Designing for Hybrid Intelligence: A Taxonomy and Survey of Crowd-Machine Interaction

With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of importance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed workforc...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 4; p. 2198
Main Authors Correia, António, Grover, Andrea, Schneider, Daniel, Pimentel, Ana Paula, Chaves, Ramon, de Almeida, Marcos Antonio, Fonseca, Benjamim
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app13042198

Cover

Abstract With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of importance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed workforce or even on a volunteer basis. However, there is a lack of systematic and empirical examination of the interplay among the processes and activities combining crowd-machine hybrid interaction. To uncover the enduring aspects characterizing the human-centered AI design space when involving ensembles of crowds and algorithms and their symbiotic relations and requirements, a Computer-Supported Cooperative Work (CSCW) lens strongly rooted in the taxonomic tradition of conceptual scheme development is taken with the aim of aggregating and characterizing some of the main component entities in the burgeoning domain of hybrid crowd-AI centered systems. The goal of this article is thus to propose a theoretically grounded and empirically validated analytical framework for the study of crowd-machine interaction and its environment. Based on a scoping review and several cross-sectional analyses of research studies comprising hybrid forms of human interaction with AI systems and applications at a crowd scale, the available literature was distilled and incorporated into a unifying framework comprised of taxonomic units distributed across integration dimensions that range from the original time and space axes in which every collaborative activity take place to the main attributes that constitute a hybrid intelligence architecture. The upshot is that when turning to the challenges that are inherent in tasks requiring massive participation, novel properties can be obtained for a set of potential scenarios that go beyond the single experience of a human interacting with the technology to comprise a vast set of massive machine-crowd interactions.
AbstractList With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has seen an upsurge in terms of importance for scaling up data-driven algorithms in rapid cycles through a relatively low-cost distributed workforce or even on a volunteer basis. However, there is a lack of systematic and empirical examination of the interplay among the processes and activities combining crowd-machine hybrid interaction. To uncover the enduring aspects characterizing the human-centered AI design space when involving ensembles of crowds and algorithms and their symbiotic relations and requirements, a Computer-Supported Cooperative Work (CSCW) lens strongly rooted in the taxonomic tradition of conceptual scheme development is taken with the aim of aggregating and characterizing some of the main component entities in the burgeoning domain of hybrid crowd-AI centered systems. The goal of this article is thus to propose a theoretically grounded and empirically validated analytical framework for the study of crowd-machine interaction and its environment. Based on a scoping review and several cross-sectional analyses of research studies comprising hybrid forms of human interaction with AI systems and applications at a crowd scale, the available literature was distilled and incorporated into a unifying framework comprised of taxonomic units distributed across integration dimensions that range from the original time and space axes in which every collaborative activity take place to the main attributes that constitute a hybrid intelligence architecture. The upshot is that when turning to the challenges that are inherent in tasks requiring massive participation, novel properties can be obtained for a set of potential scenarios that go beyond the single experience of a human interacting with the technology to comprise a vast set of massive machine-crowd interactions.
Audience Academic
Author Pimentel, Ana Paula
Schneider, Daniel
Fonseca, Benjamim
Grover, Andrea
Correia, António
Chaves, Ramon
de Almeida, Marcos Antonio
Author_xml – sequence: 1
  givenname: António
  orcidid: 0000-0002-2736-3835
  surname: Correia
  fullname: Correia, António
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0003-4082-4138
  surname: Grover
  fullname: Grover, Andrea
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0003-2987-4732
  surname: Schneider
  fullname: Schneider, Daniel
– sequence: 4
  givenname: Ana Paula
  surname: Pimentel
  fullname: Pimentel, Ana Paula
– sequence: 5
  givenname: Ramon
  surname: Chaves
  fullname: Chaves, Ramon
– sequence: 6
  givenname: Marcos Antonio
  orcidid: 0000-0002-8900-3464
  surname: de Almeida
  fullname: de Almeida, Marcos Antonio
– sequence: 7
  givenname: Benjamim
  orcidid: 0000-0002-0850-9755
  surname: Fonseca
  fullname: Fonseca, Benjamim
BookMark eNqFUU1v1DAUtFCRKKUn_oAljpDir9gOt9UC7Uqtemh7trzOc_AqawcnS8m_x21QVSGk2gdbTzPz5s17i45iioDQe0rOOG_IZzsMlBPBaKNfoWNGlKy4oOro2f8NOh3HHSmnoVxTcozuvsIYuhhih33K-GLe5tDiTZyg70MH0cEXvMK39neKaT9jG1t8c8i_YMbJ43VO9211Zd2PEOGRlK2bQorv0Gtv-xFO_74n6O77t9v1RXV5fb5Zry4rJwifKl3bVnBVK0k50-BcQ51UzDuxVbLhTCjdCmBMgeRcS29VU4MvM0JNiaKEn6DNotsmuzNDDnubZ5NsMI-FlDtj8xRcD2Zbc1HThnmQQlDbbK3XjnHpoLSE2hetT4vWIQ52vrd9_yRIiXlI2DxLuMA_LPAhp58HGCezS4ccy7SGqeKTSaVlQZ0tqM4WDyH6NJWIym1hH1zZnw-lvlLFmVaa0UL4uBBcTuOYwb9ggv6DdmGyDxsobUL_X84fhx6omQ
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_09_225
crossref_primary_10_1109_THMS_2023_3319290
crossref_primary_10_3390_app13085048
crossref_primary_10_3390_app14114662
crossref_primary_10_1016_j_giq_2025_102020
crossref_primary_10_1145_3690829
crossref_primary_10_1007_s10845_024_02376_5
crossref_primary_10_1145_3637382
crossref_primary_10_1016_j_futures_2025_103550
crossref_primary_10_1007_s00146_025_02295_w
Cites_doi 10.1073/pnas.1807190116
10.1109/SMC.2019.8914075
10.7551/mitpress/2137.001.0001
10.1145/3173574.3173869
10.1145/3385032.3385044
10.1080/10580530.2013.739883
10.24251/HICSS.2021.129
10.1109/HICSS.2013.143
10.1109/MC.2020.2996587
10.1145/2441776.2441923
10.1016/j.chb.2017.04.044
10.1007/978-3-030-58529-7_20
10.1007/978-3-030-12334-5
10.3390/app10238410
10.1145/3313831.3376799
10.1145/3359250
10.1145/3441852.3476549
10.1609/hcomp.v9i1.18943
10.1007/978-3-319-46723-8_71
10.1109/ACCESS.2022.3148400
10.15346/hc.v8i2.121
10.1145/3173574.3173682
10.15346/hc.v9i1.133
10.1145/3419764
10.1016/j.ipm.2019.102135
10.3389/frai.2022.826499
10.1080/0144929X.2022.2150564
10.1023/A:1021247413718
10.1007/s10726-022-09801-1
10.1109/ICDCS.2019.00123
10.1145/3411764.3445188
10.1145/3290605.3300233
10.1007/s10796-022-10259-4
10.1038/d41586-021-01170-0
10.1145/1031607.1031626
10.1609/hcomp.v3i1.13235
10.1145/3436954
10.1117/1.JMI.5.3.034002
10.1609/aaai.v34i03.5658
10.2753/JEC1086-4415150101
10.1007/s10489-022-03593-2
10.1016/j.ijinfomgt.2020.102121
10.1145/3449289
10.1145/192844.193021
10.1007/978-3-030-52237-7_20
10.1145/3411286
10.1145/3479196
10.1007/s00778-018-0516-7
10.1016/j.ipm.2022.103027
10.1146/annurev.es.17.110186.002231
10.1371/journal.pmed.1001603
10.1007/s10606-018-9336-y
10.1145/2631775.2631819
10.1007/s10726-022-09792-z
10.1145/3025453.3025811
10.1007/s40685-020-00108-y
10.1016/j.endeavour.2014.03.002
10.1145/3546155.3546682
10.1145/3301275.3302301
10.1111/1468-0394.00151
10.1177/104649649903000202
10.1007/s10606-022-09433-8
10.1080/10447318.2022.2041900
10.1177/01655515211062466
10.1145/3290605.3300773
10.1609/hcomp.v9i1.18950
10.3390/forecast3030039
10.1145/3494522
10.3390/app12199830
10.1007/s11192-021-03948-5
10.1145/3415181
10.1145/3359209
10.1145/2984511.2984553
10.1145/3019600
10.1111/isj.12227
10.1016/j.cosrev.2015.05.001
10.1145/3148148
10.1109/CBI.2014.16
10.1145/3274442
10.1108/JKM-10-2021-0769
10.1073/pnas.2122636119
10.1177/0950017019886511
10.1145/2702123.2702469
10.24251/HICSS.2018.150
10.1177/15553434211017354
10.1145/3308558.3313599
10.1016/j.artint.2020.103351
10.1186/s12874-016-0116-4
10.1007/s10606-017-9291-z
10.1609/hcomp.v6i1.13331
10.1504/IJISD.2009.033083
10.1609/hcomp.v7i1.5282
10.1111/j.1547-5069.1987.tb00613.x
10.1111/caim.12454
10.1145/3479586
10.1051/0004-6361/202243428
10.24251/HICSS.2019.034
10.1177/0165551514550140
10.1109/EMR.2010.5559142
10.1145/3140459
10.1145/1924421.1924442
10.1145/3018896.3018916
10.1016/j.dss.2020.113404
10.1109/TCSS.2021.3109143
10.1145/3274300
10.1145/2047196.2047199
10.1145/3173574.3173685
10.1109/TVT.2016.2592685
10.1016/j.ipm.2021.102584
10.1016/j.jss.2020.110611
10.1057/ejis.2012.26
10.1145/3274373
10.15346/hc.v8i2.123
10.1080/10447318.2022.2050543
10.1145/3492854
10.1145/2675133.2675161
10.1007/s10606-018-9343-z
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app13042198
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest One Academic
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_b5345192fe6441a9baf8c236cec67e5f
10.3390/app13042198
A751987821
10_3390_app13042198
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c403t-85ad4375761328ecc91c672fc4b76932478d4e227e63386fa795ef304e5107103
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Fri Oct 03 12:40:27 EDT 2025
Sun Oct 26 02:58:21 EDT 2025
Thu Sep 11 20:23:41 EDT 2025
Mon Oct 20 16:21:59 EDT 2025
Thu Oct 16 04:23:52 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-85ad4375761328ecc91c672fc4b76932478d4e227e63386fa795ef304e5107103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4082-4138
0000-0002-8900-3464
0000-0002-2736-3835
0000-0003-2987-4732
0000-0002-0850-9755
OpenAccessLink https://www.proquest.com/docview/2779526786?pq-origsite=%requestingapplication%&accountid=15518
PQID 2779526786
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_b5345192fe6441a9baf8c236cec67e5f
unpaywall_primary_10_3390_app13042198
proquest_journals_2779526786
gale_infotracacademiconefile_A751987821
crossref_primary_10_3390_app13042198
crossref_citationtrail_10_3390_app13042198
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_137
ref_92
ref_139
Moayedikia (ref_87) 2020; 139
Schmitz (ref_85) 2018; 1
Blandford (ref_93) 2001; 18
Harris (ref_7) 2019; 3
ref_13
Pei (ref_146) 2021; 5
ref_12
Sayin (ref_91) 2021; 5
ref_130
ref_97
ref_132
ref_96
ref_134
ref_19
ref_18
Bharadwaj (ref_4) 2022; 29
Avdic (ref_138) 2021; 5
ref_126
ref_127
ref_129
ref_120
ref_22
ref_121
Mannes (ref_125) 2020; 41
ref_28
Liu (ref_110) 2021; 26
Dafoe (ref_100) 2021; 593
Mosconi (ref_131) 2017; 26
Renyi (ref_14) 2022; 31
Saxton (ref_26) 2013; 30
Larsen (ref_54) 2019; 20
ref_72
ref_71
ref_70
Nickerson (ref_6) 2013; 22
Huang (ref_94) 2022; 6
Mock (ref_44) 2022; 119
ref_151
ref_79
Zhang (ref_98) 2022; 59
ref_78
Rafner (ref_89) 2022; 9
ref_76
ref_75
Basker (ref_107) 2022; 3
Venkatagiri (ref_95) 2019; 3
Modaresnezhad (ref_10) 2020; 57
Thieme (ref_133) 2020; 27
Grudin (ref_5) 2012; 2
Sundar (ref_109) 2020; 25
Trouille (ref_136) 2019; 116
Littmann (ref_20) 2014; 38
Anjum (ref_135) 2021; 8
Thomer (ref_15) 2018; 2
Rahman (ref_84) 2018; 28
Hettiachchi (ref_143) 2020; 4
ref_148
Chan (ref_119) 2018; 2
ref_81
ref_149
Aristeidou (ref_77) 2017; 74
ref_140
ref_142
ref_88
ref_141
Bhatti (ref_11) 2020; 167
Straus (ref_60) 1999; 30
Heim (ref_2) 2018; 5
Alter (ref_69) 2013; 14
McNeese (ref_99) 2021; 15
Nakatsu (ref_27) 2014; 40
Jin (ref_86) 2020; 287
Zimmerman (ref_144) 2020; 28
Guo (ref_40) 2018; 2
Zwass (ref_24) 2010; 15
Sun (ref_80) 2022; 6
Teevan (ref_82) 2016; 23
ref_58
ref_57
Eggert (ref_118) 2020; 13
ref_55
Bakici (ref_147) 2020; 54
ref_53
ref_51
Chen (ref_31) 2022; 26
ref_59
ref_61
Heath (ref_128) 2002; 11
Rasch (ref_45) 1987; 19
Vaughan (ref_67) 2017; 18
ref_68
Lee (ref_73) 2018; 2
ref_66
Karachiwalla (ref_62) 2021; 30
ref_64
ref_63
Colazo (ref_43) 2022; 666
Hettiachchi (ref_145) 2022; 55
Akata (ref_16) 2020; 53
Siemon (ref_65) 2022; 31
Sutherland (ref_150) 2019; 34
Xu (ref_42) 2022; 39
Sokal (ref_47) 1986; 17
ref_115
Schlagwein (ref_122) 2018; 29
ref_117
ref_116
Zulfiqar (ref_83) 2022; 10
ref_35
ref_34
Tocchetti (ref_105) 2022; 5
ref_33
ref_32
ref_30
ref_113
ref_39
ref_38
ref_37
Sai (ref_52) 2021; 58
Hansson (ref_114) 2019; 28
Palmer (ref_124) 2021; 8
ref_104
Kang (ref_111) 2022; 27
ref_103
Mirbabaie (ref_108) 2022; 50
Malone (ref_23) 2010; 38
Zhang (ref_36) 2021; 9
ref_106
Wang (ref_74) 2016; 66
Daniel (ref_112) 2018; 51
ref_46
Shaw (ref_9) 1973; 3
ref_41
ref_102
Gadiraju (ref_123) 2018; 28
ref_101
ref_1
Doan (ref_25) 2011; 54
Singh (ref_56) 2021; 126
ref_3
Shneiderman (ref_90) 2020; 10
Pescetelli (ref_17) 2021; 3
ref_49
ref_48
ref_8
Webster (ref_50) 2002; 26
Corney (ref_21) 2009; 4
Hosseini (ref_29) 2015; 17
References_xml – volume: 116
  start-page: 1902
  year: 2019
  ident: ref_136
  article-title: Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human-machine systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1807190116
– ident: ref_41
  doi: 10.1109/SMC.2019.8914075
– ident: ref_71
  doi: 10.7551/mitpress/2137.001.0001
– ident: ref_39
  doi: 10.1145/3173574.3173869
– volume: 6
  start-page: 1
  year: 2022
  ident: ref_94
  article-title: Being a solo endeavor or team worker in crowdsourcing contests? It is a long-term decision you need to make
  publication-title: Proc. ACM Hum.-Comput. Interact.
– ident: ref_19
  doi: 10.1145/3385032.3385044
– volume: 30
  start-page: 2
  year: 2013
  ident: ref_26
  article-title: Rules of crowdsourcing: Models, issues, and systems of control
  publication-title: Inf. Syst. Management
  doi: 10.1080/10580530.2013.739883
– ident: ref_59
  doi: 10.24251/HICSS.2021.129
– ident: ref_113
  doi: 10.1109/HICSS.2013.143
– volume: 53
  start-page: 18
  year: 2020
  ident: ref_16
  article-title: A research agenda for hybrid intelligence: Augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence
  publication-title: Computer
  doi: 10.1109/MC.2020.2996587
– ident: ref_57
  doi: 10.1145/2441776.2441923
– volume: 74
  start-page: 246
  year: 2017
  ident: ref_77
  article-title: Profiles of engagement in online communities of citizen science participation
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2017.04.044
– ident: ref_66
  doi: 10.1007/978-3-030-58529-7_20
– ident: ref_81
  doi: 10.1007/978-3-030-12334-5
– volume: 41
  start-page: 61
  year: 2020
  ident: ref_125
  article-title: Governance, risk, and artificial intelligence
  publication-title: AI Mag.
– ident: ref_3
  doi: 10.3390/app10238410
– ident: ref_141
  doi: 10.1145/3313831.3376799
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_7
  article-title: Joining together online: The trajectory of CSCW scholarship on group formation
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3359250
– ident: ref_33
  doi: 10.1145/3441852.3476549
– ident: ref_117
  doi: 10.1609/hcomp.v9i1.18943
– ident: ref_37
  doi: 10.1007/978-3-319-46723-8_71
– volume: 10
  start-page: 24721
  year: 2022
  ident: ref_83
  article-title: Microtasking activities in crowdsourced software development: A systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3148400
– volume: 8
  start-page: 76
  year: 2021
  ident: ref_135
  article-title: Exploring the use of deep learning with crowdsourcing to annotate images
  publication-title: Hum. Comput.
  doi: 10.15346/hc.v8i2.121
– volume: 26
  start-page: 2
  year: 2002
  ident: ref_50
  article-title: Analyzing the past to prepare for the future: Writing a literature review
  publication-title: MIS Q.
– ident: ref_96
  doi: 10.1145/3173574.3173682
– volume: 9
  start-page: 66
  year: 2022
  ident: ref_89
  article-title: Mapping citizen science through the lens of human-centered AI
  publication-title: Hum. Comput.
  doi: 10.15346/hc.v9i1.133
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_90
  article-title: Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy human-centered AI systems
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/3419764
– volume: 57
  start-page: 102135
  year: 2020
  ident: ref_10
  article-title: Information technology (IT) enabled crowdsourcing: A conceptual framework
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.102135
– volume: 5
  start-page: 826499
  year: 2022
  ident: ref_105
  article-title: EXP-Crowd: A gamified crowdsourcing framework for explainability
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.826499
– ident: ref_48
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_91
  article-title: On the state of reporting in crowdsourcing experiments and a checklist to aid current practices
  publication-title: Proc. ACM Hum.-Comput. Interact.
– ident: ref_151
  doi: 10.1080/0144929X.2022.2150564
– volume: 11
  start-page: 317
  year: 2002
  ident: ref_128
  article-title: Configuring awareness
  publication-title: Comput. Support. Coop. Work.
  doi: 10.1023/A:1021247413718
– ident: ref_115
  doi: 10.1007/s10726-022-09801-1
– ident: ref_58
  doi: 10.1109/ICDCS.2019.00123
– ident: ref_132
  doi: 10.1145/3411764.3445188
– volume: 2
  start-page: 1323
  year: 2012
  ident: ref_5
  article-title: Taxonomy and theory in computer supported cooperative work
  publication-title: Oxf. Handb. Organ. Psychol.
– ident: ref_88
  doi: 10.1145/3290605.3300233
– ident: ref_149
– ident: ref_70
  doi: 10.1007/s10796-022-10259-4
– ident: ref_97
– ident: ref_53
– volume: 3
  start-page: 8
  year: 1973
  ident: ref_9
  article-title: Scaling group tasks: A method for dimensional analysis
  publication-title: JSAS Cat. Sel. Doc. Psychol.
– volume: 593
  start-page: 33
  year: 2021
  ident: ref_100
  article-title: Cooperative AI: Machines must learn to find common ground
  publication-title: Nature
  doi: 10.1038/d41586-021-01170-0
– ident: ref_72
  doi: 10.1145/1031607.1031626
– ident: ref_75
  doi: 10.1609/hcomp.v3i1.13235
– volume: 28
  start-page: 72
  year: 2020
  ident: ref_144
  article-title: UX designers pushing AI in the enterprise: A case for adaptive UIs
  publication-title: Interactions
  doi: 10.1145/3436954
– ident: ref_134
– volume: 5
  start-page: 034002
  year: 2018
  ident: ref_2
  article-title: Large-scale medical image annotation with crowd-powered algorithms
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.3.034002
– ident: ref_34
  doi: 10.1609/aaai.v34i03.5658
– volume: 15
  start-page: 11
  year: 2010
  ident: ref_24
  article-title: Co-creation: Toward a taxonomy and an integrated research perspective
  publication-title: Int. J. Electron. Commer.
  doi: 10.2753/JEC1086-4415150101
– ident: ref_148
  doi: 10.1007/s10489-022-03593-2
– volume: 54
  start-page: 102121
  year: 2020
  ident: ref_147
  article-title: Comparison of crowdsourcing platforms from social-psychological and motivational perspectives
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2020.102121
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_138
  article-title: Two cases for traces: A theoretical framing of mediated joint activity
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3449289
– volume: 26
  start-page: 384
  year: 2021
  ident: ref_110
  article-title: In AI we trust? Effects of agency locus and transparency on uncertainty reduction in human–AI interaction
  publication-title: J. Comput. Commun.
– ident: ref_130
  doi: 10.1145/192844.193021
– ident: ref_64
  doi: 10.1007/978-3-030-52237-7_20
– volume: 27
  start-page: 40
  year: 2020
  ident: ref_133
  article-title: Interpretability as a dynamic of human-AI interaction
  publication-title: Interactions
  doi: 10.1145/3411286
– volume: 29
  start-page: 1
  year: 2022
  ident: ref_4
  article-title: Flud: A hybrid crowd–algorithm approach for visualizing biological networks
  publication-title: ACM Trans. Comput. Interact.
  doi: 10.1145/3479196
– volume: 28
  start-page: 1
  year: 2018
  ident: ref_84
  article-title: Optimized group formation for solving collaborative tasks
  publication-title: VLDB J.
  doi: 10.1007/s00778-018-0516-7
– volume: 59
  start-page: 103027
  year: 2022
  ident: ref_98
  article-title: Imbalanced volunteer engagement in cultural heritage crowdsourcing: A task-related exploration based on causal inference
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.103027
– volume: 17
  start-page: 423
  year: 1986
  ident: ref_47
  article-title: Phenetic taxonomy: Theory and methods
  publication-title: Annu. Rev. Ecol. Syst.
  doi: 10.1146/annurev.es.17.110186.002231
– ident: ref_55
  doi: 10.1371/journal.pmed.1001603
– volume: 28
  start-page: 815
  year: 2018
  ident: ref_123
  article-title: Crowd anatomy beyond the good and bad: Behavioral traces for crowd worker modeling and pre-selection
  publication-title: Comput. Support. Cooperative Work.
  doi: 10.1007/s10606-018-9336-y
– ident: ref_28
  doi: 10.1145/2631775.2631819
– volume: 31
  start-page: 871
  year: 2022
  ident: ref_65
  article-title: Elaborating team roles for artificial intelligence-based teammates in human-AI collaboration
  publication-title: Group Decis. Negot.
  doi: 10.1007/s10726-022-09792-z
– ident: ref_103
  doi: 10.1145/3025453.3025811
– volume: 13
  start-page: 685
  year: 2020
  ident: ref_118
  article-title: Frontiers of business intelligence and analytics 3.0: A taxonomy-based literature review and research agenda
  publication-title: Bus. Res.
  doi: 10.1007/s40685-020-00108-y
– volume: 38
  start-page: 130
  year: 2014
  ident: ref_20
  article-title: Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science
  publication-title: Endeavour
  doi: 10.1016/j.endeavour.2014.03.002
– ident: ref_139
  doi: 10.1145/3546155.3546682
– ident: ref_38
  doi: 10.1145/3301275.3302301
– volume: 18
  start-page: 3
  year: 2001
  ident: ref_93
  article-title: Intelligent interaction design: The role of human-computer interaction research in the design of intelligent systems
  publication-title: Expert Syst.
  doi: 10.1111/1468-0394.00151
– ident: ref_137
– volume: 14
  start-page: 2
  year: 2013
  ident: ref_69
  article-title: Work system theory: Overview of core concepts, extensions, and challenges for the future
  publication-title: J. Assoc. Inf. Syst.
– volume: 27
  start-page: zmac014
  year: 2022
  ident: ref_111
  article-title: AI agency vs. human agency: Understanding human–AI interactions on TikTok and their implications for user engagement
  publication-title: J. Comput. Commun.
– volume: 30
  start-page: 166
  year: 1999
  ident: ref_60
  article-title: Testing a typology of tasks: An empirical validation of McGrath’s (1984) group task circumplex
  publication-title: Small Group Research
  doi: 10.1177/104649649903000202
– volume: 31
  start-page: 517
  year: 2022
  ident: ref_14
  article-title: Uncovering the complexity of care networks—Towards a taxonomy of collaboration complexity in homecare
  publication-title: Comput. Support. Cooperative Work. (CSCW)
  doi: 10.1007/s10606-022-09433-8
– volume: 39
  start-page: 494
  year: 2022
  ident: ref_42
  article-title: Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI
  publication-title: Int. J. Human–Computer Interact.
  doi: 10.1080/10447318.2022.2041900
– ident: ref_101
– ident: ref_102
  doi: 10.1177/01655515211062466
– ident: ref_106
  doi: 10.1145/3290605.3300773
– ident: ref_22
– volume: 20
  start-page: 15
  year: 2019
  ident: ref_54
  article-title: Understanding the elephant: The discourse approach to boundary identification and corpus construction for theory review articles
  publication-title: J. Assoc. Inf. Syst.
– ident: ref_120
  doi: 10.1609/hcomp.v9i1.18950
– volume: 3
  start-page: 633
  year: 2021
  ident: ref_17
  article-title: A brief taxonomy of hybrid intelligence
  publication-title: Forecasting
  doi: 10.3390/forecast3030039
– volume: 55
  start-page: 1
  year: 2022
  ident: ref_145
  article-title: A survey on task assignment in crowdsourcing
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3494522
– ident: ref_78
– ident: ref_49
– ident: ref_32
– ident: ref_68
  doi: 10.3390/app12199830
– volume: 126
  start-page: 5113
  year: 2021
  ident: ref_56
  article-title: The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis
  publication-title: Scientometrics
  doi: 10.1007/s11192-021-03948-5
– volume: 25
  start-page: 74
  year: 2020
  ident: ref_109
  article-title: Rise of machine agency: A framework for studying the psychology of human–AI interaction (HAII)
  publication-title: J. Comput. Commun.
– volume: 3
  start-page: 1003056
  year: 2022
  ident: ref_107
  article-title: Artificial intelligence and human learning: Improving analytic reasoning via crowdsourcing and structured analytic techniques
  publication-title: Comput. Educ.
– ident: ref_127
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_143
  article-title: CrowdCog: A cognitive skill based system for heterogeneous task assignment and recommendation in crowdsourcing
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3415181
– ident: ref_61
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_95
  article-title: GroundTruth: Augmenting expert image geolocation with crowdsourcing and shared representations
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3359209
– ident: ref_104
– ident: ref_76
  doi: 10.1145/2984511.2984553
– volume: 23
  start-page: 26
  year: 2016
  ident: ref_82
  article-title: The future of microwork
  publication-title: XRDS Crossroads ACM Mag. Stud.
  doi: 10.1145/3019600
– volume: 29
  start-page: 811
  year: 2018
  ident: ref_122
  article-title: Ethical norms and issues in crowdsourcing practices: A Habermasian analysis
  publication-title: Inf. Syst. J.
  doi: 10.1111/isj.12227
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_40
  article-title: Crowd-AI camera sensing in the real world
  publication-title: Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol.
– volume: 17
  start-page: 43
  year: 2015
  ident: ref_29
  article-title: Crowdsourcing: A taxonomy and systematic mapping study
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2015.05.001
– volume: 50
  start-page: 38
  year: 2022
  ident: ref_108
  article-title: Ethics and AI in information systems research
  publication-title: Commun. Assoc. Inf. Syst.
– ident: ref_8
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_112
  article-title: Quality control in crowdsourcing: A survey of quality attributes, assessment techniques, and assurance actions
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3148148
– ident: ref_1
  doi: 10.1109/CBI.2014.16
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: Transforming taxonomic interfaces: “Arm’s length” cooperative work and the maintenance of a long-lived classification system
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3274442
– volume: 26
  start-page: 324
  year: 2022
  ident: ref_31
  article-title: Exploring the effects of problem- and solution-related knowledge sharing in internal crowdsourcing
  publication-title: J. Knowl. Manag.
  doi: 10.1108/JKM-10-2021-0769
– volume: 119
  start-page: e2122636119
  year: 2022
  ident: ref_44
  article-title: Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2122636119
– volume: 34
  start-page: 457
  year: 2019
  ident: ref_150
  article-title: Work precarity and gig literacies in online freelancing
  publication-title: Work Employ. Soc.
  doi: 10.1177/0950017019886511
– ident: ref_92
  doi: 10.1145/2702123.2702469
– ident: ref_51
  doi: 10.24251/HICSS.2018.150
– volume: 15
  start-page: 83
  year: 2021
  ident: ref_99
  article-title: Team situation awareness and conflict: A study of human–machine teaming
  publication-title: J. Cogn. Eng. Decis. Mak.
  doi: 10.1177/15553434211017354
– ident: ref_121
  doi: 10.1145/3308558.3313599
– volume: 287
  start-page: 103351
  year: 2020
  ident: ref_86
  article-title: A technical survey on statistical modelling and design methods for crowdsourcing quality control
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2020.103351
– ident: ref_46
  doi: 10.1186/s12874-016-0116-4
– volume: 26
  start-page: 959
  year: 2017
  ident: ref_131
  article-title: From Facebook to the neighbourhood: Infrastructuring of hybrid community engagement
  publication-title: Comput. Support. Coop. Work (CSCW)
  doi: 10.1007/s10606-017-9291-z
– ident: ref_142
  doi: 10.1609/hcomp.v6i1.13331
– volume: 4
  start-page: 294
  year: 2009
  ident: ref_21
  article-title: Outsourcing labour to the cloud
  publication-title: Int. J. Innovation Sustain. Dev.
  doi: 10.1504/IJISD.2009.033083
– ident: ref_129
  doi: 10.1609/hcomp.v7i1.5282
– volume: 19
  start-page: 147
  year: 1987
  ident: ref_45
  article-title: The nature of taxonomy
  publication-title: Image J. Nurs. Scholarsh.
  doi: 10.1111/j.1547-5069.1987.tb00613.x
– volume: 30
  start-page: 563
  year: 2021
  ident: ref_62
  article-title: Understanding crowdsourcing projects: A review on the key design elements of a crowdsourcing initiative
  publication-title: Creativity Innov. Manag.
  doi: 10.1111/caim.12454
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_146
  article-title: Quality control in crowdsourcing based on fine-grained behavioral features
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3479586
– volume: 666
  start-page: A77
  year: 2022
  ident: ref_43
  article-title: Zero-phase angle asteroid taxonomy classification using unsupervised machine learning algorithms
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202243428
– ident: ref_18
  doi: 10.24251/HICSS.2019.034
– volume: 40
  start-page: 823
  year: 2014
  ident: ref_27
  article-title: A taxonomy of crowdsourcing based on task complexity
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551514550140
– ident: ref_63
– volume: 38
  start-page: 38
  year: 2010
  ident: ref_23
  article-title: The collective intelligence genome
  publication-title: IEEE Eng. Manag. Rev.
  doi: 10.1109/EMR.2010.5559142
– volume: 1
  start-page: 1
  year: 2018
  ident: ref_85
  article-title: Online sequencing of non-decomposable macrotasks in expert crowdsourcing
  publication-title: ACM Trans. Soc. Comput.
  doi: 10.1145/3140459
– ident: ref_79
– volume: 54
  start-page: 86
  year: 2011
  ident: ref_25
  article-title: Crowdsourcing systems on the world-wide web
  publication-title: Commun. ACM
  doi: 10.1145/1924421.1924442
– volume: 18
  start-page: 7026
  year: 2017
  ident: ref_67
  article-title: Making better use of the crowd: How crowdsourcing can advance machine learning research
  publication-title: J. Mach. Learn. Res.
– ident: ref_30
  doi: 10.1145/3018896.3018916
– volume: 139
  start-page: 113404
  year: 2020
  ident: ref_87
  article-title: Optimizing microtask assignment on crowdsourcing platforms using Markov chain Monte Carlo
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2020.113404
– ident: ref_116
– volume: 9
  start-page: 1515
  year: 2021
  ident: ref_36
  article-title: CollabLearn: An uncertainty-aware crowd-AI collaboration system for cultural heritage damage assessment
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2021.3109143
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_119
  article-title: SOLVENT: A mixed initiative system for finding analogies between research papers
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3274300
– ident: ref_140
  doi: 10.1145/2047196.2047199
– ident: ref_35
  doi: 10.1145/3173574.3173685
– volume: 66
  start-page: 2902
  year: 2016
  ident: ref_74
  article-title: A picture is worth a thousand words: Share your real-time view on the road
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2592685
– volume: 58
  start-page: 102584
  year: 2021
  ident: ref_52
  article-title: Taxonomy of centralization in public blockchain systems: A systematic literature review
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102584
– ident: ref_12
– volume: 167
  start-page: 110611
  year: 2020
  ident: ref_11
  article-title: General framework, opportunities and challenges for crowdsourcing techniques: A comprehensive survey
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2020.110611
– volume: 22
  start-page: 336
  year: 2013
  ident: ref_6
  article-title: A method for taxonomy development and its application in information systems
  publication-title: Eur. J. Inf. Syst.
  doi: 10.1057/ejis.2012.26
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_73
  article-title: Exploring real-time collaboration in crowd-powered systems through a UI design tool
  publication-title: Proc. ACM Human-Computer Interact.
  doi: 10.1145/3274373
– volume: 8
  start-page: 54
  year: 2021
  ident: ref_124
  article-title: Citizen science, computing, and conservation: How can “crowd AI” change the way we tackle large-scale ecological challenges?
  publication-title: Hum. Comput.
  doi: 10.15346/hc.v8i2.123
– ident: ref_126
  doi: 10.1080/10447318.2022.2050543
– volume: 6
  start-page: 1
  year: 2022
  ident: ref_80
  article-title: Investigating crowdworkers’ identify, perception and practices in micro-task crowdsourcing
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3492854
– ident: ref_13
  doi: 10.1145/2675133.2675161
– volume: 28
  start-page: 791
  year: 2019
  ident: ref_114
  article-title: Crowd dynamics: Conflicts, contradictions, and community in crowdsourcing
  publication-title: Comput. Support. Coop. Work.
  doi: 10.1007/s10606-018-9343-z
SSID ssj0000913810
Score 2.3271341
SecondaryResourceType review_article
Snippet With the widespread availability and pervasiveness of artificial intelligence (AI) in many application areas across the globe, the role of crowdsourcing has...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2198
SubjectTerms Algorithms
Artificial intelligence
Collaboration
conceptual framework
crowd-machine hybrid interaction
Crowdsourcing
Decision making
design implications
hybrid intelligence
survey
Surveys
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYQF-CAeIryUg4gHlLFmj6SchsvDSS4wCRuUZImp6mgsQH799htmYpAcOE6eZLr2LG_1v4MsBeZxGKd7kOuuUaAYlyocx9Rl0VmLDfcCpodvr3Lev3k5jF9bK36op6wmh64NtyJSWNiQOHeUebWudFeWh5n1tlMuNTT7duReQtMVXdwHhF1VT2QFyOup-_BEUF3BNlfUlDF1P_9Pl6AuXH5rCdvejBoJZyrJVhsKkXWrTVchhlXrsBCiz9wBZabyHxhhw199NEq9C-qpgwUYFiQst6EZrLYdYt685R12YN-r8YZmC4Ldj8evroJe_LsHFF5Ed5WHZau-tOwnnxYg_7V5cN5L2yWJ4Q26cSjUKa6SGKBJke8KfGg8ggNxr1NDK0_5ImQReI4Fy5DlJp5LfLUebSQwyjFsiNeh9nyqXQbwHIvpI2sNsJgfWdiKVxUCFvotOMkFjwBHH_aU9mGWZwWXAwUIgwyvmoZP4C9qfBzTajxs9gZHcxUhFiwqx_QN1TjG-ov3wjggI5VUayiQlY3Iwf4WMR6pboipXcukkcBbH-evGqC-EVxgTbhmM2zAPan3vCb1pv_ofUWzNNO-7o1fBtmR8Ox28HKZ2R2Kyf_ADeb_ro
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeKC1ULBTkQxEPaZvau2t7e0GhUAWkVkg0Ujm5tteuENEmyqMQfj3jXScKDyEkrtFsZGfG4-_bzHwDsE9NbhGn-5RpppGgGJfq0tNQZcGNZYZZEXqHT894f5C_vygu4pzTaSyrRCr-uUnSDEl2imlWdGnWzbt4uGR3XPlX1_FVEuV4lGW4xW7CBi8QjHdgY3D2ofcpjJRbPtx25WVI7sOfwjTwd_yin-6hRq7_96S8Cbfm9VgvvurhcO3WOdmCy-V622KTLwfzmTmw33-RcvyPDd2FOxGRkl4bQttww9U7sLmmU7gD2zEDTMnzKFP94h4M3jTFH2hAEPiS_iL0fpF3axKfR6RHzvW3pm2C6LoiH-eTa7cgI0-Okf1X6WlTyemahyZth8V9GJy8PT_up3FIQ2rzw2yWykJXeSbQtchrJQZESS0XzNvchDGLLBeyyh1jwnFkw9xrURbOoxMcZgOEN9kudOpR7R4AKb2QllpthEEcaTIpHK2ErXRx6CQCqwReLl2mbFQwD4M0hgqZTPCvWvNvAvsr43Er3PFns9fB9yuToLbdfDCaXKl4eJUpsqDCw7wL6FGXRntpWcatw626wifwLESOCjkBF2R1bG3AbQV1LdUTRXi3IxlNYG8ZXComi6liAn8ThqiBJ_B0FXB_W_XDf7R7BLcZgrK2ynwPOrPJ3D1GEDUzT-JB-QFvBBO_
  priority: 102
  providerName: Unpaywall
Title Designing for Hybrid Intelligence: A Taxonomy and Survey of Crowd-Machine Interaction
URI https://www.proquest.com/docview/2779526786
https://www.mdpi.com/2076-3417/13/4/2198/pdf?version=1676280082
https://doaj.org/article/b5345192fe6441a9baf8c236cec67e5f
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAbEBWmBUfhjiQ4ponA87kxDqxkpBWjXBKo2nyHZsXqq0dC3Q_353idN1Au0xkRPZd77z3fnudwBHkU4M2uku5IordFC0DVXuIsqyyLThmhtBtcPno2w4Tr5epVdbMGprYSitstWJtaIup4Zi5O-5EHnKUbVmH2e_QuoaRberbQsN5VsrlB9qiLFt2OGEjNWBnZOz0cW3ddSFUDBl1GsK9WL09-meOCKXHp3vO0dTjeD_r57ehQfLaqZWf9RksnEQDR7DI29Bsn7D8j3YstU-7G7gCu7DnpfYa_bGw0q_fQLjT3WyBg5gaKiy4YpqtdiXDUjOY9Znl-pvXebAVFWy78v5b7tiU8dO0Vsvw_M689LWH82bioinMB6cXZ4OQ99UITRJL16EMlVlEgtkBfqhEhmYRyYT3JlEU1tEnghZJpZzYTP0XjOnkOzWIYUsSi-aI_Ez6FTTyh4Ay52QJjJKC412n46lsFEpTKnSnpVoCAXwrqVnYTziODW-mBToeRDxiw3iB3C0HjxrgDb-P-yEGLMeQujY9Yvp_Gfhha3QaUyoOdxZsvZUrpWThseZsbhUm7oAXhNbC5JhnJBRvhQBl0VoWEVfpBSLkTwK4LDlfOGF-7q43YoBvFrvhvtm_fz-37yAh9TFvkkGP4TOYr60L9HWWegubMvB567fxt06YoBP49FF_8cNa5r_4A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAbEBImyAHzbxIUVL7CROkCbUfalla4WglfYWbMfhpWq6flD6z_G3cZe6pQi0t71GF-vsO5_v7LvfARyGOjLop5c-V1xhgKKtr7IypCyLRBuuuZFUO9zuJM1e9OkmvtmAX8taGEqrXNrE2lAXlaE78mMuZRZzNK3Jx-GtT12j6HV12UJDudYKxUkNMeYKO67sfIYh3PikdY7yPuL88qJ71vRdlwHfRIGY-GmsikhI5A0DsxRnlIUmkbw0kaY-gTySaRFZzqVNMJxLSoV82FIEkUV1xvNZ4LgPYCsSUYbB39bpRefzl9UtD6FupmGwKAwUIgvoXTqkKwQM9v86CuuOAf-eCzuwPR0M1Xym-v21g-_yMTxyHitrLFRsFzbsYA921nAM92DXWYgxe-tgrN89gd55nRyCBAwdY9acU20Ya61BgH5gDdZVP-uyCqYGBfs6Hf2wc1aV7GxUzQq_XWd62vqn0aIC4yn07mV5n8HmoBrY58CyUqYmNEpLjX6mFqm0YSFNoeLApuh4efB-uZ65cQjn1Gijn2OkQ4ufry2-B4cr4uEC2OP_ZKckmBUJoXHXH6rR99xt7lzHglB6eGnJu1SZVmVquEiMxanauPTgDYk1J5uBDBnlSh9wWoS-lTdkTHc_KQ89OFhKPnfGZJz_UX0PjlbacBfXL-4e5jVsN7vt6_y61bnah4cc_bZFIvoBbE5GU_sS_ayJfuWUmcG3-94_vwFJpDam
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7QGyACAzwwyY-pGiJ8-EECaGyUlrGJiRWaW-Z7di8VElJW0r_Nf467vJRikB722vkWLbvfF---x3Aga9CjXa6dbnkEh0UZVyZWp-yLGKlueJaUO3w6Vk8HIefLqKLLfjV1cJQWmUnE2tBnZeaYuRHXIg04iha4yPbpkV86Q_eTb-71EGKXlq7dhoNi5yY1RLdt9nbUR9pfcj54MP58dBtOwy4OvSCuZtEMg8DgetCpyzB3aS-jgW3OlTUI5CHIslDw7kwMbpysZW4BmMDLzTIyqibA5z3BtwUhOJOVeqDj-v4DuFtJr7XlAQGQerRi7RPwQN08_9SgnWvgH81wg7cXhRTuVrKyWRD5Q3uwd3WVmW9hrl2YcsUe7CzgWC4B7utbJixly2A9av7MO7XaSE4gKFJzIYrqgpjow3wzzesx87lz7qggskiZ18X1Q-zYqVlx1W5zN3TOsfT1D9VTe3FAxhfy-E-hO2iLMwjYKkVifa1VEKhhamCRBg_FzqXkWcSNLkceN2dZ6ZbbHNqsTHJ0Mehw882Dt-Bg_XgaQPp8f9h74kw6yGEw11_KKtvWXutMxUFhM_DrSG7UqZK2kTzINYGt2oi68ALImtG0gIXpGVb9IDbItytrCciivok3Hdgv6N81oqRWfaH6R04XHPDVat-fPU0z-EW3prs8-js5Anc4WiwNRno-7A9rxbmKRpYc_Ws5mQGl9d9dX4Dt9s0QA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeKC1ULBTkQxEPaZvau2t7e0GhUAWkVkg0Ujm5tteuENEmyqMQfj3jXScKDyEkrtFsZGfG4-_bzHwDsE9NbhGn-5RpppGgGJfq0tNQZcGNZYZZEXqHT894f5C_vygu4pzTaSyrRCr-uUnSDEl2imlWdGnWzbt4uGR3XPlX1_FVEuV4lGW4xW7CBi8QjHdgY3D2ofcpjJRbPtx25WVI7sOfwjTwd_yin-6hRq7_96S8Cbfm9VgvvurhcO3WOdmCy-V622KTLwfzmTmw33-RcvyPDd2FOxGRkl4bQttww9U7sLmmU7gD2zEDTMnzKFP94h4M3jTFH2hAEPiS_iL0fpF3axKfR6RHzvW3pm2C6LoiH-eTa7cgI0-Okf1X6WlTyemahyZth8V9GJy8PT_up3FIQ2rzw2yWykJXeSbQtchrJQZESS0XzNvchDGLLBeyyh1jwnFkw9xrURbOoxMcZgOEN9kudOpR7R4AKb2QllpthEEcaTIpHK2ErXRx6CQCqwReLl2mbFQwD4M0hgqZTPCvWvNvAvsr43Er3PFns9fB9yuToLbdfDCaXKl4eJUpsqDCw7wL6FGXRntpWcatw626wifwLESOCjkBF2R1bG3AbQV1LdUTRXi3IxlNYG8ZXComi6liAn8ThqiBJ_B0FXB_W_XDf7R7BLcZgrK2ynwPOrPJ3D1GEDUzT-JB-QFvBBO_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+for+Hybrid+Intelligence%3A+A+Taxonomy+and+Survey+of+Crowd-Machine+Interaction&rft.jtitle=Applied+sciences&rft.au=Correia%2C+Ant%C3%B3nio&rft.au=Grover%2C+Andrea&rft.au=Schneider%2C+Daniel&rft.au=Ana+Paula+Pimentel&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2198&rft_id=info:doi/10.3390%2Fapp13042198&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon