Dynamical mass ejection from binary neutron star mergers

We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our trea...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 460; no. 3; pp. 3255 - 3271
Main Authors Radice, David, Galeazzi, Filippo, Lippuner, Jonas, Roberts, Luke F., Ott, Christian D., Rezzolla, Luciano
Format Journal Article
LanguageEnglish
Published London Oxford University Press 11.08.2016
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/stw1227

Cover

Abstract We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ∼60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.
AbstractList We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ∼60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.
We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ~60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.
We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ~60 degree angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.
Author Lippuner, Jonas
Ott, Christian D.
Radice, David
Galeazzi, Filippo
Roberts, Luke F.
Rezzolla, Luciano
Author_xml – sequence: 1
  givenname: David
  surname: Radice
  fullname: Radice, David
  email: dradice@caltech.edu
  organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 2
  givenname: Filippo
  surname: Galeazzi
  fullname: Galeazzi, Filippo
  organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Jonas
  surname: Lippuner
  fullname: Lippuner, Jonas
  organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 4
  givenname: Luke F.
  surname: Roberts
  fullname: Roberts, Luke F.
  organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 5
  givenname: Christian D.
  surname: Ott
  fullname: Ott, Christian D.
  organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 6
  givenname: Luciano
  surname: Rezzolla
  fullname: Rezzolla, Luciano
  organization: 1TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
BookMark eNqN0E1LwzAYwPEgE9ymR-8FL16qeWnyZEeZrzDwoueSpIl0tMlMUmTf3s7tNBA9BcLvyct_hiY-eIvQJcE3BC_Ybe-jSrcpfxFK4QRNCRO8pAshJmiKMeOlBELO0CylNca4YlRMkbzfetW3RnVFr1Iq7Nqa3AZfuBj6QrdexW3h7ZDjuJeyikVv44eN6RydOtUle3FY5-j98eFt-VyuXp9elner0lSY5XKhGXXWWQ2qwdJgILISxmkiXKVtBVRLkEo0oKmDpiKYC7DQUK0rEBwzNkfX-3M3MXwONuW6b5OxXae8DUOqiWRccEmB_4MSIiVQBiO9OqLrMEQ_fmRUGDAAF3RU5V6ZGFKK1tWb2PZjkZrgepe8_kleH5KPnh1502a1y5mjartfpw7PDsPmjwu-AZSglrU
CitedBy_id crossref_primary_10_1093_mnras_stae224
crossref_primary_10_1103_PhysRevD_110_024003
crossref_primary_10_1140_epja_s10050_019_00018_6
crossref_primary_10_1103_PhysRevD_109_064009
crossref_primary_10_1093_mnras_stw2622
crossref_primary_10_1103_PhysRevD_107_023016
crossref_primary_10_1103_PhysRevLett_120_111101
crossref_primary_10_3847_1538_4357_aabad9
crossref_primary_10_1093_mnras_stac964
crossref_primary_10_1140_epja_s10050_023_00927_7
crossref_primary_10_3847_1538_4357_ac6ef7
crossref_primary_10_1093_mnras_stad3774
crossref_primary_10_1103_PhysRevLett_132_211001
crossref_primary_10_1093_ptep_ptaa120
crossref_primary_10_1088_1361_6471_ab0849
crossref_primary_10_3847_1538_4357_ab6a98
crossref_primary_10_1103_PhysRevD_109_044071
crossref_primary_10_3847_1538_4357_acac29
crossref_primary_10_3847_1538_4357_aaf054
crossref_primary_10_1088_1475_7516_2020_07_023
crossref_primary_10_1093_mnras_stac399
crossref_primary_10_1088_1361_6471_ab29b3
crossref_primary_10_3847_1538_4365_ad2fbd
crossref_primary_10_1103_PhysRevD_107_063028
crossref_primary_10_3847_2041_8213_aaf73a
crossref_primary_10_1140_epja_s10050_022_00743_5
crossref_primary_10_1007_s10714_020_02751_6
crossref_primary_10_1093_mnras_sty1018
crossref_primary_10_1103_PhysRevD_101_063029
crossref_primary_10_1007_s41115_023_00016_y
crossref_primary_10_1103_PhysRevD_96_124005
crossref_primary_10_3847_1538_4357_abf3bc
crossref_primary_10_1093_mnras_stz613
crossref_primary_10_1103_PhysRevD_109_103027
crossref_primary_10_1007_s10714_020_02714_x
crossref_primary_10_1088_1361_6382_abebb7
crossref_primary_10_1103_PhysRevD_105_103022
crossref_primary_10_3847_1538_4357_aae084
crossref_primary_10_3847_1538_4357_aaeb8e
crossref_primary_10_3847_2041_8213_aaa402
crossref_primary_10_1093_mnras_stab1287
crossref_primary_10_1103_PhysRevD_102_043006
crossref_primary_10_3847_2041_8213_ab0210
crossref_primary_10_1103_PhysRevD_94_084002
crossref_primary_10_3847_2041_8213_ab5c1e
crossref_primary_10_1140_epja_s10050_021_00498_5
crossref_primary_10_1088_1475_7516_2021_01_017
crossref_primary_10_1140_epja_i2018_12648_5
crossref_primary_10_1093_mnras_stad1933
crossref_primary_10_1103_PhysRevD_100_044016
crossref_primary_10_1103_PhysRevD_108_083029
crossref_primary_10_1103_PhysRevD_104_083029
crossref_primary_10_3847_1538_4357_aaa0cb
crossref_primary_10_1088_1361_6382_ac35a8
crossref_primary_10_1134_S1063773721120033
crossref_primary_10_3847_2041_8213_aa9478
crossref_primary_10_3847_1538_4357_abc9be
crossref_primary_10_1140_epja_i2019_12716_4
crossref_primary_10_1103_PhysRevD_97_024031
crossref_primary_10_3847_1538_4357_ab10db
crossref_primary_10_1093_mnras_staf324
crossref_primary_10_1093_mnras_stab2004
crossref_primary_10_1103_PhysRevD_107_023026
crossref_primary_10_1088_1742_6596_2742_1_012009
crossref_primary_10_3847_1538_4357_ab93bf
crossref_primary_10_3847_2041_8213_ac350d
crossref_primary_10_3847_0004_637X_831_2_141
crossref_primary_10_1007_s41114_017_0006_z
crossref_primary_10_1007_s10714_020_02752_5
crossref_primary_10_1093_mnras_staa1486
crossref_primary_10_1093_mnras_staa2575
crossref_primary_10_1103_PhysRevD_96_123015
crossref_primary_10_1103_PhysRevLett_129_032701
crossref_primary_10_3390_universe8120633
crossref_primary_10_1088_1361_6633_aadb16
crossref_primary_10_1093_mnras_stx1683
crossref_primary_10_3847_1538_4357_aa5c8d
crossref_primary_10_1088_1361_6382_aa9f5a
crossref_primary_10_1103_PhysRevD_105_104028
crossref_primary_10_3847_2041_8213_ad74e0
crossref_primary_10_1007_s10714_021_02831_1
crossref_primary_10_1103_PhysRevC_95_045807
crossref_primary_10_3847_1538_4357_ac1119
crossref_primary_10_3847_1538_4357_ab3291
crossref_primary_10_3847_1538_4357_ac110b
crossref_primary_10_3847_1538_4357_ab2e06
crossref_primary_10_1103_RevModPhys_91_011001
crossref_primary_10_1103_PhysRevD_99_083017
crossref_primary_10_1093_mnras_stad2128
crossref_primary_10_1103_PhysRevD_104_083004
crossref_primary_10_1103_PhysRevD_96_063011
crossref_primary_10_3847_1538_4357_aabafd
crossref_primary_10_1093_mnras_staa1576
crossref_primary_10_1093_mnras_staa1454
crossref_primary_10_1103_PhysRevLett_122_121101
crossref_primary_10_1088_1361_6382_acc231
crossref_primary_10_3847_1538_4357_aaf893
crossref_primary_10_1103_PhysRevD_95_063016
crossref_primary_10_1093_mnras_stw2156
crossref_primary_10_3390_universe4030050
crossref_primary_10_1093_mnras_stz891
crossref_primary_10_1103_PhysRevD_103_083012
crossref_primary_10_3847_1538_4357_aadf92
crossref_primary_10_3847_2041_8213_aaa2f6
crossref_primary_10_3847_2041_8213_aade02
crossref_primary_10_3847_1538_4357_aabaec
crossref_primary_10_3847_1538_4357_aae30a
crossref_primary_10_3847_0004_637X_832_2_149
crossref_primary_10_3847_1538_4357_acaf56
crossref_primary_10_3847_2041_8213_abbb87
crossref_primary_10_3847_1538_4357_ab9a34
crossref_primary_10_1186_s40668_017_0022_0
crossref_primary_10_1007_s40042_024_01263_9
crossref_primary_10_1093_mnras_sty2531
crossref_primary_10_1103_PhysRevD_111_023015
crossref_primary_10_1103_PhysRevD_97_124039
crossref_primary_10_3847_1538_4357_ab64d8
crossref_primary_10_3847_2041_8213_aaf053
crossref_primary_10_1016_j_ppnp_2019_103714
crossref_primary_10_3847_2041_8213_ab5794
crossref_primary_10_3847_1538_4357_aab14a
crossref_primary_10_1093_mnras_stad1855
crossref_primary_10_3847_1538_4357_abe1b5
crossref_primary_10_1103_PhysRevD_106_103032
crossref_primary_10_1007_s41114_019_0024_0
crossref_primary_10_1088_1361_6382_aa68a9
crossref_primary_10_3390_galaxies6040119
crossref_primary_10_1051_0004_6361_202244927
crossref_primary_10_3847_1538_4357_ac3751
crossref_primary_10_3847_1538_4357_ab86b0
crossref_primary_10_3847_1538_4357_ab16da
crossref_primary_10_1103_PhysRevD_109_103008
crossref_primary_10_1093_mnras_stac2489
crossref_primary_10_3390_physics2020014
crossref_primary_10_1103_PhysRevD_95_024038
crossref_primary_10_3847_1538_4357_abe462
crossref_primary_10_1016_j_chinastron_2019_04_003
crossref_primary_10_1093_mnras_stad107
crossref_primary_10_3847_1538_4357_acf3e0
crossref_primary_10_1103_PhysRevD_100_023008
crossref_primary_10_1093_mnras_stw1849
crossref_primary_10_1088_1361_6382_aa6b39
crossref_primary_10_1103_PhysRevLett_119_231102
crossref_primary_10_1146_annurev_nucl_101916_123246
crossref_primary_10_1103_PhysRevD_95_024029
crossref_primary_10_1146_annurev_nucl_101918_023625
crossref_primary_10_1103_PhysRevC_103_025806
crossref_primary_10_1103_PhysRevLett_122_061101
crossref_primary_10_3847_1538_4357_ab86a0
crossref_primary_10_1093_mnras_stae1795
crossref_primary_10_1093_mnras_stz2791
crossref_primary_10_1103_PhysRevD_98_104005
crossref_primary_10_1140_epja_i2019_12818_y
crossref_primary_10_1103_PhysRevD_100_023015
crossref_primary_10_3390_sym12081249
crossref_primary_10_1093_mnras_stab115
crossref_primary_10_1103_RevModPhys_93_015002
crossref_primary_10_3847_2041_8213_abb240
crossref_primary_10_1146_annurev_nucl_102920_050505
crossref_primary_10_3847_0004_637X_831_2_190
crossref_primary_10_3847_1538_4357_ab3ebb
crossref_primary_10_3389_fspas_2021_656907
crossref_primary_10_1007_s00159_022_00146_x
crossref_primary_10_1051_0004_6361_201732117
crossref_primary_10_1142_S0218271818420051
crossref_primary_10_1088_1361_6382_aa6bb0
crossref_primary_10_3847_1538_4357_aabfde
crossref_primary_10_3847_1538_4357_ab744e
crossref_primary_10_1093_mnras_stz2554
crossref_primary_10_1103_PhysRevD_102_103015
crossref_primary_10_1093_mnras_stx1987
crossref_primary_10_1088_1361_6471_aa7bdc
crossref_primary_10_3847_1538_4357_aab095
crossref_primary_10_1093_mnras_stae057
crossref_primary_10_1103_PhysRevLett_131_231402
crossref_primary_10_3847_2041_8213_aa9c84
crossref_primary_10_1093_mnras_stac318
crossref_primary_10_1103_PhysRevD_109_043039
crossref_primary_10_1088_1742_6596_1668_1_012029
crossref_primary_10_1126_science_aap9455
crossref_primary_10_3847_1538_4357_aaad0e
crossref_primary_10_1088_1361_6471_ac8890
crossref_primary_10_1016_j_ppnp_2019_02_008
crossref_primary_10_1103_PhysRevD_104_103006
crossref_primary_10_1093_mnras_stae400
crossref_primary_10_3847_1538_4357_ad9023
crossref_primary_10_1093_mnras_sty2174
crossref_primary_10_1103_PhysRevD_98_104028
crossref_primary_10_1093_mnras_stac589
crossref_primary_10_1140_epja_i2019_12810_7
crossref_primary_10_1140_epja_i2019_12888_9
crossref_primary_10_3847_1538_4357_ac69da
crossref_primary_10_3847_1538_4357_ab25f5
crossref_primary_10_1103_PhysRevD_109_044012
crossref_primary_10_3847_1538_4357_aadc66
crossref_primary_10_1103_PhysRevD_104_063016
crossref_primary_10_3847_1538_4357_abb4e3
crossref_primary_10_3847_2041_8213_aa6483
crossref_primary_10_1093_mnras_stac2333
crossref_primary_10_3847_2041_8213_ac7728
crossref_primary_10_3847_2041_8213_aa8f3d
crossref_primary_10_1093_mnras_stac2450
crossref_primary_10_1093_pasj_psx121
crossref_primary_10_1093_mnras_stz1564
crossref_primary_10_1088_0264_9381_33_18_184002
crossref_primary_10_1093_mnrasl_slaa016
crossref_primary_10_1103_PhysRevD_101_083029
crossref_primary_10_3847_1538_4357_aa86b3
crossref_primary_10_1016_j_physrep_2020_08_008
crossref_primary_10_3389_fspas_2024_1386748
crossref_primary_10_3847_1538_4357_aada11
crossref_primary_10_1103_PhysRevD_104_063026
crossref_primary_10_3847_1538_4357_ac23d9
crossref_primary_10_1103_PhysRevD_108_103023
crossref_primary_10_3847_1538_4357_aab7f3
crossref_primary_10_3847_1538_4365_aa94cb
crossref_primary_10_1038_s41550_021_01405_0
crossref_primary_10_3847_1538_4357_ad7d04
crossref_primary_10_3847_2041_8205_829_1_L13
crossref_primary_10_1016_j_aop_2019_167923
crossref_primary_10_1093_mnras_sty108
crossref_primary_10_1103_PhysRevD_95_124042
crossref_primary_10_1016_j_jcp_2023_112365
crossref_primary_10_1093_mnras_stx3316
crossref_primary_10_1103_PhysRevD_107_044037
crossref_primary_10_1088_0264_9381_33_24_244004
crossref_primary_10_1093_mnras_stad175
crossref_primary_10_1007_s41114_021_00033_4
crossref_primary_10_3847_2041_8213_aa90b6
crossref_primary_10_1103_PhysRevD_96_043001
crossref_primary_10_1103_PhysRevD_94_044049
crossref_primary_10_3389_fphy_2020_00355
crossref_primary_10_1093_mnras_stz390
crossref_primary_10_1103_PhysRevD_93_124051
crossref_primary_10_1142_S0218271820410151
crossref_primary_10_3847_1538_4357_acf714
crossref_primary_10_3847_2041_8213_aa991c
crossref_primary_10_3847_2041_8213_ace5b2
crossref_primary_10_3847_1538_4357_abc69e
crossref_primary_10_3847_2041_8213_abae6f
crossref_primary_10_1093_mnras_stz1651
crossref_primary_10_3847_1538_4357_ab4654
crossref_primary_10_3847_2041_8213_ac1120
crossref_primary_10_3847_1538_4357_ab7923
crossref_primary_10_3847_2041_8213_ad0fe1
crossref_primary_10_3847_1538_4357_aae0f2
crossref_primary_10_3847_1538_4357_ad32cd
crossref_primary_10_1093_mnras_stab3393
crossref_primary_10_1103_PhysRevD_96_043004
crossref_primary_10_1142_S0218271821300020
crossref_primary_10_3847_1538_4357_ad20d0
crossref_primary_10_1088_1361_6382_aaebc0
crossref_primary_10_3847_1538_4357_ab70b9
crossref_primary_10_1093_mnras_staa1860
crossref_primary_10_1103_PhysRevC_98_025804
crossref_primary_10_1103_PhysRevD_100_124042
crossref_primary_10_3847_1538_4357_aab2b0
crossref_primary_10_3847_1538_4357_abce63
crossref_primary_10_1103_PhysRevD_94_044060
crossref_primary_10_3847_2041_8213_ab1e45
crossref_primary_10_3847_1538_4357_aaad67
crossref_primary_10_3847_2041_8213_aa9ab9
crossref_primary_10_1103_PhysRevD_102_104001
crossref_primary_10_1103_PhysRevD_109_123009
crossref_primary_10_3847_1538_4357_ac1737
crossref_primary_10_1017_pasa_2018_11
crossref_primary_10_3847_1538_4365_ad0ece
crossref_primary_10_1093_mnras_staf377
crossref_primary_10_3847_1538_4357_aa850e
crossref_primary_10_1103_PhysRevD_94_123016
crossref_primary_10_1103_PhysRevD_98_103014
crossref_primary_10_1093_mnras_stad2420
crossref_primary_10_1088_1361_6382_aa8d98
crossref_primary_10_3847_1538_4357_acea83
crossref_primary_10_1093_mnras_staa2120
crossref_primary_10_3847_2041_8213_aa775f
crossref_primary_10_1093_mnras_sty2932
crossref_primary_10_1103_PhysRevD_97_023009
crossref_primary_10_1093_mnras_stad1458
crossref_primary_10_3847_1538_4357_acb493
crossref_primary_10_1103_PhysRevD_101_044053
crossref_primary_10_3847_1538_4357_ab61f6
crossref_primary_10_1146_annurev_nucl_013120_114541
crossref_primary_10_3847_2041_8213_aca025
crossref_primary_10_1051_0004_6361_202449173
crossref_primary_10_1093_mnras_stad2430
crossref_primary_10_1103_PhysRevC_98_065806
crossref_primary_10_1103_PhysRevD_110_083028
crossref_primary_10_3847_1538_4357_ad5676
crossref_primary_10_1088_1361_6382_aa7a77
crossref_primary_10_1088_1361_6382_acd97f
crossref_primary_10_1088_1361_6382_ab0587
crossref_primary_10_3847_2041_8213_ac504a
crossref_primary_10_1103_PhysRevD_102_083017
crossref_primary_10_1103_PhysRevD_110_104018
crossref_primary_10_3847_2041_8213_ad236e
crossref_primary_10_1088_1361_6633_aa67bb
crossref_primary_10_3847_2041_8213_aa9029
crossref_primary_10_3847_2041_8213_ad454f
Cites_doi 10.1103/PhysRevD.92.064034
10.1103/PhysRevLett.104.251101
10.1088/0004-637X/690/2/1681
10.1086/312425
10.1016/0003-4916(66)90207-7
10.1051/0004-6361/200913386
10.1093/mnras/stt2503
10.1103/PhysRevD.82.064015
10.1088/2041-8205/737/1/L5
10.1111/j.1365-2966.2010.16864.x
10.1103/PhysRev.55.374
10.1088/0004-637X/815/2/82
10.1093/mnras/stt1312
10.1038/nature04238
10.3847/0067-0049/223/2/22
10.1142/S0218271815300128
10.1088/2041-8205/736/1/L21
10.1103/PhysRevD.92.124007
10.1103/PhysRevD.92.121502
10.1088/0004-637X/773/1/78
10.1038/nature10365
10.1103/PhysRevLett.116.061102
10.1140/epja/i2014-14046-5
10.1088/0004-637X/774/1/25
10.1016/0375-9474(91)90452-C
10.1093/mnras/stv1550
10.1103/PhysRevD.79.044023
10.1103/PhysRevD.91.064027
10.1103/PhysRevD.85.064040
10.1088/2041-8205/789/2/L39
10.1088/0004-637X/698/2/1174
10.1088/0264-9381/21/6/014
10.1088/2041-8205/769/2/L29
10.1103/PhysRevD.78.084033
10.1088/0004-637X/790/1/19
10.1088/0004-637X/746/1/48
10.1103/PhysRevD.92.044028
10.1038/nphys3574
10.1088/0004-637X/767/2/124
10.1088/2041-8205/774/2/L23
10.1088/0264-9381/27/11/114103
10.1088/0004-637X/720/1/953
10.1143/PTPS.90.1
10.1103/PhysRevD.85.104030
10.1093/mnras/stv721
10.1006/jcph.1997.5745
10.1051/0004-6361/200913106
10.1086/312343
10.1093/mnras/stt037
10.1088/0264-9381/32/7/074001
10.1103/PhysRevD.81.084003
10.1103/PhysRevD.92.044045
10.3847/2041-8205/816/2/L30
10.1088/0004-637X/775/1/18
10.1088/0004-637X/777/2/103
10.1088/2041-8205/785/1/L6
10.1088/0264-9381/32/2/024001
10.1103/PhysRevD.59.024007
10.1088/2041-8205/804/2/L35
10.1093/mnras/stv238
10.1103/PhysRevD.52.5428
10.1093/mnras/stv009
10.1103/PhysRevD.88.064049
10.1086/311680
10.1103/PhysRevD.88.064009
10.1103/PhysRevD.85.124009
10.1103/PhysRevD.92.124034
10.1093/mnras/sts708
10.1103/PhysRevD.89.104029
10.1093/mnrasl/slt137
10.1146/annurev-astro-081913-035926
10.1088/2041-8205/802/2/L22
10.1088/0004-637X/775/2/113
10.1143/PTP.125.1255
10.1103/PhysRevD.87.024001
10.1093/mnras/stt2502
10.1103/PhysRevD.91.064059
10.1088/0004-637X/732/2/67
10.1103/PhysRevD.88.043007
10.1103/PhysRevD.93.024011
10.1086/181612
10.1103/PhysRevD.91.124021
10.1088/0004-637X/802/2/95
10.1103/PhysRevD.88.021501
10.1016/j.physrep.2007.02.005
10.1088/0264-9381/31/7/075012
10.1093/acprof:oso/9780198528906.001.0001
10.1103/PhysRevD.85.024038
10.1093/mnras/194.2.439
10.1088/2041-8205/807/1/L3
10.1088/0004-637X/813/1/2
10.1093/mnras/stv1526
10.1038/nature12505
10.1051/0004-6361:20034265
10.1086/312659
10.1111/j.1365-2966.2012.21859.x
10.1088/0264-9381/27/11/114105
10.1088/2041-8205/766/1/L10
10.1093/mnras/stu2112
10.1088/0004-637X/807/2/115
10.1103/PhysRevD.90.024026
10.1093/mnras/stu2225
10.1103/PhysRevLett.97.141101
10.1086/159285
10.1088/2041-8205/760/1/L4
10.1038/340126a0
10.1088/0264-9381/26/11/114005
10.1046/j.1365-2966.2003.07032.x
10.1088/0264-9381/29/11/115001
10.1103/PhysRevD.86.104053
10.1093/mnras/stu802
10.1103/PhysRevD.90.084043
10.1086/307938
10.1103/PhysRevD.63.064029
10.1038/ncomms6956
10.1103/PhysRevD.88.084057
10.12942/lrr-2009-2
10.1103/PhysRevD.86.121501
10.1038/nature17425
10.1093/mnras/stu2404
10.1103/PhysRevD.73.064027
10.1103/PhysRevD.89.081503
10.1088/0004-637X/722/1/954
10.1103/PhysRev.55.364
10.1086/167702
10.1088/2041-8205/798/2/L36
ContentType Journal Article
Copyright 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016
Copyright Oxford University Press, UK Aug 11, 2016
Copyright_xml – notice: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016
– notice: Copyright Oxford University Press, UK Aug 11, 2016
DBID AAYXX
CITATION
8FD
H8D
L7M
7TG
KL.
DOI 10.1093/mnras/stw1227
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Technology Research Database
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3271
ExternalDocumentID 4129407241
10_1093_mnras_stw1227
10.1093/mnras/stw1227
Genre Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-c403t-9b32fefeb7ad08c071846cfb16f4be472b878a6d7b2f7d410567e7d2bb4765033
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Fri Sep 05 06:01:06 EDT 2025
Thu Sep 04 22:51:19 EDT 2025
Fri Jul 25 07:06:14 EDT 2025
Tue Jul 01 00:31:48 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Sep 11 04:48:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gravitational waves
hydrodynamics
nuclear reactions, nucleosynthesis, abundances
neutrinos
methods: numerical
stars: neutron
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-9b32fefeb7ad08c071846cfb16f4be472b878a6d7b2f7d410567e7d2bb4765033
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/460/3/3255/8130508/stw1227.pdf
PQID 1807077562
PQPubID 42411
PageCount 17
ParticipantIDs proquest_miscellaneous_1835658275
proquest_miscellaneous_1811887237
proquest_journals_1807077562
crossref_primary_10_1093_mnras_stw1227
crossref_citationtrail_10_1093_mnras_stw1227
oup_primary_10_1093_mnras_stw1227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-11
PublicationDateYYYYMMDD 2016-08-11
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016061717080454000_460.3.3255.86
2016061717080454000_460.3.3255.85
2016061717080454000_460.3.3255.84
Ramirez-Ruiz (2016061717080454000_460.3.3255.102) 2015; 802
2016061717080454000_460.3.3255.88
Sekiguchi (2016061717080454000_460.3.3255.116) 2015; 91
Alic (2016061717080454000_460.3.3255.4) 2013; 88
Moldenhauer (2016061717080454000_460.3.3255.82) 2014; 90
Gourgoulhon (2016061717080454000_460.3.3255.46) 2001; 63
2016061717080454000_460.3.3255.91
2016061717080454000_460.3.3255.90
2016061717080454000_460.3.3255.75
2016061717080454000_460.3.3255.74
Dietrich (2016061717080454000_460.3.3255.25) 2015; 92
2016061717080454000_460.3.3255.72
Radice (2016061717080454000_460.3.3255.100) 2014; 437
Ruffert (2016061717080454000_460.3.3255.113) 1996; 311
Sathyaprakash (2016061717080454000_460.3.3255.114) 2009; 12
2016061717080454000_460.3.3255.79
2016061717080454000_460.3.3255.78
2016061717080454000_460.3.3255.77
Damour (2016061717080454000_460.3.3255.23) 2014; 89
Hotokezaka (2016061717080454000_460.3.3255.50) 2015; 11
Murphy (2016061717080454000_460.3.3255.83) 2011; 732
Kiuchi (2016061717080454000_460.3.3255.61) 2015; 92
Lippuner (2016061717080454000_460.3.3255.73) 2015; 815
2016061717080454000_460.3.3255.105
2016061717080454000_460.3.3255.104
2016061717080454000_460.3.3255.107
2016061717080454000_460.3.3255.106
2016061717080454000_460.3.3255.81
2016061717080454000_460.3.3255.80
2016061717080454000_460.3.3255.24
Hotokezaka (2016061717080454000_460.3.3255.49) 2013; 87
Alic (2016061717080454000_460.3.3255.3) 2012; 85
Rosswog (2016061717080454000_460.3.3255.109) 1999; 341
Radice (2016061717080454000_460.3.3255.101) 2015; 498
Baiotti (2016061717080454000_460.3.3255.11) 2010; 82
Radice (2016061717080454000_460.3.3255.98) 2013; 766
Martin (2016061717080454000_460.3.3255.76) 2015; 813
2016061717080454000_460.3.3255.97
2016061717080454000_460.3.3255.95
Aso (2016061717080454000_460.3.3255.7) 2013; 88
Bernuzzi (2016061717080454000_460.3.3255.19) 2010; 81
2016061717080454000_460.3.3255.12
Ciolfi (2016061717080454000_460.3.3255.22) 2015; 798
Gold (2016061717080454000_460.3.3255.43) 2012; 86
2016061717080454000_460.3.3255.10
2016061717080454000_460.3.3255.17
2016061717080454000_460.3.3255.16
2016061717080454000_460.3.3255.15
2016061717080454000_460.3.3255.14
Paschalidis (2016061717080454000_460.3.3255.93) 2015; 92
Plewa (2016061717080454000_460.3.3255.96) 1999; 342
Rezzolla (2016061717080454000_460.3.3255.103) 2015; 802
2016061717080454000_460.3.3255.18
Weyhausen (2016061717080454000_460.3.3255.133) 2012; 85
East (2016061717080454000_460.3.3255.29) 2015; 807
Brown (2016061717080454000_460.3.3255.21) 2009; 79
Foucart (2016061717080454000_460.3.3255.38) 2014; 90
Rosswog (2016061717080454000_460.3.3255.108) 2015; 24
Foucart (2016061717080454000_460.3.3255.40) 2016; D93
Just (2016061717080454000_460.3.3255.55) 2016; 816
2016061717080454000_460.3.3255.130
2016061717080454000_460.3.3255.41
2016061717080454000_460.3.3255.132
2016061717080454000_460.3.3255.134
2016061717080454000_460.3.3255.45
2016061717080454000_460.3.3255.44
Kyutoku (2016061717080454000_460.3.3255.65) 2015; 92
Perego (2016061717080454000_460.3.3255.94) 2016; 223
Ishimaru (2016061717080454000_460.3.3255.52) 2015; 804
2016061717080454000_460.3.3255.47
Shibata (2016061717080454000_460.3.3255.118) 1995; 52
East (2016061717080454000_460.3.3255.27) 2012; 85
(2016061717080454000_460.3.3255.70) 2015; 32
Radice (2016061717080454000_460.3.3255.99) 2014; 31
Acernese (2016061717080454000_460.3.3255.2) 2015; 32
2016061717080454000_460.3.3255.31
2016061717080454000_460.3.3255.35
East (2016061717080454000_460.3.3255.26) 2012; 760
2016061717080454000_460.3.3255.34
Palenzuela (2016061717080454000_460.3.3255.92) 2015; 92
2016061717080454000_460.3.3255.33
Foucart (2016061717080454000_460.3.3255.39) 2015; 91
2016061717080454000_460.3.3255.36
East (2016061717080454000_460.3.3255.28) 2012; 86
Ji (2016061717080454000_460.3.3255.53) 2016; 531
Einfeldt (2016061717080454000_460.3.3255.32) 1988; 25
Neilsen (2016061717080454000_460.3.3255.87) 2014; 89
Tsang (2016061717080454000_460.3.3255.128) 2013; 777
Shen (2016061717080454000_460.3.3255.117) 2015; 807
2016061717080454000_460.3.3255.64
2016061717080454000_460.3.3255.63
Hilditch (2016061717080454000_460.3.3255.48) 2013; 88
2016061717080454000_460.3.3255.110
Bernuzzi (2016061717080454000_460.3.3255.20) 2012; 85
2016061717080454000_460.3.3255.68
2016061717080454000_460.3.3255.112
Baumgarte (2016061717080454000_460.3.3255.13) 1999; 59
2016061717080454000_460.3.3255.67
2016061717080454000_460.3.3255.111
2016061717080454000_460.3.3255.66
2016061717080454000_460.3.3255.69
Baiotti (2016061717080454000_460.3.3255.9) 2008; 78
Kaplan (2016061717080454000_460.3.3255.56) 2014; 790
Kastaun (2016061717080454000_460.3.3255.60) 2013; 88
Kiuchi (2016061717080454000_460.3.3255.62) 2015; 92
2016061717080454000_460.3.3255.115
Siegel (2016061717080454000_460.3.3255.121) 2014; 785
Galeazzi (2016061717080454000_460.3.3255.42) 2013; 88
2016061717080454000_460.3.3255.71
2016061717080454000_460.3.3255.51
2016061717080454000_460.3.3255.120
2016061717080454000_460.3.3255.6
2016061717080454000_460.3.3255.57
O'Connor (2016061717080454000_460.3.3255.89) 2010; 27
2016061717080454000_460.3.3255.123
2016061717080454000_460.3.3255.5
East (2016061717080454000_460.3.3255.30) 2016; 93
2016061717080454000_460.3.3255.122
2016061717080454000_460.3.3255.8
2016061717080454000_460.3.3255.125
Wallner (2016061717080454000_460.3.3255.131) 2015; 6
2016061717080454000_460.3.3255.54
2016061717080454000_460.3.3255.124
Kastaun (2016061717080454000_460.3.3255.59) 2015; 91
2016061717080454000_460.3.3255.58
Fischer (2016061717080454000_460.3.3255.37) 2014; 50
Shibata (2016061717080454000_460.3.3255.119) 2006; 73
2016061717080454000_460.3.3255.127
2016061717080454000_460.3.3255.1
2016061717080454000_460.3.3255.126
2016061717080454000_460.3.3255.129
References_xml – volume: 92
  start-page: 064034
  year: 2015
  ident: 2016061717080454000_460.3.3255.61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.064034
– ident: 2016061717080454000_460.3.3255.51
  doi: 10.1103/PhysRevLett.104.251101
– volume: 342
  start-page: 179
  year: 1999
  ident: 2016061717080454000_460.3.3255.96
  publication-title: A&A
– ident: 2016061717080454000_460.3.3255.24
  doi: 10.1088/0004-637X/690/2/1681
– ident: 2016061717080454000_460.3.3255.14
  doi: 10.1086/312425
– ident: 2016061717080454000_460.3.3255.72
  doi: 10.1016/0003-4916(66)90207-7
– ident: 2016061717080454000_460.3.3255.90
  doi: 10.1051/0004-6361/200913386
– ident: 2016061717080454000_460.3.3255.47
  doi: 10.1093/mnras/stt2503
– volume: 82
  start-page: 064015
  year: 2010
  ident: 2016061717080454000_460.3.3255.11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.064015
– ident: 2016061717080454000_460.3.3255.122
  doi: 10.1088/2041-8205/737/1/L5
– ident: 2016061717080454000_460.3.3255.79
  doi: 10.1111/j.1365-2966.2010.16864.x
– ident: 2016061717080454000_460.3.3255.91
  doi: 10.1103/PhysRev.55.374
– volume: 815
  start-page: 82
  year: 2015
  ident: 2016061717080454000_460.3.3255.73
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/2/82
– ident: 2016061717080454000_460.3.3255.33
  doi: 10.1093/mnras/stt1312
– ident: 2016061717080454000_460.3.3255.17
  doi: 10.1038/nature04238
– volume: 341
  start-page: 499
  year: 1999
  ident: 2016061717080454000_460.3.3255.109
  publication-title: A&A
– volume: 223
  start-page: 22
  year: 2016
  ident: 2016061717080454000_460.3.3255.94
  publication-title: ApJS
  doi: 10.3847/0067-0049/223/2/22
– volume: 24
  start-page: 30012
  year: 2015
  ident: 2016061717080454000_460.3.3255.108
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271815300128
– ident: 2016061717080454000_460.3.3255.107
  doi: 10.1088/2041-8205/736/1/L21
– volume: 92
  start-page: 124007
  year: 2015
  ident: 2016061717080454000_460.3.3255.25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.124007
– volume: 92
  start-page: 121502
  year: 2015
  ident: 2016061717080454000_460.3.3255.93
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.121502
– ident: 2016061717080454000_460.3.3255.15
  doi: 10.1088/0004-637X/773/1/78
– volume: D93
  start-page: 044019
  year: 2016
  ident: 2016061717080454000_460.3.3255.40
  publication-title: Phys. Rev.
– ident: 2016061717080454000_460.3.3255.86
  doi: 10.1038/nature10365
– volume: 498
  start-page: 121
  year: 2015
  ident: 2016061717080454000_460.3.3255.101
  publication-title: ASP Conf. Ser.
– ident: 2016061717080454000_460.3.3255.1
  doi: 10.1103/PhysRevLett.116.061102
– volume: 50
  start-page: 46
  year: 2014
  ident: 2016061717080454000_460.3.3255.37
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2014-14046-5
– ident: 2016061717080454000_460.3.3255.57
  doi: 10.1088/0004-637X/774/1/25
– ident: 2016061717080454000_460.3.3255.67
  doi: 10.1016/0375-9474(91)90452-C
– ident: 2016061717080454000_460.3.3255.75
  doi: 10.1093/mnras/stv1550
– volume: 79
  start-page: 044023
  year: 2009
  ident: 2016061717080454000_460.3.3255.21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.044023
– volume: 91
  start-page: 064027
  year: 2015
  ident: 2016061717080454000_460.3.3255.59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.064027
– volume: 85
  start-page: 064040
  year: 2012
  ident: 2016061717080454000_460.3.3255.3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.064040
– ident: 2016061717080454000_460.3.3255.132
  doi: 10.1088/2041-8205/789/2/L39
– ident: 2016061717080454000_460.3.3255.69
  doi: 10.1088/0004-637X/698/2/1174
– ident: 2016061717080454000_460.3.3255.115
  doi: 10.1088/0264-9381/21/6/014
– ident: 2016061717080454000_460.3.3255.134
  doi: 10.1088/2041-8205/769/2/L29
– volume: 78
  start-page: 084033
  year: 2008
  ident: 2016061717080454000_460.3.3255.9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.084033
– volume: 790
  start-page: 19
  year: 2014
  ident: 2016061717080454000_460.3.3255.56
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/1/19
– ident: 2016061717080454000_460.3.3255.77
  doi: 10.1088/0004-637X/746/1/48
– volume: 92
  start-page: 044028
  year: 2015
  ident: 2016061717080454000_460.3.3255.65
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.044028
– ident: 2016061717080454000_460.3.3255.44
– volume: 11
  start-page: 1042
  year: 2015
  ident: 2016061717080454000_460.3.3255.50
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3574
– ident: 2016061717080454000_460.3.3255.88
  doi: 10.1088/0004-637X/767/2/124
– ident: 2016061717080454000_460.3.3255.18
  doi: 10.1088/2041-8205/774/2/L23
– volume: 27
  start-page: 114103
  year: 2010
  ident: 2016061717080454000_460.3.3255.89
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/27/11/114103
– ident: 2016061717080454000_460.3.3255.68
  doi: 10.1088/0004-637X/720/1/953
– ident: 2016061717080454000_460.3.3255.84
  doi: 10.1143/PTPS.90.1
– volume: 85
  start-page: 104030
  year: 2012
  ident: 2016061717080454000_460.3.3255.20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.104030
– ident: 2016061717080454000_460.3.3255.58
  doi: 10.1093/mnras/stv721
– ident: 2016061717080454000_460.3.3255.123
  doi: 10.1006/jcph.1997.5745
– ident: 2016061717080454000_460.3.3255.36
  doi: 10.1051/0004-6361/200913106
– ident: 2016061717080454000_460.3.3255.41
  doi: 10.1086/312343
– ident: 2016061717080454000_460.3.3255.95
  doi: 10.1093/mnras/stt037
– volume: 32
  start-page: 074001
  year: 2015
  ident: 2016061717080454000_460.3.3255.70
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/7/074001
– volume: 81
  start-page: 084003
  year: 2010
  ident: 2016061717080454000_460.3.3255.19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.084003
– volume: 92
  start-page: 044045
  year: 2015
  ident: 2016061717080454000_460.3.3255.92
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.044045
– volume: 816
  start-page: L30
  year: 2016
  ident: 2016061717080454000_460.3.3255.55
  publication-title: ApJ
  doi: 10.3847/2041-8205/816/2/L30
– ident: 2016061717080454000_460.3.3255.12
  doi: 10.1088/0004-637X/775/1/18
– volume: 777
  start-page: 103
  year: 2013
  ident: 2016061717080454000_460.3.3255.128
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/2/103
– volume: 785
  start-page: L6
  year: 2014
  ident: 2016061717080454000_460.3.3255.121
  publication-title: ApJ
  doi: 10.1088/2041-8205/785/1/L6
– volume: 32
  start-page: 024001
  year: 2015
  ident: 2016061717080454000_460.3.3255.2
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/2/024001
– volume: 59
  start-page: 024007
  year: 1999
  ident: 2016061717080454000_460.3.3255.13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.59.024007
– volume: 804
  start-page: L35
  year: 2015
  ident: 2016061717080454000_460.3.3255.52
  publication-title: ApJ
  doi: 10.1088/2041-8205/804/2/L35
– ident: 2016061717080454000_460.3.3255.35
  doi: 10.1093/mnras/stv238
– volume: 52
  start-page: 5428
  year: 1995
  ident: 2016061717080454000_460.3.3255.118
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.5428
– ident: 2016061717080454000_460.3.3255.54
  doi: 10.1093/mnras/stv009
– volume: 88
  start-page: 064049
  year: 2013
  ident: 2016061717080454000_460.3.3255.4
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.064049
– ident: 2016061717080454000_460.3.3255.71
  doi: 10.1086/311680
– volume: 88
  start-page: 064009
  year: 2013
  ident: 2016061717080454000_460.3.3255.42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.064009
– volume: 85
  start-page: 124009
  year: 2012
  ident: 2016061717080454000_460.3.3255.27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.124009
– volume: 92
  start-page: 124034
  year: 2015
  ident: 2016061717080454000_460.3.3255.62
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.124034
– ident: 2016061717080454000_460.3.3255.111
  doi: 10.1093/mnras/sts708
– volume: 89
  start-page: 104029
  year: 2014
  ident: 2016061717080454000_460.3.3255.87
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.104029
– volume: 437
  start-page: L46
  year: 2014
  ident: 2016061717080454000_460.3.3255.100
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slt137
– ident: 2016061717080454000_460.3.3255.16
  doi: 10.1146/annurev-astro-081913-035926
– volume: 802
  start-page: L22
  year: 2015
  ident: 2016061717080454000_460.3.3255.102
  publication-title: ApJ
  doi: 10.1088/2041-8205/802/2/L22
– ident: 2016061717080454000_460.3.3255.124
  doi: 10.1088/0004-637X/775/2/113
– ident: 2016061717080454000_460.3.3255.120
  doi: 10.1143/PTP.125.1255
– volume: 87
  start-page: 024001
  year: 2013
  ident: 2016061717080454000_460.3.3255.49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.024001
– ident: 2016061717080454000_460.3.3255.112
  doi: 10.1093/mnras/stt2502
– volume: 91
  start-page: 064059
  year: 2015
  ident: 2016061717080454000_460.3.3255.116
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.064059
– volume: 732
  start-page: 67
  year: 2011
  ident: 2016061717080454000_460.3.3255.83
  publication-title: ApJ
  doi: 10.1088/0004-637X/732/2/67
– volume: 88
  start-page: 043007
  year: 2013
  ident: 2016061717080454000_460.3.3255.7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.043007
– volume: 93
  start-page: 024011
  year: 2016
  ident: 2016061717080454000_460.3.3255.30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.024011
– ident: 2016061717080454000_460.3.3255.66
  doi: 10.1086/181612
– volume: 91
  start-page: 124021
  year: 2015
  ident: 2016061717080454000_460.3.3255.39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.124021
– volume: 802
  start-page: 95
  year: 2015
  ident: 2016061717080454000_460.3.3255.103
  publication-title: ApJ
  doi: 10.1088/0004-637X/802/2/95
– volume: 88
  start-page: 021501
  year: 2013
  ident: 2016061717080454000_460.3.3255.60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.021501
– ident: 2016061717080454000_460.3.3255.85
  doi: 10.1016/j.physrep.2007.02.005
– volume: 31
  start-page: 075012
  year: 2014
  ident: 2016061717080454000_460.3.3255.99
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/31/7/075012
– ident: 2016061717080454000_460.3.3255.104
  doi: 10.1093/acprof:oso/9780198528906.001.0001
– volume: 85
  start-page: 024038
  year: 2012
  ident: 2016061717080454000_460.3.3255.133
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.024038
– volume: 25
  start-page: 294
  volume-title: SIAM Journal on Numerical Analysis
  year: 1988
  ident: 2016061717080454000_460.3.3255.32
– ident: 2016061717080454000_460.3.3255.64
– ident: 2016061717080454000_460.3.3255.126
  doi: 10.1093/mnras/194.2.439
– volume: 807
  start-page: L3
  year: 2015
  ident: 2016061717080454000_460.3.3255.29
  publication-title: ApJ
  doi: 10.1088/2041-8205/807/1/L3
– volume: 813
  start-page: 2
  year: 2015
  ident: 2016061717080454000_460.3.3255.76
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/2
– ident: 2016061717080454000_460.3.3255.45
  doi: 10.1093/mnras/stv1526
– ident: 2016061717080454000_460.3.3255.125
  doi: 10.1038/nature12505
– ident: 2016061717080454000_460.3.3255.5
  doi: 10.1051/0004-6361:20034265
– ident: 2016061717080454000_460.3.3255.97
  doi: 10.1086/312659
– ident: 2016061717080454000_460.3.3255.63
  doi: 10.1111/j.1365-2966.2012.21859.x
– ident: 2016061717080454000_460.3.3255.105
  doi: 10.1088/0264-9381/27/11/114105
– volume: 766
  start-page: L10
  year: 2013
  ident: 2016061717080454000_460.3.3255.98
  publication-title: ApJ
  doi: 10.1088/2041-8205/766/1/L10
– ident: 2016061717080454000_460.3.3255.34
  doi: 10.1093/mnras/stu2112
– volume: 807
  start-page: 115
  year: 2015
  ident: 2016061717080454000_460.3.3255.117
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/2/115
– volume: 90
  start-page: 024026
  year: 2014
  ident: 2016061717080454000_460.3.3255.38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.024026
– ident: 2016061717080454000_460.3.3255.80
  doi: 10.1093/mnras/stu2225
– ident: 2016061717080454000_460.3.3255.8
  doi: 10.1103/PhysRevLett.97.141101
– ident: 2016061717080454000_460.3.3255.130
  doi: 10.1086/159285
– volume: 760
  start-page: L4
  year: 2012
  ident: 2016061717080454000_460.3.3255.26
  publication-title: ApJ
  doi: 10.1088/2041-8205/760/1/L4
– ident: 2016061717080454000_460.3.3255.31
  doi: 10.1038/340126a0
– ident: 2016061717080454000_460.3.3255.10
  doi: 10.1088/0264-9381/26/11/114005
– ident: 2016061717080454000_460.3.3255.110
  doi: 10.1046/j.1365-2966.2003.07032.x
– ident: 2016061717080454000_460.3.3255.74
  doi: 10.1088/0264-9381/29/11/115001
– volume: 86
  start-page: 104053
  year: 2012
  ident: 2016061717080454000_460.3.3255.28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.104053
– ident: 2016061717080454000_460.3.3255.78
  doi: 10.1093/mnras/stu802
– volume: 90
  start-page: 084043
  year: 2014
  ident: 2016061717080454000_460.3.3255.82
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.084043
– ident: 2016061717080454000_460.3.3255.6
  doi: 10.1086/307938
– volume: 63
  start-page: 064029
  year: 2001
  ident: 2016061717080454000_460.3.3255.46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.064029
– volume: 6
  start-page: 5956
  year: 2015
  ident: 2016061717080454000_460.3.3255.131
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6956
– volume: 88
  start-page: 084057
  year: 2013
  ident: 2016061717080454000_460.3.3255.48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.084057
– volume: 12
  start-page: 2
  year: 2009
  ident: 2016061717080454000_460.3.3255.114
  publication-title: Living Rev. Rel.
  doi: 10.12942/lrr-2009-2
– volume: 86
  start-page: 121501
  year: 2012
  ident: 2016061717080454000_460.3.3255.43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.121501
– volume: 531
  start-page: 610
  year: 2016
  ident: 2016061717080454000_460.3.3255.53
  publication-title: Nature
  doi: 10.1038/nature17425
– ident: 2016061717080454000_460.3.3255.129
  doi: 10.1093/mnras/stu2404
– volume: 73
  start-page: 064027
  year: 2006
  ident: 2016061717080454000_460.3.3255.119
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.064027
– volume: 89
  start-page: 081503
  year: 2014
  ident: 2016061717080454000_460.3.3255.23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.081503
– volume: 311
  start-page: 532
  year: 1996
  ident: 2016061717080454000_460.3.3255.113
  publication-title: A&A
– ident: 2016061717080454000_460.3.3255.106
  doi: 10.1088/0004-637X/722/1/954
– ident: 2016061717080454000_460.3.3255.127
  doi: 10.1103/PhysRev.55.364
– ident: 2016061717080454000_460.3.3255.81
  doi: 10.1086/167702
– volume: 798
  start-page: L36
  year: 2015
  ident: 2016061717080454000_460.3.3255.22
  publication-title: ApJ
  doi: 10.1088/2041-8205/798/2/L36
SSID ssj0004326
Score 2.660898
Snippet We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3255
SubjectTerms Acquisitions
Computer simulation
Double stars
Eccentricity
Ejecta
Ejection
Heating
Neutrinos
Neutron stars
Simulation
Star & galaxy formation
Title Dynamical mass ejection from binary neutron star mergers
URI https://www.proquest.com/docview/1807077562
https://www.proquest.com/docview/1811887237
https://www.proquest.com/docview/1835658275
Volume 460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA6yJ19Ep7LpHBFkT5Y1SZekj2MqQ5iCbLC30jQpKFsnbYf433tJu8nw51tLrqG9JM13d_nuELrSiT9QccA8rgwYKCEsKQkbgedrRTTAZZ9Ry3eePPDxLLifD-a1v6P4JoQfsv4yy-OiX5RvhFJLG4cN2E7o6eP8kwDJXF01l38RLABSJ9P88vTO5rNDaNv8gd22cneIDmo8iIfVAB6hPZM1UWtYWA_1avmOe9hdVw6IoonaE0C5q9w5w6FxtHgGyOnujpG8qcrLQ39LwMTYvLhzVhm2HBKsHPMWZ2Zt-8aACnPsuJd5cYJmd7fT0dirKyN4SeCz0gsVo6lJjRKx9mUCMAFgRJIqwtNAmUBQJYWMuRaKpkLbk5xcGKGpUoHgNnB5ihrZKjMty9kWhvmas5Tb1H0AGEQcgA1DdKhiGso2ut6oLErqtOG2esUiqsLXLHIajmoNt1FvK_5a5cv4SfAS9P-XTGczOlG9tIqISJuhSABugy62zbAobKQjzsxqbWXAbpKCMvGbDAMwC587OPvHq5yjfYBK3HqTCemgRpmvzQXAkVJ1AYg_0a6bkB-h1N-m
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+mass+ejection+from+binary+neutron+star+mergers&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Radice%2C+David&rft.au=Galeazzi%2C+Filippo&rft.au=Lippuner%2C+Jonas&rft.au=Roberts%2C+Luke+F&rft.date=2016-08-11&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=460&rft.issue=3&rft.spage=3255&rft_id=info:doi/10.1093%2Fmnras%2Fstw1227&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4129407241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon