Evolutionary artificial neural network approach for predicting properties of Cu- 15Ni-8Sn-0.4Si alloy
A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve...
Saved in:
Published in | Transactions of Nonferrous Metals Society of China Vol. 18; no. 5; pp. 1223 - 1228 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2008
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
Subjects | |
Online Access | Get full text |
ISSN | 1003-6326 |
DOI | 10.1016/S1003-6326(08)60208-3 |
Cover
Abstract | A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu- 15Ni-8Sn-0.4Si alloy. |
---|---|
AbstractList | TG1; A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu- 15Ni-8Sn-0.4Si alloy. A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu- 15Ni-8Sn-0.4Si alloy. A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy. |
Author | 方善锋 汪明朴 王艳辉 齐卫宏 李周 |
AuthorAffiliation | School of Materials Science and Engineering, Central South University, Changsha 410083, China |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering, Central South University, Changsha 410083, China |
Author_xml | – sequence: 1 fullname: 方善锋 汪明朴 王艳辉 齐卫宏 李周 |
BookMark | eNqFkU1rGzEQhnVIIV_9CQXRQ2kpm44-dq2lhxJM-gEhOTg9C60868jZSBtJm9T99ZHt0EMvOc0wPO8MenRMDnzwSMg7BmcMWPNlwQBE1QjefAT1qQEOqhIH5Ojf-JAcp7QGkLJp2BHBi8cwTNkFb-KGmphd76wzA_U4xV3JTyHeUTOOMRh7S_sQ6Rhx6Wx2flXaMGJJYaKhp_Opoqy-cpVa-ArO5MJRMwxhc0re9GZI-PalnpDf3y9u5j-ry-sfv-bnl5WVIHLVCltbbrjtkEvOOWslLBthFeOdmNVtx_pZJyQyZXnBZkIaKdvaqI6zHvlSnJDP-71PxvfGr_Q6TNGXi_rvapPW6U-nkQMoqEHIQn_Y0-URDxOmrO9dsjgMxmOYkhY1b4C1qoD1HrQxpBSx12N090WYZqC32vVOu9761aD0TrsWJff1v5x12Wxl52jc8Gr62z6Nxdijw6iTdehtcR_RZr0M7tUN71_u3wa_eij_pTtj73o3oOZKCKlmXDwDza6quw |
CitedBy_id | crossref_primary_10_1007_s11771_010_0545_x crossref_primary_10_1007_s11249_019_1262_8 crossref_primary_10_1016_j_matdes_2019_107641 crossref_primary_10_1177_16878132221126854 crossref_primary_10_1179_1743280413Y_0000000021 crossref_primary_10_1177_1350650112450551 crossref_primary_10_1016_j_intermet_2020_106894 crossref_primary_10_1016_S1003_6326_17_60219_X |
Cites_doi | 10.1016/0001-6160(74)90157-6 10.2320/matertrans1989.31.968 10.1007/BF02668132 10.2320/matertrans1989.32.1135 10.1016/S1359-6454(98)00095-0 10.1016/j.matlet.2005.05.069 10.1023/A:1008202821328 10.1016/j.commatsci.2006.04.013 |
ClassificationCodes | TG1 |
ContentType | Journal Article |
Copyright | 2008 The Nonferrous Metals Society of China Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2008 The Nonferrous Metals Society of China – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8BQ 8FD H8G JG9 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S1003-6326(08)60208-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef METADEX Technology Research Database Copper Technical Reference Library Materials Research Database Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Copper Technical Reference Library Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Evolutionary artificial neural network approach for predicting properties of Cu- 15Ni-8Sn-0.4Si alloy |
EndPage | 1228 |
ExternalDocumentID | zgysjsxb_e200805034 10_1016_S1003_6326_08_60208_3 S1003632608602083 28334872 |
GrantInformation_xml | – fundername: 国家高技术研究发展计划(863计划) funderid: (2002AA302505) |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 123 188 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5VR 5VS 5XA 5XC 5XL 7-5 71M 8P~ 8RM 92H 92I 92L 92M 92R 93N 9D9 9DB AABNK AABXZ AACTN AAEDT AAEPC AAIAV AAIKJ AAKOC AALMO AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABPIF ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADALY ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AIEXJ AIKHN AINHJ AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CDYEO CHBEP CLXHM CQIGP CS3 CW9 DU5 EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FIRID FNPLU FYGXN GBLVA HZ~ J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q-- Q38 R-B ROL RT2 S.. SDC SDF SDG SES SPC SSM SSZ T5K T8R TCJ TGT U1F U1G U5B U5L UGNYK UZ4 W92 ~02 ~G- ~WA AAEDW ADMUD AFRZQ EFLBG AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 8BQ 8FD ACLOT EFKBS H8G JG9 ~HD 4A8 PSX |
ID | FETCH-LOGICAL-c403t-93c5c2a2cbe242221940d63c812b3759b1f7b34e18c22a2734a4495a8b21fe2d3 |
IEDL.DBID | AIKHN |
ISSN | 1003-6326 |
IngestDate | Thu May 29 04:01:17 EDT 2025 Sat Sep 27 16:36:38 EDT 2025 Tue Jul 01 01:58:50 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Fri Feb 23 02:30:56 EST 2024 Fri Nov 25 17:03:21 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | differential evolution leave-one-out-cross-validation artificial neural network electrical property aging process Cu-15Ni-8Sn-0.4Si alloy |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-93c5c2a2cbe242221940d63c812b3759b1f7b34e18c22a2734a4495a8b21fe2d3 |
Notes | differential evolution TG146 Cu-15Ni-8Sn-0.4Si alloy; electrical property; aging process; artificial neural network; differential evolution; leave-oneout-cross-validation artificial neural network 43-1239/TG Cu-15Ni-8Sn-0.4Si alloy leave-oneout-cross-validation electrical property aging process ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 35260198 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_zgysjsxb_e200805034 proquest_miscellaneous_35260198 crossref_primary_10_1016_S1003_6326_08_60208_3 crossref_citationtrail_10_1016_S1003_6326_08_60208_3 elsevier_sciencedirect_doi_10_1016_S1003_6326_08_60208_3 chongqing_backfile_28334872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Transactions of Nonferrous Metals Society of China |
PublicationTitleAlternate | Transactions of Nonferrous Metals Society of China |
PublicationTitle_FL | TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA |
PublicationYear | 2008 |
Publisher | Elsevier Ltd School of Materials Science and Engineering, Central South University, Changsha 410083, China |
Publisher_xml | – name: Elsevier Ltd – name: School of Materials Science and Engineering, Central South University, Changsha 410083, China |
References | MIKI, OGINO (bib9) 1990; 31 ZHENG, WU, ZENG (bib10) 1999; 9 MIKI, OGINO (bib7) 1991; 32 STORN R, PRICE K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. TR-95-012, Berkeley, CA, USA: International Computer Science Institute, 1995. ZHAO, NOTIS (bib8) 1998; 46 ZENG (bib11) 2000; 10 KIM, KONG, HAN (bib5) 2000; 39 SU, LI, LIU, DONG, LI (bib13) 2007; 38 LASDAY (bib2) 1991; 11 SPOONER, LEFEVRE (bib6) 1980; 11 LIU, SU, DONG, LI (bib14) 2005; 59 WANG, WANG (bib17) 2004 SCOREY, CHIN, WHITE (bib3) 1984; 11 SHI, WU, ZHANG (bib12) 2000 STORN, PRICE (bib16) 1997; 11 WANG, WANG, HONG (bib4) 2005; 12 WANG, WANG, HONG, LI, XU (bib18) 2003; 28 SCHWARTZ, MAHAJAM, PLEWES (bib1) 1974; 22 KIM (10.1016/S1003-6326(08)60208-3_bib5) 2000; 39 ZHENG (10.1016/S1003-6326(08)60208-3_bib10) 1999; 9 SCHWARTZ (10.1016/S1003-6326(08)60208-3_bib1) 1974; 22 MIKI (10.1016/S1003-6326(08)60208-3_bib7) 1991; 32 STORN (10.1016/S1003-6326(08)60208-3_bib16) 1997; 11 10.1016/S1003-6326(08)60208-3_bib15 LASDAY (10.1016/S1003-6326(08)60208-3_bib2) 1991; 11 WANG (10.1016/S1003-6326(08)60208-3_bib18) 2003; 28 WANG (10.1016/S1003-6326(08)60208-3_bib4) 2005; 12 SPOONER (10.1016/S1003-6326(08)60208-3_bib6) 1980; 11 LIU (10.1016/S1003-6326(08)60208-3_bib14) 2005; 59 ZENG (10.1016/S1003-6326(08)60208-3_bib11) 2000; 10 SU (10.1016/S1003-6326(08)60208-3_bib13) 2007; 38 SCOREY (10.1016/S1003-6326(08)60208-3_bib3) 1984; 11 ZHAO (10.1016/S1003-6326(08)60208-3_bib8) 1998; 46 MIKI (10.1016/S1003-6326(08)60208-3_bib9) 1990; 31 SHI (10.1016/S1003-6326(08)60208-3_bib12) 2000 WANG (10.1016/S1003-6326(08)60208-3_bib17) 2004 |
References_xml | – start-page: 6 year: 2000 end-page: 8 ident: bib12 article-title: Investigation on age hardening of Cu-15Ni-8Sn alloy obtained by spray forming [J] publication-title: Heat Treatment of Metals – volume: 11 start-page: 52 year: 1984 end-page: 54 ident: bib3 article-title: Spinodal Cu-Ni-Sn alloys for electronic applications [J] publication-title: Journal of Metals – volume: 12 start-page: 243 year: 2005 end-page: 245 ident: bib4 article-title: Microstructures of spinodal phases in Cu-15Ni-8Sn alloy [J] publication-title: Journal of University of Science and Technology Bejing – volume: 38 start-page: 697 year: 2007 end-page: 701 ident: bib13 article-title: Aging process optimization for a copper alloy considering hardness and electrical conductivity [J] publication-title: Computational Materials Science – year: 2004 ident: bib17 publication-title: Phase transformations of Cu-15Ni-8Sn-XSi and Cu-9Ni-2.5Sn-1.5A1-0.5Si alloys and their effects on the alloy's properties [D] – volume: 46 start-page: 4203 year: 1998 end-page: 4218 ident: bib8 article-title: Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy [J] publication-title: Acta Mater – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib16 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces [J] publication-title: Journal of Global Optimization – reference: STORN R, PRICE K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. TR-95-012, Berkeley, CA, USA: International Computer Science Institute, 1995. – volume: 39 start-page: 157 year: 2000 end-page: 160 ident: bib5 article-title: Development of high strength Cu-Ni-Sn-(X) alloys [J] publication-title: J Jpn Copper Brass Res Association – volume: 59 start-page: 3337 year: 2005 end-page: 3342 ident: bib14 article-title: Optimization of aging treatment in lead frame copper alloy by intelligent technique [J] publication-title: Materials Letters – volume: 11 start-page: 1085 year: 1980 end-page: 1090 ident: bib6 article-title: The effect of prior deformation on spinodal age hardening in Cu-15Ni-8Sn alloy [J] publication-title: Metall Trans – volume: 9 start-page: 707 year: 1999 end-page: 711 ident: bib10 article-title: Ageing behavior of Cu-15Ni-8Sn alloy prepared by mechanical alloying [J] publication-title: Trans Nonferrous Met Soc China – volume: 22 start-page: 601 year: 1974 end-page: 609 ident: bib1 article-title: Spinodal decomposition in a Cu-9Ni-6Sn alloy [J] publication-title: Acta Met – volume: 32 start-page: 1135 year: 1991 end-page: 1140 ident: bib7 article-title: Influence of solution treatment conditions on the cellular precipitation in Si-doped Cu-10Ni-8Sn alloy [J] publication-title: Materials Transactions JIM – volume: 10 start-page: 497 year: 2000 end-page: 501 ident: bib11 article-title: Influence of mechanical alloying on properties of Cu-15Ni-8Sn alloy [J] publication-title: The Chinese Journal of Nonferrous Metals – volume: 31 start-page: 968 year: 1990 end-page: 974 ident: bib9 article-title: Effect of Si addition on the cellular precipitation in a Cu-10Ni-8Sn alloy [J] publication-title: Materials Transactions JIM – volume: 28 start-page: 41 year: 2003 end-page: 44 ident: bib18 article-title: Effect of Si addition on the microstructure and properties of Cu-15Ni-8Sn alloy [J] publication-title: Heat Treatment of Metals – volume: 11 start-page: 26 year: 1991 end-page: 30 ident: bib2 article-title: PM Cu-Ni-Sn strip alloys with particular response to aging develop favorable properties for electronic components [J] publication-title: Industrial Heating – volume: 12 start-page: 243 issue: 3 year: 2005 ident: 10.1016/S1003-6326(08)60208-3_bib4 article-title: Microstructures of spinodal phases in Cu-15Ni-8Sn alloy [J] publication-title: Journal of University of Science and Technology Bejing – volume: 10 start-page: 497 issue: 4 year: 2000 ident: 10.1016/S1003-6326(08)60208-3_bib11 article-title: Influence of mechanical alloying on properties of Cu-15Ni-8Sn alloy [J] publication-title: The Chinese Journal of Nonferrous Metals – volume: 39 start-page: 157 year: 2000 ident: 10.1016/S1003-6326(08)60208-3_bib5 article-title: Development of high strength Cu-Ni-Sn-(X) alloys [J] publication-title: J Jpn Copper Brass Res Association – volume: 22 start-page: 601 issue: 5 year: 1974 ident: 10.1016/S1003-6326(08)60208-3_bib1 article-title: Spinodal decomposition in a Cu-9Ni-6Sn alloy [J] publication-title: Acta Met doi: 10.1016/0001-6160(74)90157-6 – volume: 31 start-page: 968 issue: 11 year: 1990 ident: 10.1016/S1003-6326(08)60208-3_bib9 article-title: Effect of Si addition on the cellular precipitation in a Cu-10Ni-8Sn alloy [J] publication-title: Materials Transactions JIM doi: 10.2320/matertrans1989.31.968 – volume: 11 start-page: 52 year: 1984 ident: 10.1016/S1003-6326(08)60208-3_bib3 article-title: Spinodal Cu-Ni-Sn alloys for electronic applications [J] publication-title: Journal of Metals – volume: 11 start-page: 1085 issue: 7 year: 1980 ident: 10.1016/S1003-6326(08)60208-3_bib6 article-title: The effect of prior deformation on spinodal age hardening in Cu-15Ni-8Sn alloy [J] publication-title: Metall Trans doi: 10.1007/BF02668132 – volume: 32 start-page: 1135 issue: 12 year: 1991 ident: 10.1016/S1003-6326(08)60208-3_bib7 article-title: Influence of solution treatment conditions on the cellular precipitation in Si-doped Cu-10Ni-8Sn alloy [J] publication-title: Materials Transactions JIM doi: 10.2320/matertrans1989.32.1135 – volume: 46 start-page: 4203 issue: 12 year: 1998 ident: 10.1016/S1003-6326(08)60208-3_bib8 article-title: Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy [J] publication-title: Acta Mater doi: 10.1016/S1359-6454(98)00095-0 – volume: 59 start-page: 3337 year: 2005 ident: 10.1016/S1003-6326(08)60208-3_bib14 article-title: Optimization of aging treatment in lead frame copper alloy by intelligent technique [J] publication-title: Materials Letters doi: 10.1016/j.matlet.2005.05.069 – volume: 28 start-page: 41 issue: 1 year: 2003 ident: 10.1016/S1003-6326(08)60208-3_bib18 article-title: Effect of Si addition on the microstructure and properties of Cu-15Ni-8Sn alloy [J] publication-title: Heat Treatment of Metals – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/S1003-6326(08)60208-3_bib16 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces [J] publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – year: 2004 ident: 10.1016/S1003-6326(08)60208-3_bib17 – start-page: 6 issue: 9 year: 2000 ident: 10.1016/S1003-6326(08)60208-3_bib12 article-title: Investigation on age hardening of Cu-15Ni-8Sn alloy obtained by spray forming [J] publication-title: Heat Treatment of Metals – volume: 9 start-page: 707 issue: 4 year: 1999 ident: 10.1016/S1003-6326(08)60208-3_bib10 article-title: Ageing behavior of Cu-15Ni-8Sn alloy prepared by mechanical alloying [J] publication-title: Trans Nonferrous Met Soc China – ident: 10.1016/S1003-6326(08)60208-3_bib15 – volume: 11 start-page: 26 year: 1991 ident: 10.1016/S1003-6326(08)60208-3_bib2 article-title: PM Cu-Ni-Sn strip alloys with particular response to aging develop favorable properties for electronic components [J] publication-title: Industrial Heating – volume: 38 start-page: 697 year: 2007 ident: 10.1016/S1003-6326(08)60208-3_bib13 article-title: Aging process optimization for a copper alloy considering hardness and electrical conductivity [J] publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2006.04.013 |
SSID | ssj0044661 |
Score | 1.8302042 |
Snippet | A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear... A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the non-linear... TG1; A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training algorithm, was proposed to model the... |
SourceID | wanfang proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1223 |
SubjectTerms | aging process artificial neural network Cu-15Ni-8Sn-0.4Si Cu-15Ni-8Sn-0.4Si alloy differential evolution electrical property leave-one-out-cross-validation 人工神经网络 电性质 老化过程 |
Title | Evolutionary artificial neural network approach for predicting properties of Cu- 15Ni-8Sn-0.4Si alloy |
URI | http://lib.cqvip.com/qk/85276X/20085/28334872.html https://dx.doi.org/10.1016/S1003-6326(08)60208-3 https://www.proquest.com/docview/35260198 https://d.wanfangdata.com.cn/periodical/zgysjsxb-e200805034 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2TkjsMPEpusHwYQc4uE1sJ3GPU7WpgOilTNrNsl2ndKCkNC2sO-xv573EKeWAJnFKZOVZid_L-_B7_j1CzrLUmzxTGJtMUyaNS5mxScZMCsFKanIXOdwa-DxOR1fy43VyvUeG7VkYLKsMur_R6bW2DiP9sJr9xXzen8SIpQLeR4RtlMCT2CcHHKy96pCD8w-fRuNWIWPGso67sAwLCf4c5GkmqQffRep9PQ8TCLPwtSxmP8B4_Mtc7bijj36ZIjfFbMcuXT4hR8GhpOfNOz8le754Rg53YAafk-nFzyBgZrmh-HUNbARFMMv6UpeC0xZfnIIjSxdLTOFgUTTclgssv_YVLXM6XLM4Gc-ZmhQs6snJnGLufvOCXF1efBmOWOiuwJyMxIoNhEscN9xZz3EfKB4gu4QDi29FlgxsnGdWSB8rx-GxTEgjIZoyyvI493wqXpJOURb-FaGZswjkPgA7F8k4j5RXSeIlyEFiUy59l5xsFxSss_uGmFMaHBsB4RLvEtkusXYBmBz7Y3zX2wo05JJGLulI6ZpLWnRJb0u2aJA5HiJQLf_0XyKmwXo8RPq25beG3w9zKqbw5brS2F4AvGTVJWdBDHRQApW-m22qm-rWao9FJgi8I4___x1OyGPeYvHGr0lntVz7N-AQrewp2e_dx6dB7H8DX_wBsA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEGI7ID61MmA-7AAHt4ntJO4RVZsKbL10k3azbNfpyqakNC2sHPjbeS9xSjmgSZwSWbbl-L28D7_n3yPkOEu9yTOFvskkZdK4lBmbZMyk4KykJneRw6OB81E6vJSfr5KrHTJo78JgWmWQ_Y1Mr6V1aOmF3ezNZ7PeOEYsFbA-IiyjBJbEA_JQYpkDYOrur02eB8Yra68Lk7Cw-59rPM0UdeP7SH2oZ2ECQRauy2L6DVTHv5TVljH66IcpclNMt7TS6VPyJJiT9GOz4mdkxxfPyf4WyOALMjn5HtjLLNYUv60BjaAIZVk_6kRw2qKLUzBj6XyBARxMiYbXco7J176iZU4HKxYnoxlT44JFXTmeUYzcr1-Sy9OTi8GQhdoKzMlILFlfuMRxw531HE-B4j4SSzjQ91ZkSd_GeWaF9LFyHLplQhoJvpRRlse55xPxiuwWZeEPCM2cRRj3Pmi5SMZ5pLxKEi-BCxKbcuk75HCzoaCb3Q0iTmkwawQ4S7xDZLvF2gVYcqyOcas3-WdIJY1U0pHSNZW06JDuZti8weW4b4Bq6af_YjANuuO-oUctvTX8fBhRMYUvV5XG4gJgI6sOOQ5soIMIqPTP6br6Wt1Z7THFBGF35Ov_X8MReTy8OD_TZ59GXw7JHm9ReeM3ZHe5WPm3YBot7bua9X8DZbkCcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+artificial+neural+network+approach+for+predicting+properties+of+Cu-+15Ni-8Sn-0.4Si+alloy&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%E5%AD%A6%E4%BC%9A%E4%BC%9A%E5%88%8A%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=FANG+Shan-feng&rft.au=WANG+Ming-pu&rft.au=WANG+Yan-hui&rft.au=QI+Wei-hong&rft.date=2008-10-01&rft.pub=School+of+Materials+Science+and+Engineering%2C+Central+South+University%2C+Changsha+410083%2C+China&rft.issn=1003-6326&rft.volume=18&rft.issue=5&rft.spage=1223&rft.epage=1228&rft_id=info:doi/10.1016%2FS1003-6326%2808%2960208-3&rft.externalDocID=zgysjsxb_e200805034 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85276X%2F85276X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgysjsxb-e%2Fzgysjsxb-e.jpg |