Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources

This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 69; no. 2; pp. 238 - 248
Main Authors Frohnert, Brigitte I., Webb-Robertson, Bobbie-Jo, Bramer, Lisa M., Reehl, Sara M., Waugh, Kathy, Steck, Andrea K., Norris, Jill M., Rewers, Marian
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.02.2020
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db18-1263

Cover

Abstract This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes.
AbstractList This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes.
This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes.
This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes.This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1 diabetes in a prospective high-risk cohort. We studied 67 children: 42 who developed IA (20 of 42 progressed to diabetes) and 25 control subjects matched for sex and age. Biomarkers were assessed at four time points: earliest available sample, just prior to IA, just after IA, and just prior to diabetes onset. Predictors of IA and progression to diabetes were identified across disparate sources using an integrative machine learning algorithm and optimization-based feature selection. Our integrative approach was predictive of IA (area under the receiver operating characteristic curve [AUC] 0.91) and progression to diabetes (AUC 0.92) based on standard cross-validation (CV). Among the strongest predictors of IA were change in serum ascorbate, 3-methyl-oxobutyrate, and the PTPN22 (rs2476601) polymorphism. Serum glucose, ADP fibrinogen, and mannose were among the strongest predictors of progression to diabetes. This proof-of-principle analysis is the first study to integrate large, diverse biomarker data sets into a limited number of features, highlighting differences in pathways leading to IA from those predicting progression to diabetes. Integrated models, if validated in independent populations, could provide novel clues concerning the pathways leading to IA and type 1 diabetes.
Author Bramer, Lisa M.
Reehl, Sara M.
Rewers, Marian
Webb-Robertson, Bobbie-Jo
Waugh, Kathy
Steck, Andrea K.
Norris, Jill M.
Frohnert, Brigitte I.
Author_xml – sequence: 1
  givenname: Brigitte I.
  orcidid: 0000-0002-6636-4048
  surname: Frohnert
  fullname: Frohnert, Brigitte I.
  organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO
– sequence: 2
  givenname: Bobbie-Jo
  surname: Webb-Robertson
  fullname: Webb-Robertson, Bobbie-Jo
  organization: Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA
– sequence: 3
  givenname: Lisa M.
  surname: Bramer
  fullname: Bramer, Lisa M.
  organization: Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA
– sequence: 4
  givenname: Sara M.
  surname: Reehl
  fullname: Reehl, Sara M.
  organization: Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA
– sequence: 5
  givenname: Kathy
  surname: Waugh
  fullname: Waugh, Kathy
  organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO
– sequence: 6
  givenname: Andrea K.
  orcidid: 0000-0002-5931-9484
  surname: Steck
  fullname: Steck, Andrea K.
  organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO
– sequence: 7
  givenname: Jill M.
  orcidid: 0000-0001-8674-2598
  surname: Norris
  fullname: Norris, Jill M.
  organization: Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO
– sequence: 8
  givenname: Marian
  surname: Rewers
  fullname: Rewers, Marian
  organization: Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31740441$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLeFA38AReICSKGe2IntSyXU5VNFILWVuFmOM1lcZeNgO0X773G05asC-TCHeeadd14fkYPRj0jIY6AvK8bESdeCLKFq2D2yAsVUySrx5YCsKIWqBKHEITmK8ZpS2uT3gBwyEJxyDivy4XPAztnkbrD46Dsc3LgpfF9c7iYsoFg702LCWFwks8nlKi79tYuTCSZhsTbJFBd-DhbjQ3K_N0PER7f1mFy9eX159q48__T2_dmr89JyylKpJCreV01rlWTZvWrrxthWYkdNL2uQAmqFtqsrKnoLkgprOiYZSN6YmgI7Ji_2uvM4md13Mwx6Cm5rwk4D1UsgeglEL4Fk-HQPT3O7xc7imIL5PeCN0393RvdVb_yNbpQALuss8OxWIPhvM8akty5aHAYzop9j3pftCqBy2fX0DnqdkxlzFpnisuIKQGbqyZ-Ofln5-ScZONkDNvgYA_baumSS84tBN_zzyOd3Jv4fyA9V9qm9
CitedBy_id crossref_primary_10_1136_bmjdrc_2023_003327
crossref_primary_10_1016_j_diabres_2022_110029
crossref_primary_10_1080_1744666X_2024_2359019
crossref_primary_10_2337_dc21_1049
crossref_primary_10_1016_j_xcrm_2023_101093
crossref_primary_10_1111_exsy_12774
crossref_primary_10_3390_diagnostics12112803
crossref_primary_10_1038_s41596_021_00566_6
crossref_primary_10_1016_j_isci_2023_108769
crossref_primary_10_3390_jcm14020383
crossref_primary_10_1371_journal_pone_0263193
crossref_primary_10_1186_s12014_023_09429_6
crossref_primary_10_1016_j_molmed_2024_07_009
crossref_primary_10_1111_1753_0407_13093
crossref_primary_10_1155_2023_6003102
crossref_primary_10_1210_clinem_dgab400
crossref_primary_10_1210_clinem_dgac225
crossref_primary_10_2196_47430
crossref_primary_10_3390_jpm14080878
crossref_primary_10_1016_j_metabol_2021_154872
crossref_primary_10_1016_j_diabres_2020_108548
crossref_primary_10_1038_s41597_023_02748_1
crossref_primary_10_3390_metabo13090987
crossref_primary_10_1016_j_artmed_2022_102461
Cites_doi 10.1007/s00216-012-6339-2
10.1900/RDS.2012.9.236
10.1007/s001250050514
10.1001/jama.298.12.1420
10.1177/0192623309336152
10.2337/dc15-1419
10.1111/pedi.12543
10.1007/s00125-017-4256-9
10.2337/db10-1652
10.1002/pmic.201300187
10.1017/S0007114515001671
10.1084/jem.20111843
10.2337/db08-0331
10.1111/pedi.12092
10.1111/j.1463-1326.2008.01000.x
10.1007/s00125-012-2472-x
10.2337/dc16-0181
10.1111/j.1399-5448.2006.00202.x
10.2215/CJN.07730713
10.1007/BF00408469
10.1016/j.jprot.2017.10.004
10.1210/jc.2010-0293
10.2337/diab.44.11.1340
10.1021/ac901536h
10.1007/s00125-005-1844-x
10.1371/journal.pone.0174840
10.1007/s00125-014-3362-1
10.1007/s00125-016-4150-x
10.1016/S0531-5565(98)00014-X
10.1073/pnas.040556697
10.1073/pnas.0705894104
10.2337/db11-1228
10.2337/db17-0261
10.1155/2012/450967
10.1084/jem.20081800
10.1046/j.1365-2796.2001.00813.x
10.1210/jc.2003-031887
10.1186/1758-2946-2-9
10.1093/bioinformatics/btp639
10.2337/db13-0300
10.2337/db17-0802
10.2337/db14-0983
10.2337/db14-1497
ContentType Journal Article
Copyright 2019 by the American Diabetes Association.
Copyright American Diabetes Association Feb 1, 2020
2019 by the American Diabetes Association. 2019
Copyright_xml – notice: 2019 by the American Diabetes Association.
– notice: Copyright American Diabetes Association Feb 1, 2020
– notice: 2019 by the American Diabetes Association. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
ADTOC
UNPAY
DOI 10.2337/db18-1263
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 248
ExternalDocumentID 10.2337/db18-1263
PMC6971485
31740441
10_2337_db18_1263
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: ;
  grantid: R01 DK32493; DK32083; DK049654; K12 DK094712; P30 DK57516
– fundername: ;
  grantid: 17-2013-535; 11-2010-206; 5-ECR-2017-388-A-N
GroupedDBID ---
.55
.XZ
08P
0R~
18M
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
8R4
8R5
AAFWJ
AAQQT
AAWTL
AAYEP
AAYXX
ABOCM
ACGFO
ACGOD
ACPRK
ADBBV
AEGXH
AENEX
AERZD
AHMBA
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BES
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EDB
EMOBN
EX3
F5P
FRP
GX1
H13
HZ~
IAO
IEA
IHR
INH
INR
IOF
IPO
K2M
KQ8
L7B
M5~
O5R
O5S
O9-
OHH
OK1
OVD
P2P
PCD
Q2X
RHI
RPM
SJN
SV3
TDI
TEORI
TR2
VVN
W8F
WH7
WOQ
WOW
X7M
YFH
YHG
YOC
ZY1
~KM
.GJ
1CY
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
AAKAS
AAYJJ
AAYOK
ABUWG
ADZCM
AFFNX
AFKRA
AI.
ALIPV
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CCPQU
CGR
CUY
CVF
DWQXO
ECM
EIF
EJD
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HMCUK
H~9
IAG
ITC
J5H
K-O
K9-
LK8
M0R
M1P
M2O
M2P
M2Q
M7P
MVM
N4W
NAPCQ
NPM
OB3
PEA
PHGZT
PQQKQ
PROAC
PSQYO
S0X
SJFOW
UKHRP
VH1
XOL
YQJ
ZGI
ZXP
K9.
7X8
5PM
ADTOC
AFLOD
PHGZM
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c403t-98e94f26bc9833379b56acb8ed0af85187159ecd5207fc1807cad3831846a5013
IEDL.DBID UNPAY
ISSN 0012-1797
1939-327X
IngestDate Sun Oct 26 04:06:18 EDT 2025
Tue Sep 30 16:57:17 EDT 2025
Fri Sep 05 10:40:22 EDT 2025
Mon Oct 06 17:56:59 EDT 2025
Thu Apr 03 07:02:11 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Wed Oct 01 03:19:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2019 by the American Diabetes Association.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-98e94f26bc9833379b56acb8ed0af85187159ecd5207fc1807cad3831846a5013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5931-9484
0000-0001-8674-2598
0000-0002-6636-4048
OpenAccessLink https://proxy.k.utb.cz/login?url=https://diabetes.diabetesjournals.org/content/diabetes/69/2/238.full.pdf
PMID 31740441
PQID 2348249118
PQPubID 34443
PageCount 11
ParticipantIDs unpaywall_primary_10_2337_db18_1263
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6971485
proquest_miscellaneous_2315971083
proquest_journals_2348249118
pubmed_primary_31740441
crossref_citationtrail_10_2337_db18_1263
crossref_primary_10_2337_db18_1263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2020
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Webb-Robertson (2022031210440219300_B31)
Jacobs (2022031210440219300_B37) 2012; 404
Winkler (2022031210440219300_B8) 2014; 57
Webb-Robertson (2022031210440219300_B32) 2012; 2012
Baschal (2022031210440219300_B40) 2009; 11
Steck (2022031210440219300_B35) 2006; 7
Orrego-Lagarón (2022031210440219300_B38) 2015; 114
Barker (2022031210440219300_B2) 2004; 89
Lollo (2022031210440219300_B27) 2014; 14
Törn (2022031210440219300_B7) 2015; 64
Zhang (2022031210440219300_B28) 2013; 210
Orešič (2022031210440219300_B11) 2012; 9
Insel (2022031210440219300_B1) 2015; 38
Steck (2022031210440219300_B29) 2014; 15
Dehaven (2022031210440219300_B26) 2010; 2
Emmett (2022031210440219300_B39) 2014; 9
Orešič (2022031210440219300_B36) 2008; 205
Frohnert (2022031210440219300_B10) 2018; 19
Steck (2022031210440219300_B6) 2012; 61
Grubin (2022031210440219300_B20) 1994; 37
Yu (2022031210440219300_B44) 1996; 81
Rewers (2022031210440219300_B17) 1996; 39
Norris (2022031210440219300_B18) 2007; 298
Waugh (2022031210440219300_B4) 2017; 12
Gianani (2022031210440219300_B19) 1995; 44
Vaarala (2022031210440219300_B42) 2008; 57
Ziegler (2022031210440219300_B43) 2012; 55
Hermann (2022031210440219300_B5) 2005; 48
Brosche (2022031210440219300_B41) 1998; 33
Pflueger (2022031210440219300_B12) 2011; 60
Ilonen (2022031210440219300_B3) 2013; 62
Wenzlau (2022031210440219300_B23) 2007; 104
Beagley (2022031210440219300_B16) 2010; 26
Ohta (2022031210440219300_B24) 2009; 37
von Toerne (2022031210440219300_B14) 2017; 60
Norris (2022031210440219300_B34) 2018; 67
Yu (2022031210440219300_B21) 2000; 97
Webb-Robertson (2022031210440219300_B30) 2009
Moulder (2022031210440219300_B13) 2015; 64
Bonifacio (2022031210440219300_B22) 2010; 95
Frohnert (2022031210440219300_B46) 2017; 60
Rolandsson (2022031210440219300_B33) 2001; 249
Evans (2022031210440219300_B25) 2009; 81
Liu (2022031210440219300_B15) 2018; 172
Krischer (2022031210440219300_B9) 2017; 66
Vehik (2022031210440219300_B45) 2016; 39
References_xml – volume: 404
  start-page: 2349
  year: 2012
  ident: 2022031210440219300_B37
  article-title: SPE-NMR metabolite sub-profiling of urine
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-012-6339-2
– volume: 9
  start-page: 236
  year: 2012
  ident: 2022031210440219300_B11
  article-title: Metabolomics in the studies of islet autoimmunity and type 1 diabetes
  publication-title: Rev Diabet Stud
  doi: 10.1900/RDS.2012.9.236
– volume: 39
  start-page: 807
  year: 1996
  ident: 2022031210440219300_B17
  article-title: Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY)
  publication-title: Diabetologia
  doi: 10.1007/s001250050514
– volume: 298
  start-page: 1420
  year: 2007
  ident: 2022031210440219300_B18
  article-title: Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes
  publication-title: JAMA
  doi: 10.1001/jama.298.12.1420
– volume: 37
  start-page: 521
  year: 2009
  ident: 2022031210440219300_B24
  article-title: Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623309336152
– volume: 38
  start-page: 1964
  year: 2015
  ident: 2022031210440219300_B1
  article-title: Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association
  publication-title: Diabetes Care
  doi: 10.2337/dc15-1419
– volume: 19
  start-page: 277
  year: 2018
  ident: 2022031210440219300_B10
  article-title: Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12543
– ident: 2022031210440219300_B31
– start-page: 451
  year: 2009
  ident: 2022031210440219300_B30
  article-title: A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections
  publication-title: Pac Symp Biocomput
– volume: 60
  start-page: 998
  year: 2017
  ident: 2022031210440219300_B46
  article-title: Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4256-9
– volume: 60
  start-page: 2740
  year: 2011
  ident: 2022031210440219300_B12
  article-title: Age- and islet autoimmunity–associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db10-1652
– volume: 14
  start-page: 638
  year: 2014
  ident: 2022031210440219300_B27
  article-title: Beyond antibodies: new affinity reagents to unlock the proteome
  publication-title: Proteomics
  doi: 10.1002/pmic.201300187
– volume: 114
  start-page: 169
  year: 2015
  ident: 2022031210440219300_B38
  article-title: High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism
  publication-title: Br J Nutr
  doi: 10.1017/S0007114515001671
– volume: 210
  start-page: 191
  year: 2013
  ident: 2022031210440219300_B28
  article-title: Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes
  publication-title: J Exp Med
  doi: 10.1084/jem.20111843
– volume: 57
  start-page: 2555
  year: 2008
  ident: 2022031210440219300_B42
  article-title: The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity
  publication-title: Diabetes
  doi: 10.2337/db08-0331
– volume: 15
  start-page: 355
  year: 2014
  ident: 2022031210440219300_B29
  article-title: Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12092
– volume: 11
  start-page: 25
  year: 2009
  ident: 2022031210440219300_B40
  article-title: The frequent and conserved DR3-B8-A1 extended haplotype confers less diabetes risk than other DR3 haplotypes
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2008.01000.x
– volume: 55
  start-page: 1937
  year: 2012
  ident: 2022031210440219300_B43
  article-title: Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2472-x
– volume: 39
  start-page: 1535
  year: 2016
  ident: 2022031210440219300_B45
  article-title: Reversion of β-cell autoimmunity changes risk of type 1 diabetes: TEDDY study
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0181
– volume: 81
  start-page: 4264
  year: 1996
  ident: 2022031210440219300_B44
  article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously
  publication-title: J Clin Endocrinol Metab
– volume: 7
  start-page: 274
  year: 2006
  ident: 2022031210440219300_B35
  article-title: Association of the PTPN22/LYP gene with type 1 diabetes
  publication-title: Pediatr Diabetes
  doi: 10.1111/j.1399-5448.2006.00202.x
– volume: 9
  start-page: 191
  year: 2014
  ident: 2022031210440219300_B39
  article-title: Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale of two cycles, one an ATP-depleting futile cycle and the other a useful cycle
  publication-title: Clin J Am Soc Nephrol
  doi: 10.2215/CJN.07730713
– volume: 37
  start-page: 344
  year: 1994
  ident: 2022031210440219300_B20
  article-title: A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM
  publication-title: Diabetologia
  doi: 10.1007/BF00408469
– volume: 172
  start-page: 100
  year: 2018
  ident: 2022031210440219300_B15
  article-title: Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of type 1 diabetes progression
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2017.10.004
– volume: 95
  start-page: 3360
  year: 2010
  ident: 2022031210440219300_B22
  article-title: Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-0293
– volume: 44
  start-page: 1340
  year: 1995
  ident: 2022031210440219300_B19
  article-title: ICA512 autoantibody radioassay
  publication-title: Diabetes
  doi: 10.2337/diab.44.11.1340
– volume: 81
  start-page: 6656
  year: 2009
  ident: 2022031210440219300_B25
  article-title: Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems
  publication-title: Anal Chem
  doi: 10.1021/ac901536h
– volume: 48
  start-page: 1766
  year: 2005
  ident: 2022031210440219300_B5
  article-title: The effect of HLA class II, insulin and CTLA4 gene regions on the development of humoral beta cell autoimmunity
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-1844-x
– volume: 12
  start-page: e0174840
  year: 2017
  ident: 2022031210440219300_B4
  article-title: Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174840
– volume: 57
  start-page: 2521
  year: 2014
  ident: 2022031210440219300_B8
  article-title: Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3362-1
– volume: 60
  start-page: 287
  year: 2017
  ident: 2022031210440219300_B14
  article-title: Peptide serum markers in islet autoantibody-positive children
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4150-x
– volume: 33
  start-page: 363
  year: 1998
  ident: 2022031210440219300_B41
  article-title: The biological significance of plasmalogens in defense against oxidative damage
  publication-title: Exp Gerontol
  doi: 10.1016/S0531-5565(98)00014-X
– volume: 97
  start-page: 1701
  year: 2000
  ident: 2022031210440219300_B21
  article-title: Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.040556697
– volume: 104
  start-page: 17040
  year: 2007
  ident: 2022031210440219300_B23
  article-title: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0705894104
– volume: 61
  start-page: 753
  year: 2012
  ident: 2022031210440219300_B6
  article-title: Effects of non-HLA gene polymorphisms on development of islet autoimmunity and type 1 diabetes in a population with high-risk HLA-DR,DQ genotypes
  publication-title: Diabetes
  doi: 10.2337/db11-1228
– volume: 66
  start-page: 3122
  year: 2017
  ident: 2022031210440219300_B9
  article-title: The influence of type 1 diabetes genetic susceptibility regions, age, sex, and family history on the progression from multiple autoantibodies to type 1 diabetes: a TEDDY study report
  publication-title: Diabetes
  doi: 10.2337/db17-0261
– volume: 2012
  start-page: 450967
  year: 2012
  ident: 2022031210440219300_B32
  article-title: Bayesian integration of isotope ratio for geographic sourcing of castor beans
  publication-title: J Biomed Biotechnol
  doi: 10.1155/2012/450967
– volume: 205
  start-page: 2975
  year: 2008
  ident: 2022031210440219300_B36
  article-title: Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes
  publication-title: J Exp Med
  doi: 10.1084/jem.20081800
– volume: 249
  start-page: 279
  year: 2001
  ident: 2022031210440219300_B33
  article-title: Prediction of diabetes with body mass index, oral glucose tolerance test and islet cell autoantibodies in a regional population
  publication-title: J Intern Med
  doi: 10.1046/j.1365-2796.2001.00813.x
– volume: 89
  start-page: 3896
  year: 2004
  ident: 2022031210440219300_B2
  article-title: Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2003-031887
– volume: 2
  start-page: 9
  year: 2010
  ident: 2022031210440219300_B26
  article-title: Organization of GC/MS and LC/MS metabolomics data into chemical libraries
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-2-9
– volume: 26
  start-page: 280
  year: 2010
  ident: 2022031210440219300_B16
  article-title: VIBE 2.0: visual integration for bayesian evaluation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp639
– volume: 62
  start-page: 3636
  year: 2013
  ident: 2022031210440219300_B3
  article-title: Patterns of β-cell autoantibody appearance and genetic associations during the first years of life
  publication-title: Diabetes
  doi: 10.2337/db13-0300
– volume: 67
  start-page: 146
  year: 2018
  ident: 2022031210440219300_B34
  article-title: Plasma 25-Hydroxyvitamin D concentration and risk of islet autoimmunity
  publication-title: Diabetes
  doi: 10.2337/db17-0802
– volume: 64
  start-page: 2265
  year: 2015
  ident: 2022031210440219300_B13
  article-title: Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility
  publication-title: Diabetes
  doi: 10.2337/db14-0983
– volume: 64
  start-page: 1818
  year: 2015
  ident: 2022031210440219300_B7
  article-title: Role of type 1 diabetes–associated SNPs on risk of autoantibody positivity in the TEDDY study
  publication-title: Diabetes
  doi: 10.2337/db14-1497
SSID ssj0006060
Score 2.449295
Snippet This study aims to model genetic, immunologic, metabolomics, and proteomic biomarkers for development of islet autoimmunity (IA) and progression to type 1...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 238
SubjectTerms Adenosine Diphosphate - metabolism
Adolescent
Ascorbic acid
Ascorbic Acid - blood
Autoimmunity
Biomarkers
Biomarkers - blood
Butyrates - blood
Case-Control Studies
Child
Child, Preschool
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - immunology
Female
Fibrinogen
Fibrinogen - metabolism
Genetics/Genomes/Proteomics/Metabolomics
Humans
Infant
Learning algorithms
Machine learning
Male
Mannose
Mannose - blood
Metabolomics
Models, Biological
Polymorphism, Genetic
Protein Tyrosine Phosphatase, Non-Receptor Type 22 - genetics
Protein-tyrosine-phosphatase
Young Adult
Title Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources
URI https://www.ncbi.nlm.nih.gov/pubmed/31740441
https://www.proquest.com/docview/2348249118
https://www.proquest.com/docview/2315971083
https://pubmed.ncbi.nlm.nih.gov/PMC6971485
https://diabetes.diabetesjournals.org/content/diabetes/69/2/238.full.pdf
UnpaywallVersion publishedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: DIK
  dateStart: 19520101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: RPM
  dateStart: 20080701
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQRcWl6F0FKZx4FLsomd2M6xAqqlqFUlWGk5RYljQ8Uqu-pmVbW_npm8xFKQOHCKFY-c2OPH93nGY4A3Vqcuctr4TpQGCYrRfsFd6QtRKidtrKSiw8mnZ3IyjU9myWwLJv1ZmH7HMegTXZOuGqs-uW_jXDxIjWU65mNcdQLarA6WpbsD2zJBVD6C7enZ-dHXdiLmFIVTtQbm1BdczdogQ1wINS6LCIkUl2JzabqFN2-7Td5bV8v8-iqfz39Zk4534aKvTeuK8iNY10Vgbn4L9Pg_qvsAdjrgyo7anvYQtmz1CO6edqb5x3Byfklpmj0ZXbBGx9zZwjEiuixinefNiiG6_YaPxlUB366a2OOWvc_rnH1uLAmrJzA9_vDl3cTvLmrwTRyK2k-1TWPHZWFSLbBJ0yKRuSm0LcPcIaRDUpak1pQJD5UzkQ6VyUukxsguZZ4gCN2DUbWo7DNgTkiEFKVGYGWQqRL_5EVYRNaqhA59e_C211FmuijmdJnGPEM2Q-rMSJ0ZqdODV4Posg3d8Sehg17RWd_2KBJrpKXIvTx4OWTjuCNjSl7ZxZpksE4IzzQW8bTtF8NXEJPFIeJMD9RGjxkEKKb3Zk518b2J7S2xzFgnHrwe-tbff_75P0ntw31OmwSNq_kBjOrLtX2BSKouDpFDfPx02A2Vn32PH-k
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQRceEMDBZnHgUuyiZ3YzrECqlWlVpVgpeUUOY4NFavsqptVBb-embzEUpA4cIoVj5zY48f3ecZjgDdO5z7x2oZeVBYJitVhyX0VClEpL12qpKLDyadncjZPTxbZYg9mw1mYYccxGhJ9k25aqz65b-NcPEpNZT7lU1x1ItqsjtaVvwH7MkNUPoH9-dn50eduIuYUhVN1BuY8FFwtuiBDXAg1rcoEiRSXYndpuoY3r7tN3trWa_P9yiyXv6xJx3fhYqhN54ryLdo2ZWR__Bbo8X9U9x7c6YErO-p62n3Yc_UDuHnam-Yfwsn5JaVp9mR0wRodc2crz4josoT1njcbhuj2Cz5aVwV8u2ljjzv23jSGfWwtCZtHMD_-8OndLOwvaghtGosmzLXLU89laXMtsEnzMpPGltpVsfEI6ZCUZbmzVcZj5W2iY2VNhdQY2aU0GYLQxzCpV7U7AOaFREhRaQRWFpkq8U9exmXinMro0HcAbwcdFbaPYk6XaSwLZDOkzoLUWZA6A3g1iq670B1_EjocFF0MbY8iqUZaitwrgJdjNo47MqaY2q22JIN1QnimsYgnXb8Yv4KYLI0RZwagdnrMKEAxvXdz6ouvbWxviWWmOgvg9di3_v7zT_9J6hnc5rRJ0LqaH8Kkudy654ikmvJFP0h-AsPPHvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Modeling+of+Type+1+Diabetes+Stages+Using+Disparate+Data+Sources&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Frohnert%2C+Brigitte+I&rft.au=Webb-Robertson%2C+Bobbie-Jo&rft.au=Bramer%2C+Lisa+M&rft.au=Reehl%2C+Sara+M&rft.date=2020-02-01&rft.eissn=1939-327X&rft.volume=69&rft.issue=2&rft.spage=238&rft_id=info:doi/10.2337%2Fdb18-1263&rft_id=info%3Apmid%2F31740441&rft.externalDocID=31740441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon