Noise analysis of MAP - EM algorithms for emission tomography

The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 42; no. 11; pp. 2215 - 2232
Main Authors Wang, Wenli, Gindi, Gene
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.1997
Institute of Physics
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
DOI10.1088/0031-9155/42/11/015

Cover

Abstract The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values.
AbstractList The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values.
The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values.The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values.
Author Gindi, Gene
Wang, Wenli
Author_xml – sequence: 1
  fullname: Wang, Wenli
– sequence: 2
  fullname: Gindi, Gene
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2044588$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9394408$$D View this record in MEDLINE/PubMed
BookMark eNqNkDtP5DAURi3ECobHL0BILhDFSmGu40ecggIh9iHB7hZQWzceG4ySONiZYv49Gc1oChZpt7rFPd99nCOy38feEXLG4IqB1nMAzoqaSTkX5ZyxOTC5R2aMK1YoqWCfzHbEITnK-RWAMV2KA3JQ81oI0DNy_SuG7Cj22K5yyDR6-nDzhxb07oFi-xxTGF-6TH1M1HUh5xB7OsYuPiccXlYn5IvHNrvTbT0mT9_uHm9_FPe_v_-8vbkvrAA-FihVqSy4BTa1U2CdrLRWtqqw8VxIwEaD1Up7Lhe1qrwH67H0oi5dUzmB_JhcbuYOKb4tXR7NdIt1bYu9i8tsqukbyVQ9gedbcNl0bmGGFDpMK7P9d-pfbPuYLbY-YW9D3mElTHP0GuMbzKaYc3J-RzAwa_dmbdaszRpRGsbM5H5K1R9SNow4TsrGhKH9R_Zqkw1x-M9lX_8OfAKaYeH5O9hmoZc
CODEN PHMBA7
CitedBy_id crossref_primary_10_1118_1_598559
crossref_primary_10_1097_RCT_0b013e31829cb7dd
crossref_primary_10_1109_42_768839
crossref_primary_10_1088_0031_9155_51_16_009
crossref_primary_10_1109_TNS_2005_843610
crossref_primary_10_1088_0031_9155_61_16_6055
crossref_primary_10_1109_TMI_2004_824239
crossref_primary_10_1088_0031_9155_60_18_7007
crossref_primary_10_1016_j_media_2021_102132
crossref_primary_10_1088_0031_9155_54_24_009
crossref_primary_10_1088_0031_9155_58_12_4175
crossref_primary_10_1109_JPROC_2003_817882
crossref_primary_10_1016_j_mednuc_2007_02_004
crossref_primary_10_1109_TIP_2011_2181528
crossref_primary_10_1007_s00190_006_0121_1
crossref_primary_10_1007_s12149_010_0355_0
crossref_primary_10_1088_0031_9155_47_10_311
crossref_primary_10_1109_42_870259
crossref_primary_10_1002_mp_12302
crossref_primary_10_1109_TMI_2004_837790
crossref_primary_10_1109_TNS_2005_851458
crossref_primary_10_1063_1_5027880
crossref_primary_10_1063_1_5119441
crossref_primary_10_1186_s12880_015_0052_5
crossref_primary_10_3109_0284186X_2011_584559
crossref_primary_10_1088_0022_3727_48_15_155401
crossref_primary_10_1016_j_isprsjprs_2024_07_019
crossref_primary_10_1109_TMI_2005_859716
crossref_primary_10_1109_23_958382
crossref_primary_10_1088_0031_9155_56_4_013
crossref_primary_10_1109_TMI_2006_873223
crossref_primary_10_1109_TNS_2009_2021610
crossref_primary_10_1109_TMI_2008_2008971
crossref_primary_10_1016_j_neuroimage_2007_07_038
crossref_primary_10_1088_0031_9155_60_2_R1
crossref_primary_10_1016_j_fusengdes_2019_03_120
crossref_primary_10_1109_23_819298
crossref_primary_10_1088_1402_4896_ad081e
crossref_primary_10_1088_0031_9155_51_13_R09
crossref_primary_10_1088_0031_9155_55_5_013
crossref_primary_10_1109_TNS_2012_2226911
crossref_primary_10_1109_TMI_2019_2938411
crossref_primary_10_1088_0031_9155_51_15_R01
crossref_primary_10_1016_j_compmedimag_2007_05_002
crossref_primary_10_1016_j_compmedimag_2007_05_003
crossref_primary_10_1088_0031_9155_48_21_004
crossref_primary_10_1063_1_4939252
crossref_primary_10_1002_mp_12883
crossref_primary_10_1016_j_zemedi_2015_12_004
crossref_primary_10_1109_TBME_2018_2802947
crossref_primary_10_1109_TNS_2007_901198
crossref_primary_10_1088_0031_9155_50_7_014
crossref_primary_10_1016_S0895_6111_02_00049_6
crossref_primary_10_1088_0031_9155_55_20_016
crossref_primary_10_1088_0031_9155_55_20_R01
crossref_primary_10_1088_0031_9155_48_22_009
Cites_doi 10.1111/j.2517-6161.1990.tb01798.x
10.1364/JOSAA.7.001266
10.1364/JOSAA.7.001294
10.1088/0031-9155/39/5/005
10.1109/34.134041
10.1109/42.52985
10.1109/42.97583
10.1126/science.3287615
10.1088/0031-9155/39/5/004
10.1109/TMI.1987.4307826
10.1109/83.491322
10.1088/0031-9155/39/3/004
10.1111/j.2517-6161.1977.tb01600.x
10.1109/42.476108
10.1109/TMI.1987.4307810
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/0031-9155/42/11/015
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
EndPage 2232
ExternalDocumentID 9394408
2044588
10_1088_0031_9155_42_11_015
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS32879
GroupedDBID -
02O
123
1JI
1PV
1WK
29O
3O-
53G
5RE
5VS
7.M
8RP
9BW
AAGCD
AAGCF
AAJIO
AALHV
AAPBV
ABFLS
ABHWH
ABPTK
ABUFD
ACCAO
ACGFS
AEFHF
AENEX
AFYNE
AHGVY
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
DZ
EBS
EDWGO
EJD
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KC5
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
RW3
S3P
T37
TN5
UCJ
UNR
X
X7L
XPP
ZA5
ZMT
ZXP
---
-DZ
-~X
AATNI
AAYXX
ABJNI
ABLJU
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AETNG
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
PJBAE
.GJ
.HR
4.4
5B3
5ZH
5ZI
7.Q
AAJKP
ABCXL
ABQJV
ACWPO
AFFNX
CBCFC
CEBXE
EMSAF
EPQRW
H~9
IQODW
J5H
JCGBZ
SY9
W28
ZGI
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c403t-a5626c0edab9e60ce57886c77abf3450ab80c868f35d967ff0cfa2f492eb7e4a3
IEDL.DBID IOP
ISSN 0031-9155
IngestDate Wed Oct 01 17:17:44 EDT 2025
Wed Feb 19 02:32:44 EST 2025
Mon Jul 21 09:13:05 EDT 2025
Wed Oct 01 01:56:05 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Tue Nov 10 14:22:11 EST 2020
Mon May 13 14:43:52 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Radionuclide study
Image quality
Monte Carlo method
Theoretical model
Propagation
Photon noise
Bias
Technique
Algorithm analysis
Comparative study
Image reconstruction
Emission tomography
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a5626c0edab9e60ce57886c77abf3450ab80c868f35d967ff0cfa2f492eb7e4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 9394408
PQID 79445169
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_79445169
crossref_primary_10_1088_0031_9155_42_11_015
iop_primary_10_1088_0031_9155_42_11_015
pubmed_primary_9394408
pascalfrancis_primary_2044588
crossref_citationtrail_10_1088_0031_9155_42_11_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-11-01
PublicationDateYYYYMMDD 1997-11-01
PublicationDate_xml – month: 11
  year: 1997
  text: 1997-11-01
  day: 01
PublicationDecade 1990
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAlternate Phys Med Biol
PublicationYear 1997
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References Dempster A P (5) 1977; 39
Green P J (8) 1990; 52
11
Liang Z (17) 1988
15
Blake A (4) 1987
Llacer J (18) 1993; 34
Abbey C K (1) 1995
Barrett H H (3) 1994; 39
Levitan E (16) 1987; 6
Swets J A (20) 1988; 240
Lee S J (14) 1996
Barrett H H (2) 1990; 7
Wang W (23) 1996
Wilson D W (24) 1994; 39
6
7
Wang W (22) 1996
Lee S J (13) 1996
Matej S (19) 1994; 39
Lange K (12) 1987; 6
Wang W (21) 1996
Hanson K M (9) 1990; 7
10
References_xml – volume: 52
  start-page: 443
  issn: 0035-9246
  year: 1990
  ident: 8
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1990.tb01798.x
– year: 1996
  ident: 13
– volume: 7
  start-page: 1266
  issn: 0740-3232
  year: 1990
  ident: 2
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.7.001266
– volume: 7
  start-page: 1294
  issn: 0740-3232
  year: 1990
  ident: 9
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.7.001294
– volume: 39
  start-page: 847
  issn: 0031-9155
  year: 1994
  ident: 24
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/5/005
– start-page: 65
  year: 1995
  ident: 1
– ident: 11
  doi: 10.1109/34.134041
– ident: 7
  doi: 10.1109/42.52985
– ident: 10
  doi: 10.1109/42.97583
– volume: 240
  start-page: 1285
  year: 1988
  ident: 20
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 39
  start-page: 833
  issn: 0031-9155
  year: 1994
  ident: 3
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/5/004
– start-page: 684
  year: 1988
  ident: 17
– year: 1996
  ident: 22
– year: 1996
  ident: 21
– volume: 34
  start-page: 1198
  issn: 0161-5505
  year: 1993
  ident: 18
  publication-title: J. Nucl. Med.
– start-page: 1933
  year: 1996
  ident: 23
– year: 1987
  ident: 4
– volume: 6
  start-page: 185
  issn: 0278-0062
  year: 1987
  ident: 16
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.1987.4307826
– ident: 6
  doi: 10.1109/83.491322
– volume: 39
  start-page: 355
  issn: 0031-9155
  year: 1994
  ident: 19
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/3/004
– start-page: 1614
  year: 1996
  ident: 14
– volume: 39
  start-page: 1
  issn: 0035-9246
  year: 1977
  ident: 5
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 15
  doi: 10.1109/42.476108
– volume: 6
  start-page: 106
  issn: 0278-0062
  year: 1987
  ident: 12
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.1987.4307810
SSID ssj0011824
Score 1.8204633
Snippet The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the...
SourceID proquest
pubmed
pascalfrancis
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2215
SubjectTerms Algorithms
Biological and medical sciences
Gamma Rays
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Likelihood Functions
Medical sciences
Miscellaneous. Technology
Models, Theoretical
Monte Carlo Method
Radionuclide investigations
Reproducibility of Results
Signal Processing, Computer-Assisted
Tomography, Emission-Computed - methods
Title Noise analysis of MAP - EM algorithms for emission tomography
URI http://iopscience.iop.org/0031-9155/42/11/015
https://www.ncbi.nlm.nih.gov/pubmed/9394408
https://www.proquest.com/docview/79445169
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UULz4FuszoODF7rZp-jp4EFFE2NWDgreSpIku6nax3YP-eidptyo-8FbKJG0nk-RLZ-YbgAOqFMJ87ePqJ_GAwnjkGg5oNw_9RIhA8txGu_f60cUtu7wL7z6S1QfFqFn5O3hpPfnG7FzDYt5ltOv7Xc-mlJud36TrXV23PgNEyjXnciM_4RjCI94PfXzZh6bxYSYqkpeoGF1XtPgdctqt53wR-pMEnjri5LEzrkRHvn3nc_zfVy3BQgNCyUltNcswpYYrMFuXpXxdgble43DHmzZCVJarcNwvBqUivCExIYUmvZNr4pKzHuFP98XLoHp4LgliYGJKyJmfcKQqnhtG7DW4PT-7Ob1wm9oLrmReULkccVEkPZVzkeJoSoUzO4lkHHOhAxZ6XODgJlGigzBPo1hrT2pONUupErFiPFiHmWExVBtA0jAXfo6mQmXKBIuTkEY8SHEAZYxoTDlAJyORyYaY3NTHeMqsgzxJLH9pZpSVMYpHlgyV5cBR22hU83L8Lb6Pmm8lf5DIRrl24PCz1J_97XwxlrYN9ZjJ_XVgb2I8GercOGH4UBXjMsP1z9RGTh1Yr22qbZqaHGUv2fz3S2zBvCXTtZmR2zBTvYzVDkKkSuzamfEOxxz_1w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIioufBQqApRaAokL2U0cJ7EPHCroqgV22QOVerNsxy4V7WbVZA_w6xnH2ahFpULiFkUeyx5Pxs_xzBuAN9RahPkuRe9n8IDCVBF7Dui4ylOudWZU1UW7T2fF4TH7dJKfXM2FqZe96x_hYyAKDirsA-K4Lz-Wxp7WfMzoOE3HuKGNl5XbgLt5lgtfxeDo63y4SUD8HJiYe6E189DNHV3bnTZwBD5WUjWoLhfqXPwdiHYb0uQhmPVUQhzKj9Gq1SPz6w-Wx_-b6yN40ONVsh8kHsMdu9iGe6GC5c9t2Jr2d_P4sgsmNc0TeD-rzxpLVM93QmpHpvtzEpODKVHnp_XlWfv9oiEIl4mvNuf_15G2vujJs5_C8eTg24fDuC_TEBuWZG2sEEIVJrGV0gIX3lh0ArwwZam0y1ieKI12wAvusrwSRelcYpyijglqdWmZynZgc1Ev7DMgIq90WqFVUSOYZiXPaaEygSjPlAjcbAR0vTzS9BzmvpTGuezu0jnvqE6lV5hkFE83EhUWwbtBaBkoPG5v_hpXY2h5QwuJKxDB26utbu1v95oFDTI0YT5NOIK9tUVJ1Lm_r1ELW68aia7Sl1EWEewEQxtEhU9nTvjzfx7EHmzNP07kl6PZ5xdwv6Pg7fIpX8Jme7myuwisWv2q-3J-A4sFD9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+analysis+of+MAP-EM+algorithms+for+emission+tomography&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Wang%2C+W&rft.au=Gindi%2C+G&rft.date=1997-11-01&rft.issn=0031-9155&rft.volume=42&rft.issue=11&rft.spage=2215&rft_id=info:doi/10.1088%2F0031-9155%2F42%2F11%2F015&rft_id=info%3Apmid%2F9394408&rft.externalDocID=9394408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon