Designing for Hybrid Intelligence: A Taxonomy and Survey of Crowd-Machine Interaction
With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of importance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed workforc...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 13; no. 4; p. 2198 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.02.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app13042198 | 
Cover
| Abstract | With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of importance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed workforce or even on a volunteer basis. However, there is a lack of systematic and empirical examination of the interplay among the processes and activities combining crowd-machine hybrid interaction. To uncover the enduring aspects characterizing the human-centered AI design space when involving ensembles of crowds and algorithms and their symbiotic relations and requirements, a Computer-Supported Cooperative Work (CSCW) lens strongly rooted in the taxonomic tradition of conceptual scheme development is taken with the aim of aggregating and characterizing some of the main component entities in the burgeoning domain of hybrid crowd-AI centered systems. The goal of this article is thus to propose a theoretically grounded and empirically validated analytical framework for the study of crowd-machine interaction and its environment. Based on a scoping review and several cross-sectional analyses of research studies comprising hybrid forms of human interaction with AI systems and applications at a crowd scale, the available literature was distilled and incorporated into a unifying framework comprised of taxonomic units distributed across integration dimensions that range from the original time and space axes in which every collaborative activity take place to the main attributes that constitute a hybrid intelligence architecture. The upshot is that when turning to the challenges that are inherent in tasks requiring massive participation, novel properties can be obtained for a set of potential scenarios that go beyond the single experience of a human interacting with the technology to comprise a vast set of massive machine-crowd interactions. | 
    
|---|---|
| AbstractList | With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of importance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed workforce or even on a volunteer basis. However, there is a lack of systematic and empirical examination of the interplay among the processes and activities combining crowd-machine hybrid interaction. To uncover the enduring aspects characterizing the human-centered AI design space when involving ensembles of crowds and algorithms and their symbiotic relations and requirements, a Computer-Supported Cooperative Work (CSCW) lens strongly rooted in the taxonomic tradition of conceptual scheme development is taken with the aim of aggregating and characterizing some of the main component entities in the burgeoning domain of hybrid crowd-AI centered systems. The goal of this article is thus to propose a theoretically grounded and empirically validated analytical framework for the study of crowd-machine interaction and its environment. Based on a scoping review and several cross-sectional analyses of research studies comprising hybrid forms of human interaction with AI systems and applications at a crowd scale, the available literature was distilled and incorporated into a unifying framework comprised of taxonomic units distributed across integration dimensions that range from the original time and space axes in which every collaborative activity take place to the main attributes that constitute a hybrid intelligence architecture. The upshot is that when turning to the challenges that are inherent in tasks requiring massive participation, novel properties can be obtained for a set of potential scenarios that go beyond the single experience of a human interacting with the technology to comprise a vast set of massive machine-crowd interactions. | 
    
| Audience | Academic | 
    
| Author | Pimentel, Ana Paula Schneider, Daniel Fonseca, Benjamim Grover, Andrea Correia, António Chaves, Ramon de Almeida, Marcos Antonio  | 
    
| Author_xml | – sequence: 1 givenname: António orcidid: 0000-0002-2736-3835 surname: Correia fullname: Correia, António – sequence: 2 givenname: Andrea orcidid: 0000-0003-4082-4138 surname: Grover fullname: Grover, Andrea – sequence: 3 givenname: Daniel orcidid: 0000-0003-2987-4732 surname: Schneider fullname: Schneider, Daniel – sequence: 4 givenname: Ana Paula surname: Pimentel fullname: Pimentel, Ana Paula – sequence: 5 givenname: Ramon surname: Chaves fullname: Chaves, Ramon – sequence: 6 givenname: Marcos Antonio orcidid: 0000-0002-8900-3464 surname: de Almeida fullname: de Almeida, Marcos Antonio – sequence: 7 givenname: Benjamim orcidid: 0000-0002-0850-9755 surname: Fonseca fullname: Fonseca, Benjamim  | 
    
| BookMark | eNqFUU1v1DAUtFCRKKUn_oAljpDir9gOt9UC7Uqtemh7trzOc_AqawcnS8m_x21QVSGk2gdbTzPz5s17i45iioDQe0rOOG_IZzsMlBPBaKNfoWNGlKy4oOro2f8NOh3HHSmnoVxTcozuvsIYuhhih33K-GLe5tDiTZyg70MH0cEXvMK39neKaT9jG1t8c8i_YMbJ43VO9211Zd2PEOGRlK2bQorv0Gtv-xFO_74n6O77t9v1RXV5fb5Zry4rJwifKl3bVnBVK0k50-BcQ51UzDuxVbLhTCjdCmBMgeRcS29VU4MvM0JNiaKEn6DNotsmuzNDDnubZ5NsMI-FlDtj8xRcD2Zbc1HThnmQQlDbbK3XjnHpoLSE2hetT4vWIQ52vrd9_yRIiXlI2DxLuMA_LPAhp58HGCezS4ccy7SGqeKTSaVlQZ0tqM4WDyH6NJWIym1hH1zZnw-lvlLFmVaa0UL4uBBcTuOYwb9ggv6DdmGyDxsobUL_X84fhx6omQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_ifacol_2024_09_225 crossref_primary_10_1109_THMS_2023_3319290 crossref_primary_10_3390_app13085048 crossref_primary_10_3390_app14114662 crossref_primary_10_1016_j_giq_2025_102020 crossref_primary_10_1145_3690829 crossref_primary_10_1007_s10845_024_02376_5 crossref_primary_10_1145_3637382 crossref_primary_10_1016_j_futures_2025_103550 crossref_primary_10_1007_s00146_025_02295_w  | 
    
| Cites_doi | 10.1073/pnas.1807190116 10.1109/SMC.2019.8914075 10.7551/mitpress/2137.001.0001 10.1145/3173574.3173869 10.1145/3385032.3385044 10.1080/10580530.2013.739883 10.24251/HICSS.2021.129 10.1109/HICSS.2013.143 10.1109/MC.2020.2996587 10.1145/2441776.2441923 10.1016/j.chb.2017.04.044 10.1007/978-3-030-58529-7_20 10.1007/978-3-030-12334-5 10.3390/app10238410 10.1145/3313831.3376799 10.1145/3359250 10.1145/3441852.3476549 10.1609/hcomp.v9i1.18943 10.1007/978-3-319-46723-8_71 10.1109/ACCESS.2022.3148400 10.15346/hc.v8i2.121 10.1145/3173574.3173682 10.15346/hc.v9i1.133 10.1145/3419764 10.1016/j.ipm.2019.102135 10.3389/frai.2022.826499 10.1080/0144929X.2022.2150564 10.1023/A:1021247413718 10.1007/s10726-022-09801-1 10.1109/ICDCS.2019.00123 10.1145/3411764.3445188 10.1145/3290605.3300233 10.1007/s10796-022-10259-4 10.1038/d41586-021-01170-0 10.1145/1031607.1031626 10.1609/hcomp.v3i1.13235 10.1145/3436954 10.1117/1.JMI.5.3.034002 10.1609/aaai.v34i03.5658 10.2753/JEC1086-4415150101 10.1007/s10489-022-03593-2 10.1016/j.ijinfomgt.2020.102121 10.1145/3449289 10.1145/192844.193021 10.1007/978-3-030-52237-7_20 10.1145/3411286 10.1145/3479196 10.1007/s00778-018-0516-7 10.1016/j.ipm.2022.103027 10.1146/annurev.es.17.110186.002231 10.1371/journal.pmed.1001603 10.1007/s10606-018-9336-y 10.1145/2631775.2631819 10.1007/s10726-022-09792-z 10.1145/3025453.3025811 10.1007/s40685-020-00108-y 10.1016/j.endeavour.2014.03.002 10.1145/3546155.3546682 10.1145/3301275.3302301 10.1111/1468-0394.00151 10.1177/104649649903000202 10.1007/s10606-022-09433-8 10.1080/10447318.2022.2041900 10.1177/01655515211062466 10.1145/3290605.3300773 10.1609/hcomp.v9i1.18950 10.3390/forecast3030039 10.1145/3494522 10.3390/app12199830 10.1007/s11192-021-03948-5 10.1145/3415181 10.1145/3359209 10.1145/2984511.2984553 10.1145/3019600 10.1111/isj.12227 10.1016/j.cosrev.2015.05.001 10.1145/3148148 10.1109/CBI.2014.16 10.1145/3274442 10.1108/JKM-10-2021-0769 10.1073/pnas.2122636119 10.1177/0950017019886511 10.1145/2702123.2702469 10.24251/HICSS.2018.150 10.1177/15553434211017354 10.1145/3308558.3313599 10.1016/j.artint.2020.103351 10.1186/s12874-016-0116-4 10.1007/s10606-017-9291-z 10.1609/hcomp.v6i1.13331 10.1504/IJISD.2009.033083 10.1609/hcomp.v7i1.5282 10.1111/j.1547-5069.1987.tb00613.x 10.1111/caim.12454 10.1145/3479586 10.1051/0004-6361/202243428 10.24251/HICSS.2019.034 10.1177/0165551514550140 10.1109/EMR.2010.5559142 10.1145/3140459 10.1145/1924421.1924442 10.1145/3018896.3018916 10.1016/j.dss.2020.113404 10.1109/TCSS.2021.3109143 10.1145/3274300 10.1145/2047196.2047199 10.1145/3173574.3173685 10.1109/TVT.2016.2592685 10.1016/j.ipm.2021.102584 10.1016/j.jss.2020.110611 10.1057/ejis.2012.26 10.1145/3274373 10.15346/hc.v8i2.123 10.1080/10447318.2022.2050543 10.1145/3492854 10.1145/2675133.2675161 10.1007/s10606-018-9343-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app13042198 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest One Academic ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_b5345192fe6441a9baf8c236cec67e5f 10.3390/app13042198 A751987821 10_3390_app13042198  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c403t-85ad4375761328ecc91c672fc4b76932478d4e227e63386fa795ef304e5107103 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Fri Oct 03 12:40:27 EDT 2025 Sun Oct 26 02:58:21 EDT 2025 Thu Sep 11 20:23:41 EDT 2025 Mon Oct 20 16:21:59 EDT 2025 Thu Oct 16 04:23:52 EDT 2025 Thu Apr 24 23:01:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c403t-85ad4375761328ecc91c672fc4b76932478d4e227e63386fa795ef304e5107103 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4082-4138 0000-0002-8900-3464 0000-0002-2736-3835 0000-0003-2987-4732 0000-0002-0850-9755  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2779526786?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2779526786 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b5345192fe6441a9baf8c236cec67e5f unpaywall_primary_10_3390_app13042198 proquest_journals_2779526786 gale_infotracacademiconefile_A751987821 crossref_primary_10_3390_app13042198 crossref_citationtrail_10_3390_app13042198  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-02-01 | 
    
| PublicationDateYYYYMMDD | 2023-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_137 ref_92 ref_139 Moayedikia (ref_87) 2020; 139 Schmitz (ref_85) 2018; 1 Blandford (ref_93) 2001; 18 Harris (ref_7) 2019; 3 ref_13 Pei (ref_146) 2021; 5 ref_12 Sayin (ref_91) 2021; 5 ref_130 ref_97 ref_132 ref_96 ref_134 ref_19 ref_18 Bharadwaj (ref_4) 2022; 29 Avdic (ref_138) 2021; 5 ref_126 ref_127 ref_129 ref_120 ref_22 ref_121 Mannes (ref_125) 2020; 41 ref_28 Liu (ref_110) 2021; 26 Dafoe (ref_100) 2021; 593 Mosconi (ref_131) 2017; 26 Renyi (ref_14) 2022; 31 Saxton (ref_26) 2013; 30 Larsen (ref_54) 2019; 20 ref_72 ref_71 ref_70 Nickerson (ref_6) 2013; 22 Huang (ref_94) 2022; 6 Mock (ref_44) 2022; 119 ref_151 ref_79 Zhang (ref_98) 2022; 59 ref_78 Rafner (ref_89) 2022; 9 ref_76 ref_75 Basker (ref_107) 2022; 3 Venkatagiri (ref_95) 2019; 3 Modaresnezhad (ref_10) 2020; 57 Thieme (ref_133) 2020; 27 Grudin (ref_5) 2012; 2 Sundar (ref_109) 2020; 25 Trouille (ref_136) 2019; 116 Littmann (ref_20) 2014; 38 Anjum (ref_135) 2021; 8 Thomer (ref_15) 2018; 2 Rahman (ref_84) 2018; 28 Hettiachchi (ref_143) 2020; 4 ref_148 Chan (ref_119) 2018; 2 ref_81 ref_149 Aristeidou (ref_77) 2017; 74 ref_140 ref_142 ref_88 ref_141 Bhatti (ref_11) 2020; 167 Straus (ref_60) 1999; 30 Heim (ref_2) 2018; 5 Alter (ref_69) 2013; 14 McNeese (ref_99) 2021; 15 Nakatsu (ref_27) 2014; 40 Jin (ref_86) 2020; 287 Zimmerman (ref_144) 2020; 28 Guo (ref_40) 2018; 2 Zwass (ref_24) 2010; 15 Sun (ref_80) 2022; 6 Teevan (ref_82) 2016; 23 ref_58 ref_57 Eggert (ref_118) 2020; 13 ref_55 Bakici (ref_147) 2020; 54 ref_53 ref_51 Chen (ref_31) 2022; 26 ref_59 ref_61 Heath (ref_128) 2002; 11 Rasch (ref_45) 1987; 19 Vaughan (ref_67) 2017; 18 ref_68 Lee (ref_73) 2018; 2 ref_66 Karachiwalla (ref_62) 2021; 30 ref_64 ref_63 Colazo (ref_43) 2022; 666 Hettiachchi (ref_145) 2022; 55 Akata (ref_16) 2020; 53 Siemon (ref_65) 2022; 31 Sutherland (ref_150) 2019; 34 Xu (ref_42) 2022; 39 Sokal (ref_47) 1986; 17 ref_115 Schlagwein (ref_122) 2018; 29 ref_117 ref_116 Zulfiqar (ref_83) 2022; 10 ref_35 ref_34 Tocchetti (ref_105) 2022; 5 ref_33 ref_32 ref_30 ref_113 ref_39 ref_38 ref_37 Sai (ref_52) 2021; 58 Hansson (ref_114) 2019; 28 Palmer (ref_124) 2021; 8 ref_104 Kang (ref_111) 2022; 27 ref_103 Mirbabaie (ref_108) 2022; 50 Malone (ref_23) 2010; 38 Zhang (ref_36) 2021; 9 ref_106 Wang (ref_74) 2016; 66 Daniel (ref_112) 2018; 51 ref_46 Shaw (ref_9) 1973; 3 ref_41 ref_102 Gadiraju (ref_123) 2018; 28 ref_101 ref_1 Doan (ref_25) 2011; 54 Singh (ref_56) 2021; 126 ref_3 Shneiderman (ref_90) 2020; 10 Pescetelli (ref_17) 2021; 3 ref_49 ref_48 ref_8 Webster (ref_50) 2002; 26 Corney (ref_21) 2009; 4 Hosseini (ref_29) 2015; 17  | 
    
| References_xml | – volume: 116 start-page: 1902 year: 2019 ident: ref_136 article-title: Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human-machine systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1807190116 – ident: ref_41 doi: 10.1109/SMC.2019.8914075 – ident: ref_71 doi: 10.7551/mitpress/2137.001.0001 – ident: ref_39 doi: 10.1145/3173574.3173869 – volume: 6 start-page: 1 year: 2022 ident: ref_94 article-title: Being a solo endeavor or team worker in crowdsourcing contests? It is a long-term decision you need to make publication-title: Proc. ACM Hum.-Comput. Interact. – ident: ref_19 doi: 10.1145/3385032.3385044 – volume: 30 start-page: 2 year: 2013 ident: ref_26 article-title: Rules of crowdsourcing: Models, issues, and systems of control publication-title: Inf. Syst. Management doi: 10.1080/10580530.2013.739883 – ident: ref_59 doi: 10.24251/HICSS.2021.129 – ident: ref_113 doi: 10.1109/HICSS.2013.143 – volume: 53 start-page: 18 year: 2020 ident: ref_16 article-title: A research agenda for hybrid intelligence: Augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence publication-title: Computer doi: 10.1109/MC.2020.2996587 – ident: ref_57 doi: 10.1145/2441776.2441923 – volume: 74 start-page: 246 year: 2017 ident: ref_77 article-title: Profiles of engagement in online communities of citizen science participation publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2017.04.044 – ident: ref_66 doi: 10.1007/978-3-030-58529-7_20 – ident: ref_81 doi: 10.1007/978-3-030-12334-5 – volume: 41 start-page: 61 year: 2020 ident: ref_125 article-title: Governance, risk, and artificial intelligence publication-title: AI Mag. – ident: ref_3 doi: 10.3390/app10238410 – ident: ref_141 doi: 10.1145/3313831.3376799 – volume: 3 start-page: 1 year: 2019 ident: ref_7 article-title: Joining together online: The trajectory of CSCW scholarship on group formation publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3359250 – ident: ref_33 doi: 10.1145/3441852.3476549 – ident: ref_117 doi: 10.1609/hcomp.v9i1.18943 – ident: ref_37 doi: 10.1007/978-3-319-46723-8_71 – volume: 10 start-page: 24721 year: 2022 ident: ref_83 article-title: Microtasking activities in crowdsourced software development: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3148400 – volume: 8 start-page: 76 year: 2021 ident: ref_135 article-title: Exploring the use of deep learning with crowdsourcing to annotate images publication-title: Hum. Comput. doi: 10.15346/hc.v8i2.121 – volume: 26 start-page: 2 year: 2002 ident: ref_50 article-title: Analyzing the past to prepare for the future: Writing a literature review publication-title: MIS Q. – ident: ref_96 doi: 10.1145/3173574.3173682 – volume: 9 start-page: 66 year: 2022 ident: ref_89 article-title: Mapping citizen science through the lens of human-centered AI publication-title: Hum. Comput. doi: 10.15346/hc.v9i1.133 – volume: 10 start-page: 1 year: 2020 ident: ref_90 article-title: Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy human-centered AI systems publication-title: ACM Trans. Interact. Intell. Syst. doi: 10.1145/3419764 – volume: 57 start-page: 102135 year: 2020 ident: ref_10 article-title: Information technology (IT) enabled crowdsourcing: A conceptual framework publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2019.102135 – volume: 5 start-page: 826499 year: 2022 ident: ref_105 article-title: EXP-Crowd: A gamified crowdsourcing framework for explainability publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.826499 – ident: ref_48 – volume: 5 start-page: 1 year: 2021 ident: ref_91 article-title: On the state of reporting in crowdsourcing experiments and a checklist to aid current practices publication-title: Proc. ACM Hum.-Comput. Interact. – ident: ref_151 doi: 10.1080/0144929X.2022.2150564 – volume: 11 start-page: 317 year: 2002 ident: ref_128 article-title: Configuring awareness publication-title: Comput. Support. Coop. Work. doi: 10.1023/A:1021247413718 – ident: ref_115 doi: 10.1007/s10726-022-09801-1 – ident: ref_58 doi: 10.1109/ICDCS.2019.00123 – ident: ref_132 doi: 10.1145/3411764.3445188 – volume: 2 start-page: 1323 year: 2012 ident: ref_5 article-title: Taxonomy and theory in computer supported cooperative work publication-title: Oxf. Handb. Organ. Psychol. – ident: ref_88 doi: 10.1145/3290605.3300233 – ident: ref_149 – ident: ref_70 doi: 10.1007/s10796-022-10259-4 – ident: ref_97 – ident: ref_53 – volume: 3 start-page: 8 year: 1973 ident: ref_9 article-title: Scaling group tasks: A method for dimensional analysis publication-title: JSAS Cat. Sel. Doc. Psychol. – volume: 593 start-page: 33 year: 2021 ident: ref_100 article-title: Cooperative AI: Machines must learn to find common ground publication-title: Nature doi: 10.1038/d41586-021-01170-0 – ident: ref_72 doi: 10.1145/1031607.1031626 – ident: ref_75 doi: 10.1609/hcomp.v3i1.13235 – volume: 28 start-page: 72 year: 2020 ident: ref_144 article-title: UX designers pushing AI in the enterprise: A case for adaptive UIs publication-title: Interactions doi: 10.1145/3436954 – ident: ref_134 – volume: 5 start-page: 034002 year: 2018 ident: ref_2 article-title: Large-scale medical image annotation with crowd-powered algorithms publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.3.034002 – ident: ref_34 doi: 10.1609/aaai.v34i03.5658 – volume: 15 start-page: 11 year: 2010 ident: ref_24 article-title: Co-creation: Toward a taxonomy and an integrated research perspective publication-title: Int. J. Electron. Commer. doi: 10.2753/JEC1086-4415150101 – ident: ref_148 doi: 10.1007/s10489-022-03593-2 – volume: 54 start-page: 102121 year: 2020 ident: ref_147 article-title: Comparison of crowdsourcing platforms from social-psychological and motivational perspectives publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2020.102121 – volume: 5 start-page: 1 year: 2021 ident: ref_138 article-title: Two cases for traces: A theoretical framing of mediated joint activity publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3449289 – volume: 26 start-page: 384 year: 2021 ident: ref_110 article-title: In AI we trust? Effects of agency locus and transparency on uncertainty reduction in human–AI interaction publication-title: J. Comput. Commun. – ident: ref_130 doi: 10.1145/192844.193021 – ident: ref_64 doi: 10.1007/978-3-030-52237-7_20 – volume: 27 start-page: 40 year: 2020 ident: ref_133 article-title: Interpretability as a dynamic of human-AI interaction publication-title: Interactions doi: 10.1145/3411286 – volume: 29 start-page: 1 year: 2022 ident: ref_4 article-title: Flud: A hybrid crowd–algorithm approach for visualizing biological networks publication-title: ACM Trans. Comput. Interact. doi: 10.1145/3479196 – volume: 28 start-page: 1 year: 2018 ident: ref_84 article-title: Optimized group formation for solving collaborative tasks publication-title: VLDB J. doi: 10.1007/s00778-018-0516-7 – volume: 59 start-page: 103027 year: 2022 ident: ref_98 article-title: Imbalanced volunteer engagement in cultural heritage crowdsourcing: A task-related exploration based on causal inference publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2022.103027 – volume: 17 start-page: 423 year: 1986 ident: ref_47 article-title: Phenetic taxonomy: Theory and methods publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.17.110186.002231 – ident: ref_55 doi: 10.1371/journal.pmed.1001603 – volume: 28 start-page: 815 year: 2018 ident: ref_123 article-title: Crowd anatomy beyond the good and bad: Behavioral traces for crowd worker modeling and pre-selection publication-title: Comput. Support. Cooperative Work. doi: 10.1007/s10606-018-9336-y – ident: ref_28 doi: 10.1145/2631775.2631819 – volume: 31 start-page: 871 year: 2022 ident: ref_65 article-title: Elaborating team roles for artificial intelligence-based teammates in human-AI collaboration publication-title: Group Decis. Negot. doi: 10.1007/s10726-022-09792-z – ident: ref_103 doi: 10.1145/3025453.3025811 – volume: 13 start-page: 685 year: 2020 ident: ref_118 article-title: Frontiers of business intelligence and analytics 3.0: A taxonomy-based literature review and research agenda publication-title: Bus. Res. doi: 10.1007/s40685-020-00108-y – volume: 38 start-page: 130 year: 2014 ident: ref_20 article-title: Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science publication-title: Endeavour doi: 10.1016/j.endeavour.2014.03.002 – ident: ref_139 doi: 10.1145/3546155.3546682 – ident: ref_38 doi: 10.1145/3301275.3302301 – volume: 18 start-page: 3 year: 2001 ident: ref_93 article-title: Intelligent interaction design: The role of human-computer interaction research in the design of intelligent systems publication-title: Expert Syst. doi: 10.1111/1468-0394.00151 – ident: ref_137 – volume: 14 start-page: 2 year: 2013 ident: ref_69 article-title: Work system theory: Overview of core concepts, extensions, and challenges for the future publication-title: J. Assoc. Inf. Syst. – volume: 27 start-page: zmac014 year: 2022 ident: ref_111 article-title: AI agency vs. human agency: Understanding human–AI interactions on TikTok and their implications for user engagement publication-title: J. Comput. Commun. – volume: 30 start-page: 166 year: 1999 ident: ref_60 article-title: Testing a typology of tasks: An empirical validation of McGrath’s (1984) group task circumplex publication-title: Small Group Research doi: 10.1177/104649649903000202 – volume: 31 start-page: 517 year: 2022 ident: ref_14 article-title: Uncovering the complexity of care networks—Towards a taxonomy of collaboration complexity in homecare publication-title: Comput. Support. Cooperative Work. (CSCW) doi: 10.1007/s10606-022-09433-8 – volume: 39 start-page: 494 year: 2022 ident: ref_42 article-title: Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI publication-title: Int. J. Human–Computer Interact. doi: 10.1080/10447318.2022.2041900 – ident: ref_101 – ident: ref_102 doi: 10.1177/01655515211062466 – ident: ref_106 doi: 10.1145/3290605.3300773 – ident: ref_22 – volume: 20 start-page: 15 year: 2019 ident: ref_54 article-title: Understanding the elephant: The discourse approach to boundary identification and corpus construction for theory review articles publication-title: J. Assoc. Inf. Syst. – ident: ref_120 doi: 10.1609/hcomp.v9i1.18950 – volume: 3 start-page: 633 year: 2021 ident: ref_17 article-title: A brief taxonomy of hybrid intelligence publication-title: Forecasting doi: 10.3390/forecast3030039 – volume: 55 start-page: 1 year: 2022 ident: ref_145 article-title: A survey on task assignment in crowdsourcing publication-title: ACM Comput. Surv. doi: 10.1145/3494522 – ident: ref_78 – ident: ref_49 – ident: ref_32 – ident: ref_68 doi: 10.3390/app12199830 – volume: 126 start-page: 5113 year: 2021 ident: ref_56 article-title: The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis publication-title: Scientometrics doi: 10.1007/s11192-021-03948-5 – volume: 25 start-page: 74 year: 2020 ident: ref_109 article-title: Rise of machine agency: A framework for studying the psychology of human–AI interaction (HAII) publication-title: J. Comput. Commun. – volume: 3 start-page: 1003056 year: 2022 ident: ref_107 article-title: Artificial intelligence and human learning: Improving analytic reasoning via crowdsourcing and structured analytic techniques publication-title: Comput. Educ. – ident: ref_127 – volume: 4 start-page: 1 year: 2020 ident: ref_143 article-title: CrowdCog: A cognitive skill based system for heterogeneous task assignment and recommendation in crowdsourcing publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3415181 – ident: ref_61 – volume: 3 start-page: 1 year: 2019 ident: ref_95 article-title: GroundTruth: Augmenting expert image geolocation with crowdsourcing and shared representations publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3359209 – ident: ref_104 – ident: ref_76 doi: 10.1145/2984511.2984553 – volume: 23 start-page: 26 year: 2016 ident: ref_82 article-title: The future of microwork publication-title: XRDS Crossroads ACM Mag. Stud. doi: 10.1145/3019600 – volume: 29 start-page: 811 year: 2018 ident: ref_122 article-title: Ethical norms and issues in crowdsourcing practices: A Habermasian analysis publication-title: Inf. Syst. J. doi: 10.1111/isj.12227 – volume: 2 start-page: 1 year: 2018 ident: ref_40 article-title: Crowd-AI camera sensing in the real world publication-title: Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol. – volume: 17 start-page: 43 year: 2015 ident: ref_29 article-title: Crowdsourcing: A taxonomy and systematic mapping study publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2015.05.001 – volume: 50 start-page: 38 year: 2022 ident: ref_108 article-title: Ethics and AI in information systems research publication-title: Commun. Assoc. Inf. Syst. – ident: ref_8 – volume: 51 start-page: 1 year: 2018 ident: ref_112 article-title: Quality control in crowdsourcing: A survey of quality attributes, assessment techniques, and assurance actions publication-title: ACM Comput. Surv. doi: 10.1145/3148148 – ident: ref_1 doi: 10.1109/CBI.2014.16 – volume: 2 start-page: 1 year: 2018 ident: ref_15 article-title: Transforming taxonomic interfaces: “Arm’s length” cooperative work and the maintenance of a long-lived classification system publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3274442 – volume: 26 start-page: 324 year: 2022 ident: ref_31 article-title: Exploring the effects of problem- and solution-related knowledge sharing in internal crowdsourcing publication-title: J. Knowl. Manag. doi: 10.1108/JKM-10-2021-0769 – volume: 119 start-page: e2122636119 year: 2022 ident: ref_44 article-title: Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2122636119 – volume: 34 start-page: 457 year: 2019 ident: ref_150 article-title: Work precarity and gig literacies in online freelancing publication-title: Work Employ. Soc. doi: 10.1177/0950017019886511 – ident: ref_92 doi: 10.1145/2702123.2702469 – ident: ref_51 doi: 10.24251/HICSS.2018.150 – volume: 15 start-page: 83 year: 2021 ident: ref_99 article-title: Team situation awareness and conflict: A study of human–machine teaming publication-title: J. Cogn. Eng. Decis. Mak. doi: 10.1177/15553434211017354 – ident: ref_121 doi: 10.1145/3308558.3313599 – volume: 287 start-page: 103351 year: 2020 ident: ref_86 article-title: A technical survey on statistical modelling and design methods for crowdsourcing quality control publication-title: Artif. Intell. doi: 10.1016/j.artint.2020.103351 – ident: ref_46 doi: 10.1186/s12874-016-0116-4 – volume: 26 start-page: 959 year: 2017 ident: ref_131 article-title: From Facebook to the neighbourhood: Infrastructuring of hybrid community engagement publication-title: Comput. Support. Coop. Work (CSCW) doi: 10.1007/s10606-017-9291-z – ident: ref_142 doi: 10.1609/hcomp.v6i1.13331 – volume: 4 start-page: 294 year: 2009 ident: ref_21 article-title: Outsourcing labour to the cloud publication-title: Int. J. Innovation Sustain. Dev. doi: 10.1504/IJISD.2009.033083 – ident: ref_129 doi: 10.1609/hcomp.v7i1.5282 – volume: 19 start-page: 147 year: 1987 ident: ref_45 article-title: The nature of taxonomy publication-title: Image J. Nurs. Scholarsh. doi: 10.1111/j.1547-5069.1987.tb00613.x – volume: 30 start-page: 563 year: 2021 ident: ref_62 article-title: Understanding crowdsourcing projects: A review on the key design elements of a crowdsourcing initiative publication-title: Creativity Innov. Manag. doi: 10.1111/caim.12454 – volume: 5 start-page: 1 year: 2021 ident: ref_146 article-title: Quality control in crowdsourcing based on fine-grained behavioral features publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3479586 – volume: 666 start-page: A77 year: 2022 ident: ref_43 article-title: Zero-phase angle asteroid taxonomy classification using unsupervised machine learning algorithms publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202243428 – ident: ref_18 doi: 10.24251/HICSS.2019.034 – volume: 40 start-page: 823 year: 2014 ident: ref_27 article-title: A taxonomy of crowdsourcing based on task complexity publication-title: J. Inf. Sci. doi: 10.1177/0165551514550140 – ident: ref_63 – volume: 38 start-page: 38 year: 2010 ident: ref_23 article-title: The collective intelligence genome publication-title: IEEE Eng. Manag. Rev. doi: 10.1109/EMR.2010.5559142 – volume: 1 start-page: 1 year: 2018 ident: ref_85 article-title: Online sequencing of non-decomposable macrotasks in expert crowdsourcing publication-title: ACM Trans. Soc. Comput. doi: 10.1145/3140459 – ident: ref_79 – volume: 54 start-page: 86 year: 2011 ident: ref_25 article-title: Crowdsourcing systems on the world-wide web publication-title: Commun. ACM doi: 10.1145/1924421.1924442 – volume: 18 start-page: 7026 year: 2017 ident: ref_67 article-title: Making better use of the crowd: How crowdsourcing can advance machine learning research publication-title: J. Mach. Learn. Res. – ident: ref_30 doi: 10.1145/3018896.3018916 – volume: 139 start-page: 113404 year: 2020 ident: ref_87 article-title: Optimizing microtask assignment on crowdsourcing platforms using Markov chain Monte Carlo publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2020.113404 – ident: ref_116 – volume: 9 start-page: 1515 year: 2021 ident: ref_36 article-title: CollabLearn: An uncertainty-aware crowd-AI collaboration system for cultural heritage damage assessment publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2021.3109143 – volume: 2 start-page: 1 year: 2018 ident: ref_119 article-title: SOLVENT: A mixed initiative system for finding analogies between research papers publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3274300 – ident: ref_140 doi: 10.1145/2047196.2047199 – ident: ref_35 doi: 10.1145/3173574.3173685 – volume: 66 start-page: 2902 year: 2016 ident: ref_74 article-title: A picture is worth a thousand words: Share your real-time view on the road publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2592685 – volume: 58 start-page: 102584 year: 2021 ident: ref_52 article-title: Taxonomy of centralization in public blockchain systems: A systematic literature review publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102584 – ident: ref_12 – volume: 167 start-page: 110611 year: 2020 ident: ref_11 article-title: General framework, opportunities and challenges for crowdsourcing techniques: A comprehensive survey publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2020.110611 – volume: 22 start-page: 336 year: 2013 ident: ref_6 article-title: A method for taxonomy development and its application in information systems publication-title: Eur. J. Inf. Syst. doi: 10.1057/ejis.2012.26 – volume: 2 start-page: 1 year: 2018 ident: ref_73 article-title: Exploring real-time collaboration in crowd-powered systems through a UI design tool publication-title: Proc. ACM Human-Computer Interact. doi: 10.1145/3274373 – volume: 8 start-page: 54 year: 2021 ident: ref_124 article-title: Citizen science, computing, and conservation: How can “crowd AI” change the way we tackle large-scale ecological challenges? publication-title: Hum. Comput. doi: 10.15346/hc.v8i2.123 – ident: ref_126 doi: 10.1080/10447318.2022.2050543 – volume: 6 start-page: 1 year: 2022 ident: ref_80 article-title: Investigating crowdworkers’ identify, perception and practices in micro-task crowdsourcing publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3492854 – ident: ref_13 doi: 10.1145/2675133.2675161 – volume: 28 start-page: 791 year: 2019 ident: ref_114 article-title: Crowd dynamics: Conflicts, contradictions, and community in crowdsourcing publication-title: Comput. Support. Coop. Work. doi: 10.1007/s10606-018-9343-z  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.3271341 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2198 | 
    
| SubjectTerms | Algorithms Artificial intelligence Collaboration conceptual framework crowd-machine hybrid interaction Crowdsourcing Decision making design implications hybrid intelligence survey Surveys Taxonomy  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYQF-CAeIryUg4gHlLFmj6SchsvDSS4wCRuUZImp6mgsQH799htmYpAcOE6eZLr2LG_1v4MsBeZxGKd7kOuuUaAYlyocx9Rl0VmLDfcCpodvr3Lev3k5jF9bK36op6wmh64NtyJSWNiQOHeUebWudFeWh5n1tlMuNTT7duReQtMVXdwHhF1VT2QFyOup-_BEUF3BNlfUlDF1P_9Pl6AuXH5rCdvejBoJZyrJVhsKkXWrTVchhlXrsBCiz9wBZabyHxhhw199NEq9C-qpgwUYFiQst6EZrLYdYt685R12YN-r8YZmC4Ldj8evroJe_LsHFF5Ed5WHZau-tOwnnxYg_7V5cN5L2yWJ4Q26cSjUKa6SGKBJke8KfGg8ggNxr1NDK0_5ImQReI4Fy5DlJp5LfLUebSQwyjFsiNeh9nyqXQbwHIvpI2sNsJgfWdiKVxUCFvotOMkFjwBHH_aU9mGWZwWXAwUIgwyvmoZP4C9qfBzTajxs9gZHcxUhFiwqx_QN1TjG-ov3wjggI5VUayiQlY3Iwf4WMR6pboipXcukkcBbH-evGqC-EVxgTbhmM2zAPan3vCb1pv_ofUWzNNO-7o1fBtmR8Ox28HKZ2R2Kyf_ADeb_ro priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeKC1ULBTkQxEPaZvau2t7e0GhUAWkVkg0Ujm5tteuENEmyqMQfj3jXScKDyEkrtFsZGfG4-_bzHwDsE9NbhGn-5RpppGgGJfq0tNQZcGNZYZZEXqHT894f5C_vygu4pzTaSyrRCr-uUnSDEl2imlWdGnWzbt4uGR3XPlX1_FVEuV4lGW4xW7CBi8QjHdgY3D2ofcpjJRbPtx25WVI7sOfwjTwd_yin-6hRq7_96S8Cbfm9VgvvurhcO3WOdmCy-V622KTLwfzmTmw33-RcvyPDd2FOxGRkl4bQttww9U7sLmmU7gD2zEDTMnzKFP94h4M3jTFH2hAEPiS_iL0fpF3axKfR6RHzvW3pm2C6LoiH-eTa7cgI0-Okf1X6WlTyemahyZth8V9GJy8PT_up3FIQ2rzw2yWykJXeSbQtchrJQZESS0XzNvchDGLLBeyyh1jwnFkw9xrURbOoxMcZgOEN9kudOpR7R4AKb2QllpthEEcaTIpHK2ErXRx6CQCqwReLl2mbFQwD4M0hgqZTPCvWvNvAvsr43Er3PFns9fB9yuToLbdfDCaXKl4eJUpsqDCw7wL6FGXRntpWcatw626wifwLESOCjkBF2R1bG3AbQV1LdUTRXi3IxlNYG8ZXComi6liAn8ThqiBJ_B0FXB_W_XDf7R7BLcZgrK2ynwPOrPJ3D1GEDUzT-JB-QFvBBO_ priority: 102 providerName: Unpaywall  | 
    
| Title | Designing for Hybrid Intelligence: A Taxonomy and Survey of Crowd-Machine Interaction | 
    
| URI | https://www.proquest.com/docview/2779526786 https://www.mdpi.com/2076-3417/13/4/2198/pdf?version=1676280082 https://doaj.org/article/b5345192fe6441a9baf8c236cec67e5f  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAbEBWmBUfhjiQ4ponA87kxDqxkpBWjXBKo2nyHZsXqq0dC3Q_353idN1Au0xkRPZd77z3fnudwBHkU4M2uku5IordFC0DVXuIsqyyLThmhtBtcPno2w4Tr5epVdbMGprYSitstWJtaIup4Zi5O-5EHnKUbVmH2e_QuoaRberbQsN5VsrlB9qiLFt2OGEjNWBnZOz0cW3ddSFUDBl1GsK9WL09-meOCKXHp3vO0dTjeD_r57ehQfLaqZWf9RksnEQDR7DI29Bsn7D8j3YstU-7G7gCu7DnpfYa_bGw0q_fQLjT3WyBg5gaKiy4YpqtdiXDUjOY9Znl-pvXebAVFWy78v5b7tiU8dO0Vsvw_M689LWH82bioinMB6cXZ4OQ99UITRJL16EMlVlEgtkBfqhEhmYRyYT3JlEU1tEnghZJpZzYTP0XjOnkOzWIYUsSi-aI_Ez6FTTyh4Ay52QJjJKC412n46lsFEpTKnSnpVoCAXwrqVnYTziODW-mBToeRDxiw3iB3C0HjxrgDb-P-yEGLMeQujY9Yvp_Gfhha3QaUyoOdxZsvZUrpWThseZsbhUm7oAXhNbC5JhnJBRvhQBl0VoWEVfpBSLkTwK4LDlfOGF-7q43YoBvFrvhvtm_fz-37yAh9TFvkkGP4TOYr60L9HWWegubMvB567fxt06YoBP49FF_8cNa5r_4A | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAbEBImyAHzbxIUVL7CROkCbUfalla4WglfYWbMfhpWq6flD6z_G3cZe6pQi0t71GF-vsO5_v7LvfARyGOjLop5c-V1xhgKKtr7IypCyLRBuuuZFUO9zuJM1e9OkmvtmAX8taGEqrXNrE2lAXlaE78mMuZRZzNK3Jx-GtT12j6HV12UJDudYKxUkNMeYKO67sfIYh3PikdY7yPuL88qJ71vRdlwHfRIGY-GmsikhI5A0DsxRnlIUmkbw0kaY-gTySaRFZzqVNMJxLSoV82FIEkUV1xvNZ4LgPYCsSUYbB39bpRefzl9UtD6FupmGwKAwUIgvoXTqkKwQM9v86CuuOAf-eCzuwPR0M1Xym-v21g-_yMTxyHitrLFRsFzbsYA921nAM92DXWYgxe-tgrN89gd55nRyCBAwdY9acU20Ya61BgH5gDdZVP-uyCqYGBfs6Hf2wc1aV7GxUzQq_XWd62vqn0aIC4yn07mV5n8HmoBrY58CyUqYmNEpLjX6mFqm0YSFNoeLApuh4efB-uZ65cQjn1Gijn2OkQ4ufry2-B4cr4uEC2OP_ZKckmBUJoXHXH6rR99xt7lzHglB6eGnJu1SZVmVquEiMxanauPTgDYk1J5uBDBnlSh9wWoS-lTdkTHc_KQ89OFhKPnfGZJz_UX0PjlbacBfXL-4e5jVsN7vt6_y61bnah4cc_bZFIvoBbE5GU_sS_ayJfuWUmcG3-94_vwFJpDam | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7QGyACAzwwyY-pGiJ8-EECaGyUlrGJiRWaW-Z7di8VElJW0r_Nf467vJRikB722vkWLbvfF---x3Aga9CjXa6dbnkEh0UZVyZWp-yLGKlueJaUO3w6Vk8HIefLqKLLfjV1cJQWmUnE2tBnZeaYuRHXIg04iha4yPbpkV86Q_eTb-71EGKXlq7dhoNi5yY1RLdt9nbUR9pfcj54MP58dBtOwy4OvSCuZtEMg8DgetCpyzB3aS-jgW3OlTUI5CHIslDw7kwMbpysZW4BmMDLzTIyqibA5z3BtwUhOJOVeqDj-v4DuFtJr7XlAQGQerRi7RPwQN08_9SgnWvgH81wg7cXhRTuVrKyWRD5Q3uwd3WVmW9hrl2YcsUe7CzgWC4B7utbJixly2A9av7MO7XaSE4gKFJzIYrqgpjow3wzzesx87lz7qggskiZ18X1Q-zYqVlx1W5zN3TOsfT1D9VTe3FAxhfy-E-hO2iLMwjYKkVifa1VEKhhamCRBg_FzqXkWcSNLkceN2dZ6ZbbHNqsTHJ0Mehw882Dt-Bg_XgaQPp8f9h74kw6yGEw11_KKtvWXutMxUFhM_DrSG7UqZK2kTzINYGt2oi68ALImtG0gIXpGVb9IDbItytrCciivok3Hdgv6N81oqRWfaH6R04XHPDVat-fPU0z-EW3prs8-js5Anc4WiwNRno-7A9rxbmKRpYc_Ws5mQGl9d9dX4Dt9s0QA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeKC1ULBTkQxEPaZvau2t7e0GhUAWkVkg0Ujm5tteuENEmyqMQfj3jXScKDyEkrtFsZGfG4-_bzHwDsE9NbhGn-5RpppGgGJfq0tNQZcGNZYZZEXqHT894f5C_vygu4pzTaSyrRCr-uUnSDEl2imlWdGnWzbt4uGR3XPlX1_FVEuV4lGW4xW7CBi8QjHdgY3D2ofcpjJRbPtx25WVI7sOfwjTwd_yin-6hRq7_96S8Cbfm9VgvvurhcO3WOdmCy-V622KTLwfzmTmw33-RcvyPDd2FOxGRkl4bQttww9U7sLmmU7gD2zEDTMnzKFP94h4M3jTFH2hAEPiS_iL0fpF3axKfR6RHzvW3pm2C6LoiH-eTa7cgI0-Okf1X6WlTyemahyZth8V9GJy8PT_up3FIQ2rzw2yWykJXeSbQtchrJQZESS0XzNvchDGLLBeyyh1jwnFkw9xrURbOoxMcZgOEN9kudOpR7R4AKb2QllpthEEcaTIpHK2ErXRx6CQCqwReLl2mbFQwD4M0hgqZTPCvWvNvAvsr43Er3PFns9fB9yuToLbdfDCaXKl4eJUpsqDCw7wL6FGXRntpWcatw626wifwLESOCjkBF2R1bG3AbQV1LdUTRXi3IxlNYG8ZXComi6liAn8ThqiBJ_B0FXB_W_XDf7R7BLcZgrK2ynwPOrPJ3D1GEDUzT-JB-QFvBBO_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+for+Hybrid+Intelligence%3A+A+Taxonomy+and+Survey+of+Crowd-Machine+Interaction&rft.jtitle=Applied+sciences&rft.au=Correia%2C+Ant%C3%B3nio&rft.au=Grover%2C+Andrea&rft.au=Schneider%2C+Daniel&rft.au=Ana+Paula+Pimentel&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2198&rft_id=info:doi/10.3390%2Fapp13042198&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |