Porphyrin-based supramolecular polymers

Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile che...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 52; no. 5; pp. 1947 - 1974
Main Authors Lee, Hosoowi, Park, Hyunjun, Ryu, Du Yeol, Jang, Woo-Dong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.03.2023
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/d2cs01066f

Cover

Abstract Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C 4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures. The versatile chemical and physical properties of porphyrin derivatives endow them with the potential to serve as powerful motifs for the design of functional supramolecular polymers.
AbstractList Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C 4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures. The versatile chemical and physical properties of porphyrin derivatives endow them with the potential to serve as powerful motifs for the design of functional supramolecular polymers.
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host–guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C 4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host–guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Author Park, Hyunjun
Jang, Woo-Dong
Ryu, Du Yeol
Lee, Hosoowi
AuthorAffiliation Department of Chemistry
50 Yonsei-ro
Seodaemun-gu
Yonsei University
Department of Chemical and Biomolecular Engineering
AuthorAffiliation_xml – sequence: 0
  name: Seodaemun-gu
– sequence: 0
  name: Yonsei University
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Department of Chemical and Biomolecular Engineering
– sequence: 0
  name: 50 Yonsei-ro
Author_xml – sequence: 1
  givenname: Hosoowi
  surname: Lee
  fullname: Lee, Hosoowi
– sequence: 2
  givenname: Hyunjun
  surname: Park
  fullname: Park, Hyunjun
– sequence: 3
  givenname: Du Yeol
  surname: Ryu
  fullname: Ryu, Du Yeol
– sequence: 4
  givenname: Woo-Dong
  surname: Jang
  fullname: Jang, Woo-Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36786672$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1LxDAQBuAgK-6HXrwrggdFqE6SNskeZXVVWFBQzyFNp9ilbWrSHvbfW91dhcXTzOGZYXhnTAa1q5GQYwrXFPj0JmM2AAUh8j0yorGAKJZxPCAj4CAiAMqGZBzCsu-oFOyADLmQSgjJRuTixfnmY-WLOkpNwOwsdI03lSvRdqXxZ40rVxX6cEj2c1MGPNrUCXmf37_NHqPF88PT7HYR2Rh4GxklOacUGZOoEmlswvIstcizPM445Kml0mYmRZwqbqmARFkBNklSMRXGKD4hl-u9jXefHYZWV0WwWJamRtcFzaQUCVWxmvb0fIcuXefr_rpeKQ40oYL36nSjurTCTDe-qIxf6W0EPYA1sN6F4DHXtmhNW7i69aYoNQX9nbK-Y7PXn5Tn_cjVzsh267_4ZI19sL_u72X8C6pAhN0
CitedBy_id crossref_primary_10_1002_cplu_202400014
crossref_primary_10_1007_s11224_025_02458_x
crossref_primary_10_1002_syst_202400068
crossref_primary_10_1007_s13369_023_08648_1
crossref_primary_10_1016_j_inoche_2024_112352
crossref_primary_10_1002_asia_202400359
crossref_primary_10_1134_S2635167623601250
crossref_primary_10_1002_poc_4673
crossref_primary_10_1002_anie_202421310
crossref_primary_10_1002_slct_202403956
crossref_primary_10_1002_adma_202304848
crossref_primary_10_1016_j_ccr_2024_216379
crossref_primary_10_1002_bio_4655
crossref_primary_10_1002_smll_202400220
crossref_primary_10_1016_j_synthmet_2024_117824
crossref_primary_10_1039_D4CC02003K
crossref_primary_10_1002_chem_202403569
crossref_primary_10_1007_s10895_023_03396_9
crossref_primary_10_1039_D3CC02990E
crossref_primary_10_1002_chem_202403287
crossref_primary_10_1021_acsanm_4c00249
crossref_primary_10_1016_j_molstruc_2024_137665
crossref_primary_10_1016_j_snb_2025_137385
crossref_primary_10_3390_molecules29143424
crossref_primary_10_1039_D3CS00581J
crossref_primary_10_1021_acsnano_4c18724
crossref_primary_10_1063_5_0189579
crossref_primary_10_1002_advs_202303818
crossref_primary_10_1002_chem_202303353
crossref_primary_10_1039_D3SC06909E
crossref_primary_10_1038_s41598_024_63304_4
crossref_primary_10_1002_adhm_202401211
crossref_primary_10_1016_j_ccr_2024_216264
crossref_primary_10_1021_acs_jpclett_4c01873
crossref_primary_10_1016_j_tet_2023_133718
crossref_primary_10_1016_j_ica_2024_122343
crossref_primary_10_1021_acs_inorgchem_4c03070
crossref_primary_10_1002_ange_202421310
crossref_primary_10_3390_ijms25031831
crossref_primary_10_1039_D4CC02695K
crossref_primary_10_1002_adma_202312488
crossref_primary_10_1002_chem_202301717
crossref_primary_10_1002_chem_202404425
crossref_primary_10_1007_s41061_024_00471_y
crossref_primary_10_1016_j_chemosphere_2024_141801
crossref_primary_10_1002_cjoc_202300256
crossref_primary_10_1016_j_optmat_2024_115805
Cites_doi 10.1039/C9TC06829E
10.1021/acs.chemrev.6b00361
10.1021/ma981950w
10.1002/cctc.202001179
10.1002/adfm.201601831
10.1126/science.aaa4249
10.1039/D0SM01345E
10.1021/jacs.0c04962
10.1021/ja075981v
10.1021/ja0169015
10.1021/ja211334k
10.1002/chem.201000803
10.1021/acsami.7b02611
10.1246/cl.2001.1138
10.1039/C6CS00619A
10.1039/C6QO00310A
10.1016/j.jcis.2011.12.042
10.1002/anie.201000162
10.1021/acs.joc.1c02742
10.1021/nl072563f
10.1039/C9CS00268E
10.1039/c39930000728
10.1016/S0040-4039(00)01544-6
10.1021/acsanm.2c00831
10.1016/j.ccr.2021.213875
10.1073/pnas.0809602106
10.1021/ja1077602
10.1039/C7SC01275F
10.1021/acs.chemrev.5b00244
10.1016/j.electacta.2019.05.077
10.1002/anie.202007459
10.1021/jacs.8b06016
10.1021/jacs.9b04133
10.1021/ja304674d
10.1039/C9CC01613A
10.1021/acs.chemrev.6b00002
10.1038/nchem.2812
10.1039/b818727d
10.1002/anie.200461431
10.1021/acsami.8b14577
10.1016/j.progpolymsci.2019.05.002
10.1002/anie.201909880
10.1002/(SICI)1521-3773(20000218)39:4<764::AID-ANIE764>3.0.CO;2-6
10.1002/anie.201409149
10.1002/anie.201905724
10.1021/jacs.5b08092
10.1039/C39940000681
10.1039/C0CC04654J
10.31635/ccschem.020.202000163
10.1038/nchem.825
10.1002/anie.201806192
10.1002/adma.201502598
10.1002/chem.202101036
10.1002/chem.201301133
10.1002/anie.201400835
10.1016/S0010-8545(00)80041-7
10.1021/jacs.9b12044
10.1039/C9SC02151E
10.1021/ja045068j
10.1021/ar2003418
10.1038/s41570-019-0153-8
10.1002/chem.201903608
10.1039/C7CS00554G
10.1002/anie.202016395
10.1039/c2cc31156a
10.1021/ja1010527
10.1038/nrm.2017.75
10.1016/j.ccr.2020.213615
10.1021/cr970328j
10.1016/j.polymer.2011.11.045
10.1021/ar040168f
10.1038/nchem.1861
10.1002/chem.200902415
10.1039/C1CS15220C
10.1021/cr990125q
10.1039/C5TB01537E
10.1021/ja054406t
10.1039/a910339m
10.1021/ja204543f
10.1021/acs.chemrev.6b00427
10.1021/ma0518914
10.1021/ic900198h
10.1039/C3PY01036H
10.1038/nature10720
10.18632/oncotarget.20189
10.1039/C8QM00309B
10.1002/anie.201508475
10.1002/chem.201402612
10.1002/anie.201205085
10.1021/ma400806s
10.1021/cr900181u
10.1039/C0CS00070A
10.1039/C7CC01670K
10.1021/acs.chemrev.5b00341
10.1039/C7TA11274B
10.1038/nchem.1849
10.1021/jo052224b
10.1002/chem.201303530
10.1021/acs.macromol.9b01012
10.1038/s41467-020-17356-5
10.1039/C6CC06675E
10.1039/C8TC02979B
10.1021/acsami.1c17335
10.1021/ic2001255
10.1021/acs.macromol.2c00923
10.1021/ja1014713
10.1002/chem.201405943
10.1039/C8TA06392C
10.1039/C5CS00315F
10.1021/ja308480x
10.1002/anie.201407302
10.1021/cr970022c
10.1039/C6BM00482B
10.1016/j.jorganchem.2006.08.041
10.1039/C5CC03717D
10.1016/j.tet.2008.05.126
10.1021/ja042869d
10.1002/anie.201107067
10.1021/acs.macromol.7b00316
10.1002/anie.201107655
10.1039/C5PY00683J
10.1021/acsami.1c00146
10.1038/s41428-018-0126-7
10.1016/j.ccr.2019.213157
10.1021/ja1030722
10.1039/C7CS00121E
10.1002/adfm.202100367
10.1021/jacs.1c02481
10.1002/anie.201809165
10.1002/chem.201605872
10.1021/acs.macromol.0c01446
10.1039/D2BM00173J
10.1002/anie.201800980
10.1021/cr500633b
10.1039/c2cs35084j
10.1021/cr5001964
10.1021/jacs.8b02388
10.1021/acs.chemrev.1c00140
10.1038/s41467-018-07882-8
10.1021/acs.accounts.1c00114
10.1021/ja038178j
10.1016/j.ccr.2017.06.008
10.1038/s41467-021-27831-2
10.1002/chem.202000126
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cs01066f
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 1974
ExternalDocumentID 36786672
10_1039_D2CS01066F
d2cs01066f
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-a873311e227e857ac52fdbce3df4d30fbc17cdabee983c16058c60c55b696aa83
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 08:42:12 EDT 2025
Mon Jun 30 06:26:24 EDT 2025
Wed Feb 19 02:24:34 EST 2025
Tue Jul 01 04:28:18 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Dec 17 20:58:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-a873311e227e857ac52fdbce3df4d30fbc17cdabee983c16058c60c55b696aa83
Notes Du Yeol Ryu is a professor of Chemical and Biomolecular Engineering at Yonsei University, Korea. He received his BS degree with a major in Polymer Science from Kyungpook National University, Korea in 1986. He received MS and PhD degrees with a major in Chemical Engineering from Pohang University of Science and Technology (POSTECH), Korea, in 1999 and 2003, respectively. He was then appointed as a post-doctoral researcher at the University of Massachusetts, Amherst (2003.09-2005.08), and became an assistant professor in Chemical and Biomolecular Engineering at Yonsei University (2005.09). His research mainly focuses on polymer self-assembly and transition behaviours, particularly in block copolymers and thin films.
Hosoowi Lee received a BS degree with a major in Chemistry from Sungkyunkwan University, Korea, in 2011. She received her PhD degree in chemistry from Yonsei University, Korea, in 2021 under the supervision of Prof. Woo-Dong Jang. She is now a postdoctoral researcher in the SAMS research group with Prof. Nicolas Giuseppone at the University of Strasbourg, France. Her research interests focus on the design and development of supramolecular assemblies.
Woo-Dong Jang is a professor at Yonsei University, Korea. He received his BS degree with a major in Polymer Science from Kyungpook National University, Korea in 1987. He received MS and PhD degrees with a major in Chemistry and Biotechnology from The University of Tokyo, Japan in 2000 and 2003, respectively, under the supervision of Prof. Takuzo Aida. He was then appointed as a post-doctoral researcher at Japan Science and Technology Agency (2003.04-2005.01), and an assistant professor at the Department of Materials Engineering, The University of Tokyo (2005.02-2006.02). He came back to Korea in 2006, and since then, he has been working as a professor at Yonsei University. His research mainly focuses on supramolecular chemistry, including porphyrin-based functional materials design, functional stimuli-responsive polymeric materials, and photo-functional materials.
Hyunjun Park received his BS degree with a major in Chemistry from Dongguk University, Korea, in 2017. He is currently pursuing his PhD study in Chemistry at Yonsei University, Korea, under the supervision of Prof. Woo-Dong Jang. His research interest focuses on the development of functional nanomaterials and porphyrin-based supramolecular assemblies.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1281-6037
0000-0002-0929-7934
PMID 36786672
PQID 2783015163
PQPubID 2047503
PageCount 28
ParticipantIDs crossref_citationtrail_10_1039_D2CS01066F
crossref_primary_10_1039_D2CS01066F
proquest_miscellaneous_2776518489
proquest_journals_2783015163
pubmed_primary_36786672
rsc_primary_d2cs01066f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-06
PublicationDateYYYYMMDD 2023-03-06
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D2CS01066F/cit92/1) 2021; 31
Chen (D2CS01066F/cit110/1) 2021; 60
Mathew (D2CS01066F/cit135/1) 2014; 6
Liu (D2CS01066F/cit131/1) 2015; 54
Asselin (D2CS01066F/cit109/1) 2022; 5
Mabesoone (D2CS01066F/cit26/1) 2018; 140
Kinjo (D2CS01066F/cit118/1) 2015; 54
Hirose (D2CS01066F/cit24/1) 2013; 52
Nadamoto (D2CS01066F/cit71/1) 2018; 57
Ji (D2CS01066F/cit19/1) 2021; 439
Shirakawa (D2CS01066F/cit22/1) 2005; 127
Xiao (D2CS01066F/cit81/1) 2013; 19
Cao (D2CS01066F/cit10/1) 2021; 13
Hadmojo (D2CS01066F/cit7/1) 2018; 10
Barrow (D2CS01066F/cit120/1) 2015; 115
Boyd (D2CS01066F/cit76/1) 2005; 38
Yang (D2CS01066F/cit95/1) 2015; 115
Szejtli (D2CS01066F/cit119/1) 1998; 98
Rebek Jr. (D2CS01066F/cit121/1) 2000
Wang (D2CS01066F/cit142/1) 2017; 5
Mabesoone (D2CS01066F/cit23/1) 2020; 142
Vela (D2CS01066F/cit28/1) 2017; 53
Liu (D2CS01066F/cit84/1) 2014; 5
Casellas (D2CS01066F/cit143/1) 2022; 10
Fathalla (D2CS01066F/cit91/1) 2010; 132
Michelsen (D2CS01066F/cit51/1) 2000; 39
Komatsu (D2CS01066F/cit129/1) 1993
Haino (D2CS01066F/cit67/1) 2006; 71
Fukui (D2CS01066F/cit39/1) 2019; 10
Otsuki (D2CS01066F/cit18/1) 2018; 6
Hambright (D2CS01066F/cit11/1) 1971; 6
Liu (D2CS01066F/cit102/1) 2012; 41
Xue (D2CS01066F/cit122/1) 2012; 45
Lee (D2CS01066F/cit16/1) 2018; 354
Mirkovic (D2CS01066F/cit2/1) 2017; 117
Hirao (D2CS01066F/cit70/1) 2019; 52
Satake (D2CS01066F/cit55/1) 2020; 26
Ogi (D2CS01066F/cit36/1) 2014; 6
Jung (D2CS01066F/cit38/1) 2018; 140
Haino (D2CS01066F/cit72/1) 2009; 106
Tuccitto (D2CS01066F/cit79/1) 2016; 52
Huang (D2CS01066F/cit49/1) 2018; 2
van Der Weegen (D2CS01066F/cit27/1) 2017; 23
Fukui (D2CS01066F/cit37/1) 2018; 57
Wang (D2CS01066F/cit93/1) 2019; 10
Shimizu (D2CS01066F/cit3/1) 2019; 48
Yuan (D2CS01066F/cit133/1) 2020; 59
Ikeda (D2CS01066F/cit112/1) 2001
Korevaar (D2CS01066F/cit25/1) 2012; 481
Wolffs (D2CS01066F/cit74/1) 2005; 127
Lee (D2CS01066F/cit59/1) 2020; 53
Li (D2CS01066F/cit124/1) 2017; 46
Haino (D2CS01066F/cit69/1) 2012; 51
Tian (D2CS01066F/cit21/1) 2019; 95
Gaeta (D2CS01066F/cit86/1) 2020; 26
Paolesse (D2CS01066F/cit15/1) 2017; 117
Kou (D2CS01066F/cit141/1) 2017; 8
Jin (D2CS01066F/cit9/1) 2021; 13
Hirschberg (D2CS01066F/cit108/1) 1999; 32
Veling (D2CS01066F/cit44/1) 2012; 48
Charvet (D2CS01066F/cit73/1) 2012; 134
Gao (D2CS01066F/cit82/1) 2016; 3
Helmich (D2CS01066F/cit32/1) 2010; 49
Zhang (D2CS01066F/cit144/1) 2015; 27
Tsuda (D2CS01066F/cit47/1) 2010; 2
Satake (D2CS01066F/cit53/1) 2009
Li (D2CS01066F/cit64/1) 2021; 60
Lu (D2CS01066F/cit17/1) 2011; 40
Li (D2CS01066F/cit45/1) 2019; 141
Xiao (D2CS01066F/cit137/1) 2020; 2
Liu (D2CS01066F/cit132/1) 2012; 369
Knoben (D2CS01066F/cit104/1) 2006; 39
Mahmood (D2CS01066F/cit5/1) 2018; 6
Lee (D2CS01066F/cit61/1) 2015; 137
Sun (D2CS01066F/cit87/1) 2015; 6
Roostalu (D2CS01066F/cit98/1) 2017; 18
Hisano (D2CS01066F/cit68/1) 2022; 87
Liu (D2CS01066F/cit136/1) 2018; 6
Park (D2CS01066F/cit4/1) 2021; 54
Zheng (D2CS01066F/cit123/1) 2012; 41
Singh (D2CS01066F/cit13/1) 2015; 115
Ogawa (D2CS01066F/cit54/1) 2002; 124
Smulders (D2CS01066F/cit99/1) 2010; 16
Rao (D2CS01066F/cit34/1) 2020; 142
Hu (D2CS01066F/cit140/1) 2019; 55
Hiroto (D2CS01066F/cit20/1) 2017; 117
Jeong (D2CS01066F/cit78/1) 2014; 53
Satake (D2CS01066F/cit52/1) 2007; 692
Helmich (D2CS01066F/cit43/1) 2011; 133
Urbani (D2CS01066F/cit12/1) 2014; 114
Yamaguchi (D2CS01066F/cit46/1) 2003; 125
Ribó (D2CS01066F/cit128/1) 1994
Zhao (D2CS01066F/cit90/1) 2015; 21
Wang (D2CS01066F/cit48/1) 2016; 26
Zhang (D2CS01066F/cit111/1) 2021; 429
Ogi (D2CS01066F/cit35/1) 2014; 53
Weyandt (D2CS01066F/cit29/1) 2021; 27
Morisue (D2CS01066F/cit57/1) 2017; 50
Oohora (D2CS01066F/cit125/1) 2012; 51
Peters (D2CS01066F/cit127/1) 2020; 8
Gellman (D2CS01066F/cit113/1) 1997; 97
Robayo-Molina (D2CS01066F/cit105/1) 2021; 143
Hizume (D2CS01066F/cit75/1) 2010; 132
García-Simón (D2CS01066F/cit77/1) 2016; 45
Su (D2CS01066F/cit138/1) 2021; 13
Helmich (D2CS01066F/cit31/1) 2010; 132
Haino (D2CS01066F/cit117/1) 2019; 51
Almeida-Marrero (D2CS01066F/cit14/1) 2018; 47
Chowdhury (D2CS01066F/cit85/1) 2019; 316
Kim (D2CS01066F/cit41/1) 2011; 47
Archer (D2CS01066F/cit103/1) 2020; 16
Liu (D2CS01066F/cit89/1) 2008; 130
Wehner (D2CS01066F/cit100/1) 2020; 4
Fathalla (D2CS01066F/cit126/1) 2015; 51
Liu (D2CS01066F/cit65/1) 2009; 48
Clark (D2CS01066F/cit106/1) 2012; 53
Alam (D2CS01066F/cit66/1) 2008; 64
Gaeta (D2CS01066F/cit134/1) 2018; 57
Venkata Rao (D2CS01066F/cit33/1) 2017; 9
Roberts (D2CS01066F/cit58/1) 2013; 19
Brunsveld (D2CS01066F/cit107/1) 2001; 101
Yamaguchi (D2CS01066F/cit139/1) 2004; 43
Shinmori (D2CS01066F/cit88/1) 2000; 41
Sorrenti (D2CS01066F/cit97/1) 2017; 46
Kang (D2CS01066F/cit101/1) 2015; 347
Brzezinski (D2CS01066F/cit1/1) 2021; 121
Lee (D2CS01066F/cit60/1) 2022; 55
Adisoejoso (D2CS01066F/cit63/1) 2012; 134
Fry (D2CS01066F/cit50/1) 2012; 134
D'Urso (D2CS01066F/cit80/1) 2010; 16
Matern (D2CS01066F/cit96/1) 2019; 58
Weyandt (D2CS01066F/cit30/1) 2022; 13
Sasaki (D2CS01066F/cit40/1) 2020; 11
Chen (D2CS01066F/cit83/1) 2017; 9
Sun (D2CS01066F/cit114/1) 2013; 46
Sun (D2CS01066F/cit115/1) 2015; 3
Koepf (D2CS01066F/cit56/1) 2011; 50
Park (D2CS01066F/cit6/1) 2020; 407
Hadmojo (D2CS01066F/cit8/1) 2017; 8
Li (D2CS01066F/cit116/1) 2014; 20
Wang (D2CS01066F/cit130/1) 2004; 126
Heim (D2CS01066F/cit62/1) 2010; 132
De Greef (D2CS01066F/cit94/1) 2009; 109
van Hameren (D2CS01066F/cit42/1) 2008; 8
References_xml – volume: 8
  start-page: 4675
  year: 2020
  ident: D2CS01066F/cit127/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06829E
– volume: 117
  start-page: 2517
  year: 2017
  ident: D2CS01066F/cit15/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00361
– volume: 32
  start-page: 2696
  year: 1999
  ident: D2CS01066F/cit108/1
  publication-title: Macromolecules
  doi: 10.1021/ma981950w
– volume: 13
  start-page: 140
  year: 2021
  ident: D2CS01066F/cit9/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001179
– volume: 26
  start-page: 5419
  year: 2016
  ident: D2CS01066F/cit48/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601831
– volume: 347
  start-page: 646
  year: 2015
  ident: D2CS01066F/cit101/1
  publication-title: Science
  doi: 10.1126/science.aaa4249
– volume: 16
  start-page: 8760
  year: 2020
  ident: D2CS01066F/cit103/1
  publication-title: Soft Matter
  doi: 10.1039/D0SM01345E
– volume: 142
  start-page: 12400
  year: 2020
  ident: D2CS01066F/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04962
– volume: 130
  start-page: 600
  year: 2008
  ident: D2CS01066F/cit89/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075981v
– volume: 124
  start-page: 22
  year: 2002
  ident: D2CS01066F/cit54/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0169015
– volume: 134
  start-page: 2524
  year: 2012
  ident: D2CS01066F/cit73/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211334k
– volume: 16
  start-page: 10439
  year: 2010
  ident: D2CS01066F/cit80/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201000803
– volume: 9
  start-page: 13950
  year: 2017
  ident: D2CS01066F/cit83/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02611
– start-page: 1138
  year: 2001
  ident: D2CS01066F/cit112/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2001.1138
– volume: 46
  start-page: 2437
  year: 2017
  ident: D2CS01066F/cit124/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00619A
– volume: 3
  start-page: 1144
  year: 2016
  ident: D2CS01066F/cit82/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C6QO00310A
– volume: 369
  start-page: 267
  year: 2012
  ident: D2CS01066F/cit132/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.12.042
– volume: 49
  start-page: 3939
  year: 2010
  ident: D2CS01066F/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000162
– volume: 87
  start-page: 4001
  year: 2022
  ident: D2CS01066F/cit68/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c02742
– volume: 8
  start-page: 253
  year: 2008
  ident: D2CS01066F/cit42/1
  publication-title: Nano Lett.
  doi: 10.1021/nl072563f
– volume: 48
  start-page: 5624
  year: 2019
  ident: D2CS01066F/cit3/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00268E
– start-page: 728
  year: 1993
  ident: D2CS01066F/cit129/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39930000728
– volume: 41
  start-page: 8527
  year: 2000
  ident: D2CS01066F/cit88/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)01544-6
– volume: 5
  start-page: 6055
  year: 2022
  ident: D2CS01066F/cit109/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c00831
– volume: 439
  start-page: 213875
  year: 2021
  ident: D2CS01066F/cit19/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213875
– volume: 106
  start-page: 10477
  year: 2009
  ident: D2CS01066F/cit72/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0809602106
– volume: 132
  start-page: 16753
  year: 2010
  ident: D2CS01066F/cit31/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1077602
– volume: 8
  start-page: 5095
  year: 2017
  ident: D2CS01066F/cit8/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01275F
– volume: 115
  start-page: 10261
  year: 2015
  ident: D2CS01066F/cit13/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00244
– volume: 316
  start-page: 79
  year: 2019
  ident: D2CS01066F/cit85/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.077
– volume: 59
  start-page: 17456
  year: 2020
  ident: D2CS01066F/cit133/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007459
– volume: 140
  start-page: 10570
  year: 2018
  ident: D2CS01066F/cit38/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06016
– volume: 141
  start-page: 12610
  year: 2019
  ident: D2CS01066F/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04133
– volume: 134
  start-page: 14646
  year: 2012
  ident: D2CS01066F/cit50/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304674d
– volume: 55
  start-page: 4953
  year: 2019
  ident: D2CS01066F/cit140/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01613A
– volume: 117
  start-page: 249
  year: 2017
  ident: D2CS01066F/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00002
– volume: 9
  start-page: 1133
  year: 2017
  ident: D2CS01066F/cit33/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2812
– start-page: 1231
  year: 2009
  ident: D2CS01066F/cit53/1
  publication-title: Chem. Commun.
  doi: 10.1039/b818727d
– volume: 43
  start-page: 6350
  year: 2004
  ident: D2CS01066F/cit139/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461431
– volume: 10
  start-page: 41344
  year: 2018
  ident: D2CS01066F/cit7/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14577
– volume: 95
  start-page: 65
  year: 2019
  ident: D2CS01066F/cit21/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.05.002
– volume: 60
  start-page: 5010
  year: 2021
  ident: D2CS01066F/cit110/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909880
– volume: 39
  start-page: 764
  year: 2000
  ident: D2CS01066F/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(20000218)39:4<764::AID-ANIE764>3.0.CO;2-6
– volume: 54
  start-page: 500
  year: 2015
  ident: D2CS01066F/cit131/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409149
– volume: 58
  start-page: 16730
  year: 2019
  ident: D2CS01066F/cit96/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905724
– volume: 137
  start-page: 12394
  year: 2015
  ident: D2CS01066F/cit61/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08092
– start-page: 681
  year: 1994
  ident: D2CS01066F/cit128/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/C39940000681
– volume: 47
  start-page: 2405
  year: 2011
  ident: D2CS01066F/cit41/1
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04654J
– volume: 2
  start-page: 488
  year: 2020
  ident: D2CS01066F/cit137/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000163
– volume: 2
  start-page: 977
  year: 2010
  ident: D2CS01066F/cit47/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.825
– volume: 57
  start-page: 10656
  year: 2018
  ident: D2CS01066F/cit134/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806192
– volume: 27
  start-page: 6125
  year: 2015
  ident: D2CS01066F/cit144/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502598
– volume: 27
  start-page: 9700
  year: 2021
  ident: D2CS01066F/cit29/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202101036
– volume: 19
  start-page: 12759
  year: 2013
  ident: D2CS01066F/cit58/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201301133
– volume: 53
  start-page: 6925
  year: 2014
  ident: D2CS01066F/cit78/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201400835
– volume: 6
  start-page: 247
  year: 1971
  ident: D2CS01066F/cit11/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(00)80041-7
– volume: 142
  start-page: 598
  year: 2020
  ident: D2CS01066F/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12044
– volume: 10
  start-page: 6770
  year: 2019
  ident: D2CS01066F/cit39/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02151E
– volume: 126
  start-page: 15954
  year: 2004
  ident: D2CS01066F/cit130/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045068j
– volume: 45
  start-page: 1294
  year: 2012
  ident: D2CS01066F/cit122/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar2003418
– volume: 4
  start-page: 38
  year: 2020
  ident: D2CS01066F/cit100/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0153-8
– volume: 26
  start-page: 669
  year: 2020
  ident: D2CS01066F/cit55/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201903608
– volume: 47
  start-page: 7369
  year: 2018
  ident: D2CS01066F/cit14/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00554G
– volume: 60
  start-page: 11370
  year: 2021
  ident: D2CS01066F/cit64/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016395
– volume: 48
  start-page: 4371
  year: 2012
  ident: D2CS01066F/cit44/1
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31156a
– volume: 132
  start-page: 6783
  year: 2010
  ident: D2CS01066F/cit62/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1010527
– volume: 18
  start-page: 702
  year: 2017
  ident: D2CS01066F/cit98/1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.75
– volume: 429
  start-page: 213615
  year: 2021
  ident: D2CS01066F/cit111/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213615
– volume: 97
  start-page: 1231
  year: 1997
  ident: D2CS01066F/cit113/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr970328j
– volume: 53
  start-page: 536
  year: 2012
  ident: D2CS01066F/cit106/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.11.045
– volume: 38
  start-page: 235
  year: 2005
  ident: D2CS01066F/cit76/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040168f
– volume: 6
  start-page: 242
  year: 2014
  ident: D2CS01066F/cit135/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1861
– volume: 16
  start-page: 362
  year: 2010
  ident: D2CS01066F/cit99/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200902415
– volume: 41
  start-page: 1621
  year: 2012
  ident: D2CS01066F/cit123/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15220C
– volume: 101
  start-page: 4071
  year: 2001
  ident: D2CS01066F/cit107/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr990125q
– volume: 3
  start-page: 8170
  year: 2015
  ident: D2CS01066F/cit115/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01537E
– volume: 127
  start-page: 13484
  year: 2005
  ident: D2CS01066F/cit74/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054406t
– start-page: 637
  year: 2000
  ident: D2CS01066F/cit121/1
  publication-title: Chem. Commun.
  doi: 10.1039/a910339m
– volume: 133
  start-page: 12238
  year: 2011
  ident: D2CS01066F/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204543f
– volume: 117
  start-page: 2910
  year: 2017
  ident: D2CS01066F/cit20/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00427
– volume: 39
  start-page: 2643
  year: 2006
  ident: D2CS01066F/cit104/1
  publication-title: Macromolecules
  doi: 10.1021/ma0518914
– volume: 48
  start-page: 5891
  year: 2009
  ident: D2CS01066F/cit65/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900198h
– volume: 5
  start-page: 53
  year: 2014
  ident: D2CS01066F/cit84/1
  publication-title: Polym. Chem.
  doi: 10.1039/C3PY01036H
– volume: 481
  start-page: 492
  year: 2012
  ident: D2CS01066F/cit25/1
  publication-title: Nature
  doi: 10.1038/nature10720
– volume: 8
  start-page: 81591
  year: 2017
  ident: D2CS01066F/cit141/1
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20189
– volume: 2
  start-page: 1893
  year: 2018
  ident: D2CS01066F/cit49/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00309B
– volume: 54
  start-page: 14830
  year: 2015
  ident: D2CS01066F/cit118/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508475
– volume: 20
  start-page: 8566
  year: 2014
  ident: D2CS01066F/cit116/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201402612
– volume: 52
  start-page: 304
  year: 2013
  ident: D2CS01066F/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205085
– volume: 46
  start-page: 4268
  year: 2013
  ident: D2CS01066F/cit114/1
  publication-title: Macromolecules
  doi: 10.1021/ma400806s
– volume: 109
  start-page: 5687
  year: 2009
  ident: D2CS01066F/cit94/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr900181u
– volume: 40
  start-page: 1899
  year: 2011
  ident: D2CS01066F/cit17/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00070A
– volume: 53
  start-page: 4084
  year: 2017
  ident: D2CS01066F/cit28/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01670K
– volume: 115
  start-page: 12320
  year: 2015
  ident: D2CS01066F/cit120/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00341
– volume: 6
  start-page: 6710
  year: 2018
  ident: D2CS01066F/cit18/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11274B
– volume: 6
  start-page: 188
  year: 2014
  ident: D2CS01066F/cit36/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1849
– volume: 71
  start-page: 2572
  year: 2006
  ident: D2CS01066F/cit67/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo052224b
– volume: 19
  start-page: 16891
  year: 2013
  ident: D2CS01066F/cit81/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201303530
– volume: 52
  start-page: 6160
  year: 2019
  ident: D2CS01066F/cit70/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01012
– volume: 11
  start-page: 1
  year: 2020
  ident: D2CS01066F/cit40/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17356-5
– volume: 52
  start-page: 11681
  year: 2016
  ident: D2CS01066F/cit79/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06675E
– volume: 6
  start-page: 11980
  year: 2018
  ident: D2CS01066F/cit136/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02979B
– volume: 13
  start-page: 60261
  year: 2021
  ident: D2CS01066F/cit10/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c17335
– volume: 50
  start-page: 6073
  year: 2011
  ident: D2CS01066F/cit56/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic2001255
– volume: 55
  start-page: 5009
  year: 2022
  ident: D2CS01066F/cit60/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c00923
– volume: 132
  start-page: 6628
  year: 2010
  ident: D2CS01066F/cit75/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1014713
– volume: 21
  start-page: 4457
  year: 2015
  ident: D2CS01066F/cit90/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201405943
– volume: 6
  start-page: 16769
  year: 2018
  ident: D2CS01066F/cit5/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06392C
– volume: 45
  start-page: 40
  year: 2016
  ident: D2CS01066F/cit77/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00315F
– volume: 134
  start-page: 18526
  year: 2012
  ident: D2CS01066F/cit63/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308480x
– volume: 53
  start-page: 14363
  year: 2014
  ident: D2CS01066F/cit35/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201407302
– volume: 98
  start-page: 1743
  year: 1998
  ident: D2CS01066F/cit119/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr970022c
– volume: 5
  start-page: 274
  year: 2017
  ident: D2CS01066F/cit142/1
  publication-title: Biomater. Sci.
  doi: 10.1039/C6BM00482B
– volume: 692
  start-page: 635
  year: 2007
  ident: D2CS01066F/cit52/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2006.08.041
– volume: 51
  start-page: 10455
  year: 2015
  ident: D2CS01066F/cit126/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03717D
– volume: 64
  start-page: 8264
  year: 2008
  ident: D2CS01066F/cit66/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.05.126
– volume: 127
  start-page: 4164
  year: 2005
  ident: D2CS01066F/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042869d
– volume: 51
  start-page: 3818
  year: 2012
  ident: D2CS01066F/cit125/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107067
– volume: 50
  start-page: 3186
  year: 2017
  ident: D2CS01066F/cit57/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00316
– volume: 51
  start-page: 1473
  year: 2012
  ident: D2CS01066F/cit69/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107655
– volume: 6
  start-page: 5015
  year: 2015
  ident: D2CS01066F/cit87/1
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00683J
– volume: 13
  start-page: 14248
  year: 2021
  ident: D2CS01066F/cit138/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00146
– volume: 51
  start-page: 303
  year: 2019
  ident: D2CS01066F/cit117/1
  publication-title: Polym. J.
  doi: 10.1038/s41428-018-0126-7
– volume: 407
  start-page: 213157
  year: 2020
  ident: D2CS01066F/cit6/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213157
– volume: 132
  start-page: 9966
  year: 2010
  ident: D2CS01066F/cit91/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1030722
– volume: 46
  start-page: 5476
  year: 2017
  ident: D2CS01066F/cit97/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00121E
– volume: 31
  start-page: 2100367
  year: 2021
  ident: D2CS01066F/cit92/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100367
– volume: 143
  start-page: 9060
  year: 2021
  ident: D2CS01066F/cit105/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02481
– volume: 57
  start-page: 15465
  year: 2018
  ident: D2CS01066F/cit37/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809165
– volume: 23
  start-page: 3773
  year: 2017
  ident: D2CS01066F/cit27/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201605872
– volume: 53
  start-page: 8060
  year: 2020
  ident: D2CS01066F/cit59/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01446
– volume: 10
  start-page: 3259
  year: 2022
  ident: D2CS01066F/cit143/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00173J
– volume: 57
  start-page: 7028
  year: 2018
  ident: D2CS01066F/cit71/1
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201800980
– volume: 115
  start-page: 7196
  year: 2015
  ident: D2CS01066F/cit95/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500633b
– volume: 41
  start-page: 5922
  year: 2012
  ident: D2CS01066F/cit102/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35084j
– volume: 114
  start-page: 12330
  year: 2014
  ident: D2CS01066F/cit12/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr5001964
– volume: 140
  start-page: 7810
  year: 2018
  ident: D2CS01066F/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02388
– volume: 121
  start-page: 9644
  year: 2021
  ident: D2CS01066F/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00140
– volume: 10
  start-page: 1
  year: 2019
  ident: D2CS01066F/cit93/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 54
  start-page: 2249
  year: 2021
  ident: D2CS01066F/cit4/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00114
– volume: 125
  start-page: 13934
  year: 2003
  ident: D2CS01066F/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038178j
– volume: 354
  start-page: 46
  year: 2018
  ident: D2CS01066F/cit16/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.06.008
– volume: 13
  start-page: 248
  year: 2022
  ident: D2CS01066F/cit30/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27831-2
– volume: 26
  start-page: 3515
  year: 2020
  ident: D2CS01066F/cit86/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202000126
SSID ssj0011762
Score 2.6201842
SecondaryResourceType review_article
Snippet Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport,...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1947
SubjectTerms Catalysis
Complex formation
Energy conversion
Hydrogen bonding
Photosynthesis
Physical properties
Polymers
Porphyrins
Self-assembly
Supramolecular compounds
Supramolecular polymers
Title Porphyrin-based supramolecular polymers
URI https://www.ncbi.nlm.nih.gov/pubmed/36786672
https://www.proquest.com/docview/2783015163
https://www.proquest.com/docview/2776518489
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXxNcgMFARSAhNgdiO7fhx6jaVCRASnRhPlb8iDbF4ahuh8tdjx3bSfSABL1FkO017P_d89t39DoBXEjPDAgMAdBsUIXguFOW5VpibSmhDic9G_viJTo_LoxNykgptx-ySlXyrfl2bV_I_qLo2h6vPkv0HZPsPdQ3u3uHrrg5hd_0rjD9bL6XFaZP7xUjvLtvzhThLBW99AYb1WYxw79kIEkFACteMdKSXAnOmdmntz9PBwRQiqqfrtvneDslj67bTWe3uN2P7UI2jeAT91dp838aVMR4sINxFVtEN_YP9YUMRo5xN0I8lLfKSBcrGpEAJ2pgoZEMbQh7YNOPKCnkoyHNFaxfYk55qpJZ-h0rrYW3qIwaHzptgCzFnJ43A1t7B7P2H3mcEGY0-o_C1Exkt5u-Gpy-aH1f2FM7CWKTKL52FMbsL7sStwXgv4HwP3DDNfXBrkiryPQCvL-E9voj3OOH9EBwfHswm0zwWushVWeBVLipfORMahJipCBOKoFpLZbCuS42LWirIlBbSGF5hBb0nW9FCESIpp0JUeBuMGtuYx2BcQgFFRaRCRpZFJaXWtTb-FIS6VzGZgTfp989VZIH3xUh-zLtoBMzn-2jypZPVYQZe9mPPA_fJtaN2khjn8b-xnPv6Lc7QdMZ-Bl703U5c3h0lGmNbP4ZRAquy4hl4FMTfvwY7G4pShjKw7fDomwccn_yp4ym4PUzmHTBaLVrzzNmNK_k8Tpjfg11s5g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrin-based+supramolecular+polymers&rft.jtitle=Chemical+Society+reviews&rft.au=Lee%2C+Hosoowi&rft.au=Park%2C+Hyunjun&rft.au=Ryu%2C+Du+Yeol&rft.au=Jang%2C+Woo-Dong&rft.date=2023-03-06&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=52&rft.issue=5&rft.spage=1947&rft.epage=1974&rft_id=info:doi/10.1039%2Fd2cs01066f&rft.externalDocID=d2cs01066f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon