: 46 start-page: 4268 year: 2013 ident: D2CS01066F/cit114/1 publication-title: Macromolecules doi: 10.1021/ma400806s – volume: 109 start-page: 5687 year: 2009 ident: D2CS01066F/cit94/1 publication-title: Chem. Rev. doi: 10.1021/cr900181u – volume: 40 start-page: 1899 year: 2011 ident: D2CS01066F/cit17/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00070A – volume: 53 start-page: 4084 year: 2017 ident: D2CS01066F/cit28/1 publication-title: Chem. Commun. doi: 10.1039/C7CC01670K – volume: 115 start-page: 12320 year: 2015 ident: D2CS01066F/cit120/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00341 – volume: 6 start-page: 6710 year: 2018 ident: D2CS01066F/cit18/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11274B – volume: 6 start-page: 188 year: 2014 ident: D2CS01066F/cit36/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1849 – volume: 71 start-page: 2572 year: 2006 ident: D2CS01066F/cit67/1 publication-title: J. Org. Chem. doi: 10.1021/jo052224b – volume: 19 start-page: 16891 year: 2013 ident: D2CS01066F/cit81/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201303530 – volume: 52 start-page: 6160 year: 2019 ident: D2CS01066F/cit70/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01012 – volume: 11 start-page: 1 year: 2020 ident: D2CS01066F/cit40/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17356-5 – volume: 52 start-page: 11681 year: 2016 ident: D2CS01066F/cit79/1 publication-title: Chem. Commun. doi: 10.1039/C6CC06675E – volume: 6 start-page: 11980 year: 2018 ident: D2CS01066F/cit136/1 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02979B – volume: 13 start-page: 60261 year: 2021 ident: D2CS01066F/cit10/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c17335 – volume: 50 start-page: 6073 year: 2011 ident: D2CS01066F/cit56/1 publication-title: Inorg. Chem. doi: 10.1021/ic2001255 – volume: 55 start-page: 5009 year: 2022 ident: D2CS01066F/cit60/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.2c00923 – volume: 132 start-page: 6628 year: 2010 ident: D2CS01066F/cit75/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1014713 – volume: 21 start-page: 4457 year: 2015 ident: D2CS01066F/cit90/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201405943 – volume: 6 start-page: 16769 year: 2018 ident: D2CS01066F/cit5/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06392C – volume: 45 start-page: 40 year: 2016 ident: D2CS01066F/cit77/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00315F – volume: 134 start-page: 18526 year: 2012 ident: D2CS01066F/cit63/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308480x – volume: 53 start-page: 14363 year: 2014 ident: D2CS01066F/cit35/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407302 – volume: 98 start-page: 1743 year: 1998 ident: D2CS01066F/cit119/1 publication-title: Chem. Rev. doi: 10.1021/cr970022c – volume: 5 start-page: 274 year: 2017 ident: D2CS01066F/cit142/1 publication-title: Biomater. Sci. doi: 10.1039/C6BM00482B – volume: 692 start-page: 635 year: 2007 ident: D2CS01066F/cit52/1 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2006.08.041 – volume: 51 start-page: 10455 year: 2015 ident: D2CS01066F/cit126/1 publication-title: Chem. Commun. doi: 10.1039/C5CC03717D – volume: 64 start-page: 8264 year: 2008 ident: D2CS01066F/cit66/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2008.05.126 – volume: 127 start-page: 4164 year: 2005 ident: D2CS01066F/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042869d – volume: 51 start-page: 3818 year: 2012 ident: D2CS01066F/cit125/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107067 – volume: 50 start-page: 3186 year: 2017 ident: D2CS01066F/cit57/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00316 – volume: 51 start-page: 1473 year: 2012 ident: D2CS01066F/cit69/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107655 – volume: 6 start-page: 5015 year: 2015 ident: D2CS01066F/cit87/1 publication-title: Polym. Chem. doi: 10.1039/C5PY00683J – volume: 13 start-page: 14248 year: 2021 ident: D2CS01066F/cit138/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00146 – volume: 51 start-page: 303 year: 2019 ident: D2CS01066F/cit117/1 publication-title: Polym. J. doi: 10.1038/s41428-018-0126-7 – volume: 407 start-page: 213157 year: 2020 ident: D2CS01066F/cit6/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213157 – volume: 132 start-page: 9966 year: 2010 ident: D2CS01066F/cit91/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1030722 – volume: 46 start-page: 5476 year: 2017 ident: D2CS01066F/cit97/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00121E – volume: 31 start-page: 2100367 year: 2021 ident: D2CS01066F/cit92/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100367 – volume: 143 start-page: 9060 year: 2021 ident: D2CS01066F/cit105/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02481 – volume: 57 start-page: 15465 year: 2018 ident: D2CS01066F/cit37/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809165 – volume: 23 start-page: 3773 year: 2017 ident: D2CS01066F/cit27/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201605872 – volume: 53 start-page: 8060 year: 2020 ident: D2CS01066F/cit59/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c01446 – volume: 10 start-page: 3259 year: 2022 ident: D2CS01066F/cit143/1 publication-title: Biomater. Sci. doi: 10.1039/D2BM00173J – volume: 57 start-page: 7028 year: 2018 ident: D2CS01066F/cit71/1 publication-title: Angew. Chem. doi: 10.1002/anie.201800980 – volume: 115 start-page: 7196 year: 2015 ident: D2CS01066F/cit95/1 publication-title: Chem. Rev. doi: 10.1021/cr500633b – volume: 41 start-page: 5922 year: 2012 ident: D2CS01066F/cit102/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35084j – volume: 114 start-page: 12330 year: 2014 ident: D2CS01066F/cit12/1 publication-title: Chem. Rev. doi: 10.1021/cr5001964 – volume: 140 start-page: 7810 year: 2018 ident: D2CS01066F/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02388 – volume: 121 start-page: 9644 year: 2021 ident: D2CS01066F/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00140 – volume: 10 start-page: 1 year: 2019 ident: D2CS01066F/cit93/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 54 start-page: 2249 year: 2021 ident: D2CS01066F/cit4/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00114 – volume: 125 start-page: 13934 year: 2003 ident: D2CS01066F/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038178j – volume: 354 start-page: 46 year: 2018 ident: D2CS01066F/cit16/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.06.008 – volume: 13 start-page: 248 year: 2022 ident: D2CS01066F/cit30/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27831-2 – volume: 26 start-page: 3515 year: 2020 ident: D2CS01066F/cit86/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202000126 |
SSID | ssj0011762 |
Score | 2.6201842 |
SecondaryResourceType | review_article |
Snippet | Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport,... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1947 |
SubjectTerms | Catalysis Complex formation Energy conversion Hydrogen bonding Photosynthesis Physical properties Polymers Porphyrins Self-assembly Supramolecular compounds Supramolecular polymers |
Title | Porphyrin-based supramolecular polymers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36786672 https://www.proquest.com/docview/2783015163 https://www.proquest.com/docview/2776518489 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXxNcgMFARSAhNgdiO7fhx6jaVCRASnRhPlb8iDbF4ahuh8tdjx3bSfSABL1FkO017P_d89t39DoBXEjPDAgMAdBsUIXguFOW5VpibSmhDic9G_viJTo_LoxNykgptx-ySlXyrfl2bV_I_qLo2h6vPkv0HZPsPdQ3u3uHrrg5hd_0rjD9bL6XFaZP7xUjvLtvzhThLBW99AYb1WYxw79kIEkFACteMdKSXAnOmdmntz9PBwRQiqqfrtvneDslj67bTWe3uN2P7UI2jeAT91dp838aVMR4sINxFVtEN_YP9YUMRo5xN0I8lLfKSBcrGpEAJ2pgoZEMbQh7YNOPKCnkoyHNFaxfYk55qpJZ-h0rrYW3qIwaHzptgCzFnJ43A1t7B7P2H3mcEGY0-o_C1Exkt5u-Gpy-aH1f2FM7CWKTKL52FMbsL7sStwXgv4HwP3DDNfXBrkiryPQCvL-E9voj3OOH9EBwfHswm0zwWushVWeBVLipfORMahJipCBOKoFpLZbCuS42LWirIlBbSGF5hBb0nW9FCESIpp0JUeBuMGtuYx2BcQgFFRaRCRpZFJaXWtTb-FIS6VzGZgTfp989VZIH3xUh-zLtoBMzn-2jypZPVYQZe9mPPA_fJtaN2khjn8b-xnPv6Lc7QdMZ-Bl703U5c3h0lGmNbP4ZRAquy4hl4FMTfvwY7G4pShjKw7fDomwccn_yp4ym4PUzmHTBaLVrzzNmNK_k8Tpjfg11s5g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrin-based+supramolecular+polymers&rft.jtitle=Chemical+Society+reviews&rft.au=Lee%2C+Hosoowi&rft.au=Park%2C+Hyunjun&rft.au=Ryu%2C+Du+Yeol&rft.au=Jang%2C+Woo-Dong&rft.date=2023-03-06&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=52&rft.issue=5&rft.spage=1947&rft.epage=1974&rft_id=info:doi/10.1039%2Fd2cs01066f&rft.externalDocID=d2cs01066f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |