An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks
•A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the target firm.•The model applies link prediction to large-scale F-terms to identify opportunity F-terms.•Opportunity F-terms are assessed in te...
Saved in:
Published in | Technological forecasting & social change Vol. 168; p. 120746 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.07.2021
Elsevier B.V Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0040-1625 1873-5509 |
DOI | 10.1016/j.techfore.2021.120746 |
Cover
Abstract | •A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the target firm.•The model applies link prediction to large-scale F-terms to identify opportunity F-terms.•Opportunity F-terms are assessed in terms of technological impact and heterogeneity.•This study contributes as an early attempt to apply F-terms to the quantitative TOD.
Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches. Despite their apparent benefits, the former has reproducibility issues due to the experts’ subjectivity, whereas the latter lacks consideration of technical attributes that constitute individual technologies. The F-term, a multi-dimensional subject indexing system, provides patent classification codes representing technical attributes and structures that vary according to subject technology. The present study proposes a TOD model employing a link prediction analysis of F-terms. The proposed model based on F-terms comprises four steps: 1) constructing a universal F-term network using F-term co-occurrences; 2) generating a firm-centered F-term network highlighting a target firm's technology portfolio; 3) applying a proposed link prediction index to identify opportunity F-terms; and 4) assessing these opportunities in terms of technical attributes using a visual map with technology impact and heterogeneity indices. A case study is conducted on a Japanese firm to demonstrate the function and validity of this model, which aims to assist firms to identify technology opportunities with high practicality considering both their technology portfolios and the entire technology ecology. Moreover, this study represents a contribution to an early attempt to apply large-scale F-terms to the quantitative TOD. |
---|---|
AbstractList | •A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the target firm.•The model applies link prediction to large-scale F-terms to identify opportunity F-terms.•Opportunity F-terms are assessed in terms of technological impact and heterogeneity.•This study contributes as an early attempt to apply F-terms to the quantitative TOD.
Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches. Despite their apparent benefits, the former has reproducibility issues due to the experts’ subjectivity, whereas the latter lacks consideration of technical attributes that constitute individual technologies. The F-term, a multi-dimensional subject indexing system, provides patent classification codes representing technical attributes and structures that vary according to subject technology. The present study proposes a TOD model employing a link prediction analysis of F-terms. The proposed model based on F-terms comprises four steps: 1) constructing a universal F-term network using F-term co-occurrences; 2) generating a firm-centered F-term network highlighting a target firm's technology portfolio; 3) applying a proposed link prediction index to identify opportunity F-terms; and 4) assessing these opportunities in terms of technical attributes using a visual map with technology impact and heterogeneity indices. A case study is conducted on a Japanese firm to demonstrate the function and validity of this model, which aims to assist firms to identify technology opportunities with high practicality considering both their technology portfolios and the entire technology ecology. Moreover, this study represents a contribution to an early attempt to apply large-scale F-terms to the quantitative TOD. Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches. Despite their apparent benefits, the former has reproducibility issues due to the experts' subjectivity, whereas the latter lacks consideration of technical attributes that constitute individual technologies. The F-term, a multi-dimensional subject indexing system, provides patent classification codes representing technical attributes and structures that vary according to subject technology. The present study proposes a TOD model employing a link prediction analysis of F-terms. The proposed model based on F-terms comprises four steps: 1) constructing a universal F-term network using F-term co-occurrences; 2) generating a firm-centered F-term network highlighting a target firm's technology portfolio; 3) applying a proposed link prediction index to identify opportunity F-terms; and 4) assessing these opportunities in terms of technical attributes using a visual map with technology impact and heterogeneity indices. A case study is conducted on a Japanese firm to demonstrate the function and validity of this model, which aims to assist firms to identify technology opportunities with high practicality considering both their technology portfolios and the entire technology ecology. Moreover, this study represents a contribution to an early attempt to apply large-scale F-terms to the quantitative TOD. |
ArticleNumber | 120746 |
Audience | Academic |
Author | Son, Changho Ko, Namuk Lee, Jiho Yoon, Janghyeok |
Author_xml | – sequence: 1 givenname: Jiho surname: Lee fullname: Lee, Jiho email: jiholee255@konkuk.ac.kr organization: Department of Industrial Engineering, Konkuk University, Seoul, Republic of Korea – sequence: 2 givenname: Namuk surname: Ko fullname: Ko, Namuk email: kmu1009@konkuk.ac.kr organization: Department of Industrial Engineering, Konkuk University, Seoul, Republic of Korea – sequence: 3 givenname: Janghyeok orcidid: 0000-0002-8701-0695 surname: Yoon fullname: Yoon, Janghyeok email: janghyoon@konkuk.ac.kr organization: Department of Industrial Engineering, Konkuk University, Seoul, Republic of Korea – sequence: 4 givenname: Changho orcidid: 0000-0003-3366-0884 surname: Son fullname: Son, Changho email: c13981@snu.ac.kr organization: Department of System Engineering, Korea Army Academy, Yeongcheon, Republic of Korea |
BookMark | eNqFkUFvEzEQhS1UJNLCX0CWkLhtGNu7zgZxIKooRarEBc6WMztOnW7sxXYK_fc4Xbj00sPI0uh7b-T3ztlZiIEYeytgKUDoD_tlIbx1MdFSghRLIWHV6hdsIfqVaroO1mdsAdBCI7TsXrHznPcAsFK9XrDjJnA7TSlavOXVgw8-Y7yn5MOOO58OTZ4IvfPIT1dCHOPugcdpiqkcgy-e8ke-mabRoy0-Bh4dH32441OiwePjqkR-1RRKBx6o_I7pLr9mL50dM735916wn1dfflxeNzffv3673Nw02IIqTefc1rZ6JaFDKQerEZxyg-zagdS6BcS1VZokbglkHSvazto10LDV_aBAXbB3s2_94K8j5WL28ZhCPWlkp4UA1feiUu9namdHMj5gDIX-lJ095mzMRldQ6U7pCuoZxBRzTuTMlPzBpgcjwJy6MHvzvwtz6sLMXVThpydC9OUxr5KsH5-Xf57lVLO695RMRk8Ba8KJsJgh-ucs_gLLmK4R |
CitedBy_id | crossref_primary_10_1109_TBDATA_2023_3313030 crossref_primary_10_56294_saludcyt2022196 crossref_primary_10_1016_j_cie_2024_110015 crossref_primary_10_1016_j_eswa_2022_119053 crossref_primary_10_1080_09537325_2023_2242519 crossref_primary_10_1016_j_jclepro_2024_143850 crossref_primary_10_1016_j_joi_2023_101398 crossref_primary_10_3390_fractalfract7020109 crossref_primary_10_1016_j_technovation_2023_102872 crossref_primary_10_1177_01655515231171090 crossref_primary_10_1016_j_techfore_2022_122130 crossref_primary_10_1016_j_wpi_2023_102208 crossref_primary_10_1057_s41599_024_03498_0 crossref_primary_10_1016_j_eswa_2024_124895 crossref_primary_10_3390_systems12090321 crossref_primary_10_4018_JGIM_304062 crossref_primary_10_7232_JKIIE_2022_48_6_570 crossref_primary_10_1016_j_techfore_2024_123736 crossref_primary_10_1007_s11192_024_04961_0 crossref_primary_10_1016_j_wpi_2023_102193 crossref_primary_10_1016_j_joi_2023_101464 crossref_primary_10_1016_j_techfore_2023_122565 crossref_primary_10_1016_j_techfore_2022_122161 crossref_primary_10_1007_s11192_021_04219_z crossref_primary_10_1016_j_joi_2022_101286 crossref_primary_10_1016_j_eswa_2025_126994 crossref_primary_10_11627_jksie_2023_46_4_001 crossref_primary_10_1109_TEM_2023_3262257 crossref_primary_10_3390_en15207617 |
Cites_doi | 10.3390/su11226381 10.1016/j.techfore.2011.02.012 10.1108/FS-10-2012-0075 10.1007/s11192-012-0830-6 10.1016/0048-7333(87)90027-8 10.1016/j.wpi.2011.08.001 10.1016/j.techfore.2013.10.013 10.1016/j.cie.2016.04.009 10.1016/0040-1625(91)90057-M 10.1016/j.techfore.2017.02.018 10.1016/j.techfore.2016.01.011 10.1016/j.techfore.2005.08.002 10.1016/j.wpi.2007.05.008 10.1016/j.wpi.2017.10.001 10.1016/S0040-1625(02)00375-X 10.1016/j.techfore.2017.03.009 10.1016/j.techfore.2015.04.012 10.1145/2500499 10.1016/j.technovation.2017.03.001 10.1016/j.ipm.2006.11.011 10.1007/s13721-012-0005-7 10.1007/BF02289026 10.1103/PhysRevE.67.056104 10.1016/j.technovation.2020.102140 10.1016/j.techfore.2019.119737 10.1016/j.socnet.2004.11.008 10.1016/j.eswa.2012.01.202 10.1111/radm.12107 10.1108/JMTM-03-2020-0106 10.1016/j.physa.2010.11.027 10.1016/S0378-8733(03)00009-1 10.1016/S0172-2190(02)00019-4 10.1111/j.1467-6486.2007.00725.x 10.4218/etrij.12.1711.0010 10.1016/j.techfore.2016.01.028 10.1007/s11747-009-0174-9 10.1016/j.techfore.2014.05.010 10.1145/2180861.2180866 10.1007/s11192-013-1097-2 |
ContentType | Journal Article |
Copyright | 2021 COPYRIGHT 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Jul 2021 |
Copyright_xml | – notice: 2021 – notice: COPYRIGHT 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jul 2021 |
DBID | AAYXX CITATION 7TB 7U4 8FD BHHNA DWI F28 FR3 JQ2 KR7 WZK |
DOI | 10.1016/j.techfore.2021.120746 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Sociological Abstracts (pre-2017) Technology Research Database Sociological Abstracts Sociological Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Sociological Abstracts (Ovid) |
DatabaseTitle | CrossRef Sociological Abstracts (pre-2017) Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Sociological Abstracts ProQuest Computer Science Collection Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Sociological Abstracts (pre-2017) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5509 |
ExternalDocumentID | A661136536 10_1016_j_techfore_2021_120746 S0040162521001785 |
GroupedDBID | --K --M -~X .~1 0R~ 123 13V 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 96U 9JO AAAKF AAAKG AABNK AACTN AADFP AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYOK ABEFU ABEHJ ABFNM ABJNI ABKBG ABMAC ABMVD ABOYX ABPPZ ABUCO ABXDB ABYKQ ACBMB ACDAQ ACGFO ACGFS ACHQT ACHRH ACIWK ACNTT ACRLP ACXNI ADBBV ADEZE ADMUD AEBSH AEKER AFAZI AFFNX AFKWA AFTJW AFYLN AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P F8P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLX HMY HVGLF HZ~ IHE J1W KOM LG8 LPU LXL LXN LY7 M3Y M41 MO0 N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBM SDF SDG SDP SES SET SEW SPCBC SSB SSD SSL SSS SSY SSZ T5K TAE TN5 U5U UHS WH7 WUQ XJT XPP XYO YK3 ZRQ ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV SSH 7TB 7U4 8FD BHHNA DWI F28 FR3 JQ2 KR7 WZK |
ID | FETCH-LOGICAL-c403t-5ffba467205c22da6c0f3fd254de3940cc9a36e2cbe02be0a145aa90edb68d303 |
IEDL.DBID | .~1 |
ISSN | 0040-1625 |
IngestDate | Wed Aug 13 03:49:21 EDT 2025 Fri Jun 27 05:54:30 EDT 2025 Thu Apr 24 23:04:12 EDT 2025 Wed Oct 01 05:13:56 EDT 2025 Fri Feb 23 02:47:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | F-term Link prediction Technology portfolio Technology opportunity Patent mining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-5ffba467205c22da6c0f3fd254de3940cc9a36e2cbe02be0a145aa90edb68d303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8701-0695 0000-0003-3366-0884 |
PQID | 2561103881 |
PQPubID | 44933 |
ParticipantIDs | proquest_journals_2561103881 gale_incontextgauss__A661136536 crossref_primary_10_1016_j_techfore_2021_120746 crossref_citationtrail_10_1016_j_techfore_2021_120746 elsevier_sciencedirect_doi_10_1016_j_techfore_2021_120746 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Technological forecasting & social change |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Kim, Gazzola, Lee, Kim, Kim, Jeong (bib0020) 2014; 98 Yoon, Seo, Coh, Song, Lee (bib0046) 2017; 107 Mori, Kajikawa, Kashima, Sakata (bib0025) 2012; 39 Lee, Kang, Shin (bib0022) 2015; 90 Geum, Kim, Lee, Kim (bib0015) 2012; 34 Park, Yoon (bib0028) 2017; 118 Thung, Lo, Lawall (bib0036) 2013 Yoon, Park, Seo, Lee, Coh, Kim (bib0045) 2015; 100 Degroote, Held (bib0013) 2018; 54 Wang, Xu, Wu, Zhou (bib0041) 2015; 58 Akcora, Carminati, Ferrari (bib0004) 2011 Lee, Jeon, Ahn, Kwon (bib0021) 2020 Song, Kim, Lee (bib0034) 2017; 60 OuYang, Weng (bib0026) 2011; 78 Wolter (bib0042) 2012; 34 Park, Seo, Coh, Lee, Yoon (bib0027) 2014; 40 Lü, Zhou (bib0023) 2011; 390 Shin, Seo (bib0033) 2017; 3 Cho, Jeong, Kim (bib0011) 1991; 40 Katz (bib0019) 1953; 18 Seo, Yoon, Park, Coh, Lee, Kwon (bib0031) 2016; 105 Tseng, Lin, Lin (bib0037) 2007; 43 Yoon, Park, Coh (bib0043) 2014; 86 Yoon, Park, Kim (bib0044) 2013; 94 Almansoori, Gao, Jarada, Elsheikh, Murshed, Jida, Alhajj, Rokne (bib0005) 2012; 1 Schellner (bib0030) 2002; 24 Benchettara, Kanawati, Rouveirol (bib0007) 2010 Wang, Lan (bib0040) 2007; 74 Homburg, Fürst, Prigge (bib0017) 2010; 38 Martino (bib0024) 2003; 70 Adamic, Adar (bib0001) 2003; 25 Dhar (bib0014) 2013; 56 Hsieh, Nickerson, Zenger (bib0018) 2007; 44 Vázquez (bib0038) 2003; 67 Basberg (bib0006) 1987; 16 Guo, Wang, Li, Zhu (bib0016) 2016; 105 Preschitschek, Niemann, Leker, Moehrle (bib0029) 2013; 15 Sun, Lo, Khoo, Jiang (bib0035) 2011 Adams (bib0002) 2008; 30 Chen, Zhang, Zhu, Lu (bib0009) 2017; 119 Shi, Cai, Song (bib0032) 2019; 11 Choi, Jeong, Yoon (bib0012) 2019; 148 Aiello, Barrat, Schifanella, Cattuto, Markines, Menczer (bib0003) 2012; 6 Cho, Yoon, Coh, Lee (bib0010) 2016; 46 Wang, Hsu (bib0039) 2020 Borgatti (bib0008) 2005; 27 Geum (10.1016/j.techfore.2021.120746_bib0015) 2012; 34 Cho (10.1016/j.techfore.2021.120746_bib0011) 1991; 40 Wang (10.1016/j.techfore.2021.120746_bib0040) 2007; 74 Borgatti (10.1016/j.techfore.2021.120746_bib0008) 2005; 27 Park (10.1016/j.techfore.2021.120746_bib0028) 2017; 118 Lee (10.1016/j.techfore.2021.120746_bib0022) 2015; 90 Vázquez (10.1016/j.techfore.2021.120746_bib0038) 2003; 67 OuYang (10.1016/j.techfore.2021.120746_bib0026) 2011; 78 Choi (10.1016/j.techfore.2021.120746_bib0012) 2019; 148 Homburg (10.1016/j.techfore.2021.120746_bib0017) 2010; 38 Preschitschek (10.1016/j.techfore.2021.120746_bib0029) 2013; 15 Wang (10.1016/j.techfore.2021.120746_bib0039) 2020 Seo (10.1016/j.techfore.2021.120746_bib0031) 2016; 105 Wolter (10.1016/j.techfore.2021.120746_bib0042) 2012; 34 Park (10.1016/j.techfore.2021.120746_bib0027) 2014; 40 Song (10.1016/j.techfore.2021.120746_bib0034) 2017; 60 Adamic (10.1016/j.techfore.2021.120746_bib0001) 2003; 25 Adams (10.1016/j.techfore.2021.120746_bib0002) 2008; 30 Schellner (10.1016/j.techfore.2021.120746_bib0030) 2002; 24 Shi (10.1016/j.techfore.2021.120746_bib0032) 2019; 11 Almansoori (10.1016/j.techfore.2021.120746_bib0005) 2012; 1 Wang (10.1016/j.techfore.2021.120746_bib0041) 2015; 58 Yoon (10.1016/j.techfore.2021.120746_bib0043) 2014; 86 Basberg (10.1016/j.techfore.2021.120746_bib0006) 1987; 16 Mori (10.1016/j.techfore.2021.120746_bib0025) 2012; 39 Yoon (10.1016/j.techfore.2021.120746_bib0044) 2013; 94 Benchettara (10.1016/j.techfore.2021.120746_bib0007) 2010 Cho (10.1016/j.techfore.2021.120746_bib0010) 2016; 46 Aiello (10.1016/j.techfore.2021.120746_bib0003) 2012; 6 Tseng (10.1016/j.techfore.2021.120746_bib0037) 2007; 43 Shin (10.1016/j.techfore.2021.120746_bib0033) 2017; 3 Guo (10.1016/j.techfore.2021.120746_bib0016) 2016; 105 Sun (10.1016/j.techfore.2021.120746_bib0035) 2011 Katz (10.1016/j.techfore.2021.120746_bib0019) 1953; 18 Lü (10.1016/j.techfore.2021.120746_bib0023) 2011; 390 Thung (10.1016/j.techfore.2021.120746_bib0036) 2013 Dhar (10.1016/j.techfore.2021.120746_bib0014) 2013; 56 Akcora (10.1016/j.techfore.2021.120746_bib0004) 2011 Degroote (10.1016/j.techfore.2021.120746_bib0013) 2018; 54 Lee (10.1016/j.techfore.2021.120746_bib0021) 2020 Hsieh (10.1016/j.techfore.2021.120746_bib0018) 2007; 44 Martino (10.1016/j.techfore.2021.120746_bib0024) 2003; 70 Yoon (10.1016/j.techfore.2021.120746_bib0046) 2017; 107 Yoon (10.1016/j.techfore.2021.120746_bib0045) 2015; 100 Kim (10.1016/j.techfore.2021.120746_bib0020) 2014; 98 Chen (10.1016/j.techfore.2021.120746_bib0009) 2017; 119 |
References_xml | – volume: 105 start-page: 27 year: 2016 end-page: 40 ident: bib0016 article-title: Subject–action–object-based morphology analysis for determining the direction of technological change publication-title: Technol. Forecast. Soc. Change – volume: 38 start-page: 531 year: 2010 end-page: 549 ident: bib0017 article-title: A customer perspective on product eliminations: how the removal of products affects customers and business relationships publication-title: J. Acad. Mark. Sci. – start-page: 253 year: 2010 end-page: 256 ident: bib0007 article-title: A supervised machine learning link prediction approach for academic collaboration recommendation publication-title: Proceedings of the Fourth ACM Conference on Recommender Systems – volume: 54 start-page: S78 year: 2018 end-page: S84 ident: bib0013 article-title: Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation publication-title: World Patent Inf. – volume: 34 start-page: 8 year: 2012 end-page: 18 ident: bib0042 article-title: It takes all kinds to make a world–some thoughts on the use of classification in patent searching publication-title: World Patent Inf. – volume: 1 start-page: 27 year: 2012 end-page: 36 ident: bib0005 article-title: Link prediction and classification in social networks and its application in healthcare and systems biology publication-title: Netw. Model. Anal. Health Inf. Bioinform. – volume: 40 start-page: 442 year: 2014 end-page: 450 ident: bib0027 article-title: Technology opportunity discovery based on firms' technologies and products publication-title: J. Korean Inst. Ind. Eng. – volume: 11 start-page: 6381 year: 2019 ident: bib0032 article-title: Discovering potential technology opportunities for fuel cell vehicle firms: a multi-level patent portfolio-based approach publication-title: Sustainability – volume: 30 start-page: 5 year: 2008 end-page: 20 ident: bib0002 article-title: English-language support tools for the use of Japanese F-term patent subject searching online publication-title: World Patent Inf. – volume: 86 start-page: 287 year: 2014 end-page: 303 ident: bib0043 article-title: Exploring technological opportunities by linking technology and products: application of morphology analysis and text mining publication-title: Technol. Forecast. Soc. Change – volume: 25 start-page: 211 year: 2003 end-page: 230 ident: bib0001 article-title: Friends and neighbors on the web publication-title: Soc. Netw. – volume: 390 start-page: 1150 year: 2011 end-page: 1170 ident: bib0023 article-title: Link prediction in complex networks: a survey publication-title: Physica A Stat. Mech. Appl. – start-page: 182 year: 2013 end-page: 191 ident: bib0036 article-title: Automated library recommendation publication-title: Proceedings of the 20th Working Conference on Reverse Engineering (WCRE) – volume: 3 start-page: 114 year: 2017 end-page: 121 ident: bib0033 article-title: Identifying new technology areas based on firm's internal capabilities publication-title: J. Adm. Bus. Stud. – volume: 60 start-page: 1 year: 2017 end-page: 14 ident: bib0034 article-title: Discovering new technology opportunities based on patents: text-mining and F-term analysis publication-title: Technovation – year: 2020 ident: bib0039 article-title: A topic-based patent analytics approach for exploring technological trends in smart manufacturing publication-title: J. Manuf. Technol. Manag. – volume: 148 year: 2019 ident: bib0012 article-title: Technology opportunity discovery under the dynamic change of focus technology fields: application of sequential pattern mining to patent classifications publication-title: Technol. Forecast. Soc. Change – volume: 27 start-page: 55 year: 2005 end-page: 71 ident: bib0008 article-title: Centrality and network flow publication-title: Soc. Netw. – volume: 78 start-page: 1183 year: 2011 end-page: 1199 ident: bib0026 article-title: A new comprehensive patent analysis approach for new product design in mechanical engineering publication-title: Technol. Forecast. Soc. Change – start-page: 253 year: 2011 end-page: 262 ident: bib0035 article-title: Towards more accurate retrieval of duplicate bug reports publication-title: Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering (ASE) – volume: 40 start-page: 273 year: 1991 end-page: 287 ident: bib0011 article-title: A Delphi technology forecasting approach using a semi-Markov concept publication-title: Technol. Forecast. Soc. Change – volume: 18 start-page: 39 year: 1953 end-page: 43 ident: bib0019 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika – volume: 46 start-page: 13 year: 2016 end-page: 35 ident: bib0010 article-title: An empirical analysis on purposes, drivers and activities of technology opportunity discovery: the case of Korean SMEs in the manufacturing sector publication-title: R&D Manag. – volume: 118 start-page: 170 year: 2017 end-page: 183 ident: bib0028 article-title: Application technology opportunity discovery from technology portfolios: use of patent classification and collaborative filtering publication-title: Technol. Forecast. Soc. Change – volume: 67 year: 2003 ident: bib0038 article-title: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations publication-title: Phys. Rev. E – volume: 70 start-page: 719 year: 2003 end-page: 733 ident: bib0024 article-title: A review of selected recent advances in technological forecasting publication-title: Technol. Forecast. Soc. Change – volume: 74 start-page: 357 year: 2007 end-page: 378 ident: bib0040 article-title: Combined forecast process: combining scenario analysis with the technological substitution model publication-title: Technol. Forecast. Soc. Change – volume: 56 start-page: 64 year: 2013 end-page: 73 ident: bib0014 article-title: Data science and prediction publication-title: Commun. ACM – volume: 24 start-page: 197 year: 2002 end-page: 201 ident: bib0030 article-title: Japanese File Index classification and F-terms publication-title: World Patent Inf. – volume: 107 start-page: 376 year: 2017 end-page: 387 ident: bib0046 article-title: Identifying product opportunities using collaborative filtering-based patent analysis publication-title: Comput. Ind. Eng. – volume: 119 start-page: 39 year: 2017 end-page: 52 ident: bib0009 article-title: Topic-based technological forecasting based on patent data: a case study of Australian patents from 2000 to 2014 publication-title: Technol. Forecast. Soc. Change – volume: 15 start-page: 446 year: 2013 end-page: 464 ident: bib0029 article-title: Anticipating industry convergence: semantic analyses vs IPC co-classification analyses of patents publication-title: Foresight – volume: 94 start-page: 313 year: 2013 end-page: 331 ident: bib0044 article-title: Identifying technological competition trends for R&D planning using dynamic patent maps: sAO-based content analysis publication-title: Scientometrics – volume: 100 start-page: 153 year: 2015 end-page: 167 ident: bib0045 article-title: Technology opportunity discovery (TOD) from existing technologies and products: a function-based TOD framework publication-title: Technol. Forecast. Soc. Change – volume: 16 start-page: 131 year: 1987 end-page: 141 ident: bib0006 article-title: Patents and the measurement of technological change: a survey of the literature publication-title: Res. Policy – volume: 34 start-page: 439 year: 2012 end-page: 449 ident: bib0015 article-title: Technological convergence of IT and BT: evidence from patent analysis publication-title: Etri J. – volume: 105 start-page: 94 year: 2016 end-page: 104 ident: bib0031 article-title: Product opportunity identification based on internal capabilities using text mining and association rule mining publication-title: Technol. Forecast. Soc. Change – volume: 98 start-page: 1811 year: 2014 end-page: 1825 ident: bib0020 article-title: Inter-cluster connectivity analysis for technology opportunity discovery publication-title: Scientometrics – volume: 44 start-page: 1255 year: 2007 end-page: 1277 ident: bib0018 article-title: Opportunity discovery, problem solving and a theory of the entrepreneurial firm publication-title: J. Manag. Stud. – year: 2020 ident: bib0021 article-title: Navigating a product landscape for technology opportunity analysis: a word2vec approach using an integrated patent-product database publication-title: Technovation – volume: 90 start-page: 355 year: 2015 end-page: 365 ident: bib0022 article-title: Novelty-focused patent mapping for technology opportunity analysis publication-title: Technol. Forecast. Soc. Change – volume: 6 start-page: 9 year: 2012 ident: bib0003 article-title: Friendship prediction and homophily in social media publication-title: ACM Trans. Web – volume: 39 start-page: 10402 year: 2012 end-page: 10407 ident: bib0025 article-title: Machine learning approach for finding business partners and building reciprocal relationships publication-title: Expert. Syst. Appl. – volume: 58 start-page: 1 year: 2015 end-page: 38 ident: bib0041 article-title: Link prediction in social networks: the state-of-the-art publication-title: Sci. China Inf. Sci. – start-page: 292 year: 2011 end-page: 298 ident: bib0004 article-title: Network and profile based measures for user similarities on social networks publication-title: Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI) – volume: 43 start-page: 1216 year: 2007 end-page: 1247 ident: bib0037 article-title: Text mining techniques for patent analysis publication-title: Inf. Process. Manag. – volume: 11 start-page: 6381 year: 2019 ident: 10.1016/j.techfore.2021.120746_bib0032 article-title: Discovering potential technology opportunities for fuel cell vehicle firms: a multi-level patent portfolio-based approach publication-title: Sustainability doi: 10.3390/su11226381 – volume: 78 start-page: 1183 year: 2011 ident: 10.1016/j.techfore.2021.120746_bib0026 article-title: A new comprehensive patent analysis approach for new product design in mechanical engineering publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2011.02.012 – volume: 15 start-page: 446 year: 2013 ident: 10.1016/j.techfore.2021.120746_bib0029 article-title: Anticipating industry convergence: semantic analyses vs IPC co-classification analyses of patents publication-title: Foresight doi: 10.1108/FS-10-2012-0075 – volume: 94 start-page: 313 year: 2013 ident: 10.1016/j.techfore.2021.120746_bib0044 article-title: Identifying technological competition trends for R&D planning using dynamic patent maps: sAO-based content analysis publication-title: Scientometrics doi: 10.1007/s11192-012-0830-6 – volume: 16 start-page: 131 year: 1987 ident: 10.1016/j.techfore.2021.120746_bib0006 article-title: Patents and the measurement of technological change: a survey of the literature publication-title: Res. Policy doi: 10.1016/0048-7333(87)90027-8 – volume: 34 start-page: 8 year: 2012 ident: 10.1016/j.techfore.2021.120746_bib0042 article-title: It takes all kinds to make a world–some thoughts on the use of classification in patent searching publication-title: World Patent Inf. doi: 10.1016/j.wpi.2011.08.001 – start-page: 253 year: 2010 ident: 10.1016/j.techfore.2021.120746_bib0007 article-title: A supervised machine learning link prediction approach for academic collaboration recommendation – start-page: 253 year: 2011 ident: 10.1016/j.techfore.2021.120746_bib0035 article-title: Towards more accurate retrieval of duplicate bug reports – volume: 86 start-page: 287 year: 2014 ident: 10.1016/j.techfore.2021.120746_bib0043 article-title: Exploring technological opportunities by linking technology and products: application of morphology analysis and text mining publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2013.10.013 – volume: 107 start-page: 376 year: 2017 ident: 10.1016/j.techfore.2021.120746_bib0046 article-title: Identifying product opportunities using collaborative filtering-based patent analysis publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.04.009 – volume: 40 start-page: 273 year: 1991 ident: 10.1016/j.techfore.2021.120746_bib0011 article-title: A Delphi technology forecasting approach using a semi-Markov concept publication-title: Technol. Forecast. Soc. Change doi: 10.1016/0040-1625(91)90057-M – volume: 118 start-page: 170 year: 2017 ident: 10.1016/j.techfore.2021.120746_bib0028 article-title: Application technology opportunity discovery from technology portfolios: use of patent classification and collaborative filtering publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2017.02.018 – volume: 105 start-page: 94 year: 2016 ident: 10.1016/j.techfore.2021.120746_bib0031 article-title: Product opportunity identification based on internal capabilities using text mining and association rule mining publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2016.01.011 – volume: 74 start-page: 357 year: 2007 ident: 10.1016/j.techfore.2021.120746_bib0040 article-title: Combined forecast process: combining scenario analysis with the technological substitution model publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2005.08.002 – volume: 30 start-page: 5 year: 2008 ident: 10.1016/j.techfore.2021.120746_bib0002 article-title: English-language support tools for the use of Japanese F-term patent subject searching online publication-title: World Patent Inf. doi: 10.1016/j.wpi.2007.05.008 – volume: 54 start-page: S78 year: 2018 ident: 10.1016/j.techfore.2021.120746_bib0013 article-title: Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation publication-title: World Patent Inf. doi: 10.1016/j.wpi.2017.10.001 – volume: 58 start-page: 1 year: 2015 ident: 10.1016/j.techfore.2021.120746_bib0041 article-title: Link prediction in social networks: the state-of-the-art publication-title: Sci. China Inf. Sci. – volume: 3 start-page: 114 year: 2017 ident: 10.1016/j.techfore.2021.120746_bib0033 article-title: Identifying new technology areas based on firm's internal capabilities publication-title: J. Adm. Bus. Stud. – volume: 70 start-page: 719 year: 2003 ident: 10.1016/j.techfore.2021.120746_bib0024 article-title: A review of selected recent advances in technological forecasting publication-title: Technol. Forecast. Soc. Change doi: 10.1016/S0040-1625(02)00375-X – volume: 119 start-page: 39 year: 2017 ident: 10.1016/j.techfore.2021.120746_bib0009 article-title: Topic-based technological forecasting based on patent data: a case study of Australian patents from 2000 to 2014 publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2017.03.009 – volume: 100 start-page: 153 year: 2015 ident: 10.1016/j.techfore.2021.120746_bib0045 article-title: Technology opportunity discovery (TOD) from existing technologies and products: a function-based TOD framework publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2015.04.012 – start-page: 292 year: 2011 ident: 10.1016/j.techfore.2021.120746_bib0004 article-title: Network and profile based measures for user similarities on social networks – volume: 56 start-page: 64 year: 2013 ident: 10.1016/j.techfore.2021.120746_bib0014 article-title: Data science and prediction publication-title: Commun. ACM doi: 10.1145/2500499 – volume: 60 start-page: 1 year: 2017 ident: 10.1016/j.techfore.2021.120746_bib0034 article-title: Discovering new technology opportunities based on patents: text-mining and F-term analysis publication-title: Technovation doi: 10.1016/j.technovation.2017.03.001 – volume: 43 start-page: 1216 year: 2007 ident: 10.1016/j.techfore.2021.120746_bib0037 article-title: Text mining techniques for patent analysis publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2006.11.011 – volume: 1 start-page: 27 year: 2012 ident: 10.1016/j.techfore.2021.120746_bib0005 article-title: Link prediction and classification in social networks and its application in healthcare and systems biology publication-title: Netw. Model. Anal. Health Inf. Bioinform. doi: 10.1007/s13721-012-0005-7 – volume: 18 start-page: 39 issue: 1 year: 1953 ident: 10.1016/j.techfore.2021.120746_bib0019 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 – volume: 67 year: 2003 ident: 10.1016/j.techfore.2021.120746_bib0038 article-title: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.056104 – year: 2020 ident: 10.1016/j.techfore.2021.120746_bib0021 article-title: Navigating a product landscape for technology opportunity analysis: a word2vec approach using an integrated patent-product database publication-title: Technovation doi: 10.1016/j.technovation.2020.102140 – volume: 148 year: 2019 ident: 10.1016/j.techfore.2021.120746_bib0012 article-title: Technology opportunity discovery under the dynamic change of focus technology fields: application of sequential pattern mining to patent classifications publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2019.119737 – volume: 27 start-page: 55 year: 2005 ident: 10.1016/j.techfore.2021.120746_bib0008 article-title: Centrality and network flow publication-title: Soc. Netw. doi: 10.1016/j.socnet.2004.11.008 – start-page: 182 year: 2013 ident: 10.1016/j.techfore.2021.120746_bib0036 article-title: Automated library recommendation – volume: 39 start-page: 10402 year: 2012 ident: 10.1016/j.techfore.2021.120746_bib0025 article-title: Machine learning approach for finding business partners and building reciprocal relationships publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2012.01.202 – volume: 46 start-page: 13 year: 2016 ident: 10.1016/j.techfore.2021.120746_bib0010 article-title: An empirical analysis on purposes, drivers and activities of technology opportunity discovery: the case of Korean SMEs in the manufacturing sector publication-title: R&D Manag. doi: 10.1111/radm.12107 – year: 2020 ident: 10.1016/j.techfore.2021.120746_bib0039 article-title: A topic-based patent analytics approach for exploring technological trends in smart manufacturing publication-title: J. Manuf. Technol. Manag. doi: 10.1108/JMTM-03-2020-0106 – volume: 390 start-page: 1150 year: 2011 ident: 10.1016/j.techfore.2021.120746_bib0023 article-title: Link prediction in complex networks: a survey publication-title: Physica A Stat. Mech. Appl. doi: 10.1016/j.physa.2010.11.027 – volume: 25 start-page: 211 year: 2003 ident: 10.1016/j.techfore.2021.120746_bib0001 article-title: Friends and neighbors on the web publication-title: Soc. Netw. doi: 10.1016/S0378-8733(03)00009-1 – volume: 24 start-page: 197 year: 2002 ident: 10.1016/j.techfore.2021.120746_bib0030 article-title: Japanese File Index classification and F-terms publication-title: World Patent Inf. doi: 10.1016/S0172-2190(02)00019-4 – volume: 44 start-page: 1255 year: 2007 ident: 10.1016/j.techfore.2021.120746_bib0018 article-title: Opportunity discovery, problem solving and a theory of the entrepreneurial firm publication-title: J. Manag. Stud. doi: 10.1111/j.1467-6486.2007.00725.x – volume: 34 start-page: 439 year: 2012 ident: 10.1016/j.techfore.2021.120746_bib0015 article-title: Technological convergence of IT and BT: evidence from patent analysis publication-title: Etri J. doi: 10.4218/etrij.12.1711.0010 – volume: 40 start-page: 442 year: 2014 ident: 10.1016/j.techfore.2021.120746_bib0027 article-title: Technology opportunity discovery based on firms' technologies and products publication-title: J. Korean Inst. Ind. Eng. – volume: 105 start-page: 27 year: 2016 ident: 10.1016/j.techfore.2021.120746_bib0016 article-title: Subject–action–object-based morphology analysis for determining the direction of technological change publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2016.01.028 – volume: 38 start-page: 531 year: 2010 ident: 10.1016/j.techfore.2021.120746_bib0017 article-title: A customer perspective on product eliminations: how the removal of products affects customers and business relationships publication-title: J. Acad. Mark. Sci. doi: 10.1007/s11747-009-0174-9 – volume: 90 start-page: 355 year: 2015 ident: 10.1016/j.techfore.2021.120746_bib0022 article-title: Novelty-focused patent mapping for technology opportunity analysis publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2014.05.010 – volume: 6 start-page: 9 year: 2012 ident: 10.1016/j.techfore.2021.120746_bib0003 article-title: Friendship prediction and homophily in social media publication-title: ACM Trans. Web doi: 10.1145/2180861.2180866 – volume: 98 start-page: 1811 year: 2014 ident: 10.1016/j.techfore.2021.120746_bib0020 article-title: Inter-cluster connectivity analysis for technology opportunity discovery publication-title: Scientometrics doi: 10.1007/s11192-013-1097-2 |
SSID | ssj0007386 |
Score | 2.441763 |
Snippet | •A TOD model based on a firm's capabilities and the technology ecology is proposed.•A firm-centered F-term network is generated for TOD customized to the... Technology opportunity discovery (TOD) based on firm's technology portfolio is categorized into text mining-based and patent classification-based approaches.... |
SourceID | proquest gale crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120746 |
SubjectTerms | Case studies Classification Data mining F-term Heterogeneity Indexes Indexing Link prediction Network analysis Patent mining Predictions Subject indexing Subjectivity Technology Technology opportunity Technology portfolio |
Title | An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks |
URI | https://dx.doi.org/10.1016/j.techfore.2021.120746 https://www.proquest.com/docview/2561103881 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007386 issn: 0040-1625 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007386 issn: 0040-1625 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007386 issn: 0040-1625 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007386 issn: 0040-1625 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007386 issn: 0040-1625 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCKR5Y3SbOQwlbVFEVEJ2o1M1yHBu1giRq05Xfzl0ebZFAHRgyxLHlyGffne3vviPk3lfKJDEPmfYDn7ngILAgdhRzXCNhgYUgdTyHfJ3446n7PPNmLTJsYmEQVlnr_kqnl9q6LhnUoznI53OM8YW9Abjv3K5yzGMEu-sjrK__tYV5YFLLBjmHtXeihBd95Ek1yBbJwdT1bY7JN_4yUL9r7NIMjU7Ice0_0qj6xVPS0ukZOdphFTwn6yilDVU4hX4pRt4iUhO-UjNffjIMr0SIEC02B-s0y9ETX6clw-oDjbYX2zQzFO95ab7EW52yqMjoiKFWp2mFI19dkOno8W04ZnV2BaZcyymYZ0wsQU1yy1OcJ9JXlnFMAhvGRGO6dKVC6fiaq1hbHB5pu56UoaWT2A8SsHyXpJ1mqb4iNJDawaAhHbsK7JsnbaMccC1h95HwmCcd4jVDKlRNPY4ZMD5EgzFbiEYUAkUhKlF0yGDTLq_IN_a2CBuJiR_TSICF2Nv2DkUskBUjRdjNu1yvVkJE4MIgGNCBGt1G-qJe6isBPqONLPOBff2Pzm_IIb5VQOAuaRfLtb4Fd6eIe-V87pGD6OllPPkG4VUBdg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFO864HVNHEeStgiRNXSxwQSm-U4NiqCtGrT_89dk5QigRgYsjg5OfLZd2f7u-8AbkKtbZaKmJswCrmPAQKPUk9zz7cKF1iMWqdzyNE47D37jy_BSwPu61wYglVWtr-06StrXbV0qtHszCYTyvHFvQGG78Ita8xvQcsP0CY3oZX0B73x2iBTXcsaPEcCG4nCb7dElWqJMFKgt7t1BdXf-M1H_Wy0V56ouw97VQjJkvIvD6Bh8kPY3SAWPIJlkrOaLZxhv4ySbwmsiW-Zncw_OGVYEkqIFeuzdTadUTC-zFckq3cs-brbZlPL6KqXzeZ0sbNqKqasy8mws7yEki-O4bn78HTf41WBBa59xyt4YG2q0FIKJ9BCZCrUjvVshnvGzFDFdK1j5YVG6NQ4Ah_l-oFSsWOyNIwydH4n0MynuTkFFinjUd6QSX2NLi5QrtUeRpe4AclEKrIzCOohlbpiH6ciGO-yhpm9yVoVklQhS1WcQWctNyv5N_6UiGuNyW8zSaKT-FO2TSqWRIyRE_LmVS0XCykTjGIID-jhF5e19mW12hcSw0aXiOYj9_wfnbdhu_c0Gsphfzy4gB16U-KCL6FZzJfmCqOfIr2uZvcnldwEIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+discovering+firm-specific+technology+opportunities%3A+Application+of+link+prediction+to+F-term+networks&rft.jtitle=Technological+forecasting+%26+social+change&rft.au=Lee%2C+Jiho&rft.au=Ko%2C+Namuk&rft.au=Yoon%2C+Janghyeok&rft.au=Son%2C+Changho&rft.date=2021-07-01&rft.issn=0040-1625&rft.volume=168&rft.spage=120746&rft_id=info:doi/10.1016%2Fj.techfore.2021.120746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_techfore_2021_120746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1625&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1625&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1625&client=summon |