Explaining Exploration–Exploitation in Humans

Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the fun...

Full description

Saved in:
Bibliographic Details
Published inBig data and cognitive computing Vol. 6; no. 4; p. 155
Main Authors Candelieri, Antonio, Ponti, Andrea, Archetti, Francesco
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text
ISSN2504-2289
2504-2289
DOI10.3390/bdcc6040155

Cover

Abstract Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the function can be acquired only through function observations), (ii) sequentiality (i.e., the choice of the next point to observe depends on the previous ones), and (iii) limited budget (i.e., a maximum number of sequential choices allowed to the players). The data about human behavior are gathered through a gaming app whose screen represents all the possible locations the player can click on. The associated value of the unknown function is shown to the player. Experimental data are gathered from 39 subjects playing 10 different tasks each. Decisions are analyzed in a Pareto optimality setting—improvement vs. uncertainty. The experimental results show that the most significant deviations from the Pareto rationality are associated with a behavior named “exasperated exploration”, close to random search. This behavior shows a statistically significant association with stressful situations occurring when, according to their current belief, the human feels there are no chances to improve over the best value observed so far, while the remaining budget is running out. To classify between Pareto and Not-Pareto decisions, an explainable/interpretable Machine Learning model based on Decision Tree learning is developed. The resulting model is used to implement a synthetic human searcher/optimizer successively compared against Bayesian Optimization. On half of the test problems, the synthetic human results as more effective and efficient.
AbstractList Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i) uncertainty (i.e., information about the function can be acquired only through function observations), (ii) sequentiality (i.e., the choice of the next point to observe depends on the previous ones), and (iii) limited budget (i.e., a maximum number of sequential choices allowed to the players). The data about human behavior are gathered through a gaming app whose screen represents all the possible locations the player can click on. The associated value of the unknown function is shown to the player. Experimental data are gathered from 39 subjects playing 10 different tasks each. Decisions are analyzed in a Pareto optimality setting—improvement vs. uncertainty. The experimental results show that the most significant deviations from the Pareto rationality are associated with a behavior named “exasperated exploration”, close to random search. This behavior shows a statistically significant association with stressful situations occurring when, according to their current belief, the human feels there are no chances to improve over the best value observed so far, while the remaining budget is running out. To classify between Pareto and Not-Pareto decisions, an explainable/interpretable Machine Learning model based on Decision Tree learning is developed. The resulting model is used to implement a synthetic human searcher/optimizer successively compared against Bayesian Optimization. On half of the test problems, the synthetic human results as more effective and efficient.
Audience Academic
Author Archetti, Francesco
Candelieri, Antonio
Ponti, Andrea
Author_xml – sequence: 1
  givenname: Antonio
  orcidid: 0000-0003-1431-576X
  surname: Candelieri
  fullname: Candelieri, Antonio
– sequence: 2
  givenname: Andrea
  surname: Ponti
  fullname: Ponti, Andrea
– sequence: 3
  givenname: Francesco
  surname: Archetti
  fullname: Archetti, Francesco
BookMark eNqFUU1LAzEQDVLBWnvyDxQ8att8bbJ7LKXaguBFzyGbj5KyTWp2i_bmf_Af-ktMu0WKCJJDZoY3b968uQQdH7wB4BrBESEFHJdaKQYpRFl2Bro4g3SIcV50TuIL0K_rFYQQY0oZQl0wnr1vKum888vBPgxRNi74r4_PQ-aaQzpwfjDfrqWvr8C5lVVt-se_B17uZ8_T-fDx6WExnTwOFYWkGbJSG6yoJRhZa1iJS81ypHUGMcoY4yoniOYFJ0RZQylXBdWQI42pxESWhvTAouXVQa7EJrq1jDsRpBOHQohLIWPjVGWEoVjnTEJsM0V5QctSw1IaYhJr8oInrruWa-s3cvcmq-qHEEGx906ceJfgNy18E8Pr1tSNWIVt9GlbgXkSz9IOeUKNWtRSJg3O29BEqdLTZu1Uuox1qT7hGeIsLwqcGm7bBhVDXUdj_xGBfqHV8RZpjKv-7PkGiBid_w
CitedBy_id crossref_primary_10_1007_s10472_023_09883_w
Cites_doi 10.1037/a0038199
10.1016/j.cobeha.2020.10.001
10.1007/978-3-030-24494-1
10.1038/s41567-019-0732-0
10.1038/s41583-019-0220-7
10.1098/rstb.2013.0481
10.1016/j.cognition.2017.12.014
10.1007/s10898-018-0622-5
10.1109/TIT.2011.2182033
10.7551/mitpress/3206.001.0001
10.1145/1656274.1656278
10.1109/WSC52266.2021.9715413
10.14738/tmlai.64.4956
10.1007/s00500-020-05398-2
10.1037/dec0000101
10.1007/s12652-021-03547-5
10.1007/s40685-019-0093-7
10.1287/educ.2018.0188
10.3758/LB.36.3.210
10.1145/3377930.3390154
10.1098/rstb.2007.2098
10.1007/978-3-642-74919-3_4
10.1201/9780367815493
10.1016/j.conb.2018.11.003
10.1038/s41562-018-0467-4
10.1023/A:1013689704352
10.1007/s10589-020-00215-w
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/bdcc6040155
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-2289
ExternalDocumentID oai_doaj_org_article_e42d86a02f5c4794bbd0bae3e7c91557
10.3390/bdcc6040155
A751768992
10_3390_bdcc6040155
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c403t-6bde2c4f321ffe6b2bd681dd50215667c831489733cfe447c94d071d24a23abe3
IEDL.DBID BENPR
ISSN 2504-2289
IngestDate Fri Oct 03 12:52:52 EDT 2025
Sun Oct 26 03:42:44 EDT 2025
Sun Jul 13 05:09:38 EDT 2025
Mon Oct 20 16:48:24 EDT 2025
Thu Apr 24 22:53:24 EDT 2025
Thu Oct 16 04:39:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-6bde2c4f321ffe6b2bd681dd50215667c831489733cfe447c94d071d24a23abe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1431-576X
OpenAccessLink https://www.proquest.com/docview/2756660218?pq-origsite=%requestingapplication%&accountid=15518
PQID 2756660218
PQPubID 2061777
ParticipantIDs doaj_primary_oai_doaj_org_article_e42d86a02f5c4794bbd0bae3e7c91557
unpaywall_primary_10_3390_bdcc6040155
proquest_journals_2756660218
gale_infotracacademiconefile_A751768992
crossref_primary_10_3390_bdcc6040155
crossref_citationtrail_10_3390_bdcc6040155
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Big data and cognitive computing
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Candelieri (ref_3) 2020; 24
Calvin (ref_26) 2019; 74
Wu (ref_18) 2018; 2
ref_36
ref_35
ref_11
ref_33
ref_10
Srinivas (ref_28) 2012; 58
ref_30
Peters (ref_21) 2019; 15
Bemporad (ref_39) 2020; 77
ref_19
Gershman (ref_12) 2019; 6
Gershman (ref_14) 2019; 20
Gajawada (ref_34) 2019; 6
Hall (ref_40) 2009; 11
ref_17
Sandholtz (ref_32) 2022; 18
ref_38
ref_37
Schulz (ref_15) 2019; 55
Wilson (ref_1) 2014; 143
Friston (ref_16) 2014; 369
Cohen (ref_13) 2007; 362
ref_24
Auer (ref_27) 2002; 47
ref_23
ref_22
Everson (ref_31) 2021; 1
Wilson (ref_2) 2020; 38
ref_29
Kourouxous (ref_20) 2019; 12
ref_8
ref_5
Kruschke (ref_9) 2008; 36
ref_4
ref_7
Gershman (ref_25) 2018; 173
ref_6
References_xml – volume: 143
  start-page: 2074
  year: 2014
  ident: ref_1
  article-title: Humans use directed and random exploration to solve the explore–exploit dilemma
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/a0038199
– ident: ref_5
– ident: ref_24
– volume: 38
  start-page: 49
  year: 2020
  ident: ref_2
  article-title: Balancing exploration and exploitation with information and randomization
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2020.10.001
– ident: ref_7
  doi: 10.1007/978-3-030-24494-1
– volume: 15
  start-page: 1216
  year: 2019
  ident: ref_21
  article-title: The ergodicity problem in economics
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0732-0
– ident: ref_11
– volume: 20
  start-page: 703
  year: 2019
  ident: ref_14
  article-title: Believing in dopamine
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-019-0220-7
– ident: ref_35
– volume: 369
  start-page: 20130481
  year: 2014
  ident: ref_16
  article-title: The anatomy of choice: Dopamine and decision-making
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2013.0481
– ident: ref_23
– volume: 173
  start-page: 34
  year: 2018
  ident: ref_25
  article-title: Deconstructing the human algorithms for exploration
  publication-title: Cognition
  doi: 10.1016/j.cognition.2017.12.014
– volume: 74
  start-page: 599
  year: 2019
  ident: ref_26
  article-title: Bi-objective decision making in global optimization based on statistical models
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0622-5
– volume: 58
  start-page: 3250
  year: 2012
  ident: ref_28
  article-title: Information-theoretic regret bounds for gaussian process optimization in the bandit setting
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2182033
– ident: ref_37
  doi: 10.7551/mitpress/3206.001.0001
– volume: 11
  start-page: 10
  year: 2009
  ident: ref_40
  article-title: The WEKA data mining software: An update
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– ident: ref_8
  doi: 10.1109/WSC52266.2021.9715413
– ident: ref_33
  doi: 10.14738/tmlai.64.4956
– volume: 24
  start-page: 17771
  year: 2020
  ident: ref_3
  article-title: Modelling human active search in optimizing black-box functions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05398-2
– volume: 6
  start-page: 277
  year: 2019
  ident: ref_12
  article-title: Uncertainty and exploration
  publication-title: Decision
  doi: 10.1037/dec0000101
– ident: ref_29
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_34
  article-title: Ten artificial human optimization algorithms
  publication-title: Trans. Mach. Learn. Artif. Intell.
– ident: ref_4
  doi: 10.1007/s12652-021-03547-5
– volume: 12
  start-page: 209
  year: 2019
  ident: ref_20
  article-title: Violations of dominance in decision-making
  publication-title: Bus. Res.
  doi: 10.1007/s40685-019-0093-7
– ident: ref_10
– ident: ref_6
  doi: 10.1287/educ.2018.0188
– volume: 36
  start-page: 210
  year: 2008
  ident: ref_9
  article-title: Bayesian approaches to associative learning: From passive to active learning
  publication-title: Anim. Learn. Behav.
  doi: 10.3758/LB.36.3.210
– volume: 18
  start-page: 1
  year: 2022
  ident: ref_32
  article-title: Inverse Bayesian Optimization: Learning Human Acquisition Functions in an Exploration vs Exploitation Search Task
  publication-title: Bayesian Anal.
– ident: ref_17
– ident: ref_36
– ident: ref_30
  doi: 10.1145/3377930.3390154
– volume: 362
  start-page: 933
  year: 2007
  ident: ref_13
  article-title: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2007.2098
– ident: ref_19
  doi: 10.1007/978-3-642-74919-3_4
– ident: ref_22
– volume: 1
  start-page: 1
  year: 2021
  ident: ref_31
  article-title: Greed is good: Exploration and exploitation trade-offs in Bayesian optimisation
  publication-title: ACM Trans. Evol. Learn. Optim.
– ident: ref_38
  doi: 10.1201/9780367815493
– volume: 55
  start-page: 7
  year: 2019
  ident: ref_15
  article-title: The algorithmic architecture of exploration in the human brain
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.11.003
– volume: 2
  start-page: 915
  year: 2018
  ident: ref_18
  article-title: Generalization guides human exploration in vast decision spaces
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-018-0467-4
– volume: 47
  start-page: 235
  year: 2002
  ident: ref_27
  article-title: Finite-time analysis of the multiarmed bandit problem
  publication-title: Mach. Learn.
  doi: 10.1023/A:1013689704352
– volume: 77
  start-page: 571
  year: 2020
  ident: ref_39
  article-title: Global optimization via inverse distance weighting and radial basis functions
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00215-w
SSID ssj0002244611
Score 2.2264955
Snippet Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 155
SubjectTerms active human learning
Approximation
Budgets
Decision analysis
Decision making
Decision trees
Expected utility
explainable machine learning
Exploitation
exploration–exploitation dilemma
Global optimization
Human acts
Human behavior
Machine learning
Optimization
Pareto efficiency
Pareto optimum
Searches and seizures
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iRT2IouLqKj2sCELZNl9tjyqKCHpS8BaSSQrKUkVXxJv_wX_oL3EmrUtB0YvHlhwm7yWdmTLzhrFRkEqCtSIN6N5SCV6nlZRFWhW-BAGqLBV1I19c6rNreX6jbnqjvqgmrJUHboEbB8l9qW3GawWkhu6cz5wNIhRA0uaxjzwrq14ydRdFXTDNyfO2IU9gXj92HkDjic2pqa_ngqJS__fv8RJbeG4e7OuLnUx6Dud0hS13kWJy2Fq4yuZCs8bGVDPXDnVI2vK5iOzH23t86gS3k9smiX_nn9bZ9enJ1fFZ2s08SEFmYppq5wMHWQue13XQjjuvMaT0inyz1gWUAhOYqhAC6oCgQiU9RgmeS8uFdUFssPnmvgmbLMH75F0JZVbrIPMM2fLK1hUIKVWRAR-wgy8YDHT20VyKicHEgDAzPcwGbDRb_NDqYPy87IjwnC0h8er4Aik1HaXmL0oHbJ_YMHTF0CCwXacAbovEqsxhoXLMkqoKtzD8Isx0d-_JkKC91hS7DNjejMTfrN76D6u32SKn1ohY6jJk89PH57CDAcvU7caz-QnKHOiT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF_q9UF9qBUVT6vkoVIQ0iT7L8lTOcVSChYfelCflt3ZjZQe6dG7U_TJ7-A37CfpTLJ3HCql9DFhEnYyMzszm5nfMLYbpJJgrUgDurdUgtdpLWWZ1qWvQICqKkXdyJ9P9NFYHp-ps1ibM4tllZiKn3ebNMFrpRxTgkxnMkPPl019c_A9HiQVuswrjJ6VesA2tcJQfMA2xydfRl9poNzy0b4nT2BqnzkPoFFpC-rrW_NCHVj_v1vyY_Zw0U7tzx92MlnzOYdP-sGqsw6qkEpNLvYXc7cPv_4Ccrw3O9tsK0ajyahXn6dsI7TPWEZ1ef3giKQv0eukd_37T3cVQb2T8zbp_gDMnrPx4afTj0dpnKuQgszFPNXOBw6yEbxomqAdd15j2OoV-X-tS6gEJkl1KQQ0AQUHtfQYiXguLRfWBfGCDdrLNrxkCdqsdxVUeaODLHLUCK9sU4OQUpU58CF7v_zOBuL6aPbFxGDyQUIxa0IZst0V8bTH2vg_2QcS2IqEALK7G5dX30y0NxMk95W2OW8UEIi-cz53NoiA3OA7yiHbI3EbMmNcENjYjYBsESCWGZWqwEysrpGFnaVGmGjfM0Og-VpTfDRk71ZactuqX92R7jV7xKnDoquY2WGD-dUivMG4Z-7eRu2-Abbl_O0
  priority: 102
  providerName: Unpaywall
Title Explaining Exploration–Exploitation in Humans
URI https://www.proquest.com/docview/2756660218
https://www.mdpi.com/2504-2289/6/4/155/pdf?version=1670842855
https://doaj.org/article/e42d86a02f5c4794bbd0bae3e7c91557
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-2289
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244611
  issn: 2504-2289
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-2289
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244611
  issn: 2504-2289
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-2289
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244611
  issn: 2504-2289
  databaseCode: BENPR
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2504-2289
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244611
  issn: 2504-2289
  databaseCode: 8FG
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC6SzUE9BEXFNXGZQ0QQhp3p18wcgmwkaxBcgrgQT02_JgjL7JpsCN78D_5Df4lVPTPrQkKOPTRNdz26qnqqvgI4CkIKZwxPA5q3VDiv0kqIIq0KXzruZFlKqkb-MlNnc_H5Ql7swKyvhaG0yv5OjBe1Xzp6Ix8TTLlSZJE-rH6m1DWK_q72LTRM11rBH0eIsV3YY4SMNYC9k9PZ-dfNqwsaLKHyvC3U4xjvj613TqEk51Tst2WaIoL_3Xv6CTy6aVbm161ZLLYM0fQp7HceZDJpWf4MdkLzHMaUS9c2e0jatLpI8b-__8RRB8Sd_GiS-Gp__QLm09NvH8_SrhdC6kTG16myPjAnas7yug7KMusVuppeks1WqnAlx8CmKjh3dUBiu0p49B48E4ZxYwN_CYNm2YRXkKCeeVu6MqtVEHmGXPTS1JXjQsgic2wI73syaNftj_pVLDQGDEQzvUWzIRxtJq9afIz7p50QPTdTCNQ6flheXepOR3QQzJfKZKyWjoDvrfWZNYEHPA2uUQzhHXFDk-rhhpzpKgjwWARipSeFzDF6qio8wmHPMN3p5LX-L0FDeLth4kO7fv3wMgfwmFExRExuOYTB-uomvEEXZW1HsFtOP4066RvFQB9H89n55Ps_RGTppw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dStxAFD5YvbC9kJa2uFXbXCiFQthkZjJJLqRoq6xVl1IUvBvnL1JYslt3RbzrO_R9-jA-Sc9JJtuFFu-8TBiGOX_zzZk5PwDbXmTCas1jj_AWC-tkXAqRx2XuCsttVhQZZSOfDuXgXHy5yC6W4HeXC0Nhld2e2GzUbmzpjrxPZcqlJET6OPkRU9coel3tWmjo0FrB7TYlxkJix7G_u0UXbrp79BnlvcPY4cHZp0EcugzEViR8FkvjPLOi4iytKi8NM07iIc5lhIZS5rbg6DKUOee28kiGLYVDXHZMaMa18RznfQIrgosSnb-V_YPh12_zWx4ESCHTtE0M5LxM-sZZK9FyUkouXIDCpmPAv7jwDFZv6om-u9Wj0QLwHT6HtXBijfZaFXsBS75-CX2K3WubS0RtGF8j4fufv5qvUPg7-l5HzSvB9BWcPwpXXsNyPa79OkRo184Utkgq6UWaoNa4TFel5UJkeWJZDz50bFA2rI_6Y4wUOijEM7XAsx5szwdP2noc_x-2T_ycD6Ei2s2P8fWVCjapvGCukDphVWap0L4xLjHac4_U4Bx5D96TNBSZOi7I6pCxgGRR0Sy1l2cpemtliSRsdgJTYQ-Yqr8a24OduRAfWvWbh6d5B6uDs9MTdXI0PN6Ap4wSMZrAmk1Ynl3f-C08Hs3M26CDEVw-ttr_ATV7ItU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dahQxFD7UCtpeiKLS1apz0SIIw84kmczMhUi1rq3V4oWF3sXkJFMKy-y2u6X0ru_g2_g4PonnzM-6oPSulzOEkPOXLyc5PwBbQWUKrZVxIHiLFXodl0rlcZn7AiVmRZFxNvLXQ713pD4fZ8cr8KvPheGwyn5PbDZqP0G-Ix9ymXKtGZGGVRcW8W139G56FnMHKX5p7dtptCpyEK4uyX2bvd3fJVlvCzH6-P3DXtx1GIhRJXIea-eDQFVJkVZV0E44r-kA5zNGQq1zLCS5C2UuJVaBSMBSecJkL5QV0rogad47cDfnKu6cpT76tLjfIWhUOk3blEApy2ToPKImm0k5rXAJBJteAf8iwjrcv6in9urSjsdLkDd6CA-6s2q00yrXI1gJ9WMYctRe21YiagP4Gtn-vv7ZfHUlv6PTOmreB2ZP4OhWePIUVutJHTYgIov2rsAiqXRQaUL64jNblSiVyvIExQDe9Gww2K2PO2OMDbkmzDOzxLMBbC0GT9tKHP8f9p75uRjC5bObH5PzE9NZowlK-ELbRFQZcol953zibJCBqKE58gG8ZmkYNnJaENouV4HI4nJZZifPUvLTypJI2OwFZjrrn5m_ujqA7YUQb1r1s5uneQX3SNnNl_3Dg-ewJjgDo4mo2YTV-flFeEHnorl72ShgBD9uW-P_AER8IG8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF_q9UF9qBUVT6vkoVIQ0iT7L8lTOcVSChYfelCflt3ZjZQe6dG7U_TJ7-A37CfpTLJ3HCql9DFhEnYyMzszm5nfMLYbpJJgrUgDurdUgtdpLWWZ1qWvQICqKkXdyJ9P9NFYHp-ps1ibM4tllZiKn3ebNMFrpRxTgkxnMkPPl019c_A9HiQVuswrjJ6VesA2tcJQfMA2xydfRl9poNzy0b4nT2BqnzkPoFFpC-rrW_NCHVj_v1vyY_Zw0U7tzx92MlnzOYdP-sGqsw6qkEpNLvYXc7cPv_4Ccrw3O9tsK0ajyahXn6dsI7TPWEZ1ef3giKQv0eukd_37T3cVQb2T8zbp_gDMnrPx4afTj0dpnKuQgszFPNXOBw6yEbxomqAdd15j2OoV-X-tS6gEJkl1KQQ0AQUHtfQYiXguLRfWBfGCDdrLNrxkCdqsdxVUeaODLHLUCK9sU4OQUpU58CF7v_zOBuL6aPbFxGDyQUIxa0IZst0V8bTH2vg_2QcS2IqEALK7G5dX30y0NxMk95W2OW8UEIi-cz53NoiA3OA7yiHbI3EbMmNcENjYjYBsESCWGZWqwEysrpGFnaVGmGjfM0Og-VpTfDRk71ZactuqX92R7jV7xKnDoquY2WGD-dUivMG4Z-7eRu2-Abbl_O0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+Exploration%E2%80%93Exploitation+in+Humans&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Candelieri%2C+Antonio&rft.au=Ponti%2C+Andrea&rft.au=Archetti%2C+Francesco&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2504-2289&rft.volume=6&rft.issue=4&rft.spage=155&rft_id=info:doi/10.3390%2Fbdcc6040155&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon