Dynamical mass ejection from binary neutron star mergers
We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our trea...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 460; no. 3; pp. 3255 - 3271 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
11.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1093/mnras/stw1227 |
Cover
Abstract | We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ∼60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae. |
---|---|
AbstractList | We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ∼60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae. We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ~60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae. We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ~60 degree angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae. |
Author | Lippuner, Jonas Ott, Christian D. Radice, David Galeazzi, Filippo Roberts, Luke F. Rezzolla, Luciano |
Author_xml | – sequence: 1 givenname: David surname: Radice fullname: Radice, David email: dradice@caltech.edu organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 2 givenname: Filippo surname: Galeazzi fullname: Galeazzi, Filippo organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 3 givenname: Jonas surname: Lippuner fullname: Lippuner, Jonas organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 4 givenname: Luke F. surname: Roberts fullname: Roberts, Luke F. organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 5 givenname: Christian D. surname: Ott fullname: Ott, Christian D. organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 6 givenname: Luciano surname: Rezzolla fullname: Rezzolla, Luciano organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA |
BookMark | eNqN0E1LwzAYwPEgE9ymR-8FL16qeWnyZEeZrzDwoueSpIl0tMlMUmTf3s7tNBA9BcLvyct_hiY-eIvQJcE3BC_Ybe-jSrcpfxFK4QRNCRO8pAshJmiKMeOlBELO0CylNca4YlRMkbzfetW3RnVFr1Iq7Nqa3AZfuBj6QrdexW3h7ZDjuJeyikVv44eN6RydOtUle3FY5-j98eFt-VyuXp9elner0lSY5XKhGXXWWQ2qwdJgILISxmkiXKVtBVRLkEo0oKmDpiKYC7DQUK0rEBwzNkfX-3M3MXwONuW6b5OxXae8DUOqiWRccEmB_4MSIiVQBiO9OqLrMEQ_fmRUGDAAF3RU5V6ZGFKK1tWb2PZjkZrgepe8_kleH5KPnh1502a1y5mjartfpw7PDsPmjwu-AZSglrU |
CitedBy_id | crossref_primary_10_1093_mnras_stae224 crossref_primary_10_1103_PhysRevD_110_024003 crossref_primary_10_1140_epja_s10050_019_00018_6 crossref_primary_10_1103_PhysRevD_109_064009 crossref_primary_10_1093_mnras_stw2622 crossref_primary_10_1103_PhysRevD_107_023016 crossref_primary_10_1103_PhysRevLett_120_111101 crossref_primary_10_3847_1538_4357_aabad9 crossref_primary_10_1093_mnras_stac964 crossref_primary_10_1140_epja_s10050_023_00927_7 crossref_primary_10_3847_1538_4357_ac6ef7 crossref_primary_10_1093_mnras_stad3774 crossref_primary_10_1103_PhysRevLett_132_211001 crossref_primary_10_1093_ptep_ptaa120 crossref_primary_10_1088_1361_6471_ab0849 crossref_primary_10_3847_1538_4357_ab6a98 crossref_primary_10_1103_PhysRevD_109_044071 crossref_primary_10_3847_1538_4357_acac29 crossref_primary_10_3847_1538_4357_aaf054 crossref_primary_10_1088_1475_7516_2020_07_023 crossref_primary_10_1093_mnras_stac399 crossref_primary_10_1088_1361_6471_ab29b3 crossref_primary_10_3847_1538_4365_ad2fbd crossref_primary_10_1103_PhysRevD_107_063028 crossref_primary_10_3847_2041_8213_aaf73a crossref_primary_10_1140_epja_s10050_022_00743_5 crossref_primary_10_1007_s10714_020_02751_6 crossref_primary_10_1093_mnras_sty1018 crossref_primary_10_1103_PhysRevD_101_063029 crossref_primary_10_1007_s41115_023_00016_y crossref_primary_10_1103_PhysRevD_96_124005 crossref_primary_10_3847_1538_4357_abf3bc crossref_primary_10_1093_mnras_stz613 crossref_primary_10_1103_PhysRevD_109_103027 crossref_primary_10_1007_s10714_020_02714_x crossref_primary_10_1088_1361_6382_abebb7 crossref_primary_10_1103_PhysRevD_105_103022 crossref_primary_10_3847_1538_4357_aae084 crossref_primary_10_3847_1538_4357_aaeb8e crossref_primary_10_3847_2041_8213_aaa402 crossref_primary_10_1093_mnras_stab1287 crossref_primary_10_1103_PhysRevD_102_043006 crossref_primary_10_3847_2041_8213_ab0210 crossref_primary_10_1103_PhysRevD_94_084002 crossref_primary_10_3847_2041_8213_ab5c1e crossref_primary_10_1140_epja_s10050_021_00498_5 crossref_primary_10_1088_1475_7516_2021_01_017 crossref_primary_10_1140_epja_i2018_12648_5 crossref_primary_10_1093_mnras_stad1933 crossref_primary_10_1103_PhysRevD_100_044016 crossref_primary_10_1103_PhysRevD_108_083029 crossref_primary_10_1103_PhysRevD_104_083029 crossref_primary_10_3847_1538_4357_aaa0cb crossref_primary_10_1088_1361_6382_ac35a8 crossref_primary_10_1134_S1063773721120033 crossref_primary_10_3847_2041_8213_aa9478 crossref_primary_10_3847_1538_4357_abc9be crossref_primary_10_1140_epja_i2019_12716_4 crossref_primary_10_1103_PhysRevD_97_024031 crossref_primary_10_3847_1538_4357_ab10db crossref_primary_10_1093_mnras_staf324 crossref_primary_10_1093_mnras_stab2004 crossref_primary_10_1103_PhysRevD_107_023026 crossref_primary_10_1088_1742_6596_2742_1_012009 crossref_primary_10_3847_1538_4357_ab93bf crossref_primary_10_3847_2041_8213_ac350d crossref_primary_10_3847_0004_637X_831_2_141 crossref_primary_10_1007_s41114_017_0006_z crossref_primary_10_1007_s10714_020_02752_5 crossref_primary_10_1093_mnras_staa1486 crossref_primary_10_1093_mnras_staa2575 crossref_primary_10_1103_PhysRevD_96_123015 crossref_primary_10_1103_PhysRevLett_129_032701 crossref_primary_10_3390_universe8120633 crossref_primary_10_1088_1361_6633_aadb16 crossref_primary_10_1093_mnras_stx1683 crossref_primary_10_3847_1538_4357_aa5c8d crossref_primary_10_1088_1361_6382_aa9f5a crossref_primary_10_1103_PhysRevD_105_104028 crossref_primary_10_3847_2041_8213_ad74e0 crossref_primary_10_1007_s10714_021_02831_1 crossref_primary_10_1103_PhysRevC_95_045807 crossref_primary_10_3847_1538_4357_ac1119 crossref_primary_10_3847_1538_4357_ab3291 crossref_primary_10_3847_1538_4357_ac110b crossref_primary_10_3847_1538_4357_ab2e06 crossref_primary_10_1103_RevModPhys_91_011001 crossref_primary_10_1103_PhysRevD_99_083017 crossref_primary_10_1093_mnras_stad2128 crossref_primary_10_1103_PhysRevD_104_083004 crossref_primary_10_1103_PhysRevD_96_063011 crossref_primary_10_3847_1538_4357_aabafd crossref_primary_10_1093_mnras_staa1576 crossref_primary_10_1093_mnras_staa1454 crossref_primary_10_1103_PhysRevLett_122_121101 crossref_primary_10_1088_1361_6382_acc231 crossref_primary_10_3847_1538_4357_aaf893 crossref_primary_10_1103_PhysRevD_95_063016 crossref_primary_10_1093_mnras_stw2156 crossref_primary_10_3390_universe4030050 crossref_primary_10_1093_mnras_stz891 crossref_primary_10_1103_PhysRevD_103_083012 crossref_primary_10_3847_1538_4357_aadf92 crossref_primary_10_3847_2041_8213_aaa2f6 crossref_primary_10_3847_2041_8213_aade02 crossref_primary_10_3847_1538_4357_aabaec crossref_primary_10_3847_1538_4357_aae30a crossref_primary_10_3847_0004_637X_832_2_149 crossref_primary_10_3847_1538_4357_acaf56 crossref_primary_10_3847_2041_8213_abbb87 crossref_primary_10_3847_1538_4357_ab9a34 crossref_primary_10_1186_s40668_017_0022_0 crossref_primary_10_1007_s40042_024_01263_9 crossref_primary_10_1093_mnras_sty2531 crossref_primary_10_1103_PhysRevD_111_023015 crossref_primary_10_1103_PhysRevD_97_124039 crossref_primary_10_3847_1538_4357_ab64d8 crossref_primary_10_3847_2041_8213_aaf053 crossref_primary_10_1016_j_ppnp_2019_103714 crossref_primary_10_3847_2041_8213_ab5794 crossref_primary_10_3847_1538_4357_aab14a crossref_primary_10_1093_mnras_stad1855 crossref_primary_10_3847_1538_4357_abe1b5 crossref_primary_10_1103_PhysRevD_106_103032 crossref_primary_10_1007_s41114_019_0024_0 crossref_primary_10_1088_1361_6382_aa68a9 crossref_primary_10_3390_galaxies6040119 crossref_primary_10_1051_0004_6361_202244927 crossref_primary_10_3847_1538_4357_ac3751 crossref_primary_10_3847_1538_4357_ab86b0 crossref_primary_10_3847_1538_4357_ab16da crossref_primary_10_1103_PhysRevD_109_103008 crossref_primary_10_1093_mnras_stac2489 crossref_primary_10_3390_physics2020014 crossref_primary_10_1103_PhysRevD_95_024038 crossref_primary_10_3847_1538_4357_abe462 crossref_primary_10_1016_j_chinastron_2019_04_003 crossref_primary_10_1093_mnras_stad107 crossref_primary_10_3847_1538_4357_acf3e0 crossref_primary_10_1103_PhysRevD_100_023008 crossref_primary_10_1093_mnras_stw1849 crossref_primary_10_1088_1361_6382_aa6b39 crossref_primary_10_1103_PhysRevLett_119_231102 crossref_primary_10_1146_annurev_nucl_101916_123246 crossref_primary_10_1103_PhysRevD_95_024029 crossref_primary_10_1146_annurev_nucl_101918_023625 crossref_primary_10_1103_PhysRevC_103_025806 crossref_primary_10_1103_PhysRevLett_122_061101 crossref_primary_10_3847_1538_4357_ab86a0 crossref_primary_10_1093_mnras_stae1795 crossref_primary_10_1093_mnras_stz2791 crossref_primary_10_1103_PhysRevD_98_104005 crossref_primary_10_1140_epja_i2019_12818_y crossref_primary_10_1103_PhysRevD_100_023015 crossref_primary_10_3390_sym12081249 crossref_primary_10_1093_mnras_stab115 crossref_primary_10_1103_RevModPhys_93_015002 crossref_primary_10_3847_2041_8213_abb240 crossref_primary_10_1146_annurev_nucl_102920_050505 crossref_primary_10_3847_0004_637X_831_2_190 crossref_primary_10_3847_1538_4357_ab3ebb crossref_primary_10_3389_fspas_2021_656907 crossref_primary_10_1007_s00159_022_00146_x crossref_primary_10_1051_0004_6361_201732117 crossref_primary_10_1142_S0218271818420051 crossref_primary_10_1088_1361_6382_aa6bb0 crossref_primary_10_3847_1538_4357_aabfde crossref_primary_10_3847_1538_4357_ab744e crossref_primary_10_1093_mnras_stz2554 crossref_primary_10_1103_PhysRevD_102_103015 crossref_primary_10_1093_mnras_stx1987 crossref_primary_10_1088_1361_6471_aa7bdc crossref_primary_10_3847_1538_4357_aab095 crossref_primary_10_1093_mnras_stae057 crossref_primary_10_1103_PhysRevLett_131_231402 crossref_primary_10_3847_2041_8213_aa9c84 crossref_primary_10_1093_mnras_stac318 crossref_primary_10_1103_PhysRevD_109_043039 crossref_primary_10_1088_1742_6596_1668_1_012029 crossref_primary_10_1126_science_aap9455 crossref_primary_10_3847_1538_4357_aaad0e crossref_primary_10_1088_1361_6471_ac8890 crossref_primary_10_1016_j_ppnp_2019_02_008 crossref_primary_10_1103_PhysRevD_104_103006 crossref_primary_10_1093_mnras_stae400 crossref_primary_10_3847_1538_4357_ad9023 crossref_primary_10_1093_mnras_sty2174 crossref_primary_10_1103_PhysRevD_98_104028 crossref_primary_10_1093_mnras_stac589 crossref_primary_10_1140_epja_i2019_12810_7 crossref_primary_10_1140_epja_i2019_12888_9 crossref_primary_10_3847_1538_4357_ac69da crossref_primary_10_3847_1538_4357_ab25f5 crossref_primary_10_1103_PhysRevD_109_044012 crossref_primary_10_3847_1538_4357_aadc66 crossref_primary_10_1103_PhysRevD_104_063016 crossref_primary_10_3847_1538_4357_abb4e3 crossref_primary_10_3847_2041_8213_aa6483 crossref_primary_10_1093_mnras_stac2333 crossref_primary_10_3847_2041_8213_ac7728 crossref_primary_10_3847_2041_8213_aa8f3d crossref_primary_10_1093_mnras_stac2450 crossref_primary_10_1093_pasj_psx121 crossref_primary_10_1093_mnras_stz1564 crossref_primary_10_1088_0264_9381_33_18_184002 crossref_primary_10_1093_mnrasl_slaa016 crossref_primary_10_1103_PhysRevD_101_083029 crossref_primary_10_3847_1538_4357_aa86b3 crossref_primary_10_1016_j_physrep_2020_08_008 crossref_primary_10_3389_fspas_2024_1386748 crossref_primary_10_3847_1538_4357_aada11 crossref_primary_10_1103_PhysRevD_104_063026 crossref_primary_10_3847_1538_4357_ac23d9 crossref_primary_10_1103_PhysRevD_108_103023 crossref_primary_10_3847_1538_4357_aab7f3 crossref_primary_10_3847_1538_4365_aa94cb crossref_primary_10_1038_s41550_021_01405_0 crossref_primary_10_3847_1538_4357_ad7d04 crossref_primary_10_3847_2041_8205_829_1_L13 crossref_primary_10_1016_j_aop_2019_167923 crossref_primary_10_1093_mnras_sty108 crossref_primary_10_1103_PhysRevD_95_124042 crossref_primary_10_1016_j_jcp_2023_112365 crossref_primary_10_1093_mnras_stx3316 crossref_primary_10_1103_PhysRevD_107_044037 crossref_primary_10_1088_0264_9381_33_24_244004 crossref_primary_10_1093_mnras_stad175 crossref_primary_10_1007_s41114_021_00033_4 crossref_primary_10_3847_2041_8213_aa90b6 crossref_primary_10_1103_PhysRevD_96_043001 crossref_primary_10_1103_PhysRevD_94_044049 crossref_primary_10_3389_fphy_2020_00355 crossref_primary_10_1093_mnras_stz390 crossref_primary_10_1103_PhysRevD_93_124051 crossref_primary_10_1142_S0218271820410151 crossref_primary_10_3847_1538_4357_acf714 crossref_primary_10_3847_2041_8213_aa991c crossref_primary_10_3847_2041_8213_ace5b2 crossref_primary_10_3847_1538_4357_abc69e crossref_primary_10_3847_2041_8213_abae6f crossref_primary_10_1093_mnras_stz1651 crossref_primary_10_3847_1538_4357_ab4654 crossref_primary_10_3847_2041_8213_ac1120 crossref_primary_10_3847_1538_4357_ab7923 crossref_primary_10_3847_2041_8213_ad0fe1 crossref_primary_10_3847_1538_4357_aae0f2 crossref_primary_10_3847_1538_4357_ad32cd crossref_primary_10_1093_mnras_stab3393 crossref_primary_10_1103_PhysRevD_96_043004 crossref_primary_10_1142_S0218271821300020 crossref_primary_10_3847_1538_4357_ad20d0 crossref_primary_10_1088_1361_6382_aaebc0 crossref_primary_10_3847_1538_4357_ab70b9 crossref_primary_10_1093_mnras_staa1860 crossref_primary_10_1103_PhysRevC_98_025804 crossref_primary_10_1103_PhysRevD_100_124042 crossref_primary_10_3847_1538_4357_aab2b0 crossref_primary_10_3847_1538_4357_abce63 crossref_primary_10_1103_PhysRevD_94_044060 crossref_primary_10_3847_2041_8213_ab1e45 crossref_primary_10_3847_1538_4357_aaad67 crossref_primary_10_3847_2041_8213_aa9ab9 crossref_primary_10_1103_PhysRevD_102_104001 crossref_primary_10_1103_PhysRevD_109_123009 crossref_primary_10_3847_1538_4357_ac1737 crossref_primary_10_1017_pasa_2018_11 crossref_primary_10_3847_1538_4365_ad0ece crossref_primary_10_1093_mnras_staf377 crossref_primary_10_3847_1538_4357_aa850e crossref_primary_10_1103_PhysRevD_94_123016 crossref_primary_10_1103_PhysRevD_98_103014 crossref_primary_10_1093_mnras_stad2420 crossref_primary_10_1088_1361_6382_aa8d98 crossref_primary_10_3847_1538_4357_acea83 crossref_primary_10_1093_mnras_staa2120 crossref_primary_10_3847_2041_8213_aa775f crossref_primary_10_1093_mnras_sty2932 crossref_primary_10_1103_PhysRevD_97_023009 crossref_primary_10_1093_mnras_stad1458 crossref_primary_10_3847_1538_4357_acb493 crossref_primary_10_1103_PhysRevD_101_044053 crossref_primary_10_3847_1538_4357_ab61f6 crossref_primary_10_1146_annurev_nucl_013120_114541 crossref_primary_10_3847_2041_8213_aca025 crossref_primary_10_1051_0004_6361_202449173 crossref_primary_10_1093_mnras_stad2430 crossref_primary_10_1103_PhysRevC_98_065806 crossref_primary_10_1103_PhysRevD_110_083028 crossref_primary_10_3847_1538_4357_ad5676 crossref_primary_10_1088_1361_6382_aa7a77 crossref_primary_10_1088_1361_6382_acd97f crossref_primary_10_1088_1361_6382_ab0587 crossref_primary_10_3847_2041_8213_ac504a crossref_primary_10_1103_PhysRevD_102_083017 crossref_primary_10_1103_PhysRevD_110_104018 crossref_primary_10_3847_2041_8213_ad236e crossref_primary_10_1088_1361_6633_aa67bb crossref_primary_10_3847_2041_8213_aa9029 crossref_primary_10_3847_2041_8213_ad454f |
Cites_doi | 10.1103/PhysRevD.92.064034 10.1103/PhysRevLett.104.251101 10.1088/0004-637X/690/2/1681 10.1086/312425 10.1016/0003-4916(66)90207-7 10.1051/0004-6361/200913386 10.1093/mnras/stt2503 10.1103/PhysRevD.82.064015 10.1088/2041-8205/737/1/L5 10.1111/j.1365-2966.2010.16864.x 10.1103/PhysRev.55.374 10.1088/0004-637X/815/2/82 10.1093/mnras/stt1312 10.1038/nature04238 10.3847/0067-0049/223/2/22 10.1142/S0218271815300128 10.1088/2041-8205/736/1/L21 10.1103/PhysRevD.92.124007 10.1103/PhysRevD.92.121502 10.1088/0004-637X/773/1/78 10.1038/nature10365 10.1103/PhysRevLett.116.061102 10.1140/epja/i2014-14046-5 10.1088/0004-637X/774/1/25 10.1016/0375-9474(91)90452-C 10.1093/mnras/stv1550 10.1103/PhysRevD.79.044023 10.1103/PhysRevD.91.064027 10.1103/PhysRevD.85.064040 10.1088/2041-8205/789/2/L39 10.1088/0004-637X/698/2/1174 10.1088/0264-9381/21/6/014 10.1088/2041-8205/769/2/L29 10.1103/PhysRevD.78.084033 10.1088/0004-637X/790/1/19 10.1088/0004-637X/746/1/48 10.1103/PhysRevD.92.044028 10.1038/nphys3574 10.1088/0004-637X/767/2/124 10.1088/2041-8205/774/2/L23 10.1088/0264-9381/27/11/114103 10.1088/0004-637X/720/1/953 10.1143/PTPS.90.1 10.1103/PhysRevD.85.104030 10.1093/mnras/stv721 10.1006/jcph.1997.5745 10.1051/0004-6361/200913106 10.1086/312343 10.1093/mnras/stt037 10.1088/0264-9381/32/7/074001 10.1103/PhysRevD.81.084003 10.1103/PhysRevD.92.044045 10.3847/2041-8205/816/2/L30 10.1088/0004-637X/775/1/18 10.1088/0004-637X/777/2/103 10.1088/2041-8205/785/1/L6 10.1088/0264-9381/32/2/024001 10.1103/PhysRevD.59.024007 10.1088/2041-8205/804/2/L35 10.1093/mnras/stv238 10.1103/PhysRevD.52.5428 10.1093/mnras/stv009 10.1103/PhysRevD.88.064049 10.1086/311680 10.1103/PhysRevD.88.064009 10.1103/PhysRevD.85.124009 10.1103/PhysRevD.92.124034 10.1093/mnras/sts708 10.1103/PhysRevD.89.104029 10.1093/mnrasl/slt137 10.1146/annurev-astro-081913-035926 10.1088/2041-8205/802/2/L22 10.1088/0004-637X/775/2/113 10.1143/PTP.125.1255 10.1103/PhysRevD.87.024001 10.1093/mnras/stt2502 10.1103/PhysRevD.91.064059 10.1088/0004-637X/732/2/67 10.1103/PhysRevD.88.043007 10.1103/PhysRevD.93.024011 10.1086/181612 10.1103/PhysRevD.91.124021 10.1088/0004-637X/802/2/95 10.1103/PhysRevD.88.021501 10.1016/j.physrep.2007.02.005 10.1088/0264-9381/31/7/075012 10.1093/acprof:oso/9780198528906.001.0001 10.1103/PhysRevD.85.024038 10.1093/mnras/194.2.439 10.1088/2041-8205/807/1/L3 10.1088/0004-637X/813/1/2 10.1093/mnras/stv1526 10.1038/nature12505 10.1051/0004-6361:20034265 10.1086/312659 10.1111/j.1365-2966.2012.21859.x 10.1088/0264-9381/27/11/114105 10.1088/2041-8205/766/1/L10 10.1093/mnras/stu2112 10.1088/0004-637X/807/2/115 10.1103/PhysRevD.90.024026 10.1093/mnras/stu2225 10.1103/PhysRevLett.97.141101 10.1086/159285 10.1088/2041-8205/760/1/L4 10.1038/340126a0 10.1088/0264-9381/26/11/114005 10.1046/j.1365-2966.2003.07032.x 10.1088/0264-9381/29/11/115001 10.1103/PhysRevD.86.104053 10.1093/mnras/stu802 10.1103/PhysRevD.90.084043 10.1086/307938 10.1103/PhysRevD.63.064029 10.1038/ncomms6956 10.1103/PhysRevD.88.084057 10.12942/lrr-2009-2 10.1103/PhysRevD.86.121501 10.1038/nature17425 10.1093/mnras/stu2404 10.1103/PhysRevD.73.064027 10.1103/PhysRevD.89.081503 10.1088/0004-637X/722/1/954 10.1103/PhysRev.55.364 10.1086/167702 10.1088/2041-8205/798/2/L36 |
ContentType | Journal Article |
Copyright | 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016 Copyright Oxford University Press, UK Aug 11, 2016 |
Copyright_xml | – notice: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016 – notice: Copyright Oxford University Press, UK Aug 11, 2016 |
DBID | AAYXX CITATION 8FD H8D L7M 7TG KL. |
DOI | 10.1093/mnras/stw1227 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 3271 |
ExternalDocumentID | 4129407241 10_1093_mnras_stw1227 10.1093/mnras/stw1227 |
Genre | Feature |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ ALXQX AMNDL ANAKG CITATION JXSIZ 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-c403t-9b32fefeb7ad08c071846cfb16f4be472b878a6d7b2f7d410567e7d2bb4765033 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Fri Sep 05 06:01:06 EDT 2025 Thu Sep 04 22:51:19 EDT 2025 Fri Jul 25 07:06:14 EDT 2025 Tue Jul 01 00:31:48 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Wed Sep 11 04:48:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | gravitational waves hydrodynamics nuclear reactions, nucleosynthesis, abundances neutrinos methods: numerical stars: neutron |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-9b32fefeb7ad08c071846cfb16f4be472b878a6d7b2f7d410567e7d2bb4765033 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/460/3/3255/8130508/stw1227.pdf |
PQID | 1807077562 |
PQPubID | 42411 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1835658275 proquest_miscellaneous_1811887237 proquest_journals_1807077562 crossref_primary_10_1093_mnras_stw1227 crossref_citationtrail_10_1093_mnras_stw1227 oup_primary_10_1093_mnras_stw1227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-11 |
PublicationDateYYYYMMDD | 2016-08-11 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016061717080454000_460.3.3255.86 2016061717080454000_460.3.3255.85 2016061717080454000_460.3.3255.84 Ramirez-Ruiz (2016061717080454000_460.3.3255.102) 2015; 802 2016061717080454000_460.3.3255.88 Sekiguchi (2016061717080454000_460.3.3255.116) 2015; 91 Alic (2016061717080454000_460.3.3255.4) 2013; 88 Moldenhauer (2016061717080454000_460.3.3255.82) 2014; 90 Gourgoulhon (2016061717080454000_460.3.3255.46) 2001; 63 2016061717080454000_460.3.3255.91 2016061717080454000_460.3.3255.90 2016061717080454000_460.3.3255.75 2016061717080454000_460.3.3255.74 Dietrich (2016061717080454000_460.3.3255.25) 2015; 92 2016061717080454000_460.3.3255.72 Radice (2016061717080454000_460.3.3255.100) 2014; 437 Ruffert (2016061717080454000_460.3.3255.113) 1996; 311 Sathyaprakash (2016061717080454000_460.3.3255.114) 2009; 12 2016061717080454000_460.3.3255.79 2016061717080454000_460.3.3255.78 2016061717080454000_460.3.3255.77 Damour (2016061717080454000_460.3.3255.23) 2014; 89 Hotokezaka (2016061717080454000_460.3.3255.50) 2015; 11 Murphy (2016061717080454000_460.3.3255.83) 2011; 732 Kiuchi (2016061717080454000_460.3.3255.61) 2015; 92 Lippuner (2016061717080454000_460.3.3255.73) 2015; 815 2016061717080454000_460.3.3255.105 2016061717080454000_460.3.3255.104 2016061717080454000_460.3.3255.107 2016061717080454000_460.3.3255.106 2016061717080454000_460.3.3255.81 2016061717080454000_460.3.3255.80 2016061717080454000_460.3.3255.24 Hotokezaka (2016061717080454000_460.3.3255.49) 2013; 87 Alic (2016061717080454000_460.3.3255.3) 2012; 85 Rosswog (2016061717080454000_460.3.3255.109) 1999; 341 Radice (2016061717080454000_460.3.3255.101) 2015; 498 Baiotti (2016061717080454000_460.3.3255.11) 2010; 82 Radice (2016061717080454000_460.3.3255.98) 2013; 766 Martin (2016061717080454000_460.3.3255.76) 2015; 813 2016061717080454000_460.3.3255.97 2016061717080454000_460.3.3255.95 Aso (2016061717080454000_460.3.3255.7) 2013; 88 Bernuzzi (2016061717080454000_460.3.3255.19) 2010; 81 2016061717080454000_460.3.3255.12 Ciolfi (2016061717080454000_460.3.3255.22) 2015; 798 Gold (2016061717080454000_460.3.3255.43) 2012; 86 2016061717080454000_460.3.3255.10 2016061717080454000_460.3.3255.17 2016061717080454000_460.3.3255.16 2016061717080454000_460.3.3255.15 2016061717080454000_460.3.3255.14 Paschalidis (2016061717080454000_460.3.3255.93) 2015; 92 Plewa (2016061717080454000_460.3.3255.96) 1999; 342 Rezzolla (2016061717080454000_460.3.3255.103) 2015; 802 2016061717080454000_460.3.3255.18 Weyhausen (2016061717080454000_460.3.3255.133) 2012; 85 East (2016061717080454000_460.3.3255.29) 2015; 807 Brown (2016061717080454000_460.3.3255.21) 2009; 79 Foucart (2016061717080454000_460.3.3255.38) 2014; 90 Rosswog (2016061717080454000_460.3.3255.108) 2015; 24 Foucart (2016061717080454000_460.3.3255.40) 2016; D93 Just (2016061717080454000_460.3.3255.55) 2016; 816 2016061717080454000_460.3.3255.130 2016061717080454000_460.3.3255.41 2016061717080454000_460.3.3255.132 2016061717080454000_460.3.3255.134 2016061717080454000_460.3.3255.45 2016061717080454000_460.3.3255.44 Kyutoku (2016061717080454000_460.3.3255.65) 2015; 92 Perego (2016061717080454000_460.3.3255.94) 2016; 223 Ishimaru (2016061717080454000_460.3.3255.52) 2015; 804 2016061717080454000_460.3.3255.47 Shibata (2016061717080454000_460.3.3255.118) 1995; 52 East (2016061717080454000_460.3.3255.27) 2012; 85 (2016061717080454000_460.3.3255.70) 2015; 32 Radice (2016061717080454000_460.3.3255.99) 2014; 31 Acernese (2016061717080454000_460.3.3255.2) 2015; 32 2016061717080454000_460.3.3255.31 2016061717080454000_460.3.3255.35 East (2016061717080454000_460.3.3255.26) 2012; 760 2016061717080454000_460.3.3255.34 Palenzuela (2016061717080454000_460.3.3255.92) 2015; 92 2016061717080454000_460.3.3255.33 Foucart (2016061717080454000_460.3.3255.39) 2015; 91 2016061717080454000_460.3.3255.36 East (2016061717080454000_460.3.3255.28) 2012; 86 Ji (2016061717080454000_460.3.3255.53) 2016; 531 Einfeldt (2016061717080454000_460.3.3255.32) 1988; 25 Neilsen (2016061717080454000_460.3.3255.87) 2014; 89 Tsang (2016061717080454000_460.3.3255.128) 2013; 777 Shen (2016061717080454000_460.3.3255.117) 2015; 807 2016061717080454000_460.3.3255.64 2016061717080454000_460.3.3255.63 Hilditch (2016061717080454000_460.3.3255.48) 2013; 88 2016061717080454000_460.3.3255.110 Bernuzzi (2016061717080454000_460.3.3255.20) 2012; 85 2016061717080454000_460.3.3255.68 2016061717080454000_460.3.3255.112 Baumgarte (2016061717080454000_460.3.3255.13) 1999; 59 2016061717080454000_460.3.3255.67 2016061717080454000_460.3.3255.111 2016061717080454000_460.3.3255.66 2016061717080454000_460.3.3255.69 Baiotti (2016061717080454000_460.3.3255.9) 2008; 78 Kaplan (2016061717080454000_460.3.3255.56) 2014; 790 Kastaun (2016061717080454000_460.3.3255.60) 2013; 88 Kiuchi (2016061717080454000_460.3.3255.62) 2015; 92 2016061717080454000_460.3.3255.115 Siegel (2016061717080454000_460.3.3255.121) 2014; 785 Galeazzi (2016061717080454000_460.3.3255.42) 2013; 88 2016061717080454000_460.3.3255.71 2016061717080454000_460.3.3255.51 2016061717080454000_460.3.3255.120 2016061717080454000_460.3.3255.6 2016061717080454000_460.3.3255.57 O'Connor (2016061717080454000_460.3.3255.89) 2010; 27 2016061717080454000_460.3.3255.123 2016061717080454000_460.3.3255.5 East (2016061717080454000_460.3.3255.30) 2016; 93 2016061717080454000_460.3.3255.122 2016061717080454000_460.3.3255.8 2016061717080454000_460.3.3255.125 Wallner (2016061717080454000_460.3.3255.131) 2015; 6 2016061717080454000_460.3.3255.54 2016061717080454000_460.3.3255.124 Kastaun (2016061717080454000_460.3.3255.59) 2015; 91 2016061717080454000_460.3.3255.58 Fischer (2016061717080454000_460.3.3255.37) 2014; 50 Shibata (2016061717080454000_460.3.3255.119) 2006; 73 2016061717080454000_460.3.3255.127 2016061717080454000_460.3.3255.1 2016061717080454000_460.3.3255.126 2016061717080454000_460.3.3255.129 |
References_xml | – volume: 92 start-page: 064034 year: 2015 ident: 2016061717080454000_460.3.3255.61 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.064034 – ident: 2016061717080454000_460.3.3255.51 doi: 10.1103/PhysRevLett.104.251101 – volume: 342 start-page: 179 year: 1999 ident: 2016061717080454000_460.3.3255.96 publication-title: A&A – ident: 2016061717080454000_460.3.3255.24 doi: 10.1088/0004-637X/690/2/1681 – ident: 2016061717080454000_460.3.3255.14 doi: 10.1086/312425 – ident: 2016061717080454000_460.3.3255.72 doi: 10.1016/0003-4916(66)90207-7 – ident: 2016061717080454000_460.3.3255.90 doi: 10.1051/0004-6361/200913386 – ident: 2016061717080454000_460.3.3255.47 doi: 10.1093/mnras/stt2503 – volume: 82 start-page: 064015 year: 2010 ident: 2016061717080454000_460.3.3255.11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.064015 – ident: 2016061717080454000_460.3.3255.122 doi: 10.1088/2041-8205/737/1/L5 – ident: 2016061717080454000_460.3.3255.79 doi: 10.1111/j.1365-2966.2010.16864.x – ident: 2016061717080454000_460.3.3255.91 doi: 10.1103/PhysRev.55.374 – volume: 815 start-page: 82 year: 2015 ident: 2016061717080454000_460.3.3255.73 publication-title: ApJ doi: 10.1088/0004-637X/815/2/82 – ident: 2016061717080454000_460.3.3255.33 doi: 10.1093/mnras/stt1312 – ident: 2016061717080454000_460.3.3255.17 doi: 10.1038/nature04238 – volume: 341 start-page: 499 year: 1999 ident: 2016061717080454000_460.3.3255.109 publication-title: A&A – volume: 223 start-page: 22 year: 2016 ident: 2016061717080454000_460.3.3255.94 publication-title: ApJS doi: 10.3847/0067-0049/223/2/22 – volume: 24 start-page: 30012 year: 2015 ident: 2016061717080454000_460.3.3255.108 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271815300128 – ident: 2016061717080454000_460.3.3255.107 doi: 10.1088/2041-8205/736/1/L21 – volume: 92 start-page: 124007 year: 2015 ident: 2016061717080454000_460.3.3255.25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.124007 – volume: 92 start-page: 121502 year: 2015 ident: 2016061717080454000_460.3.3255.93 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.121502 – ident: 2016061717080454000_460.3.3255.15 doi: 10.1088/0004-637X/773/1/78 – volume: D93 start-page: 044019 year: 2016 ident: 2016061717080454000_460.3.3255.40 publication-title: Phys. Rev. – ident: 2016061717080454000_460.3.3255.86 doi: 10.1038/nature10365 – volume: 498 start-page: 121 year: 2015 ident: 2016061717080454000_460.3.3255.101 publication-title: ASP Conf. Ser. – ident: 2016061717080454000_460.3.3255.1 doi: 10.1103/PhysRevLett.116.061102 – volume: 50 start-page: 46 year: 2014 ident: 2016061717080454000_460.3.3255.37 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2014-14046-5 – ident: 2016061717080454000_460.3.3255.57 doi: 10.1088/0004-637X/774/1/25 – ident: 2016061717080454000_460.3.3255.67 doi: 10.1016/0375-9474(91)90452-C – ident: 2016061717080454000_460.3.3255.75 doi: 10.1093/mnras/stv1550 – volume: 79 start-page: 044023 year: 2009 ident: 2016061717080454000_460.3.3255.21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.044023 – volume: 91 start-page: 064027 year: 2015 ident: 2016061717080454000_460.3.3255.59 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.064027 – volume: 85 start-page: 064040 year: 2012 ident: 2016061717080454000_460.3.3255.3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.064040 – ident: 2016061717080454000_460.3.3255.132 doi: 10.1088/2041-8205/789/2/L39 – ident: 2016061717080454000_460.3.3255.69 doi: 10.1088/0004-637X/698/2/1174 – ident: 2016061717080454000_460.3.3255.115 doi: 10.1088/0264-9381/21/6/014 – ident: 2016061717080454000_460.3.3255.134 doi: 10.1088/2041-8205/769/2/L29 – volume: 78 start-page: 084033 year: 2008 ident: 2016061717080454000_460.3.3255.9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.084033 – volume: 790 start-page: 19 year: 2014 ident: 2016061717080454000_460.3.3255.56 publication-title: ApJ doi: 10.1088/0004-637X/790/1/19 – ident: 2016061717080454000_460.3.3255.77 doi: 10.1088/0004-637X/746/1/48 – volume: 92 start-page: 044028 year: 2015 ident: 2016061717080454000_460.3.3255.65 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.044028 – ident: 2016061717080454000_460.3.3255.44 – volume: 11 start-page: 1042 year: 2015 ident: 2016061717080454000_460.3.3255.50 publication-title: Nat. Phys. doi: 10.1038/nphys3574 – ident: 2016061717080454000_460.3.3255.88 doi: 10.1088/0004-637X/767/2/124 – ident: 2016061717080454000_460.3.3255.18 doi: 10.1088/2041-8205/774/2/L23 – volume: 27 start-page: 114103 year: 2010 ident: 2016061717080454000_460.3.3255.89 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/27/11/114103 – ident: 2016061717080454000_460.3.3255.68 doi: 10.1088/0004-637X/720/1/953 – ident: 2016061717080454000_460.3.3255.84 doi: 10.1143/PTPS.90.1 – volume: 85 start-page: 104030 year: 2012 ident: 2016061717080454000_460.3.3255.20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.104030 – ident: 2016061717080454000_460.3.3255.58 doi: 10.1093/mnras/stv721 – ident: 2016061717080454000_460.3.3255.123 doi: 10.1006/jcph.1997.5745 – ident: 2016061717080454000_460.3.3255.36 doi: 10.1051/0004-6361/200913106 – ident: 2016061717080454000_460.3.3255.41 doi: 10.1086/312343 – ident: 2016061717080454000_460.3.3255.95 doi: 10.1093/mnras/stt037 – volume: 32 start-page: 074001 year: 2015 ident: 2016061717080454000_460.3.3255.70 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/7/074001 – volume: 81 start-page: 084003 year: 2010 ident: 2016061717080454000_460.3.3255.19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.084003 – volume: 92 start-page: 044045 year: 2015 ident: 2016061717080454000_460.3.3255.92 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.044045 – volume: 816 start-page: L30 year: 2016 ident: 2016061717080454000_460.3.3255.55 publication-title: ApJ doi: 10.3847/2041-8205/816/2/L30 – ident: 2016061717080454000_460.3.3255.12 doi: 10.1088/0004-637X/775/1/18 – volume: 777 start-page: 103 year: 2013 ident: 2016061717080454000_460.3.3255.128 publication-title: ApJ doi: 10.1088/0004-637X/777/2/103 – volume: 785 start-page: L6 year: 2014 ident: 2016061717080454000_460.3.3255.121 publication-title: ApJ doi: 10.1088/2041-8205/785/1/L6 – volume: 32 start-page: 024001 year: 2015 ident: 2016061717080454000_460.3.3255.2 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/2/024001 – volume: 59 start-page: 024007 year: 1999 ident: 2016061717080454000_460.3.3255.13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.59.024007 – volume: 804 start-page: L35 year: 2015 ident: 2016061717080454000_460.3.3255.52 publication-title: ApJ doi: 10.1088/2041-8205/804/2/L35 – ident: 2016061717080454000_460.3.3255.35 doi: 10.1093/mnras/stv238 – volume: 52 start-page: 5428 year: 1995 ident: 2016061717080454000_460.3.3255.118 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.52.5428 – ident: 2016061717080454000_460.3.3255.54 doi: 10.1093/mnras/stv009 – volume: 88 start-page: 064049 year: 2013 ident: 2016061717080454000_460.3.3255.4 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.064049 – ident: 2016061717080454000_460.3.3255.71 doi: 10.1086/311680 – volume: 88 start-page: 064009 year: 2013 ident: 2016061717080454000_460.3.3255.42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.064009 – volume: 85 start-page: 124009 year: 2012 ident: 2016061717080454000_460.3.3255.27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.124009 – volume: 92 start-page: 124034 year: 2015 ident: 2016061717080454000_460.3.3255.62 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.124034 – ident: 2016061717080454000_460.3.3255.111 doi: 10.1093/mnras/sts708 – volume: 89 start-page: 104029 year: 2014 ident: 2016061717080454000_460.3.3255.87 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.104029 – volume: 437 start-page: L46 year: 2014 ident: 2016061717080454000_460.3.3255.100 publication-title: MNRAS doi: 10.1093/mnrasl/slt137 – ident: 2016061717080454000_460.3.3255.16 doi: 10.1146/annurev-astro-081913-035926 – volume: 802 start-page: L22 year: 2015 ident: 2016061717080454000_460.3.3255.102 publication-title: ApJ doi: 10.1088/2041-8205/802/2/L22 – ident: 2016061717080454000_460.3.3255.124 doi: 10.1088/0004-637X/775/2/113 – ident: 2016061717080454000_460.3.3255.120 doi: 10.1143/PTP.125.1255 – volume: 87 start-page: 024001 year: 2013 ident: 2016061717080454000_460.3.3255.49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.024001 – ident: 2016061717080454000_460.3.3255.112 doi: 10.1093/mnras/stt2502 – volume: 91 start-page: 064059 year: 2015 ident: 2016061717080454000_460.3.3255.116 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.064059 – volume: 732 start-page: 67 year: 2011 ident: 2016061717080454000_460.3.3255.83 publication-title: ApJ doi: 10.1088/0004-637X/732/2/67 – volume: 88 start-page: 043007 year: 2013 ident: 2016061717080454000_460.3.3255.7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.043007 – volume: 93 start-page: 024011 year: 2016 ident: 2016061717080454000_460.3.3255.30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.024011 – ident: 2016061717080454000_460.3.3255.66 doi: 10.1086/181612 – volume: 91 start-page: 124021 year: 2015 ident: 2016061717080454000_460.3.3255.39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.124021 – volume: 802 start-page: 95 year: 2015 ident: 2016061717080454000_460.3.3255.103 publication-title: ApJ doi: 10.1088/0004-637X/802/2/95 – volume: 88 start-page: 021501 year: 2013 ident: 2016061717080454000_460.3.3255.60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.021501 – ident: 2016061717080454000_460.3.3255.85 doi: 10.1016/j.physrep.2007.02.005 – volume: 31 start-page: 075012 year: 2014 ident: 2016061717080454000_460.3.3255.99 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/31/7/075012 – ident: 2016061717080454000_460.3.3255.104 doi: 10.1093/acprof:oso/9780198528906.001.0001 – volume: 85 start-page: 024038 year: 2012 ident: 2016061717080454000_460.3.3255.133 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.024038 – volume: 25 start-page: 294 volume-title: SIAM Journal on Numerical Analysis year: 1988 ident: 2016061717080454000_460.3.3255.32 – ident: 2016061717080454000_460.3.3255.64 – ident: 2016061717080454000_460.3.3255.126 doi: 10.1093/mnras/194.2.439 – volume: 807 start-page: L3 year: 2015 ident: 2016061717080454000_460.3.3255.29 publication-title: ApJ doi: 10.1088/2041-8205/807/1/L3 – volume: 813 start-page: 2 year: 2015 ident: 2016061717080454000_460.3.3255.76 publication-title: ApJ doi: 10.1088/0004-637X/813/1/2 – ident: 2016061717080454000_460.3.3255.45 doi: 10.1093/mnras/stv1526 – ident: 2016061717080454000_460.3.3255.125 doi: 10.1038/nature12505 – ident: 2016061717080454000_460.3.3255.5 doi: 10.1051/0004-6361:20034265 – ident: 2016061717080454000_460.3.3255.97 doi: 10.1086/312659 – ident: 2016061717080454000_460.3.3255.63 doi: 10.1111/j.1365-2966.2012.21859.x – ident: 2016061717080454000_460.3.3255.105 doi: 10.1088/0264-9381/27/11/114105 – volume: 766 start-page: L10 year: 2013 ident: 2016061717080454000_460.3.3255.98 publication-title: ApJ doi: 10.1088/2041-8205/766/1/L10 – ident: 2016061717080454000_460.3.3255.34 doi: 10.1093/mnras/stu2112 – volume: 807 start-page: 115 year: 2015 ident: 2016061717080454000_460.3.3255.117 publication-title: ApJ doi: 10.1088/0004-637X/807/2/115 – volume: 90 start-page: 024026 year: 2014 ident: 2016061717080454000_460.3.3255.38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.024026 – ident: 2016061717080454000_460.3.3255.80 doi: 10.1093/mnras/stu2225 – ident: 2016061717080454000_460.3.3255.8 doi: 10.1103/PhysRevLett.97.141101 – ident: 2016061717080454000_460.3.3255.130 doi: 10.1086/159285 – volume: 760 start-page: L4 year: 2012 ident: 2016061717080454000_460.3.3255.26 publication-title: ApJ doi: 10.1088/2041-8205/760/1/L4 – ident: 2016061717080454000_460.3.3255.31 doi: 10.1038/340126a0 – ident: 2016061717080454000_460.3.3255.10 doi: 10.1088/0264-9381/26/11/114005 – ident: 2016061717080454000_460.3.3255.110 doi: 10.1046/j.1365-2966.2003.07032.x – ident: 2016061717080454000_460.3.3255.74 doi: 10.1088/0264-9381/29/11/115001 – volume: 86 start-page: 104053 year: 2012 ident: 2016061717080454000_460.3.3255.28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.104053 – ident: 2016061717080454000_460.3.3255.78 doi: 10.1093/mnras/stu802 – volume: 90 start-page: 084043 year: 2014 ident: 2016061717080454000_460.3.3255.82 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.084043 – ident: 2016061717080454000_460.3.3255.6 doi: 10.1086/307938 – volume: 63 start-page: 064029 year: 2001 ident: 2016061717080454000_460.3.3255.46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.064029 – volume: 6 start-page: 5956 year: 2015 ident: 2016061717080454000_460.3.3255.131 publication-title: Nat. Commun. doi: 10.1038/ncomms6956 – volume: 88 start-page: 084057 year: 2013 ident: 2016061717080454000_460.3.3255.48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.084057 – volume: 12 start-page: 2 year: 2009 ident: 2016061717080454000_460.3.3255.114 publication-title: Living Rev. Rel. doi: 10.12942/lrr-2009-2 – volume: 86 start-page: 121501 year: 2012 ident: 2016061717080454000_460.3.3255.43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.121501 – volume: 531 start-page: 610 year: 2016 ident: 2016061717080454000_460.3.3255.53 publication-title: Nature doi: 10.1038/nature17425 – ident: 2016061717080454000_460.3.3255.129 doi: 10.1093/mnras/stu2404 – volume: 73 start-page: 064027 year: 2006 ident: 2016061717080454000_460.3.3255.119 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.064027 – volume: 89 start-page: 081503 year: 2014 ident: 2016061717080454000_460.3.3255.23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.081503 – volume: 311 start-page: 532 year: 1996 ident: 2016061717080454000_460.3.3255.113 publication-title: A&A – ident: 2016061717080454000_460.3.3255.106 doi: 10.1088/0004-637X/722/1/954 – ident: 2016061717080454000_460.3.3255.127 doi: 10.1103/PhysRev.55.364 – ident: 2016061717080454000_460.3.3255.81 doi: 10.1086/167702 – volume: 798 start-page: L36 year: 2015 ident: 2016061717080454000_460.3.3255.22 publication-title: ApJ doi: 10.1088/2041-8205/798/2/L36 |
SSID | ssj0004326 |
Score | 2.660898 |
Snippet | We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3255 |
SubjectTerms | Acquisitions Computer simulation Double stars Eccentricity Ejecta Ejection Heating Neutrinos Neutron stars Simulation Star & galaxy formation |
Title | Dynamical mass ejection from binary neutron star mergers |
URI | https://www.proquest.com/docview/1807077562 https://www.proquest.com/docview/1811887237 https://www.proquest.com/docview/1835658275 |
Volume | 460 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA6yJ19Ep7LpHBFkT5Y1SZekj2MqQ5iCbLC30jQpKFsnbYf433tJu8nw51tLrqG9JM13d_nuELrSiT9QccA8rgwYKCEsKQkbgedrRTTAZZ9Ry3eePPDxLLifD-a1v6P4JoQfsv4yy-OiX5RvhFJLG4cN2E7o6eP8kwDJXF01l38RLABSJ9P88vTO5rNDaNv8gd22cneIDmo8iIfVAB6hPZM1UWtYWA_1avmOe9hdVw6IoonaE0C5q9w5w6FxtHgGyOnujpG8qcrLQ39LwMTYvLhzVhm2HBKsHPMWZ2Zt-8aACnPsuJd5cYJmd7fT0dirKyN4SeCz0gsVo6lJjRKx9mUCMAFgRJIqwtNAmUBQJYWMuRaKpkLbk5xcGKGpUoHgNnB5ihrZKjMty9kWhvmas5Tb1H0AGEQcgA1DdKhiGso2ut6oLErqtOG2esUiqsLXLHIajmoNt1FvK_5a5cv4SfAS9P-XTGczOlG9tIqISJuhSABugy62zbAobKQjzsxqbWXAbpKCMvGbDAMwC587OPvHq5yjfYBK3HqTCemgRpmvzQXAkVJ1AYg_0a6bkB-h1N-m |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+mass+ejection+from+binary+neutron+star+mergers&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Radice%2C+David&rft.au=Galeazzi%2C+Filippo&rft.au=Lippuner%2C+Jonas&rft.au=Roberts%2C+Luke+F&rft.date=2016-08-11&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=460&rft.issue=3&rft.spage=3255&rft_id=info:doi/10.1093%2Fmnras%2Fstw1227&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4129407241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |