Explaining Exploration–Exploitation in Humans
Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the fun...
        Saved in:
      
    
          | Published in | Big data and cognitive computing Vol. 6; no. 4; p. 155 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.12.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2504-2289 2504-2289  | 
| DOI | 10.3390/bdcc6040155 | 
Cover
| Abstract | Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the function can be acquired only through function observations), (ii) sequentiality (i.e., the choice of the next point to observe depends on the previous ones), and (iii) limited budget (i.e., a maximum number of sequential choices allowed to the players). The data about human behavior are gathered through a gaming app whose screen represents all the possible locations the player can click on. The associated value of the unknown function is shown to the player. Experimental data are gathered from 39 subjects playing 10 different tasks each. Decisions are analyzed in a Pareto optimality setting—improvement vs. uncertainty. The experimental results show that the most significant deviations from the Pareto rationality are associated with a behavior named “exasperated exploration”, close to random search. This behavior shows a statistically significant association with stressful situations occurring when, according to their current belief, the human feels there are no chances to improve over the best value observed so far, while the remaining budget is running out. To classify between Pareto and Not-Pareto decisions, an explainable/interpretable Machine Learning model based on Decision Tree learning is developed. The resulting model is used to implement a synthetic human searcher/optimizer successively compared against Bayesian Optimization. On half of the test problems, the synthetic human results as more effective and efficient. | 
    
|---|---|
| AbstractList | Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the function can be acquired only through function observations), (ii) sequentiality (i.e., the choice of the next point to observe depends on the previous ones), and (iii) limited budget (i.e., a maximum number of sequential choices allowed to the players). The data about human behavior are gathered through a gaming app whose screen represents all the possible locations the player can click on. The associated value of the unknown function is shown to the player. Experimental data are gathered from 39 subjects playing 10 different tasks each. Decisions are analyzed in a Pareto optimality setting—improvement vs. uncertainty. The experimental results show that the most significant deviations from the Pareto rationality are associated with a behavior named “exasperated exploration”, close to random search. This behavior shows a statistically significant association with stressful situations occurring when, according to their current belief, the human feels there are no chances to improve over the best value observed so far, while the remaining budget is running out. To classify between Pareto and Not-Pareto decisions, an explainable/interpretable Machine Learning model based on Decision Tree learning is developed. The resulting model is used to implement a synthetic human searcher/optimizer successively compared against Bayesian Optimization. On half of the test problems, the synthetic human results as more effective and efficient. | 
    
| Audience | Academic | 
    
| Author | Archetti, Francesco Candelieri, Antonio Ponti, Andrea  | 
    
| Author_xml | – sequence: 1 givenname: Antonio orcidid: 0000-0003-1431-576X surname: Candelieri fullname: Candelieri, Antonio – sequence: 2 givenname: Andrea surname: Ponti fullname: Ponti, Andrea – sequence: 3 givenname: Francesco surname: Archetti fullname: Archetti, Francesco  | 
    
| BookMark | eNqFUU1LAzEQDVLBWnvyDxQ8att8bbJ7LKXaguBFzyGbj5KyTWp2i_bmf_Af-ktMu0WKCJJDZoY3b968uQQdH7wB4BrBESEFHJdaKQYpRFl2Bro4g3SIcV50TuIL0K_rFYQQY0oZQl0wnr1vKum888vBPgxRNi74r4_PQ-aaQzpwfjDfrqWvr8C5lVVt-se_B17uZ8_T-fDx6WExnTwOFYWkGbJSG6yoJRhZa1iJS81ypHUGMcoY4yoniOYFJ0RZQylXBdWQI42pxESWhvTAouXVQa7EJrq1jDsRpBOHQohLIWPjVGWEoVjnTEJsM0V5QctSw1IaYhJr8oInrruWa-s3cvcmq-qHEEGx906ceJfgNy18E8Pr1tSNWIVt9GlbgXkSz9IOeUKNWtRSJg3O29BEqdLTZu1Uuox1qT7hGeIsLwqcGm7bBhVDXUdj_xGBfqHV8RZpjKv-7PkGiBid_w | 
    
| CitedBy_id | crossref_primary_10_1007_s10472_023_09883_w | 
    
| Cites_doi | 10.1037/a0038199 10.1016/j.cobeha.2020.10.001 10.1007/978-3-030-24494-1 10.1038/s41567-019-0732-0 10.1038/s41583-019-0220-7 10.1098/rstb.2013.0481 10.1016/j.cognition.2017.12.014 10.1007/s10898-018-0622-5 10.1109/TIT.2011.2182033 10.7551/mitpress/3206.001.0001 10.1145/1656274.1656278 10.1109/WSC52266.2021.9715413 10.14738/tmlai.64.4956 10.1007/s00500-020-05398-2 10.1037/dec0000101 10.1007/s12652-021-03547-5 10.1007/s40685-019-0093-7 10.1287/educ.2018.0188 10.3758/LB.36.3.210 10.1145/3377930.3390154 10.1098/rstb.2007.2098 10.1007/978-3-642-74919-3_4 10.1201/9780367815493 10.1016/j.conb.2018.11.003 10.1038/s41562-018-0467-4 10.1023/A:1013689704352 10.1007/s10589-020-00215-w  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/bdcc6040155 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2504-2289 | 
    
| ExternalDocumentID | oai_doaj_org_article_e42d86a02f5c4794bbd0bae3e7c91557 10.3390/bdcc6040155 A751768992 10_3390_bdcc6040155  | 
    
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c403t-6bde2c4f321ffe6b2bd681dd50215667c831489733cfe447c94d071d24a23abe3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2504-2289 | 
    
| IngestDate | Fri Oct 03 12:52:52 EDT 2025 Sun Oct 26 03:42:44 EDT 2025 Sun Jul 13 05:09:38 EDT 2025 Mon Oct 20 16:48:24 EDT 2025 Thu Apr 24 22:53:24 EDT 2025 Thu Oct 16 04:39:50 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c403t-6bde2c4f321ffe6b2bd681dd50215667c831489733cfe447c94d071d24a23abe3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1431-576X | 
    
| OpenAccessLink | https://www.proquest.com/docview/2756660218?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2756660218 | 
    
| PQPubID | 2061777 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e42d86a02f5c4794bbd0bae3e7c91557 unpaywall_primary_10_3390_bdcc6040155 proquest_journals_2756660218 gale_infotracacademiconefile_A751768992 crossref_primary_10_3390_bdcc6040155 crossref_citationtrail_10_3390_bdcc6040155  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-01 | 
    
| PublicationDateYYYYMMDD | 2022-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Big data and cognitive computing | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Candelieri (ref_3) 2020; 24 Calvin (ref_26) 2019; 74 Wu (ref_18) 2018; 2 ref_36 ref_35 ref_11 ref_33 ref_10 Srinivas (ref_28) 2012; 58 ref_30 Peters (ref_21) 2019; 15 Bemporad (ref_39) 2020; 77 ref_19 Gershman (ref_12) 2019; 6 Gershman (ref_14) 2019; 20 Gajawada (ref_34) 2019; 6 Hall (ref_40) 2009; 11 ref_17 Sandholtz (ref_32) 2022; 18 ref_38 ref_37 Schulz (ref_15) 2019; 55 Wilson (ref_1) 2014; 143 Friston (ref_16) 2014; 369 Cohen (ref_13) 2007; 362 ref_24 Auer (ref_27) 2002; 47 ref_23 ref_22 Everson (ref_31) 2021; 1 Wilson (ref_2) 2020; 38 ref_29 Kourouxous (ref_20) 2019; 12 ref_8 ref_5 Kruschke (ref_9) 2008; 36 ref_4 ref_7 Gershman (ref_25) 2018; 173 ref_6  | 
    
| References_xml | – volume: 143 start-page: 2074 year: 2014 ident: ref_1 article-title: Humans use directed and random exploration to solve the explore–exploit dilemma publication-title: J. Exp. Psychol. Gen. doi: 10.1037/a0038199 – ident: ref_5 – ident: ref_24 – volume: 38 start-page: 49 year: 2020 ident: ref_2 article-title: Balancing exploration and exploitation with information and randomization publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2020.10.001 – ident: ref_7 doi: 10.1007/978-3-030-24494-1 – volume: 15 start-page: 1216 year: 2019 ident: ref_21 article-title: The ergodicity problem in economics publication-title: Nat. Phys. doi: 10.1038/s41567-019-0732-0 – ident: ref_11 – volume: 20 start-page: 703 year: 2019 ident: ref_14 article-title: Believing in dopamine publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-019-0220-7 – ident: ref_35 – volume: 369 start-page: 20130481 year: 2014 ident: ref_16 article-title: The anatomy of choice: Dopamine and decision-making publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2013.0481 – ident: ref_23 – volume: 173 start-page: 34 year: 2018 ident: ref_25 article-title: Deconstructing the human algorithms for exploration publication-title: Cognition doi: 10.1016/j.cognition.2017.12.014 – volume: 74 start-page: 599 year: 2019 ident: ref_26 article-title: Bi-objective decision making in global optimization based on statistical models publication-title: J. Glob. Optim. doi: 10.1007/s10898-018-0622-5 – volume: 58 start-page: 3250 year: 2012 ident: ref_28 article-title: Information-theoretic regret bounds for gaussian process optimization in the bandit setting publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2182033 – ident: ref_37 doi: 10.7551/mitpress/3206.001.0001 – volume: 11 start-page: 10 year: 2009 ident: ref_40 article-title: The WEKA data mining software: An update publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – ident: ref_8 doi: 10.1109/WSC52266.2021.9715413 – ident: ref_33 doi: 10.14738/tmlai.64.4956 – volume: 24 start-page: 17771 year: 2020 ident: ref_3 article-title: Modelling human active search in optimizing black-box functions publication-title: Soft Comput. doi: 10.1007/s00500-020-05398-2 – volume: 6 start-page: 277 year: 2019 ident: ref_12 article-title: Uncertainty and exploration publication-title: Decision doi: 10.1037/dec0000101 – ident: ref_29 – volume: 6 start-page: 1 year: 2019 ident: ref_34 article-title: Ten artificial human optimization algorithms publication-title: Trans. Mach. Learn. Artif. Intell. – ident: ref_4 doi: 10.1007/s12652-021-03547-5 – volume: 12 start-page: 209 year: 2019 ident: ref_20 article-title: Violations of dominance in decision-making publication-title: Bus. Res. doi: 10.1007/s40685-019-0093-7 – ident: ref_10 – ident: ref_6 doi: 10.1287/educ.2018.0188 – volume: 36 start-page: 210 year: 2008 ident: ref_9 article-title: Bayesian approaches to associative learning: From passive to active learning publication-title: Anim. Learn. Behav. doi: 10.3758/LB.36.3.210 – volume: 18 start-page: 1 year: 2022 ident: ref_32 article-title: Inverse Bayesian Optimization: Learning Human Acquisition Functions in an Exploration vs Exploitation Search Task publication-title: Bayesian Anal. – ident: ref_17 – ident: ref_36 – ident: ref_30 doi: 10.1145/3377930.3390154 – volume: 362 start-page: 933 year: 2007 ident: ref_13 article-title: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2007.2098 – ident: ref_19 doi: 10.1007/978-3-642-74919-3_4 – ident: ref_22 – volume: 1 start-page: 1 year: 2021 ident: ref_31 article-title: Greed is good: Exploration and exploitation trade-offs in Bayesian optimisation publication-title: ACM Trans. Evol. Learn. Optim. – ident: ref_38 doi: 10.1201/9780367815493 – volume: 55 start-page: 7 year: 2019 ident: ref_15 article-title: The algorithmic architecture of exploration in the human brain publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.11.003 – volume: 2 start-page: 915 year: 2018 ident: ref_18 article-title: Generalization guides human exploration in vast decision spaces publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-018-0467-4 – volume: 47 start-page: 235 year: 2002 ident: ref_27 article-title: Finite-time analysis of the multiarmed bandit problem publication-title: Mach. Learn. doi: 10.1023/A:1013689704352 – volume: 77 start-page: 571 year: 2020 ident: ref_39 article-title: Global optimization via inverse distance weighting and radial basis functions publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00215-w  | 
    
| SSID | ssj0002244611 | 
    
| Score | 2.2264955 | 
    
| Snippet | Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 155 | 
    
| SubjectTerms | active human learning Approximation Budgets Decision analysis Decision making Decision trees Expected utility explainable machine learning Exploitation exploration–exploitation dilemma Global optimization Human acts Human behavior Machine learning Optimization Pareto efficiency Pareto optimum Searches and seizures Uncertainty  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iRT2IouLqKj2sCELZNl9tjyqKCHpS8BaSSQrKUkVXxJv_wX_oL3EmrUtB0YvHlhwm7yWdmTLzhrFRkEqCtSIN6N5SCV6nlZRFWhW-BAGqLBV1I19c6rNreX6jbnqjvqgmrJUHboEbB8l9qW3GawWkhu6cz5wNIhRA0uaxjzwrq14ydRdFXTDNyfO2IU9gXj92HkDjic2pqa_ngqJS__fv8RJbeG4e7OuLnUx6Dud0hS13kWJy2Fq4yuZCs8bGVDPXDnVI2vK5iOzH23t86gS3k9smiX_nn9bZ9enJ1fFZ2s08SEFmYppq5wMHWQue13XQjjuvMaT0inyz1gWUAhOYqhAC6oCgQiU9RgmeS8uFdUFssPnmvgmbLMH75F0JZVbrIPMM2fLK1hUIKVWRAR-wgy8YDHT20VyKicHEgDAzPcwGbDRb_NDqYPy87IjwnC0h8er4Aik1HaXmL0oHbJ_YMHTF0CCwXacAbovEqsxhoXLMkqoKtzD8Isx0d-_JkKC91hS7DNjejMTfrN76D6u32SKn1ohY6jJk89PH57CDAcvU7caz-QnKHOiT priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF_q9UF9qBUVT6vkoVIQ0iT7L8lTOcVSChYfelCflt3ZjZQe6dG7U_TJ7-A37CfpTLJ3HCql9DFhEnYyMzszm5nfMLYbpJJgrUgDurdUgtdpLWWZ1qWvQICqKkXdyJ9P9NFYHp-ps1ibM4tllZiKn3ebNMFrpRxTgkxnMkPPl019c_A9HiQVuswrjJ6VesA2tcJQfMA2xydfRl9poNzy0b4nT2BqnzkPoFFpC-rrW_NCHVj_v1vyY_Zw0U7tzx92MlnzOYdP-sGqsw6qkEpNLvYXc7cPv_4Ccrw3O9tsK0ajyahXn6dsI7TPWEZ1ef3giKQv0eukd_37T3cVQb2T8zbp_gDMnrPx4afTj0dpnKuQgszFPNXOBw6yEbxomqAdd15j2OoV-X-tS6gEJkl1KQQ0AQUHtfQYiXguLRfWBfGCDdrLNrxkCdqsdxVUeaODLHLUCK9sU4OQUpU58CF7v_zOBuL6aPbFxGDyQUIxa0IZst0V8bTH2vg_2QcS2IqEALK7G5dX30y0NxMk95W2OW8UEIi-cz53NoiA3OA7yiHbI3EbMmNcENjYjYBsESCWGZWqwEysrpGFnaVGmGjfM0Og-VpTfDRk71ZactuqX92R7jV7xKnDoquY2WGD-dUivMG4Z-7eRu2-Abbl_O0 priority: 102 providerName: Unpaywall  | 
    
| Title | Explaining Exploration–Exploitation in Humans | 
    
| URI | https://www.proquest.com/docview/2756660218 https://www.mdpi.com/2504-2289/6/4/155/pdf?version=1670842855 https://doaj.org/article/e42d86a02f5c4794bbd0bae3e7c91557  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2504-2289 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: BENPR dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2504-2289 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002244611 issn: 2504-2289 databaseCode: 8FG dateStart: 20171201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC6SzUE9BEXFNXGZQ0QQhp3p18wcgmwkaxBcgrgQT02_JgjL7JpsCN78D_5Df4lVPTPrQkKOPTRNdz26qnqqvgI4CkIKZwxPA5q3VDiv0kqIIq0KXzruZFlKqkb-MlNnc_H5Ql7swKyvhaG0yv5OjBe1Xzp6Ix8TTLlSZJE-rH6m1DWK_q72LTRM11rBH0eIsV3YY4SMNYC9k9PZ-dfNqwsaLKHyvC3U4xjvj613TqEk51Tst2WaIoL_3Xv6CTy6aVbm161ZLLYM0fQp7HceZDJpWf4MdkLzHMaUS9c2e0jatLpI8b-__8RRB8Sd_GiS-Gp__QLm09NvH8_SrhdC6kTG16myPjAnas7yug7KMusVuppeks1WqnAlx8CmKjh3dUBiu0p49B48E4ZxYwN_CYNm2YRXkKCeeVu6MqtVEHmGXPTS1JXjQsgic2wI73syaNftj_pVLDQGDEQzvUWzIRxtJq9afIz7p50QPTdTCNQ6flheXepOR3QQzJfKZKyWjoDvrfWZNYEHPA2uUQzhHXFDk-rhhpzpKgjwWARipSeFzDF6qio8wmHPMN3p5LX-L0FDeLth4kO7fv3wMgfwmFExRExuOYTB-uomvEEXZW1HsFtOP4066RvFQB9H89n55Ps_RGTppw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dStxAFD5YvbC9kJa2uFXbXCiFQthkZjJJLqRoq6xVl1IUvBvnL1JYslt3RbzrO_R9-jA-Sc9JJtuFFu-8TBiGOX_zzZk5PwDbXmTCas1jj_AWC-tkXAqRx2XuCsttVhQZZSOfDuXgXHy5yC6W4HeXC0Nhld2e2GzUbmzpjrxPZcqlJET6OPkRU9coel3tWmjo0FrB7TYlxkJix7G_u0UXbrp79BnlvcPY4cHZp0EcugzEViR8FkvjPLOi4iytKi8NM07iIc5lhIZS5rbg6DKUOee28kiGLYVDXHZMaMa18RznfQIrgosSnb-V_YPh12_zWx4ESCHTtE0M5LxM-sZZK9FyUkouXIDCpmPAv7jwDFZv6om-u9Wj0QLwHT6HtXBijfZaFXsBS75-CX2K3WubS0RtGF8j4fufv5qvUPg7-l5HzSvB9BWcPwpXXsNyPa79OkRo184Utkgq6UWaoNa4TFel5UJkeWJZDz50bFA2rI_6Y4wUOijEM7XAsx5szwdP2noc_x-2T_ycD6Ei2s2P8fWVCjapvGCukDphVWap0L4xLjHac4_U4Bx5D96TNBSZOi7I6pCxgGRR0Sy1l2cpemtliSRsdgJTYQ-Yqr8a24OduRAfWvWbh6d5B6uDs9MTdXI0PN6Ap4wSMZrAmk1Ynl3f-C08Hs3M26CDEVw-ttr_ATV7ItU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dahQxFD7UCtpeiKLS1apz0SIIw84kmczMhUi1rq3V4oWF3sXkJFMKy-y2u6X0ru_g2_g4PonnzM-6oPSulzOEkPOXLyc5PwBbQWUKrZVxIHiLFXodl0rlcZn7AiVmRZFxNvLXQ713pD4fZ8cr8KvPheGwyn5PbDZqP0G-Ix9ymXKtGZGGVRcW8W139G56FnMHKX5p7dtptCpyEK4uyX2bvd3fJVlvCzH6-P3DXtx1GIhRJXIea-eDQFVJkVZV0E44r-kA5zNGQq1zLCS5C2UuJVaBSMBSecJkL5QV0rogad47cDfnKu6cpT76tLjfIWhUOk3blEApy2ToPKImm0k5rXAJBJteAf8iwjrcv6in9urSjsdLkDd6CA-6s2q00yrXI1gJ9WMYctRe21YiagP4Gtn-vv7ZfHUlv6PTOmreB2ZP4OhWePIUVutJHTYgIov2rsAiqXRQaUL64jNblSiVyvIExQDe9Gww2K2PO2OMDbkmzDOzxLMBbC0GT9tKHP8f9p75uRjC5bObH5PzE9NZowlK-ELbRFQZcol953zibJCBqKE58gG8ZmkYNnJaENouV4HI4nJZZifPUvLTypJI2OwFZjrrn5m_ujqA7YUQb1r1s5uneQX3SNnNl_3Dg-ewJjgDo4mo2YTV-flFeEHnorl72ShgBD9uW-P_AER8IG8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF_q9UF9qBUVT6vkoVIQ0iT7L8lTOcVSChYfelCflt3ZjZQe6dG7U_TJ7-A37CfpTLJ3HCql9DFhEnYyMzszm5nfMLYbpJJgrUgDurdUgtdpLWWZ1qWvQICqKkXdyJ9P9NFYHp-ps1ibM4tllZiKn3ebNMFrpRxTgkxnMkPPl019c_A9HiQVuswrjJ6VesA2tcJQfMA2xydfRl9poNzy0b4nT2BqnzkPoFFpC-rrW_NCHVj_v1vyY_Zw0U7tzx92MlnzOYdP-sGqsw6qkEpNLvYXc7cPv_4Ccrw3O9tsK0ajyahXn6dsI7TPWEZ1ef3giKQv0eukd_37T3cVQb2T8zbp_gDMnrPx4afTj0dpnKuQgszFPNXOBw6yEbxomqAdd15j2OoV-X-tS6gEJkl1KQQ0AQUHtfQYiXguLRfWBfGCDdrLNrxkCdqsdxVUeaODLHLUCK9sU4OQUpU58CF7v_zOBuL6aPbFxGDyQUIxa0IZst0V8bTH2vg_2QcS2IqEALK7G5dX30y0NxMk95W2OW8UEIi-cz53NoiA3OA7yiHbI3EbMmNcENjYjYBsESCWGZWqwEysrpGFnaVGmGjfM0Og-VpTfDRk71ZactuqX92R7jV7xKnDoquY2WGD-dUivMG4Z-7eRu2-Abbl_O0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+Exploration%E2%80%93Exploitation+in+Humans&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Candelieri%2C+Antonio&rft.au=Ponti%2C+Andrea&rft.au=Archetti%2C+Francesco&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2504-2289&rft.volume=6&rft.issue=4&rft.spage=155&rft_id=info:doi/10.3390%2Fbdcc6040155&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |