Noise analysis of MAP - EM algorithms for emission tomography
The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (...
Saved in:
| Published in | Physics in medicine & biology Vol. 42; no. 11; pp. 2215 - 2232 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
01.11.1997
Institute of Physics |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 |
| DOI | 10.1088/0031-9155/42/11/015 |
Cover
| Abstract | The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values. |
|---|---|
| AbstractList | The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values. The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values.The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values. |
| Author | Gindi, Gene Wang, Wenli |
| Author_xml | – sequence: 1 fullname: Wang, Wenli – sequence: 2 fullname: Gindi, Gene |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2044588$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9394408$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkDtP5DAURi3ECobHL0BILhDFSmGu40ecggIh9iHB7hZQWzceG4ySONiZYv49Gc1oChZpt7rFPd99nCOy38feEXLG4IqB1nMAzoqaSTkX5ZyxOTC5R2aMK1YoqWCfzHbEITnK-RWAMV2KA3JQ81oI0DNy_SuG7Cj22K5yyDR6-nDzhxb07oFi-xxTGF-6TH1M1HUh5xB7OsYuPiccXlYn5IvHNrvTbT0mT9_uHm9_FPe_v_-8vbkvrAA-FihVqSy4BTa1U2CdrLRWtqqw8VxIwEaD1Up7Lhe1qrwH67H0oi5dUzmB_JhcbuYOKb4tXR7NdIt1bYu9i8tsqukbyVQ9gedbcNl0bmGGFDpMK7P9d-pfbPuYLbY-YW9D3mElTHP0GuMbzKaYc3J-RzAwa_dmbdaszRpRGsbM5H5K1R9SNow4TsrGhKH9R_Zqkw1x-M9lX_8OfAKaYeH5O9hmoZc |
| CODEN | PHMBA7 |
| CitedBy_id | crossref_primary_10_1118_1_598559 crossref_primary_10_1097_RCT_0b013e31829cb7dd crossref_primary_10_1109_42_768839 crossref_primary_10_1088_0031_9155_51_16_009 crossref_primary_10_1109_TNS_2005_843610 crossref_primary_10_1088_0031_9155_61_16_6055 crossref_primary_10_1109_TMI_2004_824239 crossref_primary_10_1088_0031_9155_60_18_7007 crossref_primary_10_1016_j_media_2021_102132 crossref_primary_10_1088_0031_9155_54_24_009 crossref_primary_10_1088_0031_9155_58_12_4175 crossref_primary_10_1109_JPROC_2003_817882 crossref_primary_10_1016_j_mednuc_2007_02_004 crossref_primary_10_1109_TIP_2011_2181528 crossref_primary_10_1007_s00190_006_0121_1 crossref_primary_10_1007_s12149_010_0355_0 crossref_primary_10_1088_0031_9155_47_10_311 crossref_primary_10_1109_42_870259 crossref_primary_10_1002_mp_12302 crossref_primary_10_1109_TMI_2004_837790 crossref_primary_10_1109_TNS_2005_851458 crossref_primary_10_1063_1_5027880 crossref_primary_10_1063_1_5119441 crossref_primary_10_1186_s12880_015_0052_5 crossref_primary_10_3109_0284186X_2011_584559 crossref_primary_10_1088_0022_3727_48_15_155401 crossref_primary_10_1016_j_isprsjprs_2024_07_019 crossref_primary_10_1109_TMI_2005_859716 crossref_primary_10_1109_23_958382 crossref_primary_10_1088_0031_9155_56_4_013 crossref_primary_10_1109_TMI_2006_873223 crossref_primary_10_1109_TNS_2009_2021610 crossref_primary_10_1109_TMI_2008_2008971 crossref_primary_10_1016_j_neuroimage_2007_07_038 crossref_primary_10_1088_0031_9155_60_2_R1 crossref_primary_10_1016_j_fusengdes_2019_03_120 crossref_primary_10_1109_23_819298 crossref_primary_10_1088_1402_4896_ad081e crossref_primary_10_1088_0031_9155_51_13_R09 crossref_primary_10_1088_0031_9155_55_5_013 crossref_primary_10_1109_TNS_2012_2226911 crossref_primary_10_1109_TMI_2019_2938411 crossref_primary_10_1088_0031_9155_51_15_R01 crossref_primary_10_1016_j_compmedimag_2007_05_002 crossref_primary_10_1016_j_compmedimag_2007_05_003 crossref_primary_10_1088_0031_9155_48_21_004 crossref_primary_10_1063_1_4939252 crossref_primary_10_1002_mp_12883 crossref_primary_10_1016_j_zemedi_2015_12_004 crossref_primary_10_1109_TBME_2018_2802947 crossref_primary_10_1109_TNS_2007_901198 crossref_primary_10_1088_0031_9155_50_7_014 crossref_primary_10_1016_S0895_6111_02_00049_6 crossref_primary_10_1088_0031_9155_55_20_016 crossref_primary_10_1088_0031_9155_55_20_R01 crossref_primary_10_1088_0031_9155_48_22_009 |
| Cites_doi | 10.1111/j.2517-6161.1990.tb01798.x 10.1364/JOSAA.7.001266 10.1364/JOSAA.7.001294 10.1088/0031-9155/39/5/005 10.1109/34.134041 10.1109/42.52985 10.1109/42.97583 10.1126/science.3287615 10.1088/0031-9155/39/5/004 10.1109/TMI.1987.4307826 10.1109/83.491322 10.1088/0031-9155/39/3/004 10.1111/j.2517-6161.1977.tb01600.x 10.1109/42.476108 10.1109/TMI.1987.4307810 |
| ContentType | Journal Article |
| Copyright | 1998 INIST-CNRS |
| Copyright_xml | – notice: 1998 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/0031-9155/42/11/015 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| EndPage | 2232 |
| ExternalDocumentID | 9394408 2044588 10_1088_0031_9155_42_11_015 |
| Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS32879 |
| GroupedDBID | - 02O 123 1JI 1PV 1WK 29O 3O- 53G 5RE 5VS 7.M 8RP 9BW AAGCD AAGCF AAJIO AALHV AAPBV ABFLS ABHWH ABPTK ABUFD ACCAO ACGFS AEFHF AENEX AFYNE AHGVY AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 DZ EBS EDWGO EJD EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KC5 KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 R4D RIN RKQ RNS RO9 ROL RPA RW3 S3P T37 TN5 UCJ UNR X X7L XPP ZA5 ZMT ZXP --- -DZ -~X AATNI AAYXX ABJNI ABLJU ABVAM ACAFW ACARI ACHIP ADEQX AEINN AERVB AETNG AGQPQ AKPSB AOAED ARNYC CITATION CRLBU IJHAN PJBAE .GJ .HR 4.4 5B3 5ZH 5ZI 7.Q AAJKP ABCXL ABQJV ACWPO AFFNX CBCFC CEBXE EMSAF EPQRW H~9 IQODW J5H JCGBZ SY9 W28 ZGI ZY4 ABTAH CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c403t-a5626c0edab9e60ce57886c77abf3450ab80c868f35d967ff0cfa2f492eb7e4a3 |
| IEDL.DBID | IOP |
| ISSN | 0031-9155 |
| IngestDate | Wed Oct 01 17:17:44 EDT 2025 Wed Feb 19 02:32:44 EST 2025 Mon Jul 21 09:13:05 EDT 2025 Wed Oct 01 01:56:05 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Tue Nov 10 14:22:11 EST 2020 Mon May 13 14:43:52 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Radionuclide study Image quality Monte Carlo method Theoretical model Propagation Photon noise Bias Technique Algorithm analysis Comparative study Image reconstruction Emission tomography |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-a5626c0edab9e60ce57886c77abf3450ab80c868f35d967ff0cfa2f492eb7e4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 9394408 |
| PQID | 79445169 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_79445169 crossref_primary_10_1088_0031_9155_42_11_015 iop_primary_10_1088_0031_9155_42_11_015 pubmed_primary_9394408 pascalfrancis_primary_2044588 crossref_citationtrail_10_1088_0031_9155_42_11_015 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1997-11-01 |
| PublicationDateYYYYMMDD | 1997-11-01 |
| PublicationDate_xml | – month: 11 year: 1997 text: 1997-11-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAlternate | Phys Med Biol |
| PublicationYear | 1997 |
| Publisher | IOP Publishing Institute of Physics |
| Publisher_xml | – name: IOP Publishing – name: Institute of Physics |
| References | Dempster A P (5) 1977; 39 Green P J (8) 1990; 52 11 Liang Z (17) 1988 15 Blake A (4) 1987 Llacer J (18) 1993; 34 Abbey C K (1) 1995 Barrett H H (3) 1994; 39 Levitan E (16) 1987; 6 Swets J A (20) 1988; 240 Lee S J (14) 1996 Barrett H H (2) 1990; 7 Wang W (23) 1996 Wilson D W (24) 1994; 39 6 7 Wang W (22) 1996 Lee S J (13) 1996 Matej S (19) 1994; 39 Lange K (12) 1987; 6 Wang W (21) 1996 Hanson K M (9) 1990; 7 10 |
| References_xml | – volume: 52 start-page: 443 issn: 0035-9246 year: 1990 ident: 8 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1990.tb01798.x – year: 1996 ident: 13 – volume: 7 start-page: 1266 issn: 0740-3232 year: 1990 ident: 2 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.7.001266 – volume: 7 start-page: 1294 issn: 0740-3232 year: 1990 ident: 9 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.7.001294 – volume: 39 start-page: 847 issn: 0031-9155 year: 1994 ident: 24 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/39/5/005 – start-page: 65 year: 1995 ident: 1 – ident: 11 doi: 10.1109/34.134041 – ident: 7 doi: 10.1109/42.52985 – ident: 10 doi: 10.1109/42.97583 – volume: 240 start-page: 1285 year: 1988 ident: 20 publication-title: Science doi: 10.1126/science.3287615 – volume: 39 start-page: 833 issn: 0031-9155 year: 1994 ident: 3 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/39/5/004 – start-page: 684 year: 1988 ident: 17 – year: 1996 ident: 22 – year: 1996 ident: 21 – volume: 34 start-page: 1198 issn: 0161-5505 year: 1993 ident: 18 publication-title: J. Nucl. Med. – start-page: 1933 year: 1996 ident: 23 – year: 1987 ident: 4 – volume: 6 start-page: 185 issn: 0278-0062 year: 1987 ident: 16 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.1987.4307826 – ident: 6 doi: 10.1109/83.491322 – volume: 39 start-page: 355 issn: 0031-9155 year: 1994 ident: 19 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/39/3/004 – start-page: 1614 year: 1996 ident: 14 – volume: 39 start-page: 1 issn: 0035-9246 year: 1977 ident: 5 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 15 doi: 10.1109/42.476108 – volume: 6 start-page: 106 issn: 0278-0062 year: 1987 ident: 12 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.1987.4307810 |
| SSID | ssj0011824 |
| Score | 1.8204633 |
| Snippet | The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the... |
| SourceID | proquest pubmed pascalfrancis crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2215 |
| SubjectTerms | Algorithms Biological and medical sciences Gamma Rays Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Likelihood Functions Medical sciences Miscellaneous. Technology Models, Theoretical Monte Carlo Method Radionuclide investigations Reproducibility of Results Signal Processing, Computer-Assisted Tomography, Emission-Computed - methods |
| Title | Noise analysis of MAP - EM algorithms for emission tomography |
| URI | http://iopscience.iop.org/0031-9155/42/11/015 https://www.ncbi.nlm.nih.gov/pubmed/9394408 https://www.proquest.com/docview/79445169 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UULz4FuszoODF7rZp-jp4EFFE2NWDgreSpIku6nax3YP-eidptyo-8FbKJG0nk-RLZ-YbgAOqFMJ87ePqJ_GAwnjkGg5oNw_9RIhA8txGu_f60cUtu7wL7z6S1QfFqFn5O3hpPfnG7FzDYt5ltOv7Xc-mlJud36TrXV23PgNEyjXnciM_4RjCI94PfXzZh6bxYSYqkpeoGF1XtPgdctqt53wR-pMEnjri5LEzrkRHvn3nc_zfVy3BQgNCyUltNcswpYYrMFuXpXxdgble43DHmzZCVJarcNwvBqUivCExIYUmvZNr4pKzHuFP98XLoHp4LgliYGJKyJmfcKQqnhtG7DW4PT-7Ob1wm9oLrmReULkccVEkPZVzkeJoSoUzO4lkHHOhAxZ6XODgJlGigzBPo1hrT2pONUupErFiPFiHmWExVBtA0jAXfo6mQmXKBIuTkEY8SHEAZYxoTDlAJyORyYaY3NTHeMqsgzxJLH9pZpSVMYpHlgyV5cBR22hU83L8Lb6Pmm8lf5DIRrl24PCz1J_97XwxlrYN9ZjJ_XVgb2I8GercOGH4UBXjMsP1z9RGTh1Yr22qbZqaHGUv2fz3S2zBvCXTtZmR2zBTvYzVDkKkSuzamfEOxxz_1w |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIioufBQqApRaAokL2U0cJ7EPHCroqgV22QOVerNsxy4V7WbVZA_w6xnH2ahFpULiFkUeyx5Pxs_xzBuAN9RahPkuRe9n8IDCVBF7Dui4ylOudWZU1UW7T2fF4TH7dJKfXM2FqZe96x_hYyAKDirsA-K4Lz-Wxp7WfMzoOE3HuKGNl5XbgLt5lgtfxeDo63y4SUD8HJiYe6E189DNHV3bnTZwBD5WUjWoLhfqXPwdiHYb0uQhmPVUQhzKj9Gq1SPz6w-Wx_-b6yN40ONVsh8kHsMdu9iGe6GC5c9t2Jr2d_P4sgsmNc0TeD-rzxpLVM93QmpHpvtzEpODKVHnp_XlWfv9oiEIl4mvNuf_15G2vujJs5_C8eTg24fDuC_TEBuWZG2sEEIVJrGV0gIX3lh0ArwwZam0y1ieKI12wAvusrwSRelcYpyijglqdWmZynZgc1Ev7DMgIq90WqFVUSOYZiXPaaEygSjPlAjcbAR0vTzS9BzmvpTGuezu0jnvqE6lV5hkFE83EhUWwbtBaBkoPG5v_hpXY2h5QwuJKxDB26utbu1v95oFDTI0YT5NOIK9tUVJ1Lm_r1ELW68aia7Sl1EWEewEQxtEhU9nTvjzfx7EHmzNP07kl6PZ5xdwv6Pg7fIpX8Jme7myuwisWv2q-3J-A4sFD9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+analysis+of+MAP-EM+algorithms+for+emission+tomography&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Wang%2C+W&rft.au=Gindi%2C+G&rft.date=1997-11-01&rft.issn=0031-9155&rft.volume=42&rft.issue=11&rft.spage=2215&rft_id=info:doi/10.1088%2F0031-9155%2F42%2F11%2F015&rft_id=info%3Apmid%2F9394408&rft.externalDocID=9394408 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |