Lightweight neural network for Alzheimer's disease classification using multi-slice sMRI

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using mu...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 107; pp. 164 - 170
Main Authors Zhang, Qiongmin, Long, Ying, Cai, Hongshun, Chen, Yen-Wei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2023.12.010

Cover

Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.
AbstractList Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.
Author Chen, Yen-Wei
Zhang, Qiongmin
Long, Ying
Cai, Hongshun
Author_xml – sequence: 1
  givenname: Qiongmin
  surname: Zhang
  fullname: Zhang, Qiongmin
  email: zqm@cqut.edu.cn
  organization: College of Computer Science and Engineering, Chongqing University of Technology, China
– sequence: 2
  givenname: Ying
  surname: Long
  fullname: Long, Ying
  organization: College of Computer Science and Engineering, Chongqing University of Technology, China
– sequence: 3
  givenname: Hongshun
  surname: Cai
  fullname: Cai, Hongshun
  organization: College of Computer Science and Engineering, Chongqing University of Technology, China
– sequence: 4
  givenname: Yen-Wei
  surname: Chen
  fullname: Chen, Yen-Wei
  organization: College of Information Science and Engineering, Ritsumeikan University, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38176576$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFH8AF5QaXhLEdx7E4VRUflRYhIZB6s7zOuJ2tkxQ7oWp_fbNse-mhXOa9vM9I88wROxjGARl7y6HiwJuP26pPVAkQsuKiAg4v2Iq3WpaqNfUBW4GWUGqhzg_ZUc5bAFBCqlfsULZcN0o3K3a-povL6QZ3sxhwTi4uMd2M6aoIYypO4t0lUo_pfS46yugyFj66nCmQdxONQzFnGi6Kfo4TlTmSxyJ__3n2mr0MLmZ885DH7PeXz79Ov5XrH1_PTk_Wpa9BTmXjQ7tpGuOk1tAacLU2XAWoWyEbwE5rsQmgQmu82CgwtQ_OaORa6Ro62cpj9mG_9zqNf2bMk-0pe4zRDTjO2QojamO0aGCpvnuozpseO3udqHfp1j7aWAp6X_BpzDlhsJ6mf0dOyVG0HOzOu93axbvdebdc2MX7QvIn5OPy55hPewYXPX8Jk82ecPDYUUI_2W6kZ2nzhPaRhuUn8Qpv_8PeAy9ErVI
CitedBy_id crossref_primary_10_3390_bioengineering11111153
crossref_primary_10_1007_s12530_024_09613_5
crossref_primary_10_1016_j_brainres_2024_149021
Cites_doi 10.3390/brainsci10020084
10.1109/TPAMI.2019.2913372
10.1093/brain/awm319
10.1109/TMI.2009.2021941
10.1016/j.neuroimage.2019.116276
10.3389/fninf.2018.00035
10.1016/j.neuroimage.2012.09.065
10.1109/TBME.2014.2372011
10.1007/978-3-030-00919-9_39
10.1109/ACCESS.2020.2994388
10.1371/journal.pone.0156327
10.1002/ima.22304
10.1016/j.asoc.2021.108099
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2023. Published by Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mri.2023.12.010
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 170
ExternalDocumentID 38176576
10_1016_j_mri_2023_12_010
S0730725X23002187
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
AAYXX
CITATION
AGCQF
AGRNS
NPM
7X8
ID FETCH-LOGICAL-c403t-6cf8b669a3770890a47915f0482360ed772bf05f89c2b5094cfa97e175740d383
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Oct 02 05:22:21 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Thu Oct 16 04:26:57 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Fri Feb 23 02:35:34 EST 2024
Tue Oct 14 19:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Triplet loss
Lightweight
Alzheimer's disease
Structural magnetic resonance imaging
Efficient channel attention
Language English
License Copyright © 2023. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-6cf8b669a3770890a47915f0482360ed772bf05f89c2b5094cfa97e175740d383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38176576
PQID 2924997260
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2924997260
pubmed_primary_38176576
crossref_citationtrail_10_1016_j_mri_2023_12_010
crossref_primary_10_1016_j_mri_2023_12_010
elsevier_sciencedirect_doi_10_1016_j_mri_2023_12_010
elsevier_clinicalkey_doi_10_1016_j_mri_2023_12_010
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Zhou, Lin (bb0125) 2018
Lam, Zhu, Gari (bb0070) 2020
Zhang, Teng, Qing, Liu, He (bb0060) 2020; 42
Esmaeilzadeh, Belivanis, Pohl, Adeli (bb0120) 2018; 11046
Pellegrini, Ballerini, Hernandez (bb0015) 2018; 10
Basher, Kim, Lee, Jung (bb0055) 2020; 8
Hu, Shen, Albanie, Sun, Wu (bb0075) 2020; 42
Gao, Wang (bb0110) 2019; 46
Howard, Zhmoginov, Chen, Sandler, Zhu (bb0135) 2018
Han, Wang, Tian, Guo, Xu, Xu (bb0140) 2020
Liu, Liu, Cai (bb0160) 2014; 62
Gomez, Gomez, Gibert (bb0095) 2019
World Health Organization (bb0005) 2021
Zhang, Zhou, Lin (bb0145) 2018
Zhou, Khosla, Lapedriza (bb0155) 2016
Gao, Xie, Wang, Li (bb0085) 2019
Farooq, Anwar, Awais, Rehman (bb0040) 2017
Mehmood, Atif, Muzaffar, Yang (bb0050) 2020; 10
Woo, Park, Lee, Kweon (bb0090) 2018
He, Kong, Holmes (bb0115) 2020; 206
Wood, Cole, Booth (bb0010) 2019
Wang, Wu, Zhu, Li, Zuo, Hu (bb0080) 2020
Kloppel, Stonnington, Chu (bb0020) 2008; 131
Sun, Qian (bb0105) 2016; 11
Gray, Aljabar, Heckemann, Hammers (bb0025) 2013; 65
Morra, Tu, Apostolova, Green, Toga, Thompson (bb0030) 2010; 29
Maysam, Zhu, Sahar, Firoozeh, Mehrzad, YasinO. (bb0045) 2022
Neffati, Ben Abdellafou, Jaffel, Taouali, Bouzrara (bb0035) 2019; 29
Sharma, Goel, Tanveer (bb0130) 2022; 115
Rashid, Gupta, Gupta, Tanveer (bb0065) 2022
Rashid, Gupta, Gupta, Tanveer (bb0100) 2022
Li, Cheng, Yan (bb0165) 2018; 12
Rashid, Gupta, Gupta, Tanveer (bb0150) 2022
Li (10.1016/j.mri.2023.12.010_bb0165) 2018; 12
Han (10.1016/j.mri.2023.12.010_bb0140) 2020
Neffati (10.1016/j.mri.2023.12.010_bb0035) 2019; 29
Sharma (10.1016/j.mri.2023.12.010_bb0130) 2022; 115
Gao (10.1016/j.mri.2023.12.010_bb0110) 2019; 46
Liu (10.1016/j.mri.2023.12.010_bb0160) 2014; 62
Mehmood (10.1016/j.mri.2023.12.010_bb0050) 2020; 10
Sun (10.1016/j.mri.2023.12.010_bb0105) 2016; 11
Farooq (10.1016/j.mri.2023.12.010_bb0040) 2017
Rashid (10.1016/j.mri.2023.12.010_bb0150) 2022
Wang (10.1016/j.mri.2023.12.010_bb0080) 2020
Esmaeilzadeh (10.1016/j.mri.2023.12.010_bb0120) 2018; 11046
Wood (10.1016/j.mri.2023.12.010_bb0010) 2019
Zhou (10.1016/j.mri.2023.12.010_bb0155) 2016
Gray (10.1016/j.mri.2023.12.010_bb0025) 2013; 65
He (10.1016/j.mri.2023.12.010_bb0115) 2020; 206
Lam (10.1016/j.mri.2023.12.010_bb0070) 2020
World Health Organization (10.1016/j.mri.2023.12.010_bb0005)
Maysam (10.1016/j.mri.2023.12.010_bb0045) 2022
Morra (10.1016/j.mri.2023.12.010_bb0030) 2010; 29
Kloppel (10.1016/j.mri.2023.12.010_bb0020) 2008; 131
Woo (10.1016/j.mri.2023.12.010_bb0090) 2018
Rashid (10.1016/j.mri.2023.12.010_bb0100) 2022
Rashid (10.1016/j.mri.2023.12.010_bb0065) 2022
Gao (10.1016/j.mri.2023.12.010_bb0085) 2019
Howard (10.1016/j.mri.2023.12.010_bb0135) 2018
Gomez (10.1016/j.mri.2023.12.010_bb0095) 2019
Pellegrini (10.1016/j.mri.2023.12.010_bb0015) 2018; 10
Basher (10.1016/j.mri.2023.12.010_bb0055) 2020; 8
Zhang (10.1016/j.mri.2023.12.010_bb0145) 2018
Zhang (10.1016/j.mri.2023.12.010_bb0060) 2020; 42
Hu (10.1016/j.mri.2023.12.010_bb0075) 2020; 42
Zhang (10.1016/j.mri.2023.12.010_bb0125) 2018
References_xml – year: 2022
  ident: bb0065
  article-title: Biceph-net: Arobust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J Biomed Health Informat
– year: 2019
  ident: bb0010
  article-title: NEURO-DRAM: a 3D recurrent visual attention model for interpretable neuroimaging classification
  publication-title: CoRR.
– volume: 11
  year: 2016
  ident: bb0105
  article-title: Chinese herbal medicine image recognition and retrieval by convolutional neural network
  publication-title: PloS One
– volume: 115
  start-page: 1568
  year: 2022
  end-page: 4946
  ident: bb0130
  article-title: FDN-ADNet: FuzzyLS-TWSVM based deep learning network for prognosis ofthe Alzheimer’s disease using the sagittal plane of MRI scans
  publication-title: Appl Soft Comput
– year: 2020
  ident: bb0070
  article-title: 3D grid-attention networks for interpretable age and Alzheimer’s disease prediction from structural MRI
  publication-title: arXiv.
– year: 2022
  ident: bb0150
  article-title: Biceph-net: Arobust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J Biomed Health Informat
– start-page: 11531
  year: 2020
  end-page: 11539
  ident: bb0080
  article-title: ECA-Net:Efficient channel attention for deep convolutional neural networks
  publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bb0135
  article-title: Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 3
  year: 2018
  end-page: 19
  ident: bb0090
  article-title: Cbam: Convolutional block attention module
  publication-title: Proceedings of the European conference oncomputer vision
– volume: 10
  start-page: 519
  year: 2018
  end-page: 535
  ident: bb0015
  article-title: Machine learningof neuroimaging for assisted diagnosis of cognitive impairmentand dementia: a systematic review
  publication-title: Alzheimers Dement
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bb0155
  article-title: Learning deep features for discriminative localization
  publication-title: 2016 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 279
  year: 2019
  end-page: 306
  ident: bb0095
  article-title: Self-supervised learning from web data for multimodal retrieval
– volume: 42
  start-page: 1885
  year: 2020
  end-page: 1893
  ident: bb0060
  article-title: Lightweight deep residual network for alzheimer’s disease classification usingsMRI slices
  publication-title: J Intell Fuzzy Syst
– volume: 11046
  start-page: 337
  year: 2018
  end-page: 345
  ident: bb0120
  article-title: End-to-EndAlzheimer’s disease diagnosis and biomarker identification
  publication-title: Mach Learn Med Imag
– start-page: 1580
  year: 2020
  end-page: 1589
  ident: bb0140
  article-title: 2020 IEEE/CVF Conferenceon computer vision and pattern recognition
  publication-title: Ghostnet:Morefeatures from cheap operations
– volume: 29
  start-page: 30
  year: 2010
  end-page: 43
  ident: bb0030
  article-title: Comparison of adaboost and support vector machinesfor detecting Alzheimer’s disease through automated hippocampal segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0020
  article-title: Automatic classifification of MR scans in Alzheimer’s disease
  publication-title: Brain.
– volume: 29
  start-page: 121
  year: 2019
  end-page: 131
  ident: bb0035
  article-title: An improved machine learning technique based on downsized KPCA for Alzheimer’s disease classifification
  publication-title: Int J Imag Syst Technol
– volume: 42
  start-page: 2011
  year: 2020
  end-page: 2023
  ident: bb0075
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 1
  year: 2017
  end-page: 6
  ident: bb0040
  article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI
  publication-title: 2017 IEEE international conference on imaging systems and techniques
– volume: 12
  start-page: 35
  year: 2018
  ident: bb0165
  article-title: Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images
  publication-title: Front Neuroinform
– year: 2022
  ident: bb0100
  article-title: Biceph-net: Arobust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J Biomed Health Informat
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  ident: bb0025
  article-title: NeuroImage random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: Neuroimage.
– start-page: 3019
  year: 2019
  end-page: 3028
  ident: bb0085
  article-title: Global second-order pooling convolutional networks
  publication-title: 2019 IEEE/CVF conference on ComputerVision and pattern recognition
– year: 2022
  ident: bb0045
  article-title: Alzheimer’s disease detection from structural MRI using conditional deep triplet network
  publication-title: Neurosci Informat
– start-page: 6848
  year: 2018
  end-page: 6856
  ident: bb0125
  article-title: Shufflenet: An extremely efficient convolutional neural network for mobile devices
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2021
  ident: bb0005
  article-title: World Alzheimer Report
– start-page: 6848
  year: 2018
  end-page: 6856
  ident: bb0145
  article-title: Shufflenet: An extremely efficient convolutional neural network for mobile devices
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 10
  start-page: 84
  year: 2020
  ident: bb0050
  article-title: Adeepsiamese convolution neural network for multi-class classification of Alzheimer disease
  publication-title: Brain Sci
– volume: 206
  year: 2020
  ident: bb0115
  article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
  publication-title: NeuroImage.
– volume: 8
  start-page: 91725
  year: 2020
  end-page: 91739
  ident: bb0055
  article-title: Automatic localizationand discrete volume measurements of hippocampi from MRI data using a convolutional neural network
  publication-title: IEEE Access
– volume: 62
  start-page: 1132
  year: 2014
  end-page: 1140
  ident: bb0160
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE T Bio-med Eng
– volume: 46
  start-page: 408
  year: 2019
  end-page: 413
  ident: bb0110
  article-title: Advances in the application of deep learning in medical imaging
  publication-title: Fudan Univ J Medical Sci
– volume: 10
  start-page: 84
  issue: 2
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0050
  article-title: Adeepsiamese convolution neural network for multi-class classification of Alzheimer disease
  publication-title: Brain Sci
  doi: 10.3390/brainsci10020084
– start-page: 4510
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0135
  article-title: Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation
– year: 2022
  ident: 10.1016/j.mri.2023.12.010_bb0045
  article-title: Alzheimer’s disease detection from structural MRI using conditional deep triplet network
  publication-title: Neurosci Informat
– start-page: 279
  year: 2019
  ident: 10.1016/j.mri.2023.12.010_bb0095
– year: 2022
  ident: 10.1016/j.mri.2023.12.010_bb0065
  article-title: Biceph-net: Arobust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J Biomed Health Informat
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0075
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2913372
– volume: 46
  start-page: 408
  issue: 3
  year: 2019
  ident: 10.1016/j.mri.2023.12.010_bb0110
  article-title: Advances in the application of deep learning in medical imaging
  publication-title: Fudan Univ J Medical Sci
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.mri.2023.12.010_bb0020
  article-title: Automatic classifification of MR scans in Alzheimer’s disease
  publication-title: Brain.
  doi: 10.1093/brain/awm319
– start-page: 2921
  year: 2016
  ident: 10.1016/j.mri.2023.12.010_bb0155
  article-title: Learning deep features for discriminative localization
– ident: 10.1016/j.mri.2023.12.010_bb0005
– volume: 29
  start-page: 30
  issue: 1
  year: 2010
  ident: 10.1016/j.mri.2023.12.010_bb0030
  article-title: Comparison of adaboost and support vector machinesfor detecting Alzheimer’s disease through automated hippocampal segmentation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2021941
– year: 2019
  ident: 10.1016/j.mri.2023.12.010_bb0010
  article-title: NEURO-DRAM: a 3D recurrent visual attention model for interpretable neuroimaging classification
  publication-title: CoRR.
– volume: 206
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0115
  article-title: Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2019.116276
– volume: 12
  start-page: 35
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0165
  article-title: Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2018.00035
– volume: 65
  start-page: 167
  year: 2013
  ident: 10.1016/j.mri.2023.12.010_bb0025
  article-title: NeuroImage random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2012.09.065
– start-page: 1
  year: 2017
  ident: 10.1016/j.mri.2023.12.010_bb0040
  article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI
– start-page: 11531
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0080
  article-title: ECA-Net:Efficient channel attention for deep convolutional neural networks
– volume: 62
  start-page: 1132
  issue: 4
  year: 2014
  ident: 10.1016/j.mri.2023.12.010_bb0160
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE T Bio-med Eng
  doi: 10.1109/TBME.2014.2372011
– year: 2022
  ident: 10.1016/j.mri.2023.12.010_bb0150
  article-title: Biceph-net: Arobust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J Biomed Health Informat
– volume: 11046
  start-page: 337
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0120
  article-title: End-to-EndAlzheimer’s disease diagnosis and biomarker identification
  publication-title: Mach Learn Med Imag
  doi: 10.1007/978-3-030-00919-9_39
– start-page: 1580
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0140
  article-title: 2020 IEEE/CVF Conferenceon computer vision and pattern recognition
– volume: 10
  start-page: 519
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0015
  article-title: Machine learningof neuroimaging for assisted diagnosis of cognitive impairmentand dementia: a systematic review
  publication-title: Alzheimers Dement
– volume: 8
  start-page: 91725
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0055
  article-title: Automatic localizationand discrete volume measurements of hippocampi from MRI data using a convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994388
– year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0070
  article-title: 3D grid-attention networks for interpretable age and Alzheimer’s disease prediction from structural MRI
  publication-title: arXiv.
– year: 2022
  ident: 10.1016/j.mri.2023.12.010_bb0100
  article-title: Biceph-net: Arobust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J Biomed Health Informat
– start-page: 3
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0090
  article-title: Cbam: Convolutional block attention module
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.mri.2023.12.010_bb0105
  article-title: Chinese herbal medicine image recognition and retrieval by convolutional neural network
  publication-title: PloS One
  doi: 10.1371/journal.pone.0156327
– start-page: 6848
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0125
  article-title: Shufflenet: An extremely efficient convolutional neural network for mobile devices
– volume: 29
  start-page: 121
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2023.12.010_bb0035
  article-title: An improved machine learning technique based on downsized KPCA for Alzheimer’s disease classifification
  publication-title: Int J Imag Syst Technol
  doi: 10.1002/ima.22304
– start-page: 6848
  year: 2018
  ident: 10.1016/j.mri.2023.12.010_bb0145
  article-title: Shufflenet: An extremely efficient convolutional neural network for mobile devices
– volume: 42
  start-page: 1885
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2023.12.010_bb0060
  article-title: Lightweight deep residual network for alzheimer’s disease classification usingsMRI slices
  publication-title: J Intell Fuzzy Syst
– volume: 115
  start-page: 1568
  year: 2022
  ident: 10.1016/j.mri.2023.12.010_bb0130
  article-title: FDN-ADNet: FuzzyLS-TWSVM based deep learning network for prognosis ofthe Alzheimer’s disease using the sagittal plane of MRI scans
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108099
– start-page: 3019
  year: 2019
  ident: 10.1016/j.mri.2023.12.010_bb0085
  article-title: Global second-order pooling convolutional networks
SSID ssj0005235
Score 2.459611
Snippet Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164
SubjectTerms Alzheimer's disease
Efficient channel attention
Lightweight
Structural magnetic resonance imaging
Triplet loss
Title Lightweight neural network for Alzheimer's disease classification using multi-slice sMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X23002187
https://dx.doi.org/10.1016/j.mri.2023.12.010
https://www.ncbi.nlm.nih.gov/pubmed/38176576
https://www.proquest.com/docview/2924997260
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iIH0pfrT1tEoEoVCIl8vmNpfHQ5Tz43ywFe4tJNlsPTlXuTsR-tC_vTPZ7GHBD-jjLjNsmEwmMzu_mSHkoAg8U856VipdMOllh9ksKxmoSgf7keteDBSHl_ngWp6NuqMlctTUwiCsMtn-2qZHa53etJM02w_jcfsHKqcSEGxl8aLCinIpFU4xOPzzHOZRD9kEYobUTWYzYrzupuNDnB8e_whiEe3Ld9Nrvme8g07WyMfkPNJ-vb51shSqDbI6TOnxTTK6wFD7Kf7tpNipEoirGudNwTml_cnvmzC-C9NvM5oyM9Sj-4x4obhFFHHwv2iEGTJwQX2gs-HV6SdyfXL882jA0ugE5iXP5iz3Zc_lubaZUrynuZUKBF_CcRVZzkMBPrUrebfsaS8c9tDzpdUqgC-hJC8gav1Mlqv7KmwRWojYkt1broNUQeiuK7gV3lnXVdZ1WoQ3QjM-9RXH8RYT0wDIbg3I2aCcTUcYkHOLfF-wPNRNNd4iFs1OmKZaFOybAZP_FpNcMP2jTu-x7TdbbeCYYe7EVuH-cWYExqlaQfTXIl9qHVgsHZsc5hC3bf_fR3fIB3hKcKCvZHk-fQy74OnM3V5U5T2y0j89H1z-Bemj-uQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qBfVF_PbqVwRBENLLZbOby2Mplqve9UFbuLeQZLN60m7L3ZWCD_7tzmSzh4JW8HU3w4bJZDK_nV9mAN7UURTau8AbbWqughpxVxQNR1MZUT1yM05AcXZUTU7Uh3k534L9_i4M0Sqz7-98evLW-ckwa3N4sVgMP5Nxaolgq0gHlb4BN1UpNSGw3R-_8jy6Lps4mtPwPrWZSF5ny8UuNRBPvwTpFu2fD6e_BZ_pEDq4B3dz9Mj2ugneh63YPoBbs5wffwjzKWHtq_S7k1GpShzcdkRvhtEp2zv9_jUuzuLy7Yrl1AwLFD8TYSitESMi_BeWeIYcY9AQ2Wr26fARnBy8P96f8Nw7gQclijWvQjP2VWVcobUYG-GURs03uF9lUYlYY1DtG1E2YxOkpyJ6oXFGRwwmtBI1wtbHsN2et_EpsFqmmuzBCROVjtKUvhZOBu98qZ0fDUD0SrMhFxan_hantmeQfbOoZ0t6tiNpUc8DeLcRueiqalw3WPYrYfvroujgLPr864TURug3e_qX2Ot-qS3uM0qeuDaeX66sJKBqNMK_ATzpbGAzdapyWCFw2_m_j76C25Pj2dROD48-PoM7-CZzg57D9np5GV9g2LP2L5NZ_wSyJ_x5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+neural+network+for+Alzheimer%27s+disease+classification+using+multi-slice+sMRI&rft.jtitle=Magnetic+resonance+imaging&rft.au=Zhang%2C+Qiongmin&rft.au=Long%2C+Ying&rft.au=Cai%2C+Hongshun&rft.au=Chen%2C+Yen-Wei&rft.date=2024-04-01&rft.issn=0730-725X&rft.volume=107&rft.spage=164&rft.epage=170&rft_id=info:doi/10.1016%2Fj.mri.2023.12.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mri_2023_12_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon