POSE: POSition Encoding for accelerated quantitative MRI
Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a sourc...
Saved in:
| Published in | Magnetic resonance imaging Vol. 114; p. 110239 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier Inc
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0730-725X 1873-5894 1873-5894 |
| DOI | 10.1016/j.mri.2024.110239 |
Cover
| Abstract | Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors. |
|---|---|
| AbstractList | Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors. Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T1 values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors. Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors. |
| ArticleNumber | 110239 |
| Author | Jang, Albert Liu, Fang |
| Author_xml | – sequence: 1 givenname: Albert surname: Jang fullname: Jang, Albert organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States – sequence: 2 givenname: Fang surname: Liu fullname: Liu, Fang email: fliu12@mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39276808$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMFOGzEQhq2KqgmhD9AL2iOXDeP1Ova2J4RCQUpFBVTqzXK848phY4PtIPH2dZpwyYFeZi7_N5r_OyZHPngk5AuFKQU6O19N19FNG2jaKaXQsO4DGVMpWM1l1x6RMQgGtWj47xE5TmkFALxh_BMZsa4RMwlyTOTP2_v516pMl13w1dyb0Dv_p7IhVtoYHDDqjH31vNE-u6yze8Hqx93NCflo9ZDw835PyK-r-cPldb24_X5zebGoTQss1wJAznrD2VIbLbXFtqNdY7UV5QO-pLYtTTqcWa4ZUtAW5BKpEchb2wrZswk52919iuF5gymrtUvlrUF7DJukGAXedqUaK9HTfXSzXGOvnqJb6_iq3tqWgNgFTAwpRbTK_GsUfI7aDYqC2npVK1W8qq1XtfNaSHpAvh1_j_m2Y7DoeXEYVTIOvcHeRTRZ9cG9S3cHtBmcd0YPj_j6H_Yvx2Og4Q |
| CitedBy_id | crossref_primary_10_1002_mrm_30493 |
| Cites_doi | 10.1109/TMI.2015.2413211 10.1038/nature11971 10.1002/mrm.27502 10.1109/TMI.2018.2791482 10.1002/mrm.24267 10.1002/ima.22196 10.1002/mrm.24233 10.1002/mrm.21391 10.1007/BF01589116 10.1002/mrm.1910340618 10.1002/mrm.24187 10.1118/1.2214168 10.1002/mrm.22361 10.1088/0022-3719/10/3/004 10.1016/j.mri.2005.09.011 10.1002/mrm.24577 10.1016/j.jocmr.2024.101039 10.1118/1.2188816 10.1002/mrm.25421 10.1002/mrm.26653 10.1002/mrm.26262 10.1016/S0730-725X(02)00511-8 10.1109/TMI.2016.2620961 10.1016/0022-2364(86)90433-6 10.1016/j.neuroimage.2015.10.061 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W 10.1002/mrm.28659 10.1002/mrm.26081 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.28779 10.1002/mrm.24600 10.1016/j.neuroimage.2006.03.052 10.1109/TCI.2016.2557069 10.1002/mrm.1910160203 10.1002/mrm.21728 10.1002/jmri.22634 10.1364/BOE.9.000650 10.1109/TMI.2008.2007348 10.1002/mrm.26269 10.1002/mrm.10171 10.1002/mrm.26726 10.1002/mrm.27981 10.1002/ima.20016 10.1016/0730-725X(87)90021-X 10.1002/mrm.1910050502 10.1109/TMI.2017.2726995 10.1002/mrm.25597 10.1002/mrm.25135 10.1002/mrm.1910030602 10.1002/mrm.29377 10.1109/TMI.2009.2023119 10.1002/mrm.25558 10.1002/mrm.20401 10.1002/mrm.28116 10.1002/mrm.1910380414 10.1002/mrm.23097 10.1002/mrm.22483 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.mri.2024.110239 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-5894 |
| ExternalDocumentID | 39276808 10_1016_j_mri_2024_110239 S0730725X24002200 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c403t-70086dc53baca8afe49192faf72765b1f41019e6f5a3e10af08be1c7e54f478d3 |
| IEDL.DBID | .~1 |
| ISSN | 0730-725X 1873-5894 |
| IngestDate | Thu Oct 02 12:08:27 EDT 2025 Wed Feb 19 02:18:17 EST 2025 Thu Apr 24 23:04:17 EDT 2025 Thu Oct 09 00:10:29 EDT 2025 Sat Oct 19 15:54:59 EDT 2024 Tue Oct 14 19:40:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variable flip angle Quantitative imaging Subvoxel shifting POSE Model-based reconstruction T1 T |
| Language | English |
| License | Copyright © 2024 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-70086dc53baca8afe49192faf72765b1f41019e6f5a3e10af08be1c7e54f478d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39276808 |
| PQID | 3105490003 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3105490003 pubmed_primary_39276808 crossref_citationtrail_10_1016_j_mri_2024_110239 crossref_primary_10_1016_j_mri_2024_110239 elsevier_sciencedirect_doi_10_1016_j_mri_2024_110239 elsevier_clinicalkey_doi_10_1016_j_mri_2024_110239 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Magnetic resonance imaging |
| PublicationTitleAlternate | Magn Reson Imaging |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Peeters, Kornprobst, Nikolova (bb0100) 2004; 14 Mansfield (bb0010) 1977; 10 Velikina, Alexander, Samsonov (bb0240) 2013; 70 Wang, Riederer, Lee (bb0175) 1987; 5 Sumpf, Uecker, Boretius, Frahm (bb0055) 2011; 34 1986;67(2):258–266. doi Cordero-Grande, Teixeira, Hughes, Hutter, Price, Hajnal (bb0290) 2016; 2 Ohkubo, Wada, Matsumoto, Nishizawa (bb0230) 2006; 33 Tran-Gia, Stäb, Wech, Hahn, Köstler (bb0060) 2013; 70 Setsompop, Fan, Stockmann (bb0160) 2018; 79 Samei, Ranger, Dobbins, Chen (bb0225) 2006; 33 Ben-Eliezer, Sodickson, Shepherd, Wiggins, Block (bb0050) 2016; 75 Hennig, Nauerth, Friedburg (bb0005) 1986; 3 Allen, Ogunlade, Zhang, Beard (bb0220) 2018; 9 Griswold, Jakob, Heidemann (bb0035) 2002; 47 Thomas, Oros-Peusquens, Poot, Shah (bb0115) 2022; 88 Zhao, Lu, Hitchens, Lam, Ho, Liang (bb0255) 2015; 74 . Zhang, Pauly, Vasanawala, Lustig (bb0190) 2013; 69 Plenge, Poot, Bernsen (bb0085) 2012; 68 Scherrer, Gholipour, Warfield (bb0105) 2012 Greenspan, Oz, Kiryati, Peled (bb0090) 2002; 20 Liu, Nocedal (bb0180) 1989; 45 Robson, Grant, Madhuranthakam, Lattanzi, Sodickson, McKenzie (bb0235) 2008; 60 Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bb0155) 2012; 67 Roemer, Edelstein, Hayes, Souza, Mueller (bb0020) 1990; 16 Pruessmann, Weiger, Scheidegger, Boesiger (bb0025) 1999; 42 Doneva, Börnert, Eggers, Stehning, Sénégas, Mertins (bb0250) 2010; 64 Shilling, Robbie, Bailloeul, Mewes, Mersereau, Brummer (bb0095) 2009; 28 Fram, Herfkens, Johnson (bb0170) 1987; 5 Stikov, Boudreau, Levesque, Tardif, Barral, Pike (bb0280) 2015; 73 Larkman, Hajnal, Herlihy, Coutts, Young, Ehnholm (bb0140) 2001; 13 (bb0245) 2018 Block, Uecker, Frahm (bb0045) 2009; 28 Roeloffs, Wang, Sumpf, Untenberger, Voit, Frahm (bb0065) 2016; 26 Van Steenkiste, Jeurissen, Veraart (bb0125) 2016; 75 Carmi, Liu, Alon, Fiat, Fiat (bb0185) 2006; 24 Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson Liebig, Heidemann, Hensel, Porter (bb0040) 2020; 84 Haskell, Cauley, Wald (bb0295) 2018; 37 Balachandrasekaran, Magnotta, Jacob (bb0265) 2017; 36 Ma, Gulani, Seiberlich (bb0080) 2013; 495 Poot, Jeurissen, Bastiaensen (bb0110) 2013; 69 Ning, Setsompop, Michailovich (bb0120) 2016; 125 bb0210 Stupic, Ainslie, Boss (bb0215) 2021; 86 Moeller, Yacoub, Olman (bb0150) 2010; 63 Aubert-Broche, Evans, Collins (bb0205) 2006; 32 Wang, Roeloffs, Klosowski (bb0070) 2018; 79 Breuer, Blaimer, Heidemann, Mueller, Griswold, Jakob (bb0145) 2005; 53 Phair, Fotaki, Felsner (bb0305) 2024; 26 Van Steenkiste, Poot, Jeurissen (bb0130) 2017; 77 Gudbjartsson, Patz (bb0165) 1995; 34 Uecker, Ong, Tamir (bb0195) 2015 Babayeva, Kober, Knowles (bb0285) 2015; 34 Maier, Schoormans, Schloegl (bb0075) 2019; 81 Sodickson, Manning (bb0030) 1997; 38 Bano, Piredda, Davies (bb0135) 2020; 83 Lee, Jin, Kim, Park, Ye (bb0260) 2016; 76 Liu, Kijowski, El Fakhri, Feng (bb0275) 2021; 85 Lustig, Donoho, Pauly (bb0270) 2007; 58 1969 Liu, Velikina, Block, Kijowski, Samsonov (bb0200) 2017; 36 Addy, Ingle, Luo (bb0300) 2017; 77 Ohkubo (10.1016/j.mri.2024.110239_bb0230) 2006; 33 Gudbjartsson (10.1016/j.mri.2024.110239_bb0165) 1995; 34 Hennig (10.1016/j.mri.2024.110239_bb0005) 1986; 3 Wang (10.1016/j.mri.2024.110239_bb0070) 2018; 79 Setsompop (10.1016/j.mri.2024.110239_bb0160) 2018; 79 Fram (10.1016/j.mri.2024.110239_bb0170) 1987; 5 Balachandrasekaran (10.1016/j.mri.2024.110239_bb0265) 2017; 36 Mansfield (10.1016/j.mri.2024.110239_bb0010) 1977; 10 Scherrer (10.1016/j.mri.2024.110239_bb0105) 2012 Cordero-Grande (10.1016/j.mri.2024.110239_bb0290) 2016; 2 Carmi (10.1016/j.mri.2024.110239_bb0185) 2006; 24 Shilling (10.1016/j.mri.2024.110239_bb0095) 2009; 28 Liu (10.1016/j.mri.2024.110239_bb0275) 2021; 85 Moeller (10.1016/j.mri.2024.110239_bb0150) 2010; 63 Maier (10.1016/j.mri.2024.110239_bb0075) 2019; 81 Peeters (10.1016/j.mri.2024.110239_bb0100) 2004; 14 Plenge (10.1016/j.mri.2024.110239_bb0085) 2012; 68 Roemer (10.1016/j.mri.2024.110239_bb0020) 1990; 16 Tran-Gia (10.1016/j.mri.2024.110239_bb0060) 2013; 70 Aubert-Broche (10.1016/j.mri.2024.110239_bb0205) 2006; 32 Liebig (10.1016/j.mri.2024.110239_bb0040) 2020; 84 Liu (10.1016/j.mri.2024.110239_bb0200) 2017; 36 Breuer (10.1016/j.mri.2024.110239_bb0145) 2005; 53 Ma (10.1016/j.mri.2024.110239_bb0080) 2013; 495 Phair (10.1016/j.mri.2024.110239_bb0305) 2024; 26 Wang (10.1016/j.mri.2024.110239_bb0175) 1987; 5 Samei (10.1016/j.mri.2024.110239_bb0225) 2006; 33 Lee (10.1016/j.mri.2024.110239_bb0260) 2016; 76 Sumpf (10.1016/j.mri.2024.110239_bb0055) 2011; 34 Roeloffs (10.1016/j.mri.2024.110239_bb0065) 2016; 26 Robson (10.1016/j.mri.2024.110239_bb0235) 2008; 60 Lustig (10.1016/j.mri.2024.110239_bb0270) 2007; 58 10.1016/j.mri.2024.110239_bb0015 Haskell (10.1016/j.mri.2024.110239_bb0295) 2018; 37 Doneva (10.1016/j.mri.2024.110239_bb0250) 2010; 64 Setsompop (10.1016/j.mri.2024.110239_bb0155) 2012; 67 Griswold (10.1016/j.mri.2024.110239_bb0035) 2002; 47 Zhang (10.1016/j.mri.2024.110239_bb0190) 2013; 69 Thomas (10.1016/j.mri.2024.110239_bb0115) 2022; 88 Ben-Eliezer (10.1016/j.mri.2024.110239_bb0050) 2016; 75 Sodickson (10.1016/j.mri.2024.110239_bb0030) 1997; 38 Zhao (10.1016/j.mri.2024.110239_bb0255) 2015; 74 Addy (10.1016/j.mri.2024.110239_bb0300) 2017; 77 Block (10.1016/j.mri.2024.110239_bb0045) 2009; 28 Larkman (10.1016/j.mri.2024.110239_bb0140) 2001; 13 Greenspan (10.1016/j.mri.2024.110239_bb0090) 2002; 20 Ning (10.1016/j.mri.2024.110239_bb0120) 2016; 125 Van Steenkiste (10.1016/j.mri.2024.110239_bb0125) 2016; 75 Pruessmann (10.1016/j.mri.2024.110239_bb0025) 1999; 42 Babayeva (10.1016/j.mri.2024.110239_bb0285) 2015; 34 Van Steenkiste (10.1016/j.mri.2024.110239_bb0130) 2017; 77 Uecker (10.1016/j.mri.2024.110239_bb0195) 2015 Velikina (10.1016/j.mri.2024.110239_bb0240) 2013; 70 (10.1016/j.mri.2024.110239_bb0245) 2018 Stupic (10.1016/j.mri.2024.110239_bb0215) 2021; 86 Poot (10.1016/j.mri.2024.110239_bb0110) 2013; 69 Allen (10.1016/j.mri.2024.110239_bb0220) 2018; 9 Stikov (10.1016/j.mri.2024.110239_bb0280) 2015; 73 Liu (10.1016/j.mri.2024.110239_bb0180) 1989; 45 Bano (10.1016/j.mri.2024.110239_bb0135) 2020; 83 |
| References_xml | – volume: 85 start-page: 3211 year: 2021 end-page: 3226 ident: bb0275 article-title: Magnetic resonance parameter mapping using model-guided self-supervised deep learning publication-title: Magn Reson Med – volume: 32 start-page: 138 year: 2006 end-page: 145 ident: bb0205 article-title: A new improved version of the realistic digital brain phantom publication-title: Neuroimage – reference: 1969 – volume: 73 start-page: 514 year: 2015 end-page: 522 ident: bb0280 article-title: On the accuracy of T1 mapping: searching for common ground publication-title: Magn Reson Med – volume: 2 start-page: 266 year: 2016 end-page: 280 ident: bb0290 article-title: Sensitivity encoding for aligned multishot magnetic resonance reconstruction publication-title: IEEE Trans Comput Imaging – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bb0180 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math Program – year: 2015 ident: bb0195 article-title: Berkeley advanced reconstruction toolbox publication-title: Proc. Intl. Soc. mag. Reson. Med. Toronto – volume: 81 start-page: 2072 year: 2019 end-page: 2089 ident: bb0075 article-title: Rapid T1 quantification from high resolution 3D data with model-based reconstruction publication-title: Magn Reson Med – volume: 14 start-page: 131 year: 2004 end-page: 138 ident: bb0100 article-title: The use of super-resolution techniques to reduce slice thickness in functional MRI publication-title: Int J Imaging Syst Technol – volume: 26 start-page: 254 year: 2016 end-page: 263 ident: bb0065 article-title: Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH publication-title: Int J Imaging Syst Technol – volume: 38 start-page: 591 year: 1997 end-page: 603 ident: bb0030 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med – volume: 84 start-page: 321 year: 2020 end-page: 326 ident: bb0040 article-title: A new approach to accelerate readout segmented EPI with compressed sensing publication-title: Magn Reson Med – volume: 26 year: 2024 ident: bb0305 article-title: A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease publication-title: J Cardiovasc Magn Reson – reference: . 1986;67(2):258–266. doi: – volume: 64 start-page: 1114 year: 2010 end-page: 1120 ident: bb0250 article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping publication-title: Magn Reson Med – volume: 74 start-page: 489 year: 2015 end-page: 498 ident: bb0255 article-title: Accelerated MR parameter mapping with low-rank and sparsity constraints publication-title: Magn Reson Med – volume: 68 start-page: 1983 year: 2012 end-page: 1993 ident: bb0085 article-title: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? publication-title: Magn Reson Med – volume: 13 start-page: 313 year: 2001 end-page: 317 ident: bb0140 article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited publication-title: J Magn Reson Imaging – volume: 75 start-page: 181 year: 2016 end-page: 195 ident: bb0125 article-title: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations publication-title: Magn Reson Med – volume: 36 start-page: 527 year: 2017 end-page: 537 ident: bb0200 article-title: Fast realistic MRI simulations based on generalized multi-pool exchange tissue model publication-title: IEEE Trans Med Imaging – volume: 16 start-page: 192 year: 1990 end-page: 225 ident: bb0020 article-title: The NMR phased array publication-title: Magn Reson Med – year: 2018 ident: bb0245 publication-title: Phantom Test Guidance for Use of the Large MRI Phantom for the ACR Accreditation Program – volume: 36 start-page: 2087 year: 2017 end-page: 2098 ident: bb0265 article-title: Recovery of damped exponentials using structured low rank matrix completion publication-title: IEEE Trans Med Imaging – volume: 10 start-page: L55 year: 1977 ident: bb0010 article-title: Multi-planar image formation using NMR spin echoes publication-title: J Phys C Solid State Phys – volume: 28 start-page: 1759 year: 2009 end-page: 1769 ident: bb0045 article-title: Model-based iterative reconstruction for radial fast spin-Echo MRI publication-title: IEEE Trans Med Imaging – volume: 69 start-page: 103 year: 2013 end-page: 113 ident: bb0110 article-title: Super-resolution for multislice diffusion tensor imaging publication-title: Magn Reson Med – volume: 83 start-page: 906 year: 2020 end-page: 919 ident: bb0135 article-title: Model-based super-resolution reconstruction of T2 maps publication-title: Magn Reson Med – volume: 69 start-page: 571 year: 2013 end-page: 582 ident: bb0190 article-title: Coil compression for accelerated imaging with Cartesian sampling publication-title: Magn Reson Med – ident: bb0210 – volume: 63 start-page: 1144 year: 2010 end-page: 1153 ident: bb0150 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn Reson Med – volume: 33 start-page: 2757 year: 2006 end-page: 2764 ident: bb0230 article-title: An effective method to verify line and point spread functions measured in computed tomography publication-title: Med Phys – volume: 34 start-page: 910 year: 1995 end-page: 914 ident: bb0165 article-title: The rician distribution of noisy mri data publication-title: Magn Reson Med – volume: 37 start-page: 1253 year: 2018 end-page: 1265 ident: bb0295 article-title: TArgeted motion estimation and reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization publication-title: IEEE Trans Med Imaging – volume: 125 start-page: 386 year: 2016 end-page: 400 ident: bb0120 article-title: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging publication-title: Neuroimage – volume: 5 start-page: 201 year: 1987 end-page: 208 ident: bb0170 article-title: Rapid calculation of T1 using variable flip angle gradient refocused imaging publication-title: Magn Reson Imaging – volume: 67 start-page: 1210 year: 2012 end-page: 1224 ident: bb0155 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn Reson Med – volume: 77 start-page: 1874 year: 2017 end-page: 1883 ident: bb0300 article-title: 3D image-based navigators for coronary MR angiography publication-title: Magn Reson Med – volume: 24 start-page: 133 year: 2006 end-page: 154 ident: bb0185 article-title: Resolution enhancement in MRI publication-title: Magn Reson Imaging – reference: Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: bb0025 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: bb0270 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 34 start-page: 1879 year: 2015 end-page: 1889 ident: bb0285 article-title: Accuracy and precision of head motion information in Multi-Channel free induction decay navigators for magnetic resonance imaging publication-title: IEEE Trans Med Imaging – volume: 3 start-page: 823 year: 1986 end-page: 833 ident: bb0005 article-title: RARE imaging: a fast imaging method for clinical MR publication-title: Magn Reson Med – volume: 77 start-page: 1818 year: 2017 end-page: 1830 ident: bb0130 article-title: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations publication-title: Magn Reson Med – volume: 28 start-page: 633 year: 2009 end-page: 644 ident: bb0095 article-title: A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI publication-title: IEEE Trans Med Imaging – volume: 79 start-page: 141 year: 2018 end-page: 151 ident: bb0160 article-title: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS) publication-title: Magn Reson Med – volume: 9 start-page: 650 year: 2018 end-page: 660 ident: bb0220 article-title: Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor publication-title: Biomed Opt Exp – start-page: 249 year: 2012 end-page: 254 ident: bb0105 article-title: Super-resolution reconstruction of diffusion-weighted images from distortion compensated orthogonal anisotropic acquisitions publication-title: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis – volume: 60 start-page: 895 year: 2008 end-page: 907 ident: bb0235 article-title: Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions publication-title: Magn Reson Med – volume: 79 start-page: 730 year: 2018 end-page: 740 ident: bb0070 article-title: Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH publication-title: Magn Reson Med – volume: 88 start-page: 2117 year: 2022 end-page: 2130 ident: bb0115 article-title: Whole-brain water content mapping using super-resolution reconstruction with MRI acquisition in 3 orthogonal orientations publication-title: Magn Reson Med – volume: 5 start-page: 399 year: 1987 end-page: 416 ident: bb0175 article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles publication-title: Magn Reson Med – volume: 53 start-page: 684 year: 2005 end-page: 691 ident: bb0145 article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging publication-title: Magn Reson Med – reference: . – volume: 47 start-page: 1202 year: 2002 end-page: 1210 ident: bb0035 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 76 start-page: 1848 year: 2016 end-page: 1864 ident: bb0260 article-title: Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA) publication-title: Magn Reson Med – volume: 33 start-page: 1466 year: 2006 ident: bb0225 article-title: Intercomparison of methods for image quality characterization. I. Modulation transfer functiona publication-title: Med Phys – volume: 86 start-page: 1194 year: 2021 end-page: 1211 ident: bb0215 article-title: A standard system phantom for magnetic resonance imaging publication-title: Magn Reson Med – volume: 70 start-page: 1524 year: 2013 end-page: 1534 ident: bb0060 article-title: Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data publication-title: Magn Reson Med – volume: 70 start-page: 1263 year: 2013 end-page: 1273 ident: bb0240 article-title: Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension publication-title: Magn Reson Med – volume: 75 start-page: 1346 year: 2016 end-page: 1354 ident: bb0050 article-title: Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction publication-title: Magn Reson Med – volume: 20 start-page: 437 year: 2002 end-page: 446 ident: bb0090 article-title: MRI inter-slice reconstruction using super-resolution publication-title: Magn Reson Imaging – volume: 34 start-page: 420 year: 2011 end-page: 428 ident: bb0055 article-title: Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI publication-title: J Magn Reson Imaging – volume: 495 start-page: 187 year: 2013 end-page: 192 ident: bb0080 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 34 start-page: 1879 issue: 9 year: 2015 ident: 10.1016/j.mri.2024.110239_bb0285 article-title: Accuracy and precision of head motion information in Multi-Channel free induction decay navigators for magnetic resonance imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2413211 – volume: 495 start-page: 187 issue: 7440 year: 2013 ident: 10.1016/j.mri.2024.110239_bb0080 article-title: Magnetic resonance fingerprinting publication-title: Nature doi: 10.1038/nature11971 – year: 2015 ident: 10.1016/j.mri.2024.110239_bb0195 article-title: Berkeley advanced reconstruction toolbox – volume: 81 start-page: 2072 issue: 3 year: 2019 ident: 10.1016/j.mri.2024.110239_bb0075 article-title: Rapid T1 quantification from high resolution 3D data with model-based reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.27502 – volume: 37 start-page: 1253 issue: 5 year: 2018 ident: 10.1016/j.mri.2024.110239_bb0295 article-title: TArgeted motion estimation and reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2791482 – year: 2018 ident: 10.1016/j.mri.2024.110239_bb0245 – volume: 69 start-page: 571 issue: 2 year: 2013 ident: 10.1016/j.mri.2024.110239_bb0190 article-title: Coil compression for accelerated imaging with Cartesian sampling publication-title: Magn Reson Med doi: 10.1002/mrm.24267 – volume: 26 start-page: 254 issue: 4 year: 2016 ident: 10.1016/j.mri.2024.110239_bb0065 article-title: Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22196 – volume: 69 start-page: 103 issue: 1 year: 2013 ident: 10.1016/j.mri.2024.110239_bb0110 article-title: Super-resolution for multislice diffusion tensor imaging publication-title: Magn Reson Med doi: 10.1002/mrm.24233 – volume: 58 start-page: 1182 issue: 6 year: 2007 ident: 10.1016/j.mri.2024.110239_bb0270 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med doi: 10.1002/mrm.21391 – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 10.1016/j.mri.2024.110239_bb0180 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math Program doi: 10.1007/BF01589116 – volume: 34 start-page: 910 issue: 6 year: 1995 ident: 10.1016/j.mri.2024.110239_bb0165 article-title: The rician distribution of noisy mri data publication-title: Magn Reson Med doi: 10.1002/mrm.1910340618 – volume: 68 start-page: 1983 issue: 6 year: 2012 ident: 10.1016/j.mri.2024.110239_bb0085 article-title: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? publication-title: Magn Reson Med doi: 10.1002/mrm.24187 – volume: 33 start-page: 2757 issue: 8 year: 2006 ident: 10.1016/j.mri.2024.110239_bb0230 article-title: An effective method to verify line and point spread functions measured in computed tomography publication-title: Med Phys doi: 10.1118/1.2214168 – volume: 63 start-page: 1144 issue: 5 year: 2010 ident: 10.1016/j.mri.2024.110239_bb0150 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn Reson Med doi: 10.1002/mrm.22361 – volume: 10 start-page: L55 issue: 3 year: 1977 ident: 10.1016/j.mri.2024.110239_bb0010 article-title: Multi-planar image formation using NMR spin echoes publication-title: J Phys C Solid State Phys doi: 10.1088/0022-3719/10/3/004 – volume: 24 start-page: 133 issue: 2 year: 2006 ident: 10.1016/j.mri.2024.110239_bb0185 article-title: Resolution enhancement in MRI publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2005.09.011 – volume: 70 start-page: 1263 issue: 5 year: 2013 ident: 10.1016/j.mri.2024.110239_bb0240 article-title: Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension publication-title: Magn Reson Med doi: 10.1002/mrm.24577 – volume: 26 issue: 1 year: 2024 ident: 10.1016/j.mri.2024.110239_bb0305 article-title: A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease publication-title: J Cardiovasc Magn Reson doi: 10.1016/j.jocmr.2024.101039 – volume: 33 start-page: 1466 issue: 5 year: 2006 ident: 10.1016/j.mri.2024.110239_bb0225 article-title: Intercomparison of methods for image quality characterization. I. Modulation transfer functiona publication-title: Med Phys doi: 10.1118/1.2188816 – volume: 74 start-page: 489 issue: 2 year: 2015 ident: 10.1016/j.mri.2024.110239_bb0255 article-title: Accelerated MR parameter mapping with low-rank and sparsity constraints publication-title: Magn Reson Med doi: 10.1002/mrm.25421 – volume: 79 start-page: 141 issue: 1 year: 2018 ident: 10.1016/j.mri.2024.110239_bb0160 article-title: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS) publication-title: Magn Reson Med doi: 10.1002/mrm.26653 – volume: 77 start-page: 1818 issue: 5 year: 2017 ident: 10.1016/j.mri.2024.110239_bb0130 article-title: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations publication-title: Magn Reson Med doi: 10.1002/mrm.26262 – volume: 20 start-page: 437 issue: 5 year: 2002 ident: 10.1016/j.mri.2024.110239_bb0090 article-title: MRI inter-slice reconstruction using super-resolution publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(02)00511-8 – volume: 36 start-page: 527 issue: 2 year: 2017 ident: 10.1016/j.mri.2024.110239_bb0200 article-title: Fast realistic MRI simulations based on generalized multi-pool exchange tissue model publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2620961 – ident: 10.1016/j.mri.2024.110239_bb0015 doi: 10.1016/0022-2364(86)90433-6 – volume: 125 start-page: 386 year: 2016 ident: 10.1016/j.mri.2024.110239_bb0120 article-title: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.061 – volume: 13 start-page: 313 issue: 2 year: 2001 ident: 10.1016/j.mri.2024.110239_bb0140 article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited publication-title: J Magn Reson Imaging doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W – volume: 85 start-page: 3211 issue: 6 year: 2021 ident: 10.1016/j.mri.2024.110239_bb0275 article-title: Magnetic resonance parameter mapping using model-guided self-supervised deep learning publication-title: Magn Reson Med doi: 10.1002/mrm.28659 – volume: 76 start-page: 1848 issue: 6 year: 2016 ident: 10.1016/j.mri.2024.110239_bb0260 article-title: Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA) publication-title: Magn Reson Med doi: 10.1002/mrm.26081 – volume: 42 start-page: 952 issue: 5 year: 1999 ident: 10.1016/j.mri.2024.110239_bb0025 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 86 start-page: 1194 issue: 3 year: 2021 ident: 10.1016/j.mri.2024.110239_bb0215 article-title: A standard system phantom for magnetic resonance imaging publication-title: Magn Reson Med doi: 10.1002/mrm.28779 – volume: 70 start-page: 1524 issue: 6 year: 2013 ident: 10.1016/j.mri.2024.110239_bb0060 article-title: Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data publication-title: Magn Reson Med doi: 10.1002/mrm.24600 – volume: 32 start-page: 138 issue: 1 year: 2006 ident: 10.1016/j.mri.2024.110239_bb0205 article-title: A new improved version of the realistic digital brain phantom publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.052 – start-page: 249 year: 2012 ident: 10.1016/j.mri.2024.110239_bb0105 article-title: Super-resolution reconstruction of diffusion-weighted images from distortion compensated orthogonal anisotropic acquisitions – volume: 2 start-page: 266 issue: 3 year: 2016 ident: 10.1016/j.mri.2024.110239_bb0290 article-title: Sensitivity encoding for aligned multishot magnetic resonance reconstruction publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2016.2557069 – volume: 16 start-page: 192 issue: 2 year: 1990 ident: 10.1016/j.mri.2024.110239_bb0020 article-title: The NMR phased array publication-title: Magn Reson Med doi: 10.1002/mrm.1910160203 – volume: 60 start-page: 895 issue: 4 year: 2008 ident: 10.1016/j.mri.2024.110239_bb0235 article-title: Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions publication-title: Magn Reson Med doi: 10.1002/mrm.21728 – volume: 34 start-page: 420 issue: 2 year: 2011 ident: 10.1016/j.mri.2024.110239_bb0055 article-title: Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22634 – volume: 9 start-page: 650 issue: 2 year: 2018 ident: 10.1016/j.mri.2024.110239_bb0220 article-title: Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor publication-title: Biomed Opt Exp doi: 10.1364/BOE.9.000650 – volume: 28 start-page: 633 issue: 5 year: 2009 ident: 10.1016/j.mri.2024.110239_bb0095 article-title: A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2008.2007348 – volume: 77 start-page: 1874 issue: 5 year: 2017 ident: 10.1016/j.mri.2024.110239_bb0300 article-title: 3D image-based navigators for coronary MR angiography publication-title: Magn Reson Med doi: 10.1002/mrm.26269 – volume: 47 start-page: 1202 issue: 6 year: 2002 ident: 10.1016/j.mri.2024.110239_bb0035 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med doi: 10.1002/mrm.10171 – volume: 79 start-page: 730 issue: 2 year: 2018 ident: 10.1016/j.mri.2024.110239_bb0070 article-title: Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH publication-title: Magn Reson Med doi: 10.1002/mrm.26726 – volume: 83 start-page: 906 issue: 3 year: 2020 ident: 10.1016/j.mri.2024.110239_bb0135 article-title: Model-based super-resolution reconstruction of T2 maps publication-title: Magn Reson Med doi: 10.1002/mrm.27981 – volume: 14 start-page: 131 issue: 3 year: 2004 ident: 10.1016/j.mri.2024.110239_bb0100 article-title: The use of super-resolution techniques to reduce slice thickness in functional MRI publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20016 – volume: 5 start-page: 201 issue: 3 year: 1987 ident: 10.1016/j.mri.2024.110239_bb0170 article-title: Rapid calculation of T1 using variable flip angle gradient refocused imaging publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(87)90021-X – volume: 5 start-page: 399 issue: 5 year: 1987 ident: 10.1016/j.mri.2024.110239_bb0175 article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles publication-title: Magn Reson Med doi: 10.1002/mrm.1910050502 – volume: 36 start-page: 2087 issue: 10 year: 2017 ident: 10.1016/j.mri.2024.110239_bb0265 article-title: Recovery of damped exponentials using structured low rank matrix completion publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2726995 – volume: 75 start-page: 181 issue: 1 year: 2016 ident: 10.1016/j.mri.2024.110239_bb0125 article-title: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations publication-title: Magn Reson Med doi: 10.1002/mrm.25597 – volume: 73 start-page: 514 issue: 2 year: 2015 ident: 10.1016/j.mri.2024.110239_bb0280 article-title: On the accuracy of T1 mapping: searching for common ground publication-title: Magn Reson Med doi: 10.1002/mrm.25135 – volume: 3 start-page: 823 issue: 6 year: 1986 ident: 10.1016/j.mri.2024.110239_bb0005 article-title: RARE imaging: a fast imaging method for clinical MR publication-title: Magn Reson Med doi: 10.1002/mrm.1910030602 – volume: 88 start-page: 2117 issue: 5 year: 2022 ident: 10.1016/j.mri.2024.110239_bb0115 article-title: Whole-brain water content mapping using super-resolution reconstruction with MRI acquisition in 3 orthogonal orientations publication-title: Magn Reson Med doi: 10.1002/mrm.29377 – volume: 28 start-page: 1759 issue: 11 year: 2009 ident: 10.1016/j.mri.2024.110239_bb0045 article-title: Model-based iterative reconstruction for radial fast spin-Echo MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2023119 – volume: 75 start-page: 1346 issue: 3 year: 2016 ident: 10.1016/j.mri.2024.110239_bb0050 article-title: Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.25558 – volume: 53 start-page: 684 issue: 3 year: 2005 ident: 10.1016/j.mri.2024.110239_bb0145 article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20401 – volume: 84 start-page: 321 issue: 1 year: 2020 ident: 10.1016/j.mri.2024.110239_bb0040 article-title: A new approach to accelerate readout segmented EPI with compressed sensing publication-title: Magn Reson Med doi: 10.1002/mrm.28116 – volume: 38 start-page: 591 issue: 4 year: 1997 ident: 10.1016/j.mri.2024.110239_bb0030 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med doi: 10.1002/mrm.1910380414 – volume: 67 start-page: 1210 issue: 5 year: 2012 ident: 10.1016/j.mri.2024.110239_bb0155 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn Reson Med doi: 10.1002/mrm.23097 – volume: 64 start-page: 1114 issue: 4 year: 2010 ident: 10.1016/j.mri.2024.110239_bb0250 article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping publication-title: Magn Reson Med doi: 10.1002/mrm.22483 |
| SSID | ssj0005235 |
| Score | 2.4368703 |
| Snippet | Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110239 |
| SubjectTerms | Algorithms Brain - diagnostic imaging Computer Simulation Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Model-based reconstruction Monte Carlo Method Phantoms, Imaging POSE Quantitative imaging Reproducibility of Results Signal-To-Noise Ratio Subvoxel shifting Variable flip angle |
| Title | POSE: POSition Encoding for accelerated quantitative MRI |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24002200 https://dx.doi.org/10.1016/j.mri.2024.110239 https://www.ncbi.nlm.nih.gov/pubmed/39276808 https://www.proquest.com/docview/3105490003 |
| Volume | 114 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FQXwRb-vFCj4Ja_fIXr6VUqlKq3iAbyGZJFDRba3tq7_dmT2KggfIwsIumd3sJDvzDZnJx9ixBeUrCLirlE5cjDfAzVINbmw1ZFoGKWgqTu4P4t4Dv3yMHhusU9fCUFplZftLm15Y6-pOq9Jmazwctu5ociYBBlucHJFHcTvnCbEYnL5_TvMoSTaxsUut65XNIsfrZTLEEDHglAwfEF_4977pJ-xZ-KDzVbZSgUenXfZvjTVMvs6W-tXy-AZLb67vumcOnotELKebw4h8k4PI1JEA6GJoZwjtvM5kXlSXoa1z-rcXm-zhvHvf6bkVNYIL3AunbkKhiIYoVBJkKq3hGUI1Ky3CkThSvuX4hZmJbSRD43vSeqkyPiQm4pYnqQ632EI-ys0Oc8BaFWYeHknM8XGIHzSHMJZAdKA2azKvVoqAat9woq94FnWC2JNAPQrSoyj12GQnc5FxuWnGb42DWtOirgZF-yXQpP8mxOdCX6bLX2JH9VAK_I1obUTmZjR7E4hyMVKmCLHJtssxnncdIWRCDCW7_3vpHlumqzIHZp8tTCczc4BIZqoOi6l6yBbbF1e9wQeOnu-z |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQb2Ib-szgichNk02L28ilfqoim3B27I7uwsVTau2V3-7M3kUBa0ggRySnWQzu5n5PnZmh7EjC6qhwOeuUjp2kW-AmyYa3MhqSLX0E9CUnNy-jVo9fvUYPs6w8yoXhsIqS9tf2PTcWpdX6qU268N-v96hyRn7SLY4OSIPefscD_2YGNjJx9c4j6LKJrZ2qXm1tJkHeb289ZEj-pyi4X0qGP6zc_oNfOZO6GKZLZXo0TkrOrjCZky2yubb5fr4Gkvu7zrNUwfPeSSW08xgQM7JQWjqSAD0MbQ1hHZexzLL08vQ2Dnth8t11rtods9bblkbwQXuBSM3Ji6iIQyUBJlIa3iKWM1Ki3gkClXDcvzC1EQ2lIFpeNJ6iTINiE3ILY8THWyw2WyQmS3mgLUqSD084ojj4xBAaA5BJIHqgdq0xrxKKQLKjcOpfsWzqCLEngTqUZAeRaHHGjueiAyLXTOmNfYrTYsqHRQNmECbPk2IT4S-zZe_xA6roRT4H9HiiMzMYPwuEOYiVSaKWGObxRhPuo4YMqYSJdv_e-kBW2h12zfi5vL2eoct0p0iIGaXzY7exmYPYc1I7efT9hMk7fFI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POSE%3A+POSition+Encoding+for+accelerated+quantitative+MRI&rft.jtitle=Magnetic+resonance+imaging&rft.au=Jang%2C+Albert&rft.au=Liu%2C+Fang&rft.date=2024-12-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=114&rft_id=info:doi/10.1016%2Fj.mri.2024.110239&rft.externalDocID=S0730725X24002200 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |