POSE: POSition Encoding for accelerated quantitative MRI

Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a sourc...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 114; p. 110239
Main Authors Jang, Albert, Liu, Fang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2024.110239

Cover

Abstract Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.
AbstractList Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.
Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.
Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.
ArticleNumber 110239
Author Jang, Albert
Liu, Fang
Author_xml – sequence: 1
  givenname: Albert
  surname: Jang
  fullname: Jang, Albert
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
– sequence: 2
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  email: fliu12@mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39276808$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFOGzEQhq2KqgmhD9AL2iOXDeP1Ova2J4RCQUpFBVTqzXK848phY4PtIPH2dZpwyYFeZi7_N5r_OyZHPngk5AuFKQU6O19N19FNG2jaKaXQsO4DGVMpWM1l1x6RMQgGtWj47xE5TmkFALxh_BMZsa4RMwlyTOTP2_v516pMl13w1dyb0Dv_p7IhVtoYHDDqjH31vNE-u6yze8Hqx93NCflo9ZDw835PyK-r-cPldb24_X5zebGoTQss1wJAznrD2VIbLbXFtqNdY7UV5QO-pLYtTTqcWa4ZUtAW5BKpEchb2wrZswk52919iuF5gymrtUvlrUF7DJukGAXedqUaK9HTfXSzXGOvnqJb6_iq3tqWgNgFTAwpRbTK_GsUfI7aDYqC2npVK1W8qq1XtfNaSHpAvh1_j_m2Y7DoeXEYVTIOvcHeRTRZ9cG9S3cHtBmcd0YPj_j6H_Yvx2Og4Q
CitedBy_id crossref_primary_10_1002_mrm_30493
Cites_doi 10.1109/TMI.2015.2413211
10.1038/nature11971
10.1002/mrm.27502
10.1109/TMI.2018.2791482
10.1002/mrm.24267
10.1002/ima.22196
10.1002/mrm.24233
10.1002/mrm.21391
10.1007/BF01589116
10.1002/mrm.1910340618
10.1002/mrm.24187
10.1118/1.2214168
10.1002/mrm.22361
10.1088/0022-3719/10/3/004
10.1016/j.mri.2005.09.011
10.1002/mrm.24577
10.1016/j.jocmr.2024.101039
10.1118/1.2188816
10.1002/mrm.25421
10.1002/mrm.26653
10.1002/mrm.26262
10.1016/S0730-725X(02)00511-8
10.1109/TMI.2016.2620961
10.1016/0022-2364(86)90433-6
10.1016/j.neuroimage.2015.10.061
10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
10.1002/mrm.28659
10.1002/mrm.26081
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.28779
10.1002/mrm.24600
10.1016/j.neuroimage.2006.03.052
10.1109/TCI.2016.2557069
10.1002/mrm.1910160203
10.1002/mrm.21728
10.1002/jmri.22634
10.1364/BOE.9.000650
10.1109/TMI.2008.2007348
10.1002/mrm.26269
10.1002/mrm.10171
10.1002/mrm.26726
10.1002/mrm.27981
10.1002/ima.20016
10.1016/0730-725X(87)90021-X
10.1002/mrm.1910050502
10.1109/TMI.2017.2726995
10.1002/mrm.25597
10.1002/mrm.25135
10.1002/mrm.1910030602
10.1002/mrm.29377
10.1109/TMI.2009.2023119
10.1002/mrm.25558
10.1002/mrm.20401
10.1002/mrm.28116
10.1002/mrm.1910380414
10.1002/mrm.23097
10.1002/mrm.22483
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2024.110239
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
ExternalDocumentID 39276808
10_1016_j_mri_2024_110239
S0730725X24002200
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c403t-70086dc53baca8afe49192faf72765b1f41019e6f5a3e10af08be1c7e54f478d3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Oct 02 12:08:27 EDT 2025
Wed Feb 19 02:18:17 EST 2025
Thu Apr 24 23:04:17 EDT 2025
Thu Oct 09 00:10:29 EDT 2025
Sat Oct 19 15:54:59 EDT 2024
Tue Oct 14 19:40:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Variable flip angle
Quantitative imaging
Subvoxel shifting
POSE
Model-based reconstruction
T1
T
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-70086dc53baca8afe49192faf72765b1f41019e6f5a3e10af08be1c7e54f478d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39276808
PQID 3105490003
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3105490003
pubmed_primary_39276808
crossref_citationtrail_10_1016_j_mri_2024_110239
crossref_primary_10_1016_j_mri_2024_110239
elsevier_sciencedirect_doi_10_1016_j_mri_2024_110239
elsevier_clinicalkey_doi_10_1016_j_mri_2024_110239
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Peeters, Kornprobst, Nikolova (bb0100) 2004; 14
Mansfield (bb0010) 1977; 10
Velikina, Alexander, Samsonov (bb0240) 2013; 70
Wang, Riederer, Lee (bb0175) 1987; 5
Sumpf, Uecker, Boretius, Frahm (bb0055) 2011; 34
1986;67(2):258–266. doi
Cordero-Grande, Teixeira, Hughes, Hutter, Price, Hajnal (bb0290) 2016; 2
Ohkubo, Wada, Matsumoto, Nishizawa (bb0230) 2006; 33
Tran-Gia, Stäb, Wech, Hahn, Köstler (bb0060) 2013; 70
Setsompop, Fan, Stockmann (bb0160) 2018; 79
Samei, Ranger, Dobbins, Chen (bb0225) 2006; 33
Ben-Eliezer, Sodickson, Shepherd, Wiggins, Block (bb0050) 2016; 75
Hennig, Nauerth, Friedburg (bb0005) 1986; 3
Allen, Ogunlade, Zhang, Beard (bb0220) 2018; 9
Griswold, Jakob, Heidemann (bb0035) 2002; 47
Thomas, Oros-Peusquens, Poot, Shah (bb0115) 2022; 88
Zhao, Lu, Hitchens, Lam, Ho, Liang (bb0255) 2015; 74
.
Zhang, Pauly, Vasanawala, Lustig (bb0190) 2013; 69
Plenge, Poot, Bernsen (bb0085) 2012; 68
Scherrer, Gholipour, Warfield (bb0105) 2012
Greenspan, Oz, Kiryati, Peled (bb0090) 2002; 20
Liu, Nocedal (bb0180) 1989; 45
Robson, Grant, Madhuranthakam, Lattanzi, Sodickson, McKenzie (bb0235) 2008; 60
Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bb0155) 2012; 67
Roemer, Edelstein, Hayes, Souza, Mueller (bb0020) 1990; 16
Pruessmann, Weiger, Scheidegger, Boesiger (bb0025) 1999; 42
Doneva, Börnert, Eggers, Stehning, Sénégas, Mertins (bb0250) 2010; 64
Shilling, Robbie, Bailloeul, Mewes, Mersereau, Brummer (bb0095) 2009; 28
Fram, Herfkens, Johnson (bb0170) 1987; 5
Stikov, Boudreau, Levesque, Tardif, Barral, Pike (bb0280) 2015; 73
Larkman, Hajnal, Herlihy, Coutts, Young, Ehnholm (bb0140) 2001; 13
(bb0245) 2018
Block, Uecker, Frahm (bb0045) 2009; 28
Roeloffs, Wang, Sumpf, Untenberger, Voit, Frahm (bb0065) 2016; 26
Van Steenkiste, Jeurissen, Veraart (bb0125) 2016; 75
Carmi, Liu, Alon, Fiat, Fiat (bb0185) 2006; 24
Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson
Liebig, Heidemann, Hensel, Porter (bb0040) 2020; 84
Haskell, Cauley, Wald (bb0295) 2018; 37
Balachandrasekaran, Magnotta, Jacob (bb0265) 2017; 36
Ma, Gulani, Seiberlich (bb0080) 2013; 495
Poot, Jeurissen, Bastiaensen (bb0110) 2013; 69
Ning, Setsompop, Michailovich (bb0120) 2016; 125
bb0210
Stupic, Ainslie, Boss (bb0215) 2021; 86
Moeller, Yacoub, Olman (bb0150) 2010; 63
Aubert-Broche, Evans, Collins (bb0205) 2006; 32
Wang, Roeloffs, Klosowski (bb0070) 2018; 79
Breuer, Blaimer, Heidemann, Mueller, Griswold, Jakob (bb0145) 2005; 53
Phair, Fotaki, Felsner (bb0305) 2024; 26
Van Steenkiste, Poot, Jeurissen (bb0130) 2017; 77
Gudbjartsson, Patz (bb0165) 1995; 34
Uecker, Ong, Tamir (bb0195) 2015
Babayeva, Kober, Knowles (bb0285) 2015; 34
Maier, Schoormans, Schloegl (bb0075) 2019; 81
Sodickson, Manning (bb0030) 1997; 38
Bano, Piredda, Davies (bb0135) 2020; 83
Lee, Jin, Kim, Park, Ye (bb0260) 2016; 76
Liu, Kijowski, El Fakhri, Feng (bb0275) 2021; 85
Lustig, Donoho, Pauly (bb0270) 2007; 58
1969
Liu, Velikina, Block, Kijowski, Samsonov (bb0200) 2017; 36
Addy, Ingle, Luo (bb0300) 2017; 77
Ohkubo (10.1016/j.mri.2024.110239_bb0230) 2006; 33
Gudbjartsson (10.1016/j.mri.2024.110239_bb0165) 1995; 34
Hennig (10.1016/j.mri.2024.110239_bb0005) 1986; 3
Wang (10.1016/j.mri.2024.110239_bb0070) 2018; 79
Setsompop (10.1016/j.mri.2024.110239_bb0160) 2018; 79
Fram (10.1016/j.mri.2024.110239_bb0170) 1987; 5
Balachandrasekaran (10.1016/j.mri.2024.110239_bb0265) 2017; 36
Mansfield (10.1016/j.mri.2024.110239_bb0010) 1977; 10
Scherrer (10.1016/j.mri.2024.110239_bb0105) 2012
Cordero-Grande (10.1016/j.mri.2024.110239_bb0290) 2016; 2
Carmi (10.1016/j.mri.2024.110239_bb0185) 2006; 24
Shilling (10.1016/j.mri.2024.110239_bb0095) 2009; 28
Liu (10.1016/j.mri.2024.110239_bb0275) 2021; 85
Moeller (10.1016/j.mri.2024.110239_bb0150) 2010; 63
Maier (10.1016/j.mri.2024.110239_bb0075) 2019; 81
Peeters (10.1016/j.mri.2024.110239_bb0100) 2004; 14
Plenge (10.1016/j.mri.2024.110239_bb0085) 2012; 68
Roemer (10.1016/j.mri.2024.110239_bb0020) 1990; 16
Tran-Gia (10.1016/j.mri.2024.110239_bb0060) 2013; 70
Aubert-Broche (10.1016/j.mri.2024.110239_bb0205) 2006; 32
Liebig (10.1016/j.mri.2024.110239_bb0040) 2020; 84
Liu (10.1016/j.mri.2024.110239_bb0200) 2017; 36
Breuer (10.1016/j.mri.2024.110239_bb0145) 2005; 53
Ma (10.1016/j.mri.2024.110239_bb0080) 2013; 495
Phair (10.1016/j.mri.2024.110239_bb0305) 2024; 26
Wang (10.1016/j.mri.2024.110239_bb0175) 1987; 5
Samei (10.1016/j.mri.2024.110239_bb0225) 2006; 33
Lee (10.1016/j.mri.2024.110239_bb0260) 2016; 76
Sumpf (10.1016/j.mri.2024.110239_bb0055) 2011; 34
Roeloffs (10.1016/j.mri.2024.110239_bb0065) 2016; 26
Robson (10.1016/j.mri.2024.110239_bb0235) 2008; 60
Lustig (10.1016/j.mri.2024.110239_bb0270) 2007; 58
10.1016/j.mri.2024.110239_bb0015
Haskell (10.1016/j.mri.2024.110239_bb0295) 2018; 37
Doneva (10.1016/j.mri.2024.110239_bb0250) 2010; 64
Setsompop (10.1016/j.mri.2024.110239_bb0155) 2012; 67
Griswold (10.1016/j.mri.2024.110239_bb0035) 2002; 47
Zhang (10.1016/j.mri.2024.110239_bb0190) 2013; 69
Thomas (10.1016/j.mri.2024.110239_bb0115) 2022; 88
Ben-Eliezer (10.1016/j.mri.2024.110239_bb0050) 2016; 75
Sodickson (10.1016/j.mri.2024.110239_bb0030) 1997; 38
Zhao (10.1016/j.mri.2024.110239_bb0255) 2015; 74
Addy (10.1016/j.mri.2024.110239_bb0300) 2017; 77
Block (10.1016/j.mri.2024.110239_bb0045) 2009; 28
Larkman (10.1016/j.mri.2024.110239_bb0140) 2001; 13
Greenspan (10.1016/j.mri.2024.110239_bb0090) 2002; 20
Ning (10.1016/j.mri.2024.110239_bb0120) 2016; 125
Van Steenkiste (10.1016/j.mri.2024.110239_bb0125) 2016; 75
Pruessmann (10.1016/j.mri.2024.110239_bb0025) 1999; 42
Babayeva (10.1016/j.mri.2024.110239_bb0285) 2015; 34
Van Steenkiste (10.1016/j.mri.2024.110239_bb0130) 2017; 77
Uecker (10.1016/j.mri.2024.110239_bb0195) 2015
Velikina (10.1016/j.mri.2024.110239_bb0240) 2013; 70
(10.1016/j.mri.2024.110239_bb0245) 2018
Stupic (10.1016/j.mri.2024.110239_bb0215) 2021; 86
Poot (10.1016/j.mri.2024.110239_bb0110) 2013; 69
Allen (10.1016/j.mri.2024.110239_bb0220) 2018; 9
Stikov (10.1016/j.mri.2024.110239_bb0280) 2015; 73
Liu (10.1016/j.mri.2024.110239_bb0180) 1989; 45
Bano (10.1016/j.mri.2024.110239_bb0135) 2020; 83
References_xml – volume: 85
  start-page: 3211
  year: 2021
  end-page: 3226
  ident: bb0275
  article-title: Magnetic resonance parameter mapping using model-guided self-supervised deep learning
  publication-title: Magn Reson Med
– volume: 32
  start-page: 138
  year: 2006
  end-page: 145
  ident: bb0205
  article-title: A new improved version of the realistic digital brain phantom
  publication-title: Neuroimage
– reference: 1969
– volume: 73
  start-page: 514
  year: 2015
  end-page: 522
  ident: bb0280
  article-title: On the accuracy of T1 mapping: searching for common ground
  publication-title: Magn Reson Med
– volume: 2
  start-page: 266
  year: 2016
  end-page: 280
  ident: bb0290
  article-title: Sensitivity encoding for aligned multishot magnetic resonance reconstruction
  publication-title: IEEE Trans Comput Imaging
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bb0180
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math Program
– year: 2015
  ident: bb0195
  article-title: Berkeley advanced reconstruction toolbox
  publication-title: Proc. Intl. Soc. mag. Reson. Med. Toronto
– volume: 81
  start-page: 2072
  year: 2019
  end-page: 2089
  ident: bb0075
  article-title: Rapid T1 quantification from high resolution 3D data with model-based reconstruction
  publication-title: Magn Reson Med
– volume: 14
  start-page: 131
  year: 2004
  end-page: 138
  ident: bb0100
  article-title: The use of super-resolution techniques to reduce slice thickness in functional MRI
  publication-title: Int J Imaging Syst Technol
– volume: 26
  start-page: 254
  year: 2016
  end-page: 263
  ident: bb0065
  article-title: Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH
  publication-title: Int J Imaging Syst Technol
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  ident: bb0030
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 84
  start-page: 321
  year: 2020
  end-page: 326
  ident: bb0040
  article-title: A new approach to accelerate readout segmented EPI with compressed sensing
  publication-title: Magn Reson Med
– volume: 26
  year: 2024
  ident: bb0305
  article-title: A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease
  publication-title: J Cardiovasc Magn Reson
– reference: . 1986;67(2):258–266. doi:
– volume: 64
  start-page: 1114
  year: 2010
  end-page: 1120
  ident: bb0250
  article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping
  publication-title: Magn Reson Med
– volume: 74
  start-page: 489
  year: 2015
  end-page: 498
  ident: bb0255
  article-title: Accelerated MR parameter mapping with low-rank and sparsity constraints
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1983
  year: 2012
  end-page: 1993
  ident: bb0085
  article-title: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?
  publication-title: Magn Reson Med
– volume: 13
  start-page: 313
  year: 2001
  end-page: 317
  ident: bb0140
  article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited
  publication-title: J Magn Reson Imaging
– volume: 75
  start-page: 181
  year: 2016
  end-page: 195
  ident: bb0125
  article-title: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations
  publication-title: Magn Reson Med
– volume: 36
  start-page: 527
  year: 2017
  end-page: 537
  ident: bb0200
  article-title: Fast realistic MRI simulations based on generalized multi-pool exchange tissue model
  publication-title: IEEE Trans Med Imaging
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  ident: bb0020
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– year: 2018
  ident: bb0245
  publication-title: Phantom Test Guidance for Use of the Large MRI Phantom for the ACR Accreditation Program
– volume: 36
  start-page: 2087
  year: 2017
  end-page: 2098
  ident: bb0265
  article-title: Recovery of damped exponentials using structured low rank matrix completion
  publication-title: IEEE Trans Med Imaging
– volume: 10
  start-page: L55
  year: 1977
  ident: bb0010
  article-title: Multi-planar image formation using NMR spin echoes
  publication-title: J Phys C Solid State Phys
– volume: 28
  start-page: 1759
  year: 2009
  end-page: 1769
  ident: bb0045
  article-title: Model-based iterative reconstruction for radial fast spin-Echo MRI
  publication-title: IEEE Trans Med Imaging
– volume: 69
  start-page: 103
  year: 2013
  end-page: 113
  ident: bb0110
  article-title: Super-resolution for multislice diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 83
  start-page: 906
  year: 2020
  end-page: 919
  ident: bb0135
  article-title: Model-based super-resolution reconstruction of T2 maps
  publication-title: Magn Reson Med
– volume: 69
  start-page: 571
  year: 2013
  end-page: 582
  ident: bb0190
  article-title: Coil compression for accelerated imaging with Cartesian sampling
  publication-title: Magn Reson Med
– ident: bb0210
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  ident: bb0150
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2757
  year: 2006
  end-page: 2764
  ident: bb0230
  article-title: An effective method to verify line and point spread functions measured in computed tomography
  publication-title: Med Phys
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  ident: bb0165
  article-title: The rician distribution of noisy mri data
  publication-title: Magn Reson Med
– volume: 37
  start-page: 1253
  year: 2018
  end-page: 1265
  ident: bb0295
  article-title: TArgeted motion estimation and reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization
  publication-title: IEEE Trans Med Imaging
– volume: 125
  start-page: 386
  year: 2016
  end-page: 400
  ident: bb0120
  article-title: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging
  publication-title: Neuroimage
– volume: 5
  start-page: 201
  year: 1987
  end-page: 208
  ident: bb0170
  article-title: Rapid calculation of T1 using variable flip angle gradient refocused imaging
  publication-title: Magn Reson Imaging
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: bb0155
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1874
  year: 2017
  end-page: 1883
  ident: bb0300
  article-title: 3D image-based navigators for coronary MR angiography
  publication-title: Magn Reson Med
– volume: 24
  start-page: 133
  year: 2006
  end-page: 154
  ident: bb0185
  article-title: Resolution enhancement in MRI
  publication-title: Magn Reson Imaging
– reference: Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: bb0025
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bb0270
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 34
  start-page: 1879
  year: 2015
  end-page: 1889
  ident: bb0285
  article-title: Accuracy and precision of head motion information in Multi-Channel free induction decay navigators for magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
– volume: 3
  start-page: 823
  year: 1986
  end-page: 833
  ident: bb0005
  article-title: RARE imaging: a fast imaging method for clinical MR
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1818
  year: 2017
  end-page: 1830
  ident: bb0130
  article-title: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations
  publication-title: Magn Reson Med
– volume: 28
  start-page: 633
  year: 2009
  end-page: 644
  ident: bb0095
  article-title: A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI
  publication-title: IEEE Trans Med Imaging
– volume: 79
  start-page: 141
  year: 2018
  end-page: 151
  ident: bb0160
  article-title: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS)
  publication-title: Magn Reson Med
– volume: 9
  start-page: 650
  year: 2018
  end-page: 660
  ident: bb0220
  article-title: Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor
  publication-title: Biomed Opt Exp
– start-page: 249
  year: 2012
  end-page: 254
  ident: bb0105
  article-title: Super-resolution reconstruction of diffusion-weighted images from distortion compensated orthogonal anisotropic acquisitions
  publication-title: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis
– volume: 60
  start-page: 895
  year: 2008
  end-page: 907
  ident: bb0235
  article-title: Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions
  publication-title: Magn Reson Med
– volume: 79
  start-page: 730
  year: 2018
  end-page: 740
  ident: bb0070
  article-title: Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH
  publication-title: Magn Reson Med
– volume: 88
  start-page: 2117
  year: 2022
  end-page: 2130
  ident: bb0115
  article-title: Whole-brain water content mapping using super-resolution reconstruction with MRI acquisition in 3 orthogonal orientations
  publication-title: Magn Reson Med
– volume: 5
  start-page: 399
  year: 1987
  end-page: 416
  ident: bb0175
  article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles
  publication-title: Magn Reson Med
– volume: 53
  start-page: 684
  year: 2005
  end-page: 691
  ident: bb0145
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging
  publication-title: Magn Reson Med
– reference: .
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  ident: bb0035
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1848
  year: 2016
  end-page: 1864
  ident: bb0260
  article-title: Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA)
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1466
  year: 2006
  ident: bb0225
  article-title: Intercomparison of methods for image quality characterization. I. Modulation transfer functiona
  publication-title: Med Phys
– volume: 86
  start-page: 1194
  year: 2021
  end-page: 1211
  ident: bb0215
  article-title: A standard system phantom for magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 70
  start-page: 1524
  year: 2013
  end-page: 1534
  ident: bb0060
  article-title: Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data
  publication-title: Magn Reson Med
– volume: 70
  start-page: 1263
  year: 2013
  end-page: 1273
  ident: bb0240
  article-title: Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1346
  year: 2016
  end-page: 1354
  ident: bb0050
  article-title: Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction
  publication-title: Magn Reson Med
– volume: 20
  start-page: 437
  year: 2002
  end-page: 446
  ident: bb0090
  article-title: MRI inter-slice reconstruction using super-resolution
  publication-title: Magn Reson Imaging
– volume: 34
  start-page: 420
  year: 2011
  end-page: 428
  ident: bb0055
  article-title: Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI
  publication-title: J Magn Reson Imaging
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  ident: bb0080
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 34
  start-page: 1879
  issue: 9
  year: 2015
  ident: 10.1016/j.mri.2024.110239_bb0285
  article-title: Accuracy and precision of head motion information in Multi-Channel free induction decay navigators for magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2413211
– volume: 495
  start-page: 187
  issue: 7440
  year: 2013
  ident: 10.1016/j.mri.2024.110239_bb0080
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
  doi: 10.1038/nature11971
– year: 2015
  ident: 10.1016/j.mri.2024.110239_bb0195
  article-title: Berkeley advanced reconstruction toolbox
– volume: 81
  start-page: 2072
  issue: 3
  year: 2019
  ident: 10.1016/j.mri.2024.110239_bb0075
  article-title: Rapid T1 quantification from high resolution 3D data with model-based reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27502
– volume: 37
  start-page: 1253
  issue: 5
  year: 2018
  ident: 10.1016/j.mri.2024.110239_bb0295
  article-title: TArgeted motion estimation and reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791482
– year: 2018
  ident: 10.1016/j.mri.2024.110239_bb0245
– volume: 69
  start-page: 571
  issue: 2
  year: 2013
  ident: 10.1016/j.mri.2024.110239_bb0190
  article-title: Coil compression for accelerated imaging with Cartesian sampling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24267
– volume: 26
  start-page: 254
  issue: 4
  year: 2016
  ident: 10.1016/j.mri.2024.110239_bb0065
  article-title: Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22196
– volume: 69
  start-page: 103
  issue: 1
  year: 2013
  ident: 10.1016/j.mri.2024.110239_bb0110
  article-title: Super-resolution for multislice diffusion tensor imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24233
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: 10.1016/j.mri.2024.110239_bb0270
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 10.1016/j.mri.2024.110239_bb0180
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math Program
  doi: 10.1007/BF01589116
– volume: 34
  start-page: 910
  issue: 6
  year: 1995
  ident: 10.1016/j.mri.2024.110239_bb0165
  article-title: The rician distribution of noisy mri data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340618
– volume: 68
  start-page: 1983
  issue: 6
  year: 2012
  ident: 10.1016/j.mri.2024.110239_bb0085
  article-title: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24187
– volume: 33
  start-page: 2757
  issue: 8
  year: 2006
  ident: 10.1016/j.mri.2024.110239_bb0230
  article-title: An effective method to verify line and point spread functions measured in computed tomography
  publication-title: Med Phys
  doi: 10.1118/1.2214168
– volume: 63
  start-page: 1144
  issue: 5
  year: 2010
  ident: 10.1016/j.mri.2024.110239_bb0150
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22361
– volume: 10
  start-page: L55
  issue: 3
  year: 1977
  ident: 10.1016/j.mri.2024.110239_bb0010
  article-title: Multi-planar image formation using NMR spin echoes
  publication-title: J Phys C Solid State Phys
  doi: 10.1088/0022-3719/10/3/004
– volume: 24
  start-page: 133
  issue: 2
  year: 2006
  ident: 10.1016/j.mri.2024.110239_bb0185
  article-title: Resolution enhancement in MRI
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2005.09.011
– volume: 70
  start-page: 1263
  issue: 5
  year: 2013
  ident: 10.1016/j.mri.2024.110239_bb0240
  article-title: Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24577
– volume: 26
  issue: 1
  year: 2024
  ident: 10.1016/j.mri.2024.110239_bb0305
  article-title: A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1016/j.jocmr.2024.101039
– volume: 33
  start-page: 1466
  issue: 5
  year: 2006
  ident: 10.1016/j.mri.2024.110239_bb0225
  article-title: Intercomparison of methods for image quality characterization. I. Modulation transfer functiona
  publication-title: Med Phys
  doi: 10.1118/1.2188816
– volume: 74
  start-page: 489
  issue: 2
  year: 2015
  ident: 10.1016/j.mri.2024.110239_bb0255
  article-title: Accelerated MR parameter mapping with low-rank and sparsity constraints
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25421
– volume: 79
  start-page: 141
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2024.110239_bb0160
  article-title: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26653
– volume: 77
  start-page: 1818
  issue: 5
  year: 2017
  ident: 10.1016/j.mri.2024.110239_bb0130
  article-title: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26262
– volume: 20
  start-page: 437
  issue: 5
  year: 2002
  ident: 10.1016/j.mri.2024.110239_bb0090
  article-title: MRI inter-slice reconstruction using super-resolution
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(02)00511-8
– volume: 36
  start-page: 527
  issue: 2
  year: 2017
  ident: 10.1016/j.mri.2024.110239_bb0200
  article-title: Fast realistic MRI simulations based on generalized multi-pool exchange tissue model
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2620961
– ident: 10.1016/j.mri.2024.110239_bb0015
  doi: 10.1016/0022-2364(86)90433-6
– volume: 125
  start-page: 386
  year: 2016
  ident: 10.1016/j.mri.2024.110239_bb0120
  article-title: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.061
– volume: 13
  start-page: 313
  issue: 2
  year: 2001
  ident: 10.1016/j.mri.2024.110239_bb0140
  article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited
  publication-title: J Magn Reson Imaging
  doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
– volume: 85
  start-page: 3211
  issue: 6
  year: 2021
  ident: 10.1016/j.mri.2024.110239_bb0275
  article-title: Magnetic resonance parameter mapping using model-guided self-supervised deep learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28659
– volume: 76
  start-page: 1848
  issue: 6
  year: 2016
  ident: 10.1016/j.mri.2024.110239_bb0260
  article-title: Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26081
– volume: 42
  start-page: 952
  issue: 5
  year: 1999
  ident: 10.1016/j.mri.2024.110239_bb0025
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 86
  start-page: 1194
  issue: 3
  year: 2021
  ident: 10.1016/j.mri.2024.110239_bb0215
  article-title: A standard system phantom for magnetic resonance imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28779
– volume: 70
  start-page: 1524
  issue: 6
  year: 2013
  ident: 10.1016/j.mri.2024.110239_bb0060
  article-title: Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24600
– volume: 32
  start-page: 138
  issue: 1
  year: 2006
  ident: 10.1016/j.mri.2024.110239_bb0205
  article-title: A new improved version of the realistic digital brain phantom
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.052
– start-page: 249
  year: 2012
  ident: 10.1016/j.mri.2024.110239_bb0105
  article-title: Super-resolution reconstruction of diffusion-weighted images from distortion compensated orthogonal anisotropic acquisitions
– volume: 2
  start-page: 266
  issue: 3
  year: 2016
  ident: 10.1016/j.mri.2024.110239_bb0290
  article-title: Sensitivity encoding for aligned multishot magnetic resonance reconstruction
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2016.2557069
– volume: 16
  start-page: 192
  issue: 2
  year: 1990
  ident: 10.1016/j.mri.2024.110239_bb0020
  article-title: The NMR phased array
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910160203
– volume: 60
  start-page: 895
  issue: 4
  year: 2008
  ident: 10.1016/j.mri.2024.110239_bb0235
  article-title: Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21728
– volume: 34
  start-page: 420
  issue: 2
  year: 2011
  ident: 10.1016/j.mri.2024.110239_bb0055
  article-title: Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22634
– volume: 9
  start-page: 650
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2024.110239_bb0220
  article-title: Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor
  publication-title: Biomed Opt Exp
  doi: 10.1364/BOE.9.000650
– volume: 28
  start-page: 633
  issue: 5
  year: 2009
  ident: 10.1016/j.mri.2024.110239_bb0095
  article-title: A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2008.2007348
– volume: 77
  start-page: 1874
  issue: 5
  year: 2017
  ident: 10.1016/j.mri.2024.110239_bb0300
  article-title: 3D image-based navigators for coronary MR angiography
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26269
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  ident: 10.1016/j.mri.2024.110239_bb0035
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10171
– volume: 79
  start-page: 730
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2024.110239_bb0070
  article-title: Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26726
– volume: 83
  start-page: 906
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2024.110239_bb0135
  article-title: Model-based super-resolution reconstruction of T2 maps
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27981
– volume: 14
  start-page: 131
  issue: 3
  year: 2004
  ident: 10.1016/j.mri.2024.110239_bb0100
  article-title: The use of super-resolution techniques to reduce slice thickness in functional MRI
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20016
– volume: 5
  start-page: 201
  issue: 3
  year: 1987
  ident: 10.1016/j.mri.2024.110239_bb0170
  article-title: Rapid calculation of T1 using variable flip angle gradient refocused imaging
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(87)90021-X
– volume: 5
  start-page: 399
  issue: 5
  year: 1987
  ident: 10.1016/j.mri.2024.110239_bb0175
  article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910050502
– volume: 36
  start-page: 2087
  issue: 10
  year: 2017
  ident: 10.1016/j.mri.2024.110239_bb0265
  article-title: Recovery of damped exponentials using structured low rank matrix completion
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2726995
– volume: 75
  start-page: 181
  issue: 1
  year: 2016
  ident: 10.1016/j.mri.2024.110239_bb0125
  article-title: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25597
– volume: 73
  start-page: 514
  issue: 2
  year: 2015
  ident: 10.1016/j.mri.2024.110239_bb0280
  article-title: On the accuracy of T1 mapping: searching for common ground
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25135
– volume: 3
  start-page: 823
  issue: 6
  year: 1986
  ident: 10.1016/j.mri.2024.110239_bb0005
  article-title: RARE imaging: a fast imaging method for clinical MR
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910030602
– volume: 88
  start-page: 2117
  issue: 5
  year: 2022
  ident: 10.1016/j.mri.2024.110239_bb0115
  article-title: Whole-brain water content mapping using super-resolution reconstruction with MRI acquisition in 3 orthogonal orientations
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29377
– volume: 28
  start-page: 1759
  issue: 11
  year: 2009
  ident: 10.1016/j.mri.2024.110239_bb0045
  article-title: Model-based iterative reconstruction for radial fast spin-Echo MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2023119
– volume: 75
  start-page: 1346
  issue: 3
  year: 2016
  ident: 10.1016/j.mri.2024.110239_bb0050
  article-title: Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25558
– volume: 53
  start-page: 684
  issue: 3
  year: 2005
  ident: 10.1016/j.mri.2024.110239_bb0145
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20401
– volume: 84
  start-page: 321
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2024.110239_bb0040
  article-title: A new approach to accelerate readout segmented EPI with compressed sensing
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28116
– volume: 38
  start-page: 591
  issue: 4
  year: 1997
  ident: 10.1016/j.mri.2024.110239_bb0030
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910380414
– volume: 67
  start-page: 1210
  issue: 5
  year: 2012
  ident: 10.1016/j.mri.2024.110239_bb0155
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23097
– volume: 64
  start-page: 1114
  issue: 4
  year: 2010
  ident: 10.1016/j.mri.2024.110239_bb0250
  article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22483
SSID ssj0005235
Score 2.4368703
Snippet Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110239
SubjectTerms Algorithms
Brain - diagnostic imaging
Computer Simulation
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Model-based reconstruction
Monte Carlo Method
Phantoms, Imaging
POSE
Quantitative imaging
Reproducibility of Results
Signal-To-Noise Ratio
Subvoxel shifting
Variable flip angle
Title POSE: POSition Encoding for accelerated quantitative MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24002200
https://dx.doi.org/10.1016/j.mri.2024.110239
https://www.ncbi.nlm.nih.gov/pubmed/39276808
https://www.proquest.com/docview/3105490003
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FQXwRb-vFCj4Ja_fIXr6VUqlKq3iAbyGZJFDRba3tq7_dmT2KggfIwsIumd3sJDvzDZnJx9ixBeUrCLirlE5cjDfAzVINbmw1ZFoGKWgqTu4P4t4Dv3yMHhusU9fCUFplZftLm15Y6-pOq9Jmazwctu5ociYBBlucHJFHcTvnCbEYnL5_TvMoSTaxsUut65XNIsfrZTLEEDHglAwfEF_4977pJ-xZ-KDzVbZSgUenXfZvjTVMvs6W-tXy-AZLb67vumcOnotELKebw4h8k4PI1JEA6GJoZwjtvM5kXlSXoa1z-rcXm-zhvHvf6bkVNYIL3AunbkKhiIYoVBJkKq3hGUI1Ky3CkThSvuX4hZmJbSRD43vSeqkyPiQm4pYnqQ632EI-ys0Oc8BaFWYeHknM8XGIHzSHMJZAdKA2azKvVoqAat9woq94FnWC2JNAPQrSoyj12GQnc5FxuWnGb42DWtOirgZF-yXQpP8mxOdCX6bLX2JH9VAK_I1obUTmZjR7E4hyMVKmCLHJtssxnncdIWRCDCW7_3vpHlumqzIHZp8tTCczc4BIZqoOi6l6yBbbF1e9wQeOnu-z
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQb2Ib-szgichNk02L28ilfqoim3B27I7uwsVTau2V3-7M3kUBa0ggRySnWQzu5n5PnZmh7EjC6qhwOeuUjp2kW-AmyYa3MhqSLX0E9CUnNy-jVo9fvUYPs6w8yoXhsIqS9tf2PTcWpdX6qU268N-v96hyRn7SLY4OSIPefscD_2YGNjJx9c4j6LKJrZ2qXm1tJkHeb289ZEj-pyi4X0qGP6zc_oNfOZO6GKZLZXo0TkrOrjCZky2yubb5fr4Gkvu7zrNUwfPeSSW08xgQM7JQWjqSAD0MbQ1hHZexzLL08vQ2Dnth8t11rtods9bblkbwQXuBSM3Ji6iIQyUBJlIa3iKWM1Ki3gkClXDcvzC1EQ2lIFpeNJ6iTINiE3ILY8THWyw2WyQmS3mgLUqSD084ojj4xBAaA5BJIHqgdq0xrxKKQLKjcOpfsWzqCLEngTqUZAeRaHHGjueiAyLXTOmNfYrTYsqHRQNmECbPk2IT4S-zZe_xA6roRT4H9HiiMzMYPwuEOYiVSaKWGObxRhPuo4YMqYSJdv_e-kBW2h12zfi5vL2eoct0p0iIGaXzY7exmYPYc1I7efT9hMk7fFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POSE%3A+POSition+Encoding+for+accelerated+quantitative+MRI&rft.jtitle=Magnetic+resonance+imaging&rft.au=Jang%2C+Albert&rft.au=Liu%2C+Fang&rft.date=2024-12-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=114&rft_id=info:doi/10.1016%2Fj.mri.2024.110239&rft.externalDocID=S0730725X24002200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon