An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks

•A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the target firm.•The model applies link prediction to large-scale F-terms to identify opportunity F-terms.•Opportunity F-terms are assessed in te...

Full description

Saved in:
Bibliographic Details
Published inTechnological forecasting & social change Vol. 168; p. 120746
Main Authors Lee, Jiho, Ko, Namuk, Yoon, Janghyeok, Son, Changho
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.07.2021
Elsevier B.V
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0040-1625
1873-5509
DOI10.1016/j.techfore.2021.120746

Cover

Abstract •A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the target firm.•The model applies link prediction to large-scale F-terms to identify opportunity F-terms.•Opportunity F-terms are assessed in terms of technological impact and heterogeneity.•This study contributes as an early attempt to apply F-terms to the quantitative TOD. Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches. Despite their apparent benefits, the former has reproducibility issues due to the experts’ subjectivity, whereas the latter lacks consideration of technical attributes that constitute individual technologies. The F-term, a multi-dimensional subject indexing system, provides patent classification codes representing technical attributes and structures that vary according to subject technology. The present study proposes a TOD model employing a link prediction analysis of F-terms. The proposed model based on F-terms comprises four steps: 1) constructing a universal F-term network using F-term co-occurrences; 2) generating a firm-centered F-term network highlighting a target firm's technology portfolio; 3) applying a proposed link prediction index to identify opportunity F-terms; and 4) assessing these opportunities in terms of technical attributes using a visual map with technology impact and heterogeneity indices. A case study is conducted on a Japanese firm to demonstrate the function and validity of this model, which aims to assist firms to identify technology opportunities with high practicality considering both their technology portfolios and the entire technology ecology. Moreover, this study represents a contribution to an early attempt to apply large-scale F-terms to the quantitative TOD.
AbstractList •A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the target firm.•The model applies link prediction to large-scale F-terms to identify opportunity F-terms.•Opportunity F-terms are assessed in terms of technological impact and heterogeneity.•This study contributes as an early attempt to apply F-terms to the quantitative TOD. Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches. Despite their apparent benefits, the former has reproducibility issues due to the experts’ subjectivity, whereas the latter lacks consideration of technical attributes that constitute individual technologies. The F-term, a multi-dimensional subject indexing system, provides patent classification codes representing technical attributes and structures that vary according to subject technology. The present study proposes a TOD model employing a link prediction analysis of F-terms. The proposed model based on F-terms comprises four steps: 1) constructing a universal F-term network using F-term co-occurrences; 2) generating a firm-centered F-term network highlighting a target firm's technology portfolio; 3) applying a proposed link prediction index to identify opportunity F-terms; and 4) assessing these opportunities in terms of technical attributes using a visual map with technology impact and heterogeneity indices. A case study is conducted on a Japanese firm to demonstrate the function and validity of this model, which aims to assist firms to identify technology opportunities with high practicality considering both their technology portfolios and the entire technology ecology. Moreover, this study represents a contribution to an early attempt to apply large-scale F-terms to the quantitative TOD.
Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches. Despite their apparent benefits, the former has reproducibility issues due to the experts' subjectivity, whereas the latter lacks consideration of technical attributes that constitute individual technologies. The F-term, a multi-dimensional subject indexing system, provides patent classification codes representing technical attributes and structures that vary according to subject technology. The present study proposes a TOD model employing a link prediction analysis of F-terms. The proposed model based on F-terms comprises four steps: 1) constructing a universal F-term network using F-term co-occurrences; 2) generating a firm-centered F-term network highlighting a target firm's technology portfolio; 3) applying a proposed link prediction index to identify opportunity F-terms; and 4) assessing these opportunities in terms of technical attributes using a visual map with technology impact and heterogeneity indices. A case study is conducted on a Japanese firm to demonstrate the function and validity of this model, which aims to assist firms to identify technology opportunities with high practicality considering both their technology portfolios and the entire technology ecology. Moreover, this study represents a contribution to an early attempt to apply large-scale F-terms to the quantitative TOD.
ArticleNumber 120746
Audience Academic
Author Son, Changho
Ko, Namuk
Lee, Jiho
Yoon, Janghyeok
Author_xml – sequence: 1
  givenname: Jiho
  surname: Lee
  fullname: Lee, Jiho
  email: jiholee255@konkuk.ac.kr
  organization: Department of Industrial Engineering, Konkuk University, Seoul, Republic of Korea
– sequence: 2
  givenname: Namuk
  surname: Ko
  fullname: Ko, Namuk
  email: kmu1009@konkuk.ac.kr
  organization: Department of Industrial Engineering, Konkuk University, Seoul, Republic of Korea
– sequence: 3
  givenname: Janghyeok
  orcidid: 0000-0002-8701-0695
  surname: Yoon
  fullname: Yoon, Janghyeok
  email: janghyoon@konkuk.ac.kr
  organization: Department of Industrial Engineering, Konkuk University, Seoul, Republic of Korea
– sequence: 4
  givenname: Changho
  orcidid: 0000-0003-3366-0884
  surname: Son
  fullname: Son, Changho
  email: c13981@snu.ac.kr
  organization: Department of System Engineering, Korea Army Academy, Yeongcheon, Republic of Korea
BookMark eNqFkUFvEzEQhS1UJNLCX0CWkLhtGNu7zgZxIKooRarEBc6WMztOnW7sxXYK_fc4Xbj00sPI0uh7b-T3ztlZiIEYeytgKUDoD_tlIbx1MdFSghRLIWHV6hdsIfqVaroO1mdsAdBCI7TsXrHznPcAsFK9XrDjJnA7TSlavOXVgw8-Y7yn5MOOO58OTZ4IvfPIT1dCHOPugcdpiqkcgy-e8ke-mabRoy0-Bh4dH32441OiwePjqkR-1RRKBx6o_I7pLr9mL50dM735916wn1dfflxeNzffv3673Nw02IIqTefc1rZ6JaFDKQerEZxyg-zagdS6BcS1VZokbglkHSvazto10LDV_aBAXbB3s2_94K8j5WL28ZhCPWlkp4UA1feiUu9namdHMj5gDIX-lJ095mzMRldQ6U7pCuoZxBRzTuTMlPzBpgcjwJy6MHvzvwtz6sLMXVThpydC9OUxr5KsH5-Xf57lVLO695RMRk8Ba8KJsJgh-ucs_gLLmK4R
CitedBy_id crossref_primary_10_1109_TBDATA_2023_3313030
crossref_primary_10_56294_saludcyt2022196
crossref_primary_10_1016_j_cie_2024_110015
crossref_primary_10_1016_j_eswa_2022_119053
crossref_primary_10_1080_09537325_2023_2242519
crossref_primary_10_1016_j_jclepro_2024_143850
crossref_primary_10_1016_j_joi_2023_101398
crossref_primary_10_3390_fractalfract7020109
crossref_primary_10_1016_j_technovation_2023_102872
crossref_primary_10_1177_01655515231171090
crossref_primary_10_1016_j_techfore_2022_122130
crossref_primary_10_1016_j_wpi_2023_102208
crossref_primary_10_1057_s41599_024_03498_0
crossref_primary_10_1016_j_eswa_2024_124895
crossref_primary_10_3390_systems12090321
crossref_primary_10_4018_JGIM_304062
crossref_primary_10_7232_JKIIE_2022_48_6_570
crossref_primary_10_1016_j_techfore_2024_123736
crossref_primary_10_1007_s11192_024_04961_0
crossref_primary_10_1016_j_wpi_2023_102193
crossref_primary_10_1016_j_joi_2023_101464
crossref_primary_10_1016_j_techfore_2023_122565
crossref_primary_10_1016_j_techfore_2022_122161
crossref_primary_10_1007_s11192_021_04219_z
crossref_primary_10_1016_j_joi_2022_101286
crossref_primary_10_1016_j_eswa_2025_126994
crossref_primary_10_11627_jksie_2023_46_4_001
crossref_primary_10_1109_TEM_2023_3262257
crossref_primary_10_3390_en15207617
Cites_doi 10.3390/su11226381
10.1016/j.techfore.2011.02.012
10.1108/FS-10-2012-0075
10.1007/s11192-012-0830-6
10.1016/0048-7333(87)90027-8
10.1016/j.wpi.2011.08.001
10.1016/j.techfore.2013.10.013
10.1016/j.cie.2016.04.009
10.1016/0040-1625(91)90057-M
10.1016/j.techfore.2017.02.018
10.1016/j.techfore.2016.01.011
10.1016/j.techfore.2005.08.002
10.1016/j.wpi.2007.05.008
10.1016/j.wpi.2017.10.001
10.1016/S0040-1625(02)00375-X
10.1016/j.techfore.2017.03.009
10.1016/j.techfore.2015.04.012
10.1145/2500499
10.1016/j.technovation.2017.03.001
10.1016/j.ipm.2006.11.011
10.1007/s13721-012-0005-7
10.1007/BF02289026
10.1103/PhysRevE.67.056104
10.1016/j.technovation.2020.102140
10.1016/j.techfore.2019.119737
10.1016/j.socnet.2004.11.008
10.1016/j.eswa.2012.01.202
10.1111/radm.12107
10.1108/JMTM-03-2020-0106
10.1016/j.physa.2010.11.027
10.1016/S0378-8733(03)00009-1
10.1016/S0172-2190(02)00019-4
10.1111/j.1467-6486.2007.00725.x
10.4218/etrij.12.1711.0010
10.1016/j.techfore.2016.01.028
10.1007/s11747-009-0174-9
10.1016/j.techfore.2014.05.010
10.1145/2180861.2180866
10.1007/s11192-013-1097-2
ContentType Journal Article
Copyright 2021
COPYRIGHT 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 2021
Copyright_xml – notice: 2021
– notice: COPYRIGHT 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 2021
DBID AAYXX
CITATION
7TB
7U4
8FD
BHHNA
DWI
F28
FR3
JQ2
KR7
WZK
DOI 10.1016/j.techfore.2021.120746
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Sociological Abstracts (pre-2017)
Technology Research Database
Sociological Abstracts
Sociological Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Sociological Abstracts (Ovid)
DatabaseTitle CrossRef
Sociological Abstracts (pre-2017)
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Sociological Abstracts
ProQuest Computer Science Collection
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Sociological Abstracts (pre-2017)
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5509
ExternalDocumentID A661136536
10_1016_j_techfore_2021_120746
S0040162521001785
GroupedDBID --K
--M
-~X
.~1
0R~
123
13V
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
53G
5VS
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYOK
ABEFU
ABEHJ
ABFNM
ABJNI
ABKBG
ABMAC
ABMVD
ABOYX
ABPPZ
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACIWK
ACNTT
ACRLP
ACXNI
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFAZI
AFFNX
AFKWA
AFTJW
AFYLN
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
F8P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLX
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG8
LPU
LXL
LXN
LY7
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBM
SDF
SDG
SDP
SES
SET
SEW
SPCBC
SSB
SSD
SSL
SSS
SSY
SSZ
T5K
TAE
TN5
U5U
UHS
WH7
WUQ
XJT
XPP
XYO
YK3
ZRQ
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
SSH
7TB
7U4
8FD
BHHNA
DWI
F28
FR3
JQ2
KR7
WZK
ID FETCH-LOGICAL-c403t-5ffba467205c22da6c0f3fd254de3940cc9a36e2cbe02be0a145aa90edb68d303
IEDL.DBID .~1
ISSN 0040-1625
IngestDate Wed Aug 13 03:49:21 EDT 2025
Fri Jun 27 05:54:30 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
Wed Oct 01 05:13:56 EDT 2025
Fri Feb 23 02:47:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords F-term
Link prediction
Technology portfolio
Technology opportunity
Patent mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-5ffba467205c22da6c0f3fd254de3940cc9a36e2cbe02be0a145aa90edb68d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8701-0695
0000-0003-3366-0884
PQID 2561103881
PQPubID 44933
ParticipantIDs proquest_journals_2561103881
gale_incontextgauss__A661136536
crossref_primary_10_1016_j_techfore_2021_120746
crossref_citationtrail_10_1016_j_techfore_2021_120746
elsevier_sciencedirect_doi_10_1016_j_techfore_2021_120746
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Technological forecasting & social change
PublicationYear 2021
Publisher Elsevier Inc
Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier B.V
– name: Elsevier Science Ltd
References Kim, Gazzola, Lee, Kim, Kim, Jeong (bib0020) 2014; 98
Yoon, Seo, Coh, Song, Lee (bib0046) 2017; 107
Mori, Kajikawa, Kashima, Sakata (bib0025) 2012; 39
Lee, Kang, Shin (bib0022) 2015; 90
Geum, Kim, Lee, Kim (bib0015) 2012; 34
Park, Yoon (bib0028) 2017; 118
Thung, Lo, Lawall (bib0036) 2013
Yoon, Park, Seo, Lee, Coh, Kim (bib0045) 2015; 100
Degroote, Held (bib0013) 2018; 54
Wang, Xu, Wu, Zhou (bib0041) 2015; 58
Akcora, Carminati, Ferrari (bib0004) 2011
Lee, Jeon, Ahn, Kwon (bib0021) 2020
Song, Kim, Lee (bib0034) 2017; 60
OuYang, Weng (bib0026) 2011; 78
Wolter (bib0042) 2012; 34
Park, Seo, Coh, Lee, Yoon (bib0027) 2014; 40
Lü, Zhou (bib0023) 2011; 390
Shin, Seo (bib0033) 2017; 3
Cho, Jeong, Kim (bib0011) 1991; 40
Katz (bib0019) 1953; 18
Seo, Yoon, Park, Coh, Lee, Kwon (bib0031) 2016; 105
Tseng, Lin, Lin (bib0037) 2007; 43
Yoon, Park, Coh (bib0043) 2014; 86
Yoon, Park, Kim (bib0044) 2013; 94
Almansoori, Gao, Jarada, Elsheikh, Murshed, Jida, Alhajj, Rokne (bib0005) 2012; 1
Schellner (bib0030) 2002; 24
Benchettara, Kanawati, Rouveirol (bib0007) 2010
Wang, Lan (bib0040) 2007; 74
Homburg, Fürst, Prigge (bib0017) 2010; 38
Martino (bib0024) 2003; 70
Adamic, Adar (bib0001) 2003; 25
Dhar (bib0014) 2013; 56
Hsieh, Nickerson, Zenger (bib0018) 2007; 44
Vázquez (bib0038) 2003; 67
Basberg (bib0006) 1987; 16
Guo, Wang, Li, Zhu (bib0016) 2016; 105
Preschitschek, Niemann, Leker, Moehrle (bib0029) 2013; 15
Sun, Lo, Khoo, Jiang (bib0035) 2011
Adams (bib0002) 2008; 30
Chen, Zhang, Zhu, Lu (bib0009) 2017; 119
Shi, Cai, Song (bib0032) 2019; 11
Choi, Jeong, Yoon (bib0012) 2019; 148
Aiello, Barrat, Schifanella, Cattuto, Markines, Menczer (bib0003) 2012; 6
Cho, Yoon, Coh, Lee (bib0010) 2016; 46
Wang, Hsu (bib0039) 2020
Borgatti (bib0008) 2005; 27
Geum (10.1016/j.techfore.2021.120746_bib0015) 2012; 34
Cho (10.1016/j.techfore.2021.120746_bib0011) 1991; 40
Wang (10.1016/j.techfore.2021.120746_bib0040) 2007; 74
Borgatti (10.1016/j.techfore.2021.120746_bib0008) 2005; 27
Park (10.1016/j.techfore.2021.120746_bib0028) 2017; 118
Lee (10.1016/j.techfore.2021.120746_bib0022) 2015; 90
Vázquez (10.1016/j.techfore.2021.120746_bib0038) 2003; 67
OuYang (10.1016/j.techfore.2021.120746_bib0026) 2011; 78
Choi (10.1016/j.techfore.2021.120746_bib0012) 2019; 148
Homburg (10.1016/j.techfore.2021.120746_bib0017) 2010; 38
Preschitschek (10.1016/j.techfore.2021.120746_bib0029) 2013; 15
Wang (10.1016/j.techfore.2021.120746_bib0039) 2020
Seo (10.1016/j.techfore.2021.120746_bib0031) 2016; 105
Wolter (10.1016/j.techfore.2021.120746_bib0042) 2012; 34
Park (10.1016/j.techfore.2021.120746_bib0027) 2014; 40
Song (10.1016/j.techfore.2021.120746_bib0034) 2017; 60
Adamic (10.1016/j.techfore.2021.120746_bib0001) 2003; 25
Adams (10.1016/j.techfore.2021.120746_bib0002) 2008; 30
Schellner (10.1016/j.techfore.2021.120746_bib0030) 2002; 24
Shi (10.1016/j.techfore.2021.120746_bib0032) 2019; 11
Almansoori (10.1016/j.techfore.2021.120746_bib0005) 2012; 1
Wang (10.1016/j.techfore.2021.120746_bib0041) 2015; 58
Yoon (10.1016/j.techfore.2021.120746_bib0043) 2014; 86
Basberg (10.1016/j.techfore.2021.120746_bib0006) 1987; 16
Mori (10.1016/j.techfore.2021.120746_bib0025) 2012; 39
Yoon (10.1016/j.techfore.2021.120746_bib0044) 2013; 94
Benchettara (10.1016/j.techfore.2021.120746_bib0007) 2010
Cho (10.1016/j.techfore.2021.120746_bib0010) 2016; 46
Aiello (10.1016/j.techfore.2021.120746_bib0003) 2012; 6
Tseng (10.1016/j.techfore.2021.120746_bib0037) 2007; 43
Shin (10.1016/j.techfore.2021.120746_bib0033) 2017; 3
Guo (10.1016/j.techfore.2021.120746_bib0016) 2016; 105
Sun (10.1016/j.techfore.2021.120746_bib0035) 2011
Katz (10.1016/j.techfore.2021.120746_bib0019) 1953; 18
Lü (10.1016/j.techfore.2021.120746_bib0023) 2011; 390
Thung (10.1016/j.techfore.2021.120746_bib0036) 2013
Dhar (10.1016/j.techfore.2021.120746_bib0014) 2013; 56
Akcora (10.1016/j.techfore.2021.120746_bib0004) 2011
Degroote (10.1016/j.techfore.2021.120746_bib0013) 2018; 54
Lee (10.1016/j.techfore.2021.120746_bib0021) 2020
Hsieh (10.1016/j.techfore.2021.120746_bib0018) 2007; 44
Martino (10.1016/j.techfore.2021.120746_bib0024) 2003; 70
Yoon (10.1016/j.techfore.2021.120746_bib0046) 2017; 107
Yoon (10.1016/j.techfore.2021.120746_bib0045) 2015; 100
Kim (10.1016/j.techfore.2021.120746_bib0020) 2014; 98
Chen (10.1016/j.techfore.2021.120746_bib0009) 2017; 119
References_xml – volume: 105
  start-page: 27
  year: 2016
  end-page: 40
  ident: bib0016
  article-title: Subject–action–object-based morphology analysis for determining the direction of technological change
  publication-title: Technol. Forecast. Soc. Change
– volume: 38
  start-page: 531
  year: 2010
  end-page: 549
  ident: bib0017
  article-title: A customer perspective on product eliminations: how the removal of products affects customers and business relationships
  publication-title: J. Acad. Mark. Sci.
– start-page: 253
  year: 2010
  end-page: 256
  ident: bib0007
  article-title: A supervised machine learning link prediction approach for academic collaboration recommendation
  publication-title: Proceedings of the Fourth ACM Conference on Recommender Systems
– volume: 54
  start-page: S78
  year: 2018
  end-page: S84
  ident: bib0013
  article-title: Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation
  publication-title: World Patent Inf.
– volume: 34
  start-page: 8
  year: 2012
  end-page: 18
  ident: bib0042
  article-title: It takes all kinds to make a world–some thoughts on the use of classification in patent searching
  publication-title: World Patent Inf.
– volume: 1
  start-page: 27
  year: 2012
  end-page: 36
  ident: bib0005
  article-title: Link prediction and classification in social networks and its application in healthcare and systems biology
  publication-title: Netw. Model. Anal. Health Inf. Bioinform.
– volume: 40
  start-page: 442
  year: 2014
  end-page: 450
  ident: bib0027
  article-title: Technology opportunity discovery based on firms' technologies and products
  publication-title: J. Korean Inst. Ind. Eng.
– volume: 11
  start-page: 6381
  year: 2019
  ident: bib0032
  article-title: Discovering potential technology opportunities for fuel cell vehicle firms: a multi-level patent portfolio-based approach
  publication-title: Sustainability
– volume: 30
  start-page: 5
  year: 2008
  end-page: 20
  ident: bib0002
  article-title: English-language support tools for the use of Japanese F-term patent subject searching online
  publication-title: World Patent Inf.
– volume: 86
  start-page: 287
  year: 2014
  end-page: 303
  ident: bib0043
  article-title: Exploring technological opportunities by linking technology and products: application of morphology analysis and text mining
  publication-title: Technol. Forecast. Soc. Change
– volume: 25
  start-page: 211
  year: 2003
  end-page: 230
  ident: bib0001
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
– volume: 390
  start-page: 1150
  year: 2011
  end-page: 1170
  ident: bib0023
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A Stat. Mech. Appl.
– start-page: 182
  year: 2013
  end-page: 191
  ident: bib0036
  article-title: Automated library recommendation
  publication-title: Proceedings of the 20th Working Conference on Reverse Engineering (WCRE)
– volume: 3
  start-page: 114
  year: 2017
  end-page: 121
  ident: bib0033
  article-title: Identifying new technology areas based on firm's internal capabilities
  publication-title: J. Adm. Bus. Stud.
– volume: 60
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0034
  article-title: Discovering new technology opportunities based on patents: text-mining and F-term analysis
  publication-title: Technovation
– year: 2020
  ident: bib0039
  article-title: A topic-based patent analytics approach for exploring technological trends in smart manufacturing
  publication-title: J. Manuf. Technol. Manag.
– volume: 148
  year: 2019
  ident: bib0012
  article-title: Technology opportunity discovery under the dynamic change of focus technology fields: application of sequential pattern mining to patent classifications
  publication-title: Technol. Forecast. Soc. Change
– volume: 27
  start-page: 55
  year: 2005
  end-page: 71
  ident: bib0008
  article-title: Centrality and network flow
  publication-title: Soc. Netw.
– volume: 78
  start-page: 1183
  year: 2011
  end-page: 1199
  ident: bib0026
  article-title: A new comprehensive patent analysis approach for new product design in mechanical engineering
  publication-title: Technol. Forecast. Soc. Change
– start-page: 253
  year: 2011
  end-page: 262
  ident: bib0035
  article-title: Towards more accurate retrieval of duplicate bug reports
  publication-title: Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering (ASE)
– volume: 40
  start-page: 273
  year: 1991
  end-page: 287
  ident: bib0011
  article-title: A Delphi technology forecasting approach using a semi-Markov concept
  publication-title: Technol. Forecast. Soc. Change
– volume: 18
  start-page: 39
  year: 1953
  end-page: 43
  ident: bib0019
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
– volume: 46
  start-page: 13
  year: 2016
  end-page: 35
  ident: bib0010
  article-title: An empirical analysis on purposes, drivers and activities of technology opportunity discovery: the case of Korean SMEs in the manufacturing sector
  publication-title: R&D Manag.
– volume: 118
  start-page: 170
  year: 2017
  end-page: 183
  ident: bib0028
  article-title: Application technology opportunity discovery from technology portfolios: use of patent classification and collaborative filtering
  publication-title: Technol. Forecast. Soc. Change
– volume: 67
  year: 2003
  ident: bib0038
  article-title: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations
  publication-title: Phys. Rev. E
– volume: 70
  start-page: 719
  year: 2003
  end-page: 733
  ident: bib0024
  article-title: A review of selected recent advances in technological forecasting
  publication-title: Technol. Forecast. Soc. Change
– volume: 74
  start-page: 357
  year: 2007
  end-page: 378
  ident: bib0040
  article-title: Combined forecast process: combining scenario analysis with the technological substitution model
  publication-title: Technol. Forecast. Soc. Change
– volume: 56
  start-page: 64
  year: 2013
  end-page: 73
  ident: bib0014
  article-title: Data science and prediction
  publication-title: Commun. ACM
– volume: 24
  start-page: 197
  year: 2002
  end-page: 201
  ident: bib0030
  article-title: Japanese File Index classification and F-terms
  publication-title: World Patent Inf.
– volume: 107
  start-page: 376
  year: 2017
  end-page: 387
  ident: bib0046
  article-title: Identifying product opportunities using collaborative filtering-based patent analysis
  publication-title: Comput. Ind. Eng.
– volume: 119
  start-page: 39
  year: 2017
  end-page: 52
  ident: bib0009
  article-title: Topic-based technological forecasting based on patent data: a case study of Australian patents from 2000 to 2014
  publication-title: Technol. Forecast. Soc. Change
– volume: 15
  start-page: 446
  year: 2013
  end-page: 464
  ident: bib0029
  article-title: Anticipating industry convergence: semantic analyses vs IPC co-classification analyses of patents
  publication-title: Foresight
– volume: 94
  start-page: 313
  year: 2013
  end-page: 331
  ident: bib0044
  article-title: Identifying technological competition trends for R&D planning using dynamic patent maps: sAO-based content analysis
  publication-title: Scientometrics
– volume: 100
  start-page: 153
  year: 2015
  end-page: 167
  ident: bib0045
  article-title: Technology opportunity discovery (TOD) from existing technologies and products: a function-based TOD framework
  publication-title: Technol. Forecast. Soc. Change
– volume: 16
  start-page: 131
  year: 1987
  end-page: 141
  ident: bib0006
  article-title: Patents and the measurement of technological change: a survey of the literature
  publication-title: Res. Policy
– volume: 34
  start-page: 439
  year: 2012
  end-page: 449
  ident: bib0015
  article-title: Technological convergence of IT and BT: evidence from patent analysis
  publication-title: Etri J.
– volume: 105
  start-page: 94
  year: 2016
  end-page: 104
  ident: bib0031
  article-title: Product opportunity identification based on internal capabilities using text mining and association rule mining
  publication-title: Technol. Forecast. Soc. Change
– volume: 98
  start-page: 1811
  year: 2014
  end-page: 1825
  ident: bib0020
  article-title: Inter-cluster connectivity analysis for technology opportunity discovery
  publication-title: Scientometrics
– volume: 44
  start-page: 1255
  year: 2007
  end-page: 1277
  ident: bib0018
  article-title: Opportunity discovery, problem solving and a theory of the entrepreneurial firm
  publication-title: J. Manag. Stud.
– year: 2020
  ident: bib0021
  article-title: Navigating a product landscape for technology opportunity analysis: a word2vec approach using an integrated patent-product database
  publication-title: Technovation
– volume: 90
  start-page: 355
  year: 2015
  end-page: 365
  ident: bib0022
  article-title: Novelty-focused patent mapping for technology opportunity analysis
  publication-title: Technol. Forecast. Soc. Change
– volume: 6
  start-page: 9
  year: 2012
  ident: bib0003
  article-title: Friendship prediction and homophily in social media
  publication-title: ACM Trans. Web
– volume: 39
  start-page: 10402
  year: 2012
  end-page: 10407
  ident: bib0025
  article-title: Machine learning approach for finding business partners and building reciprocal relationships
  publication-title: Expert. Syst. Appl.
– volume: 58
  start-page: 1
  year: 2015
  end-page: 38
  ident: bib0041
  article-title: Link prediction in social networks: the state-of-the-art
  publication-title: Sci. China Inf. Sci.
– start-page: 292
  year: 2011
  end-page: 298
  ident: bib0004
  article-title: Network and profile based measures for user similarities on social networks
  publication-title: Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI)
– volume: 43
  start-page: 1216
  year: 2007
  end-page: 1247
  ident: bib0037
  article-title: Text mining techniques for patent analysis
  publication-title: Inf. Process. Manag.
– volume: 11
  start-page: 6381
  year: 2019
  ident: 10.1016/j.techfore.2021.120746_bib0032
  article-title: Discovering potential technology opportunities for fuel cell vehicle firms: a multi-level patent portfolio-based approach
  publication-title: Sustainability
  doi: 10.3390/su11226381
– volume: 78
  start-page: 1183
  year: 2011
  ident: 10.1016/j.techfore.2021.120746_bib0026
  article-title: A new comprehensive patent analysis approach for new product design in mechanical engineering
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2011.02.012
– volume: 15
  start-page: 446
  year: 2013
  ident: 10.1016/j.techfore.2021.120746_bib0029
  article-title: Anticipating industry convergence: semantic analyses vs IPC co-classification analyses of patents
  publication-title: Foresight
  doi: 10.1108/FS-10-2012-0075
– volume: 94
  start-page: 313
  year: 2013
  ident: 10.1016/j.techfore.2021.120746_bib0044
  article-title: Identifying technological competition trends for R&D planning using dynamic patent maps: sAO-based content analysis
  publication-title: Scientometrics
  doi: 10.1007/s11192-012-0830-6
– volume: 16
  start-page: 131
  year: 1987
  ident: 10.1016/j.techfore.2021.120746_bib0006
  article-title: Patents and the measurement of technological change: a survey of the literature
  publication-title: Res. Policy
  doi: 10.1016/0048-7333(87)90027-8
– volume: 34
  start-page: 8
  year: 2012
  ident: 10.1016/j.techfore.2021.120746_bib0042
  article-title: It takes all kinds to make a world–some thoughts on the use of classification in patent searching
  publication-title: World Patent Inf.
  doi: 10.1016/j.wpi.2011.08.001
– start-page: 253
  year: 2010
  ident: 10.1016/j.techfore.2021.120746_bib0007
  article-title: A supervised machine learning link prediction approach for academic collaboration recommendation
– start-page: 253
  year: 2011
  ident: 10.1016/j.techfore.2021.120746_bib0035
  article-title: Towards more accurate retrieval of duplicate bug reports
– volume: 86
  start-page: 287
  year: 2014
  ident: 10.1016/j.techfore.2021.120746_bib0043
  article-title: Exploring technological opportunities by linking technology and products: application of morphology analysis and text mining
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2013.10.013
– volume: 107
  start-page: 376
  year: 2017
  ident: 10.1016/j.techfore.2021.120746_bib0046
  article-title: Identifying product opportunities using collaborative filtering-based patent analysis
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.04.009
– volume: 40
  start-page: 273
  year: 1991
  ident: 10.1016/j.techfore.2021.120746_bib0011
  article-title: A Delphi technology forecasting approach using a semi-Markov concept
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/0040-1625(91)90057-M
– volume: 118
  start-page: 170
  year: 2017
  ident: 10.1016/j.techfore.2021.120746_bib0028
  article-title: Application technology opportunity discovery from technology portfolios: use of patent classification and collaborative filtering
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2017.02.018
– volume: 105
  start-page: 94
  year: 2016
  ident: 10.1016/j.techfore.2021.120746_bib0031
  article-title: Product opportunity identification based on internal capabilities using text mining and association rule mining
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2016.01.011
– volume: 74
  start-page: 357
  year: 2007
  ident: 10.1016/j.techfore.2021.120746_bib0040
  article-title: Combined forecast process: combining scenario analysis with the technological substitution model
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2005.08.002
– volume: 30
  start-page: 5
  year: 2008
  ident: 10.1016/j.techfore.2021.120746_bib0002
  article-title: English-language support tools for the use of Japanese F-term patent subject searching online
  publication-title: World Patent Inf.
  doi: 10.1016/j.wpi.2007.05.008
– volume: 54
  start-page: S78
  year: 2018
  ident: 10.1016/j.techfore.2021.120746_bib0013
  article-title: Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation
  publication-title: World Patent Inf.
  doi: 10.1016/j.wpi.2017.10.001
– volume: 58
  start-page: 1
  year: 2015
  ident: 10.1016/j.techfore.2021.120746_bib0041
  article-title: Link prediction in social networks: the state-of-the-art
  publication-title: Sci. China Inf. Sci.
– volume: 3
  start-page: 114
  year: 2017
  ident: 10.1016/j.techfore.2021.120746_bib0033
  article-title: Identifying new technology areas based on firm's internal capabilities
  publication-title: J. Adm. Bus. Stud.
– volume: 70
  start-page: 719
  year: 2003
  ident: 10.1016/j.techfore.2021.120746_bib0024
  article-title: A review of selected recent advances in technological forecasting
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/S0040-1625(02)00375-X
– volume: 119
  start-page: 39
  year: 2017
  ident: 10.1016/j.techfore.2021.120746_bib0009
  article-title: Topic-based technological forecasting based on patent data: a case study of Australian patents from 2000 to 2014
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2017.03.009
– volume: 100
  start-page: 153
  year: 2015
  ident: 10.1016/j.techfore.2021.120746_bib0045
  article-title: Technology opportunity discovery (TOD) from existing technologies and products: a function-based TOD framework
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2015.04.012
– start-page: 292
  year: 2011
  ident: 10.1016/j.techfore.2021.120746_bib0004
  article-title: Network and profile based measures for user similarities on social networks
– volume: 56
  start-page: 64
  year: 2013
  ident: 10.1016/j.techfore.2021.120746_bib0014
  article-title: Data science and prediction
  publication-title: Commun. ACM
  doi: 10.1145/2500499
– volume: 60
  start-page: 1
  year: 2017
  ident: 10.1016/j.techfore.2021.120746_bib0034
  article-title: Discovering new technology opportunities based on patents: text-mining and F-term analysis
  publication-title: Technovation
  doi: 10.1016/j.technovation.2017.03.001
– volume: 43
  start-page: 1216
  year: 2007
  ident: 10.1016/j.techfore.2021.120746_bib0037
  article-title: Text mining techniques for patent analysis
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2006.11.011
– volume: 1
  start-page: 27
  year: 2012
  ident: 10.1016/j.techfore.2021.120746_bib0005
  article-title: Link prediction and classification in social networks and its application in healthcare and systems biology
  publication-title: Netw. Model. Anal. Health Inf. Bioinform.
  doi: 10.1007/s13721-012-0005-7
– volume: 18
  start-page: 39
  issue: 1
  year: 1953
  ident: 10.1016/j.techfore.2021.120746_bib0019
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
– volume: 67
  year: 2003
  ident: 10.1016/j.techfore.2021.120746_bib0038
  article-title: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.056104
– year: 2020
  ident: 10.1016/j.techfore.2021.120746_bib0021
  article-title: Navigating a product landscape for technology opportunity analysis: a word2vec approach using an integrated patent-product database
  publication-title: Technovation
  doi: 10.1016/j.technovation.2020.102140
– volume: 148
  year: 2019
  ident: 10.1016/j.techfore.2021.120746_bib0012
  article-title: Technology opportunity discovery under the dynamic change of focus technology fields: application of sequential pattern mining to patent classifications
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2019.119737
– volume: 27
  start-page: 55
  year: 2005
  ident: 10.1016/j.techfore.2021.120746_bib0008
  article-title: Centrality and network flow
  publication-title: Soc. Netw.
  doi: 10.1016/j.socnet.2004.11.008
– start-page: 182
  year: 2013
  ident: 10.1016/j.techfore.2021.120746_bib0036
  article-title: Automated library recommendation
– volume: 39
  start-page: 10402
  year: 2012
  ident: 10.1016/j.techfore.2021.120746_bib0025
  article-title: Machine learning approach for finding business partners and building reciprocal relationships
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.202
– volume: 46
  start-page: 13
  year: 2016
  ident: 10.1016/j.techfore.2021.120746_bib0010
  article-title: An empirical analysis on purposes, drivers and activities of technology opportunity discovery: the case of Korean SMEs in the manufacturing sector
  publication-title: R&D Manag.
  doi: 10.1111/radm.12107
– year: 2020
  ident: 10.1016/j.techfore.2021.120746_bib0039
  article-title: A topic-based patent analytics approach for exploring technological trends in smart manufacturing
  publication-title: J. Manuf. Technol. Manag.
  doi: 10.1108/JMTM-03-2020-0106
– volume: 390
  start-page: 1150
  year: 2011
  ident: 10.1016/j.techfore.2021.120746_bib0023
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2010.11.027
– volume: 25
  start-page: 211
  year: 2003
  ident: 10.1016/j.techfore.2021.120746_bib0001
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
  doi: 10.1016/S0378-8733(03)00009-1
– volume: 24
  start-page: 197
  year: 2002
  ident: 10.1016/j.techfore.2021.120746_bib0030
  article-title: Japanese File Index classification and F-terms
  publication-title: World Patent Inf.
  doi: 10.1016/S0172-2190(02)00019-4
– volume: 44
  start-page: 1255
  year: 2007
  ident: 10.1016/j.techfore.2021.120746_bib0018
  article-title: Opportunity discovery, problem solving and a theory of the entrepreneurial firm
  publication-title: J. Manag. Stud.
  doi: 10.1111/j.1467-6486.2007.00725.x
– volume: 34
  start-page: 439
  year: 2012
  ident: 10.1016/j.techfore.2021.120746_bib0015
  article-title: Technological convergence of IT and BT: evidence from patent analysis
  publication-title: Etri J.
  doi: 10.4218/etrij.12.1711.0010
– volume: 40
  start-page: 442
  year: 2014
  ident: 10.1016/j.techfore.2021.120746_bib0027
  article-title: Technology opportunity discovery based on firms' technologies and products
  publication-title: J. Korean Inst. Ind. Eng.
– volume: 105
  start-page: 27
  year: 2016
  ident: 10.1016/j.techfore.2021.120746_bib0016
  article-title: Subject–action–object-based morphology analysis for determining the direction of technological change
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2016.01.028
– volume: 38
  start-page: 531
  year: 2010
  ident: 10.1016/j.techfore.2021.120746_bib0017
  article-title: A customer perspective on product eliminations: how the removal of products affects customers and business relationships
  publication-title: J. Acad. Mark. Sci.
  doi: 10.1007/s11747-009-0174-9
– volume: 90
  start-page: 355
  year: 2015
  ident: 10.1016/j.techfore.2021.120746_bib0022
  article-title: Novelty-focused patent mapping for technology opportunity analysis
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2014.05.010
– volume: 6
  start-page: 9
  year: 2012
  ident: 10.1016/j.techfore.2021.120746_bib0003
  article-title: Friendship prediction and homophily in social media
  publication-title: ACM Trans. Web
  doi: 10.1145/2180861.2180866
– volume: 98
  start-page: 1811
  year: 2014
  ident: 10.1016/j.techfore.2021.120746_bib0020
  article-title: Inter-cluster connectivity analysis for technology opportunity discovery
  publication-title: Scientometrics
  doi: 10.1007/s11192-013-1097-2
SSID ssj0007386
Score 2.441763
Snippet •A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the...
Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches....
SourceID proquest
gale
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120746
SubjectTerms Case studies
Classification
Data mining
F-term
Heterogeneity
Indexes
Indexing
Link prediction
Network analysis
Patent mining
Predictions
Subject indexing
Subjectivity
Technology
Technology opportunity
Technology portfolio
Title An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks
URI https://dx.doi.org/10.1016/j.techfore.2021.120746
https://www.proquest.com/docview/2561103881
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007386
  issn: 0040-1625
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007386
  issn: 0040-1625
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007386
  issn: 0040-1625
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007386
  issn: 0040-1625
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007386
  issn: 0040-1625
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCKR5Y3SbOQwlbVFEVEJ2o1M1yHBu1giRq05Xfzl0ebZFAHRgyxLHlyGffne3vviPk3lfKJDEPmfYDn7ngILAgdhRzXCNhgYUgdTyHfJ3446n7PPNmLTJsYmEQVlnr_kqnl9q6LhnUoznI53OM8YW9Abjv3K5yzGMEu-sjrK__tYV5YFLLBjmHtXeihBd95Ek1yBbJwdT1bY7JN_4yUL9r7NIMjU7Ice0_0qj6xVPS0ukZOdphFTwn6yilDVU4hX4pRt4iUhO-UjNffjIMr0SIEC02B-s0y9ETX6clw-oDjbYX2zQzFO95ab7EW52yqMjoiKFWp2mFI19dkOno8W04ZnV2BaZcyymYZ0wsQU1yy1OcJ9JXlnFMAhvGRGO6dKVC6fiaq1hbHB5pu56UoaWT2A8SsHyXpJ1mqb4iNJDawaAhHbsK7JsnbaMccC1h95HwmCcd4jVDKlRNPY4ZMD5EgzFbiEYUAkUhKlF0yGDTLq_IN_a2CBuJiR_TSICF2Nv2DkUskBUjRdjNu1yvVkJE4MIgGNCBGt1G-qJe6isBPqONLPOBff2Pzm_IIb5VQOAuaRfLtb4Fd6eIe-V87pGD6OllPPkG4VUBdg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFO864HVNHEeStgiRNXSxwQSm-U4NiqCtGrT_89dk5QigRgYsjg5OfLZd2f7u-8AbkKtbZaKmJswCrmPAQKPUk9zz7cKF1iMWqdzyNE47D37jy_BSwPu61wYglVWtr-06StrXbV0qtHszCYTyvHFvQGG78Ita8xvQcsP0CY3oZX0B73x2iBTXcsaPEcCG4nCb7dElWqJMFKgt7t1BdXf-M1H_Wy0V56ouw97VQjJkvIvD6Bh8kPY3SAWPIJlkrOaLZxhv4ySbwmsiW-Zncw_OGVYEkqIFeuzdTadUTC-zFckq3cs-brbZlPL6KqXzeZ0sbNqKqasy8mws7yEki-O4bn78HTf41WBBa59xyt4YG2q0FIKJ9BCZCrUjvVshnvGzFDFdK1j5YVG6NQ4Ah_l-oFSsWOyNIwydH4n0MynuTkFFinjUd6QSX2NLi5QrtUeRpe4AclEKrIzCOohlbpiH6ciGO-yhpm9yVoVklQhS1WcQWctNyv5N_6UiGuNyW8zSaKT-FO2TSqWRIyRE_LmVS0XCykTjGIID-jhF5e19mW12hcSw0aXiOYj9_wfnbdhu_c0Gsphfzy4gB16U-KCL6FZzJfmCqOfIr2uZvcnldwEIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+discovering+firm-specific+technology+opportunities%3A+Application+of+link+prediction+to+F-term+networks&rft.jtitle=Technological+forecasting+%26+social+change&rft.au=Lee%2C+Jiho&rft.au=Ko%2C+Namuk&rft.au=Yoon%2C+Janghyeok&rft.au=Son%2C+Changho&rft.date=2021-07-01&rft.issn=0040-1625&rft.volume=168&rft.spage=120746&rft_id=info:doi/10.1016%2Fj.techfore.2021.120746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_techfore_2021_120746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1625&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1625&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1625&client=summon