Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources
This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects...
Saved in:
| Published in | Diabetes (New York, N.Y.) Vol. 69; no. 2; pp. 238 - 248 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Diabetes Association
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0012-1797 1939-327X 1939-327X |
| DOI | 10.2337/db18-1263 |
Cover
| Abstract | This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes. |
|---|---|
| AbstractList | This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes. This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes. This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes.This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes. |
| Author | Bramer, Lisa M. Reehl, Sara M. Rewers, Marian Webb-Robertson, Bobbie-Jo Waugh, Kathy Steck, Andrea K. Norris, Jill M. Frohnert, Brigitte I. |
| Author_xml | – sequence: 1 givenname: Brigitte I. orcidid: 0000-0002-6636-4048 surname: Frohnert fullname: Frohnert, Brigitte I. organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO – sequence: 2 givenname: Bobbie-Jo surname: Webb-Robertson fullname: Webb-Robertson, Bobbie-Jo organization: Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA – sequence: 3 givenname: Lisa M. surname: Bramer fullname: Bramer, Lisa M. organization: Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA – sequence: 4 givenname: Sara M. surname: Reehl fullname: Reehl, Sara M. organization: Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA – sequence: 5 givenname: Kathy surname: Waugh fullname: Waugh, Kathy organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO – sequence: 6 givenname: Andrea K. orcidid: 0000-0002-5931-9484 surname: Steck fullname: Steck, Andrea K. organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO – sequence: 7 givenname: Jill M. orcidid: 0000-0001-8674-2598 surname: Norris fullname: Norris, Jill M. organization: Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO – sequence: 8 givenname: Marian surname: Rewers fullname: Rewers, Marian organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31740441$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU1v1DAQhi1URLeFA38AReICSKGe2IntSyXU5VNFILWVuFmOM1lcZeNgO0X773G05asC-TCHeeadd14fkYPRj0jIY6AvK8bESdeCLKFq2D2yAsVUySrx5YCsKIWqBKHEITmK8ZpS2uT3gBwyEJxyDivy4XPAztnkbrD46Dsc3LgpfF9c7iYsoFg702LCWFwks8nlKi79tYuTCSZhsTbJFBd-DhbjQ3K_N0PER7f1mFy9eX159q48__T2_dmr89JyylKpJCreV01rlWTZvWrrxthWYkdNL2uQAmqFtqsrKnoLkgprOiYZSN6YmgI7Ji_2uvM4md13Mwx6Cm5rwk4D1UsgeglEL4Fk-HQPT3O7xc7imIL5PeCN0393RvdVb_yNbpQALuss8OxWIPhvM8akty5aHAYzop9j3pftCqBy2fX0DnqdkxlzFpnisuIKQGbqyZ-Ofln5-ScZONkDNvgYA_baumSS84tBN_zzyOd3Jv4fyA9V9qm9 |
| CitedBy_id | crossref_primary_10_1136_bmjdrc_2023_003327 crossref_primary_10_1016_j_diabres_2022_110029 crossref_primary_10_1080_1744666X_2024_2359019 crossref_primary_10_2337_dc21_1049 crossref_primary_10_1016_j_xcrm_2023_101093 crossref_primary_10_1111_exsy_12774 crossref_primary_10_3390_diagnostics12112803 crossref_primary_10_1038_s41596_021_00566_6 crossref_primary_10_1016_j_isci_2023_108769 crossref_primary_10_3390_jcm14020383 crossref_primary_10_1371_journal_pone_0263193 crossref_primary_10_1186_s12014_023_09429_6 crossref_primary_10_1016_j_molmed_2024_07_009 crossref_primary_10_1111_1753_0407_13093 crossref_primary_10_1155_2023_6003102 crossref_primary_10_1210_clinem_dgab400 crossref_primary_10_1210_clinem_dgac225 crossref_primary_10_2196_47430 crossref_primary_10_3390_jpm14080878 crossref_primary_10_1016_j_metabol_2021_154872 crossref_primary_10_1016_j_diabres_2020_108548 crossref_primary_10_1038_s41597_023_02748_1 crossref_primary_10_3390_metabo13090987 crossref_primary_10_1016_j_artmed_2022_102461 |
| Cites_doi | 10.1007/s00216-012-6339-2 10.1900/RDS.2012.9.236 10.1007/s001250050514 10.1001/jama.298.12.1420 10.1177/0192623309336152 10.2337/dc15-1419 10.1111/pedi.12543 10.1007/s00125-017-4256-9 10.2337/db10-1652 10.1002/pmic.201300187 10.1017/S0007114515001671 10.1084/jem.20111843 10.2337/db08-0331 10.1111/pedi.12092 10.1111/j.1463-1326.2008.01000.x 10.1007/s00125-012-2472-x 10.2337/dc16-0181 10.1111/j.1399-5448.2006.00202.x 10.2215/CJN.07730713 10.1007/BF00408469 10.1016/j.jprot.2017.10.004 10.1210/jc.2010-0293 10.2337/diab.44.11.1340 10.1021/ac901536h 10.1007/s00125-005-1844-x 10.1371/journal.pone.0174840 10.1007/s00125-014-3362-1 10.1007/s00125-016-4150-x 10.1016/S0531-5565(98)00014-X 10.1073/pnas.040556697 10.1073/pnas.0705894104 10.2337/db11-1228 10.2337/db17-0261 10.1155/2012/450967 10.1084/jem.20081800 10.1046/j.1365-2796.2001.00813.x 10.1210/jc.2003-031887 10.1186/1758-2946-2-9 10.1093/bioinformatics/btp639 10.2337/db13-0300 10.2337/db17-0802 10.2337/db14-0983 10.2337/db14-1497 |
| ContentType | Journal Article |
| Copyright | 2019 by the American Diabetes Association. Copyright American Diabetes Association Feb 1, 2020 2019 by the American Diabetes Association. 2019 |
| Copyright_xml | – notice: 2019 by the American Diabetes Association. – notice: Copyright American Diabetes Association Feb 1, 2020 – notice: 2019 by the American Diabetes Association. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM ADTOC UNPAY |
| DOI | 10.2337/db18-1263 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1939-327X |
| EndPage | 248 |
| ExternalDocumentID | 10.2337/db18-1263 PMC6971485 31740441 10_2337_db18_1263 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: ; grantid: R01 DK32493; DK32083; DK049654; K12 DK094712; P30 DK57516 – fundername: ; grantid: 17-2013-535; 11-2010-206; 5-ECR-2017-388-A-N |
| GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAQQT AAWTL AAYEP AAYXX ABOCM ACGFO ACGOD ACPRK ADBBV AEGXH AENEX AERZD AHMBA AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BES BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EMOBN EX3 F5P FRP GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO K2M KQ8 L7B M5~ O5R O5S O9- OHH OK1 OVD P2P PCD Q2X RHI RPM SJN SV3 TDI TEORI TR2 VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL AAKAS AAYJJ AAYOK ABUWG ADZCM AFFNX AFKRA AI. ALIPV AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CCPQU CGR CUY CVF DWQXO ECM EIF EJD FYUFA GICCO GNUQQ GUQSH HCIFZ HMCUK H~9 IAG ITC J5H K-O K9- LK8 M0R M1P M2O M2P M2Q M7P MVM N4W NAPCQ NPM OB3 PEA PHGZT PQQKQ PROAC PSQYO S0X SJFOW UKHRP VH1 XOL YQJ ZGI ZXP K9. 7X8 5PM ADTOC AFLOD PHGZM PJZUB PPXIY PQGLB UNPAY |
| ID | FETCH-LOGICAL-c403t-98e94f26bc9833379b56acb8ed0af85187159ecd5207fc1807cad3831846a5013 |
| IEDL.DBID | UNPAY |
| ISSN | 0012-1797 1939-327X |
| IngestDate | Sun Oct 26 04:06:18 EDT 2025 Tue Sep 30 16:57:17 EDT 2025 Fri Sep 05 10:40:22 EDT 2025 Mon Oct 06 17:56:59 EDT 2025 Thu Apr 03 07:02:11 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Wed Oct 01 03:19:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | 2019 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-98e94f26bc9833379b56acb8ed0af85187159ecd5207fc1807cad3831846a5013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5931-9484 0000-0001-8674-2598 0000-0002-6636-4048 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://diabetes.diabetesjournals.org/content/diabetes/69/2/238.full.pdf |
| PMID | 31740441 |
| PQID | 2348249118 |
| PQPubID | 34443 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_2337_db18_1263 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6971485 proquest_miscellaneous_2315971083 proquest_journals_2348249118 pubmed_primary_31740441 crossref_citationtrail_10_2337_db18_1263 crossref_primary_10_2337_db18_1263 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Diabetes (New York, N.Y.) |
| PublicationTitleAlternate | Diabetes |
| PublicationYear | 2020 |
| Publisher | American Diabetes Association |
| Publisher_xml | – name: American Diabetes Association |
| References | Webb-Robertson (2022031210440219300_B31) Jacobs (2022031210440219300_B37) 2012; 404 Winkler (2022031210440219300_B8) 2014; 57 Webb-Robertson (2022031210440219300_B32) 2012; 2012 Baschal (2022031210440219300_B40) 2009; 11 Steck (2022031210440219300_B35) 2006; 7 Orrego-Lagarón (2022031210440219300_B38) 2015; 114 Barker (2022031210440219300_B2) 2004; 89 Lollo (2022031210440219300_B27) 2014; 14 Törn (2022031210440219300_B7) 2015; 64 Zhang (2022031210440219300_B28) 2013; 210 Orešič (2022031210440219300_B11) 2012; 9 Insel (2022031210440219300_B1) 2015; 38 Steck (2022031210440219300_B29) 2014; 15 Dehaven (2022031210440219300_B26) 2010; 2 Emmett (2022031210440219300_B39) 2014; 9 Orešič (2022031210440219300_B36) 2008; 205 Frohnert (2022031210440219300_B10) 2018; 19 Steck (2022031210440219300_B6) 2012; 61 Grubin (2022031210440219300_B20) 1994; 37 Yu (2022031210440219300_B44) 1996; 81 Rewers (2022031210440219300_B17) 1996; 39 Norris (2022031210440219300_B18) 2007; 298 Waugh (2022031210440219300_B4) 2017; 12 Gianani (2022031210440219300_B19) 1995; 44 Vaarala (2022031210440219300_B42) 2008; 57 Ziegler (2022031210440219300_B43) 2012; 55 Hermann (2022031210440219300_B5) 2005; 48 Brosche (2022031210440219300_B41) 1998; 33 Pflueger (2022031210440219300_B12) 2011; 60 Ilonen (2022031210440219300_B3) 2013; 62 Wenzlau (2022031210440219300_B23) 2007; 104 Beagley (2022031210440219300_B16) 2010; 26 Ohta (2022031210440219300_B24) 2009; 37 von Toerne (2022031210440219300_B14) 2017; 60 Norris (2022031210440219300_B34) 2018; 67 Yu (2022031210440219300_B21) 2000; 97 Webb-Robertson (2022031210440219300_B30) 2009 Moulder (2022031210440219300_B13) 2015; 64 Bonifacio (2022031210440219300_B22) 2010; 95 Frohnert (2022031210440219300_B46) 2017; 60 Rolandsson (2022031210440219300_B33) 2001; 249 Evans (2022031210440219300_B25) 2009; 81 Liu (2022031210440219300_B15) 2018; 172 Krischer (2022031210440219300_B9) 2017; 66 Vehik (2022031210440219300_B45) 2016; 39 |
| References_xml | – volume: 404 start-page: 2349 year: 2012 ident: 2022031210440219300_B37 article-title: SPE-NMR metabolite sub-profiling of urine publication-title: Anal Bioanal Chem doi: 10.1007/s00216-012-6339-2 – volume: 9 start-page: 236 year: 2012 ident: 2022031210440219300_B11 article-title: Metabolomics in the studies of islet autoimmunity and type 1 diabetes publication-title: Rev Diabet Stud doi: 10.1900/RDS.2012.9.236 – volume: 39 start-page: 807 year: 1996 ident: 2022031210440219300_B17 article-title: Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY) publication-title: Diabetologia doi: 10.1007/s001250050514 – volume: 298 start-page: 1420 year: 2007 ident: 2022031210440219300_B18 article-title: Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes publication-title: JAMA doi: 10.1001/jama.298.12.1420 – volume: 37 start-page: 521 year: 2009 ident: 2022031210440219300_B24 article-title: Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats publication-title: Toxicol Pathol doi: 10.1177/0192623309336152 – volume: 38 start-page: 1964 year: 2015 ident: 2022031210440219300_B1 article-title: Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association publication-title: Diabetes Care doi: 10.2337/dc15-1419 – volume: 19 start-page: 277 year: 2018 ident: 2022031210440219300_B10 article-title: Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young publication-title: Pediatr Diabetes doi: 10.1111/pedi.12543 – ident: 2022031210440219300_B31 – start-page: 451 year: 2009 ident: 2022031210440219300_B30 article-title: A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections publication-title: Pac Symp Biocomput – volume: 60 start-page: 998 year: 2017 ident: 2022031210440219300_B46 article-title: Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY) publication-title: Diabetologia doi: 10.1007/s00125-017-4256-9 – volume: 60 start-page: 2740 year: 2011 ident: 2022031210440219300_B12 article-title: Age- and islet autoimmunity–associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes publication-title: Diabetes doi: 10.2337/db10-1652 – volume: 14 start-page: 638 year: 2014 ident: 2022031210440219300_B27 article-title: Beyond antibodies: new affinity reagents to unlock the proteome publication-title: Proteomics doi: 10.1002/pmic.201300187 – volume: 114 start-page: 169 year: 2015 ident: 2022031210440219300_B38 article-title: High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism publication-title: Br J Nutr doi: 10.1017/S0007114515001671 – volume: 210 start-page: 191 year: 2013 ident: 2022031210440219300_B28 article-title: Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes publication-title: J Exp Med doi: 10.1084/jem.20111843 – volume: 57 start-page: 2555 year: 2008 ident: 2022031210440219300_B42 article-title: The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity publication-title: Diabetes doi: 10.2337/db08-0331 – volume: 15 start-page: 355 year: 2014 ident: 2022031210440219300_B29 article-title: Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers publication-title: Pediatr Diabetes doi: 10.1111/pedi.12092 – volume: 11 start-page: 25 year: 2009 ident: 2022031210440219300_B40 article-title: The frequent and conserved DR3-B8-A1 extended haplotype confers less diabetes risk than other DR3 haplotypes publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2008.01000.x – volume: 55 start-page: 1937 year: 2012 ident: 2022031210440219300_B43 article-title: Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-012-2472-x – volume: 39 start-page: 1535 year: 2016 ident: 2022031210440219300_B45 article-title: Reversion of β-cell autoimmunity changes risk of type 1 diabetes: TEDDY study publication-title: Diabetes Care doi: 10.2337/dc16-0181 – volume: 81 start-page: 4264 year: 1996 ident: 2022031210440219300_B44 article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously publication-title: J Clin Endocrinol Metab – volume: 7 start-page: 274 year: 2006 ident: 2022031210440219300_B35 article-title: Association of the PTPN22/LYP gene with type 1 diabetes publication-title: Pediatr Diabetes doi: 10.1111/j.1399-5448.2006.00202.x – volume: 9 start-page: 191 year: 2014 ident: 2022031210440219300_B39 article-title: Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale of two cycles, one an ATP-depleting futile cycle and the other a useful cycle publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.07730713 – volume: 37 start-page: 344 year: 1994 ident: 2022031210440219300_B20 article-title: A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM publication-title: Diabetologia doi: 10.1007/BF00408469 – volume: 172 start-page: 100 year: 2018 ident: 2022031210440219300_B15 article-title: Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of type 1 diabetes progression publication-title: J Proteomics doi: 10.1016/j.jprot.2017.10.004 – volume: 95 start-page: 3360 year: 2010 ident: 2022031210440219300_B22 article-title: Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-0293 – volume: 44 start-page: 1340 year: 1995 ident: 2022031210440219300_B19 article-title: ICA512 autoantibody radioassay publication-title: Diabetes doi: 10.2337/diab.44.11.1340 – volume: 81 start-page: 6656 year: 2009 ident: 2022031210440219300_B25 article-title: Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems publication-title: Anal Chem doi: 10.1021/ac901536h – volume: 48 start-page: 1766 year: 2005 ident: 2022031210440219300_B5 article-title: The effect of HLA class II, insulin and CTLA4 gene regions on the development of humoral beta cell autoimmunity publication-title: Diabetologia doi: 10.1007/s00125-005-1844-x – volume: 12 start-page: e0174840 year: 2017 ident: 2022031210440219300_B4 article-title: Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) publication-title: PLoS One doi: 10.1371/journal.pone.0174840 – volume: 57 start-page: 2521 year: 2014 ident: 2022031210440219300_B8 article-title: Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-014-3362-1 – volume: 60 start-page: 287 year: 2017 ident: 2022031210440219300_B14 article-title: Peptide serum markers in islet autoantibody-positive children publication-title: Diabetologia doi: 10.1007/s00125-016-4150-x – volume: 33 start-page: 363 year: 1998 ident: 2022031210440219300_B41 article-title: The biological significance of plasmalogens in defense against oxidative damage publication-title: Exp Gerontol doi: 10.1016/S0531-5565(98)00014-X – volume: 97 start-page: 1701 year: 2000 ident: 2022031210440219300_B21 article-title: Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.040556697 – volume: 104 start-page: 17040 year: 2007 ident: 2022031210440219300_B23 article-title: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0705894104 – volume: 61 start-page: 753 year: 2012 ident: 2022031210440219300_B6 article-title: Effects of non-HLA gene polymorphisms on development of islet autoimmunity and type 1 diabetes in a population with high-risk HLA-DR,DQ genotypes publication-title: Diabetes doi: 10.2337/db11-1228 – volume: 66 start-page: 3122 year: 2017 ident: 2022031210440219300_B9 article-title: The influence of type 1 diabetes genetic susceptibility regions, age, sex, and family history on the progression from multiple autoantibodies to type 1 diabetes: a TEDDY study report publication-title: Diabetes doi: 10.2337/db17-0261 – volume: 2012 start-page: 450967 year: 2012 ident: 2022031210440219300_B32 article-title: Bayesian integration of isotope ratio for geographic sourcing of castor beans publication-title: J Biomed Biotechnol doi: 10.1155/2012/450967 – volume: 205 start-page: 2975 year: 2008 ident: 2022031210440219300_B36 article-title: Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes publication-title: J Exp Med doi: 10.1084/jem.20081800 – volume: 249 start-page: 279 year: 2001 ident: 2022031210440219300_B33 article-title: Prediction of diabetes with body mass index, oral glucose tolerance test and islet cell autoantibodies in a regional population publication-title: J Intern Med doi: 10.1046/j.1365-2796.2001.00813.x – volume: 89 start-page: 3896 year: 2004 ident: 2022031210440219300_B2 article-title: Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY) publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2003-031887 – volume: 2 start-page: 9 year: 2010 ident: 2022031210440219300_B26 article-title: Organization of GC/MS and LC/MS metabolomics data into chemical libraries publication-title: J Cheminform doi: 10.1186/1758-2946-2-9 – volume: 26 start-page: 280 year: 2010 ident: 2022031210440219300_B16 article-title: VIBE 2.0: visual integration for bayesian evaluation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp639 – volume: 62 start-page: 3636 year: 2013 ident: 2022031210440219300_B3 article-title: Patterns of β-cell autoantibody appearance and genetic associations during the first years of life publication-title: Diabetes doi: 10.2337/db13-0300 – volume: 67 start-page: 146 year: 2018 ident: 2022031210440219300_B34 article-title: Plasma 25-Hydroxyvitamin D concentration and risk of islet autoimmunity publication-title: Diabetes doi: 10.2337/db17-0802 – volume: 64 start-page: 2265 year: 2015 ident: 2022031210440219300_B13 article-title: Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility publication-title: Diabetes doi: 10.2337/db14-0983 – volume: 64 start-page: 1818 year: 2015 ident: 2022031210440219300_B7 article-title: Role of type 1 diabetes–associated SNPs on risk of autoantibody positivity in the TEDDY study publication-title: Diabetes doi: 10.2337/db14-1497 |
| SSID | ssj0006060 |
| Score | 2.449295 |
| Snippet | This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 238 |
| SubjectTerms | Adenosine Diphosphate - metabolism Adolescent Ascorbic acid Ascorbic Acid - blood Autoimmunity Biomarkers Biomarkers - blood Butyrates - blood Case-Control Studies Child Child, Preschool Diabetes Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - immunology Female Fibrinogen Fibrinogen - metabolism Genetics/Genomes/Proteomics/Metabolomics Humans Infant Learning algorithms Machine learning Male Mannose Mannose - blood Metabolomics Models, Biological Polymorphism, Genetic Protein Tyrosine Phosphatase, Non-Receptor Type 22 - genetics Protein-tyrosine-phosphatase Young Adult |
| Title | Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31740441 https://www.proquest.com/docview/2348249118 https://www.proquest.com/docview/2315971083 https://pubmed.ncbi.nlm.nih.gov/PMC6971485 https://diabetes.diabetesjournals.org/content/diabetes/69/2/238.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: DIK dateStart: 19520101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1939-327X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: RPM dateStart: 20080701 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQRcWl6F0FKZx4FLsomd2M6xAqqlqFUlWGk5RYljQ8Uqu-pmVbW_npm8xFKQOHCKFY-c2OPH93nGY4A3Vqcuctr4TpQGCYrRfsFd6QtRKidtrKSiw8mnZ3IyjU9myWwLJv1ZmH7HMegTXZOuGqs-uW_jXDxIjWU65mNcdQLarA6WpbsD2zJBVD6C7enZ-dHXdiLmFIVTtQbm1BdczdogQ1wINS6LCIkUl2JzabqFN2-7Td5bV8v8-iqfz39Zk4534aKvTeuK8iNY10Vgbn4L9Pg_qvsAdjrgyo7anvYQtmz1CO6edqb5x3Byfklpmj0ZXbBGx9zZwjEiuixinefNiiG6_YaPxlUB366a2OOWvc_rnH1uLAmrJzA9_vDl3cTvLmrwTRyK2k-1TWPHZWFSLbBJ0yKRuSm0LcPcIaRDUpak1pQJD5UzkQ6VyUukxsguZZ4gCN2DUbWo7DNgTkiEFKVGYGWQqRL_5EVYRNaqhA59e_C211FmuijmdJnGPEM2Q-rMSJ0ZqdODV4Posg3d8Sehg17RWd_2KBJrpKXIvTx4OWTjuCNjSl7ZxZpksE4IzzQW8bTtF8NXEJPFIeJMD9RGjxkEKKb3Zk518b2J7S2xzFgnHrwe-tbff_75P0ntw31OmwSNq_kBjOrLtX2BSKouDpFDfPx02A2Vn32PH-k |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQRceEMDBZnHgUuyiZ3YzrECqlWlVpVgpeUUOY4NFavsqptVBb-embzEUpA4cIoVj5zY48f3ecZjgDdO5z7x2oZeVBYJitVhyX0VClEpL12qpKLDyadncjZPTxbZYg9mw1mYYccxGhJ9k25aqz65b-NcPEpNZT7lU1x1ItqsjtaVvwH7MkNUPoH9-dn50eduIuYUhVN1BuY8FFwtuiBDXAg1rcoEiRSXYndpuoY3r7tN3trWa_P9yiyXv6xJx3fhYqhN54ryLdo2ZWR__Bbo8X9U9x7c6YErO-p62n3Yc_UDuHnam-Yfwsn5JaVp9mR0wRodc2crz4josoT1njcbhuj2Cz5aVwV8u2ljjzv23jSGfWwtCZtHMD_-8OndLOwvaghtGosmzLXLU89laXMtsEnzMpPGltpVsfEI6ZCUZbmzVcZj5W2iY2VNhdQY2aU0GYLQxzCpV7U7AOaFREhRaQRWFpkq8U9exmXinMro0HcAbwcdFbaPYk6XaSwLZDOkzoLUWZA6A3g1iq670B1_EjocFF0MbY8iqUZaitwrgJdjNo47MqaY2q22JIN1QnimsYgnXb8Yv4KYLI0RZwagdnrMKEAxvXdz6ouvbWxviWWmOgvg9di3_v7zT_9J6hnc5rRJ0LqaH8Kkudy654ikmvJFP0h-AsPPHvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Modeling+of+Type+1+Diabetes+Stages+Using+Disparate+Data+Sources&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Frohnert%2C+Brigitte+I&rft.au=Webb-Robertson%2C+Bobbie-Jo&rft.au=Bramer%2C+Lisa+M&rft.au=Reehl%2C+Sara+M&rft.date=2020-02-01&rft.eissn=1939-327X&rft.volume=69&rft.issue=2&rft.spage=238&rft_id=info:doi/10.2337%2Fdb18-1263&rft_id=info%3Apmid%2F31740441&rft.externalDocID=31740441 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |