Evolutionary artificial neural network approach for predicting properties of Cu- 15Ni-8Sn-0.4Si alloy

A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Nonferrous Metals Society of China Vol. 18; no. 5; pp. 1223 - 1228
Main Author 方善锋 汪明朴 王艳辉 齐卫宏 李周
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2008
School of Materials Science and Engineering, Central South University, Changsha 410083, China
Subjects
Online AccessGet full text
ISSN1003-6326
DOI10.1016/S1003-6326(08)60208-3

Cover

Abstract A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu- 15Ni-8Sn-0.4Si alloy.
AbstractList TG1; A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu- 15Ni-8Sn-0.4Si alloy.
A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu- 15Ni-8Sn-0.4Si alloy.
A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy.
Author 方善锋 汪明朴 王艳辉 齐卫宏 李周
AuthorAffiliation School of Materials Science and Engineering, Central South University, Changsha 410083, China
AuthorAffiliation_xml – name: School of Materials Science and Engineering, Central South University, Changsha 410083, China
Author_xml – sequence: 1
  fullname: 方善锋 汪明朴 王艳辉 齐卫宏 李周
BookMark eNqFkU1rGzEQhnVIIV_9CQXRQ2kpm44-dq2lhxJM-gEhOTg9C60868jZSBtJm9T99ZHt0EMvOc0wPO8MenRMDnzwSMg7BmcMWPNlwQBE1QjefAT1qQEOqhIH5Ojf-JAcp7QGkLJp2BHBi8cwTNkFb-KGmphd76wzA_U4xV3JTyHeUTOOMRh7S_sQ6Rhx6Wx2flXaMGJJYaKhp_Opoqy-cpVa-ArO5MJRMwxhc0re9GZI-PalnpDf3y9u5j-ry-sfv-bnl5WVIHLVCltbbrjtkEvOOWslLBthFeOdmNVtx_pZJyQyZXnBZkIaKdvaqI6zHvlSnJDP-71PxvfGr_Q6TNGXi_rvapPW6U-nkQMoqEHIQn_Y0-URDxOmrO9dsjgMxmOYkhY1b4C1qoD1HrQxpBSx12N090WYZqC32vVOu9761aD0TrsWJff1v5x12Wxl52jc8Gr62z6Nxdijw6iTdehtcR_RZr0M7tUN71_u3wa_eij_pTtj73o3oOZKCKlmXDwDza6quw
CitedBy_id crossref_primary_10_1007_s11771_010_0545_x
crossref_primary_10_1007_s11249_019_1262_8
crossref_primary_10_1016_j_matdes_2019_107641
crossref_primary_10_1177_16878132221126854
crossref_primary_10_1179_1743280413Y_0000000021
crossref_primary_10_1177_1350650112450551
crossref_primary_10_1016_j_intermet_2020_106894
crossref_primary_10_1016_S1003_6326_17_60219_X
Cites_doi 10.1016/0001-6160(74)90157-6
10.2320/matertrans1989.31.968
10.1007/BF02668132
10.2320/matertrans1989.32.1135
10.1016/S1359-6454(98)00095-0
10.1016/j.matlet.2005.05.069
10.1023/A:1008202821328
10.1016/j.commatsci.2006.04.013
ClassificationCodes TG1
ContentType Journal Article
Copyright 2008 The Nonferrous Metals Society of China
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2008 The Nonferrous Metals Society of China
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8BQ
8FD
H8G
JG9
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1003-6326(08)60208-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
METADEX
Technology Research Database
Copper Technical Reference Library
Materials Research Database
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Copper Technical Reference Library
Technology Research Database
METADEX
DatabaseTitleList

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Evolutionary artificial neural network approach for predicting properties of Cu- 15Ni-8Sn-0.4Si alloy
EndPage 1228
ExternalDocumentID zgysjsxb_e200805034
10_1016_S1003_6326_08_60208_3
S1003632608602083
28334872
GrantInformation_xml – fundername: 国家高技术研究发展计划(863计划)
  funderid: (2002AA302505)
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
123
188
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5VR
5VS
5XA
5XC
5XL
7-5
71M
8P~
8RM
92H
92I
92L
92M
92R
93N
9D9
9DB
AABNK
AABXZ
AACTN
AAEDT
AAEPC
AAIAV
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABPIF
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADALY
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AINHJ
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CDYEO
CHBEP
CLXHM
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDC
SDF
SDG
SES
SPC
SSM
SSZ
T5K
T8R
TCJ
TGT
U1F
U1G
U5B
U5L
UGNYK
UZ4
W92
~02
~G-
~WA
AAEDW
ADMUD
AFRZQ
EFLBG
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
8BQ
8FD
ACLOT
EFKBS
H8G
JG9
~HD
4A8
PSX
ID FETCH-LOGICAL-c403t-93c5c2a2cbe242221940d63c812b3759b1f7b34e18c22a2734a4495a8b21fe2d3
IEDL.DBID AIKHN
ISSN 1003-6326
IngestDate Thu May 29 04:01:17 EDT 2025
Sat Sep 27 16:36:38 EDT 2025
Tue Jul 01 01:58:50 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Fri Feb 23 02:30:56 EST 2024
Fri Nov 25 17:03:21 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords differential evolution
leave-one-out-cross-validation
artificial neural network
electrical property
aging process
Cu-15Ni-8Sn-0.4Si alloy
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-93c5c2a2cbe242221940d63c812b3759b1f7b34e18c22a2734a4495a8b21fe2d3
Notes differential evolution
TG146
Cu-15Ni-8Sn-0.4Si alloy; electrical property; aging process; artificial neural network; differential evolution; leave-oneout-cross-validation
artificial neural network
43-1239/TG
Cu-15Ni-8Sn-0.4Si alloy
leave-oneout-cross-validation
electrical property
aging process
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35260198
PQPubID 23500
PageCount 6
ParticipantIDs wanfang_journals_zgysjsxb_e200805034
proquest_miscellaneous_35260198
crossref_primary_10_1016_S1003_6326_08_60208_3
crossref_citationtrail_10_1016_S1003_6326_08_60208_3
elsevier_sciencedirect_doi_10_1016_S1003_6326_08_60208_3
chongqing_backfile_28334872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationTitle Transactions of Nonferrous Metals Society of China
PublicationTitleAlternate Transactions of Nonferrous Metals Society of China
PublicationTitle_FL TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
PublicationYear 2008
Publisher Elsevier Ltd
School of Materials Science and Engineering, Central South University, Changsha 410083, China
Publisher_xml – name: Elsevier Ltd
– name: School of Materials Science and Engineering, Central South University, Changsha 410083, China
References MIKI, OGINO (bib9) 1990; 31
ZHENG, WU, ZENG (bib10) 1999; 9
MIKI, OGINO (bib7) 1991; 32
STORN R, PRICE K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. TR-95-012, Berkeley, CA, USA: International Computer Science Institute, 1995.
ZHAO, NOTIS (bib8) 1998; 46
ZENG (bib11) 2000; 10
KIM, KONG, HAN (bib5) 2000; 39
SU, LI, LIU, DONG, LI (bib13) 2007; 38
LASDAY (bib2) 1991; 11
SPOONER, LEFEVRE (bib6) 1980; 11
LIU, SU, DONG, LI (bib14) 2005; 59
WANG, WANG (bib17) 2004
SCOREY, CHIN, WHITE (bib3) 1984; 11
SHI, WU, ZHANG (bib12) 2000
STORN, PRICE (bib16) 1997; 11
WANG, WANG, HONG (bib4) 2005; 12
WANG, WANG, HONG, LI, XU (bib18) 2003; 28
SCHWARTZ, MAHAJAM, PLEWES (bib1) 1974; 22
KIM (10.1016/S1003-6326(08)60208-3_bib5) 2000; 39
ZHENG (10.1016/S1003-6326(08)60208-3_bib10) 1999; 9
SCHWARTZ (10.1016/S1003-6326(08)60208-3_bib1) 1974; 22
MIKI (10.1016/S1003-6326(08)60208-3_bib7) 1991; 32
STORN (10.1016/S1003-6326(08)60208-3_bib16) 1997; 11
10.1016/S1003-6326(08)60208-3_bib15
LASDAY (10.1016/S1003-6326(08)60208-3_bib2) 1991; 11
WANG (10.1016/S1003-6326(08)60208-3_bib18) 2003; 28
WANG (10.1016/S1003-6326(08)60208-3_bib4) 2005; 12
SPOONER (10.1016/S1003-6326(08)60208-3_bib6) 1980; 11
LIU (10.1016/S1003-6326(08)60208-3_bib14) 2005; 59
ZENG (10.1016/S1003-6326(08)60208-3_bib11) 2000; 10
SU (10.1016/S1003-6326(08)60208-3_bib13) 2007; 38
SCOREY (10.1016/S1003-6326(08)60208-3_bib3) 1984; 11
ZHAO (10.1016/S1003-6326(08)60208-3_bib8) 1998; 46
MIKI (10.1016/S1003-6326(08)60208-3_bib9) 1990; 31
SHI (10.1016/S1003-6326(08)60208-3_bib12) 2000
WANG (10.1016/S1003-6326(08)60208-3_bib17) 2004
References_xml – start-page: 6
  year: 2000
  end-page: 8
  ident: bib12
  article-title: Investigation on age hardening of Cu-15Ni-8Sn alloy obtained by spray forming [J]
  publication-title: Heat Treatment of Metals
– volume: 11
  start-page: 52
  year: 1984
  end-page: 54
  ident: bib3
  article-title: Spinodal Cu-Ni-Sn alloys for electronic applications [J]
  publication-title: Journal of Metals
– volume: 12
  start-page: 243
  year: 2005
  end-page: 245
  ident: bib4
  article-title: Microstructures of spinodal phases in Cu-15Ni-8Sn alloy [J]
  publication-title: Journal of University of Science and Technology Bejing
– volume: 38
  start-page: 697
  year: 2007
  end-page: 701
  ident: bib13
  article-title: Aging process optimization for a copper alloy considering hardness and electrical conductivity [J]
  publication-title: Computational Materials Science
– year: 2004
  ident: bib17
  publication-title: Phase transformations of Cu-15Ni-8Sn-XSi and Cu-9Ni-2.5Sn-1.5A1-0.5Si alloys and their effects on the alloy's properties [D]
– volume: 46
  start-page: 4203
  year: 1998
  end-page: 4218
  ident: bib8
  article-title: Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy [J]
  publication-title: Acta Mater
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib16
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces [J]
  publication-title: Journal of Global Optimization
– reference: STORN R, PRICE K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. TR-95-012, Berkeley, CA, USA: International Computer Science Institute, 1995.
– volume: 39
  start-page: 157
  year: 2000
  end-page: 160
  ident: bib5
  article-title: Development of high strength Cu-Ni-Sn-(X) alloys [J]
  publication-title: J Jpn Copper Brass Res Association
– volume: 59
  start-page: 3337
  year: 2005
  end-page: 3342
  ident: bib14
  article-title: Optimization of aging treatment in lead frame copper alloy by intelligent technique [J]
  publication-title: Materials Letters
– volume: 11
  start-page: 1085
  year: 1980
  end-page: 1090
  ident: bib6
  article-title: The effect of prior deformation on spinodal age hardening in Cu-15Ni-8Sn alloy [J]
  publication-title: Metall Trans
– volume: 9
  start-page: 707
  year: 1999
  end-page: 711
  ident: bib10
  article-title: Ageing behavior of Cu-15Ni-8Sn alloy prepared by mechanical alloying [J]
  publication-title: Trans Nonferrous Met Soc China
– volume: 22
  start-page: 601
  year: 1974
  end-page: 609
  ident: bib1
  article-title: Spinodal decomposition in a Cu-9Ni-6Sn alloy [J]
  publication-title: Acta Met
– volume: 32
  start-page: 1135
  year: 1991
  end-page: 1140
  ident: bib7
  article-title: Influence of solution treatment conditions on the cellular precipitation in Si-doped Cu-10Ni-8Sn alloy [J]
  publication-title: Materials Transactions JIM
– volume: 10
  start-page: 497
  year: 2000
  end-page: 501
  ident: bib11
  article-title: Influence of mechanical alloying on properties of Cu-15Ni-8Sn alloy [J]
  publication-title: The Chinese Journal of Nonferrous Metals
– volume: 31
  start-page: 968
  year: 1990
  end-page: 974
  ident: bib9
  article-title: Effect of Si addition on the cellular precipitation in a Cu-10Ni-8Sn alloy [J]
  publication-title: Materials Transactions JIM
– volume: 28
  start-page: 41
  year: 2003
  end-page: 44
  ident: bib18
  article-title: Effect of Si addition on the microstructure and properties of Cu-15Ni-8Sn alloy [J]
  publication-title: Heat Treatment of Metals
– volume: 11
  start-page: 26
  year: 1991
  end-page: 30
  ident: bib2
  article-title: PM Cu-Ni-Sn strip alloys with particular response to aging develop favorable properties for electronic components [J]
  publication-title: Industrial Heating
– volume: 12
  start-page: 243
  issue: 3
  year: 2005
  ident: 10.1016/S1003-6326(08)60208-3_bib4
  article-title: Microstructures of spinodal phases in Cu-15Ni-8Sn alloy [J]
  publication-title: Journal of University of Science and Technology Bejing
– volume: 10
  start-page: 497
  issue: 4
  year: 2000
  ident: 10.1016/S1003-6326(08)60208-3_bib11
  article-title: Influence of mechanical alloying on properties of Cu-15Ni-8Sn alloy [J]
  publication-title: The Chinese Journal of Nonferrous Metals
– volume: 39
  start-page: 157
  year: 2000
  ident: 10.1016/S1003-6326(08)60208-3_bib5
  article-title: Development of high strength Cu-Ni-Sn-(X) alloys [J]
  publication-title: J Jpn Copper Brass Res Association
– volume: 22
  start-page: 601
  issue: 5
  year: 1974
  ident: 10.1016/S1003-6326(08)60208-3_bib1
  article-title: Spinodal decomposition in a Cu-9Ni-6Sn alloy [J]
  publication-title: Acta Met
  doi: 10.1016/0001-6160(74)90157-6
– volume: 31
  start-page: 968
  issue: 11
  year: 1990
  ident: 10.1016/S1003-6326(08)60208-3_bib9
  article-title: Effect of Si addition on the cellular precipitation in a Cu-10Ni-8Sn alloy [J]
  publication-title: Materials Transactions JIM
  doi: 10.2320/matertrans1989.31.968
– volume: 11
  start-page: 52
  year: 1984
  ident: 10.1016/S1003-6326(08)60208-3_bib3
  article-title: Spinodal Cu-Ni-Sn alloys for electronic applications [J]
  publication-title: Journal of Metals
– volume: 11
  start-page: 1085
  issue: 7
  year: 1980
  ident: 10.1016/S1003-6326(08)60208-3_bib6
  article-title: The effect of prior deformation on spinodal age hardening in Cu-15Ni-8Sn alloy [J]
  publication-title: Metall Trans
  doi: 10.1007/BF02668132
– volume: 32
  start-page: 1135
  issue: 12
  year: 1991
  ident: 10.1016/S1003-6326(08)60208-3_bib7
  article-title: Influence of solution treatment conditions on the cellular precipitation in Si-doped Cu-10Ni-8Sn alloy [J]
  publication-title: Materials Transactions JIM
  doi: 10.2320/matertrans1989.32.1135
– volume: 46
  start-page: 4203
  issue: 12
  year: 1998
  ident: 10.1016/S1003-6326(08)60208-3_bib8
  article-title: Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy [J]
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(98)00095-0
– volume: 59
  start-page: 3337
  year: 2005
  ident: 10.1016/S1003-6326(08)60208-3_bib14
  article-title: Optimization of aging treatment in lead frame copper alloy by intelligent technique [J]
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2005.05.069
– volume: 28
  start-page: 41
  issue: 1
  year: 2003
  ident: 10.1016/S1003-6326(08)60208-3_bib18
  article-title: Effect of Si addition on the microstructure and properties of Cu-15Ni-8Sn alloy [J]
  publication-title: Heat Treatment of Metals
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/S1003-6326(08)60208-3_bib16
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces [J]
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– year: 2004
  ident: 10.1016/S1003-6326(08)60208-3_bib17
– start-page: 6
  issue: 9
  year: 2000
  ident: 10.1016/S1003-6326(08)60208-3_bib12
  article-title: Investigation on age hardening of Cu-15Ni-8Sn alloy obtained by spray forming [J]
  publication-title: Heat Treatment of Metals
– volume: 9
  start-page: 707
  issue: 4
  year: 1999
  ident: 10.1016/S1003-6326(08)60208-3_bib10
  article-title: Ageing behavior of Cu-15Ni-8Sn alloy prepared by mechanical alloying [J]
  publication-title: Trans Nonferrous Met Soc China
– ident: 10.1016/S1003-6326(08)60208-3_bib15
– volume: 11
  start-page: 26
  year: 1991
  ident: 10.1016/S1003-6326(08)60208-3_bib2
  article-title: PM Cu-Ni-Sn strip alloys with particular response to aging develop favorable properties for electronic components [J]
  publication-title: Industrial Heating
– volume: 38
  start-page: 697
  year: 2007
  ident: 10.1016/S1003-6326(08)60208-3_bib13
  article-title: Aging process optimization for a copper alloy considering hardness and electrical conductivity [J]
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2006.04.013
SSID ssj0044661
Score 1.8302042
Snippet A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear...
A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear...
TG1; A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the...
SourceID wanfang
proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1223
SubjectTerms aging process
artificial neural network
Cu-15Ni-8Sn-0.4Si
Cu-15Ni-8Sn-0.4Si alloy
differential evolution
electrical property
leave-one-out-cross-validation
人工神经网络
电性质
老化过程
Title Evolutionary artificial neural network approach for predicting properties of Cu- 15Ni-8Sn-0.4Si alloy
URI http://lib.cqvip.com/qk/85276X/20085/28334872.html
https://dx.doi.org/10.1016/S1003-6326(08)60208-3
https://www.proquest.com/docview/35260198
https://d.wanfangdata.com.cn/periodical/zgysjsxb-e200805034
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2TkjsMPEpusHwYQc4uE1sJ3GPU7WpgOilTNrNsl2ndKCkNC2sO-xv573EKeWAJnFKZOVZid_L-_B7_j1CzrLUmzxTGJtMUyaNS5mxScZMCsFKanIXOdwa-DxOR1fy43VyvUeG7VkYLKsMur_R6bW2DiP9sJr9xXzen8SIpQLeR4RtlMCT2CcHHKy96pCD8w-fRuNWIWPGso67sAwLCf4c5GkmqQffRep9PQ8TCLPwtSxmP8B4_Mtc7bijj36ZIjfFbMcuXT4hR8GhpOfNOz8le754Rg53YAafk-nFzyBgZrmh-HUNbARFMMv6UpeC0xZfnIIjSxdLTOFgUTTclgssv_YVLXM6XLM4Gc-ZmhQs6snJnGLufvOCXF1efBmOWOiuwJyMxIoNhEscN9xZz3EfKB4gu4QDi29FlgxsnGdWSB8rx-GxTEgjIZoyyvI493wqXpJOURb-FaGZswjkPgA7F8k4j5RXSeIlyEFiUy59l5xsFxSss_uGmFMaHBsB4RLvEtkusXYBmBz7Y3zX2wo05JJGLulI6ZpLWnRJb0u2aJA5HiJQLf_0XyKmwXo8RPq25beG3w9zKqbw5brS2F4AvGTVJWdBDHRQApW-m22qm-rWao9FJgi8I4___x1OyGPeYvHGr0lntVz7N-AQrewp2e_dx6dB7H8DX_wBsA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEGI7ID61MmA-7AAHt4ntJO4RVZsKbL10k3azbNfpyqakNC2sHPjbeS9xSjmgSZwSWbbl-L28D7_n3yPkOEu9yTOFvskkZdK4lBmbZMyk4KykJneRw6OB81E6vJSfr5KrHTJo78JgWmWQ_Y1Mr6V1aOmF3ezNZ7PeOEYsFbA-IiyjBJbEA_JQYpkDYOrur02eB8Yra68Lk7Cw-59rPM0UdeP7SH2oZ2ECQRauy2L6DVTHv5TVljH66IcpclNMt7TS6VPyJJiT9GOz4mdkxxfPyf4WyOALMjn5HtjLLNYUv60BjaAIZVk_6kRw2qKLUzBj6XyBARxMiYbXco7J176iZU4HKxYnoxlT44JFXTmeUYzcr1-Sy9OTi8GQhdoKzMlILFlfuMRxw531HE-B4j4SSzjQ91ZkSd_GeWaF9LFyHLplQhoJvpRRlse55xPxiuwWZeEPCM2cRRj3Pmi5SMZ5pLxKEi-BCxKbcuk75HCzoaCb3Q0iTmkwawQ4S7xDZLvF2gVYcqyOcas3-WdIJY1U0pHSNZW06JDuZti8weW4b4Bq6af_YjANuuO-oUctvTX8fBhRMYUvV5XG4gJgI6sOOQ5soIMIqPTP6br6Wt1Z7THFBGF35Ov_X8MReTy8OD_TZ59GXw7JHm9ReeM3ZHe5WPm3YBot7bua9X8DZbkCcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+artificial+neural+network+approach+for+predicting+properties+of+Cu-+15Ni-8Sn-0.4Si+alloy&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%E5%AD%A6%E4%BC%9A%E4%BC%9A%E5%88%8A%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=FANG+Shan-feng&rft.au=WANG+Ming-pu&rft.au=WANG+Yan-hui&rft.au=QI+Wei-hong&rft.date=2008-10-01&rft.pub=School+of+Materials+Science+and+Engineering%2C+Central+South+University%2C+Changsha+410083%2C+China&rft.issn=1003-6326&rft.volume=18&rft.issue=5&rft.spage=1223&rft.epage=1228&rft_id=info:doi/10.1016%2FS1003-6326%2808%2960208-3&rft.externalDocID=zgysjsxb_e200805034
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85276X%2F85276X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgysjsxb-e%2Fzgysjsxb-e.jpg