Neural network algorithms predict new diffusion MRI data for multi-compartmental analysis of brain microstructure in a clinical setting
High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. Thi...
        Saved in:
      
    
          | Published in | Magnetic resonance imaging Vol. 102; pp. 9 - 19 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier Inc
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0730-725X 1873-5894 1873-5894  | 
| DOI | 10.1016/j.mri.2023.03.023 | 
Cover
| Abstract | High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease. | 
    
|---|---|
| AbstractList | High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease. High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease.High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease.  | 
    
| Author | Murray, Cayden Oh, Jiwon Joshi, Manish Kolind, Shannon Oladosu, Olayinka Zhang, Yunyan  | 
    
| Author_xml | – sequence: 1 givenname: Cayden surname: Murray fullname: Murray, Cayden organization: Department of Neuroscience, University of Calgary, AB, Canada – sequence: 2 givenname: Olayinka surname: Oladosu fullname: Oladosu, Olayinka organization: Department of Neuroscience, University of Calgary, AB, Canada – sequence: 3 givenname: Manish surname: Joshi fullname: Joshi, Manish organization: Department of Radiology, University of Calgary, AB, Canada – sequence: 4 givenname: Shannon surname: Kolind fullname: Kolind, Shannon organization: Department of Medicine (Neurology), University of British Columbia, BC, Canada – sequence: 5 givenname: Jiwon surname: Oh fullname: Oh, Jiwon organization: Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Canada – sequence: 6 givenname: Yunyan surname: Zhang fullname: Zhang, Yunyan email: yunyzhan@ucalgary.ca organization: Hotchkiss Brain Institute, University of Calgary, AB, Canada  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37031880$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU9rFDEYh4NU7Lb6AbxIjl5mzZ_JJIMnKdUWqoIoeAuZzJua7UyyJhnLfgK_drNs66GHSgKB5HleyO93go5CDIDQa0rWlNDu3WY9J79mhPE1qZvxZ2hFleSNUH17hFZEctJIJn4eo5OcN4QQwbh4gY65JJwqRVbo7xdYkplwgHIb0w0203VMvvyaM94mGL0t9ekWj965JfsY8Odvl3g0xWAXE56XqfjGxnlrUpkhlDrJBDPtss84Ojwk4wOevU0xl7TYsiTA9cZgO_ngbcUzlOLD9Uv03Jkpw6v78xT9-Hj-_eyiufr66fLsw1VjW8JLIwYFRtGBwyip6Kxjgrc9JUNP-o7SVqmetQMTnRzV6KiizrRCqY5yw2RPBn6K3h7mblP8vUAuevbZwjSZAHHJulI9lXWRir65R5dhhlFvk59N2umH8CpAD8D-ezmB-4dQovcF6Y2uBel9QZrUzXh15CPH-mJKTbbUrKYnzfcHE2o8fzwkna2HYGtJCWzRY_RP2v0j-6GBG9j9x70DgMW_Eg | 
    
| CitedBy_id | crossref_primary_10_1162_imag_a_00353 | 
    
| Cites_doi | 10.1016/j.earscirev.2019.103076 10.1097/00004728-200107000-00002 10.1002/mrm.21277 10.1212/01.wnl.0000184471.83948.e0 10.2174/157015911796557911 10.1016/j.neuroimage.2020.117017 10.1109/42.906424 10.1016/j.jneumeth.2020.108908 10.1212/NXI.0000000000000502 10.1016/j.neuroimage.2015.10.019 10.3389/fninf.2014.00008 10.1177/1352458519885107 10.1016/j.neuroimage.2013.04.127 10.1002/mrm.24623 10.1016/j.jneumeth.2022.109671 10.1016/j.neubiorev.2017.01.002 10.1016/j.neuroimage.2015.07.067 10.1038/s41598-019-48671-7 10.1007/s13244-018-0639-9 10.1016/j.neuroimage.2017.02.013 10.1016/S1053-8119(03)00336-7 10.1002/mrm.20059 10.1109/TMI.2016.2551324 10.1002/mrm.27568 10.1371/journal.pone.0167884 10.3892/etm.2017.4410  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.mri.2023.03.023 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1873-5894 | 
    
| EndPage | 19 | 
    
| ExternalDocumentID | 37031880 10_1016_j_mri_2023_03_023 S0730725X23000693  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS G8K LCYCR RIG AAYXX CITATION NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c403t-5b8ea81b3ed7156cf2534910b909611488924b2567d8df181fa4588613a2790b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0730-725X 1873-5894  | 
    
| IngestDate | Thu Oct 02 09:58:08 EDT 2025 Wed Feb 19 02:24:22 EST 2025 Thu Oct 16 04:42:15 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 Fri Feb 23 02:34:22 EST 2024 Tue Oct 14 19:40:21 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multilayer perceptron Brain microstructure Neurite orientation dispersion and density imaging High angular resolution diffusion imaging Convolutional neural network  | 
    
| Language | English | 
    
| License | Copyright © 2023 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c403t-5b8ea81b3ed7156cf2534910b909611488924b2567d8df181fa4588613a2790b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 37031880 | 
    
| PQID | 2799171710 | 
    
| PQPubID | 23479 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_2799171710 pubmed_primary_37031880 crossref_primary_10_1016_j_mri_2023_03_023 crossref_citationtrail_10_1016_j_mri_2023_03_023 elsevier_sciencedirect_doi_10_1016_j_mri_2023_03_023 elsevier_clinicalkey_doi_10_1016_j_mri_2023_03_023  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2023 2023-10-00 2023-Oct 20231001  | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Magnetic resonance imaging | 
    
| PublicationTitleAlternate | Magn Reson Imaging | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Loma, Heyman (bb0015) 2011; 9 Fick, Wassermann, Deriche (bb0155) 2019; 13 Tian, Bilgic, Fan, Liao, Ngamsombat, Hu (bb0065) 2020; 219 Kamiya, Hori, Aoki (bb0025) 2020; 346 Hosseinpour, Jonkman, Oladosu, Pridham, Pike, Inglese (bb0125) 2022; 379 Chen, Dong, Zhang, Lin, Shen, Yap (bb0180) 2018 Yamashita, Nishio, Do, Togashi (bb0145) 2018; 9 Andersson, Sotiropoulos (bb0100) 2016; 125 Clevert, Unterthiner, Hochreiter (bb0140) 2016 Golkov, Dosovitskiy, Sperl, Menzel, Czisch, Samann (bb0070) 2016; 35 Descoteaux, Angelino, Fitzgibbons, Deriche (bb0105) 2007; 58 Kingsley, Monahan (bb0040) 2004; 51 Huang, Chen, Zhang (bb0010) 2017; 13 Descoteaux (bb0020) 2023 Andersson, Skare, Ashburner (bb0090) 2003; 20 Rovaris, Gass, Bammer, Hickman, Ciccarelli, Miller (bb0005) 2005; 65 Timmers, Roebroeck, Bastiani, Jansma, Rubio-Gozalbo, Zhang (bb0045) 2016; 11 Marius, Balas, Perescu-Popescu, Mastorakis (bb0135) 2009; 8 Larochelle, Bengio, Jerome, P L. (bb0120) 2009 Liashchynskyi, Liashchynskyi (bb0150) 2019 Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux (bb0110) 2014; 8 Fukutomi, Glasser, Murata, Akasaka, Fujimoto, Yamamoto (bb0175) 2019; 9 Collorone, Cawley, Grussu, Prados, Tona, Calvi (bb0050) 2020; 26 Nedjati-Gilani, Schneider, Hall, Cawley, Hill, Ciccarelli (bb0075) 2017; 150 Koppers, Merhof (bb0115) 2018 Burdette, Durden, Elster, Yen (bb0035) 2001; 25 Zhang, Brady, Smith (bb0160) 2001; 20 Gibbons, Hodgson, Chaudhari, Richards, Majersik, Adluru (bb0170) 2019; 81 Piotrowski, Napiorkowski, Piotrowska (bb0165) 2020; 201 Spanò, Giulietti, Pisani, Morreale, Tuzzi, Nocentini (bb0055) 2018; 5 Andersson, Sotiropoulos (bb0095) 2015; 122 Abadi, Barham, Chen, Chen, Davis, Dean (bb0130) 2016 Tuch (bb0030) 2002 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bb0080) 2013; 80 Vieira, Pinaya, Mechelli (bb0060) 2017; 74 Sotiropoulos, Moeller, Jbabdi, Xu, Andersson, Auerbach (bb0085) 2013; 70 Kingsley (10.1016/j.mri.2023.03.023_bb0040) 2004; 51 Gibbons (10.1016/j.mri.2023.03.023_bb0170) 2019; 81 Rovaris (10.1016/j.mri.2023.03.023_bb0005) 2005; 65 Tian (10.1016/j.mri.2023.03.023_bb0065) 2020; 219 Collorone (10.1016/j.mri.2023.03.023_bb0050) 2020; 26 Spanò (10.1016/j.mri.2023.03.023_bb0055) 2018; 5 Loma (10.1016/j.mri.2023.03.023_bb0015) 2011; 9 Andersson (10.1016/j.mri.2023.03.023_bb0095) 2015; 122 Hosseinpour (10.1016/j.mri.2023.03.023_bb0125) 2022; 379 Kamiya (10.1016/j.mri.2023.03.023_bb0025) 2020; 346 Nedjati-Gilani (10.1016/j.mri.2023.03.023_bb0075) 2017; 150 Descoteaux (10.1016/j.mri.2023.03.023_bb0105) 2007; 58 Descoteaux (10.1016/j.mri.2023.03.023_bb0020) 2023 Yamashita (10.1016/j.mri.2023.03.023_bb0145) 2018; 9 Marius (10.1016/j.mri.2023.03.023_bb0135) 2009; 8 Liashchynskyi (10.1016/j.mri.2023.03.023_bb0150) 2019 Sotiropoulos (10.1016/j.mri.2023.03.023_bb0085) 2013; 70 Abadi (10.1016/j.mri.2023.03.023_bb0130) 2016 Chen (10.1016/j.mri.2023.03.023_bb0180) 2018 Fick (10.1016/j.mri.2023.03.023_bb0155) 2019; 13 Koppers (10.1016/j.mri.2023.03.023_bb0115) 2018 Piotrowski (10.1016/j.mri.2023.03.023_bb0165) 2020; 201 Zhang (10.1016/j.mri.2023.03.023_bb0160) 2001; 20 Tuch (10.1016/j.mri.2023.03.023_bb0030) 2002 Huang (10.1016/j.mri.2023.03.023_bb0010) 2017; 13 Andersson (10.1016/j.mri.2023.03.023_bb0100) 2016; 125 Vieira (10.1016/j.mri.2023.03.023_bb0060) 2017; 74 Glasser (10.1016/j.mri.2023.03.023_bb0080) 2013; 80 Andersson (10.1016/j.mri.2023.03.023_bb0090) 2003; 20 Timmers (10.1016/j.mri.2023.03.023_bb0045) 2016; 11 Clevert (10.1016/j.mri.2023.03.023_bb0140) 2016 Fukutomi (10.1016/j.mri.2023.03.023_bb0175) 2019; 9 Burdette (10.1016/j.mri.2023.03.023_bb0035) 2001; 25 Golkov (10.1016/j.mri.2023.03.023_bb0070) 2016; 35 Larochelle (10.1016/j.mri.2023.03.023_bb0120) 2009 Garyfallidis (10.1016/j.mri.2023.03.023_bb0110) 2014; 8  | 
    
| References_xml | – volume: 13 start-page: 3163 year: 2017 end-page: 3166 ident: bb0010 article-title: Multiple sclerosis: pathology, diagnosis and treatments publication-title: Exp Ther Med – start-page: 12 year: 2018 ident: bb0180 article-title: Angular Upsampling in infant diffusion MRI using neighborhood matching in x-q space. Frontiers publication-title: Neuroinformatics – volume: 58 start-page: 497 year: 2007 end-page: 510 ident: bb0105 article-title: Regularized, fast, and robust analytical Q-ball imaging publication-title: Magn Reson Med – volume: 346 year: 2020 ident: bb0025 article-title: NODDI in clinical research publication-title: J Neurosci Methods – volume: 150 start-page: 119 year: 2017 end-page: 135 ident: bb0075 article-title: Machine learning based compartment models with permeability for white matter microstructure imaging publication-title: Neuroimage – year: 2002 ident: bb0030 article-title: Diffusion MRI of complex tissue structure – volume: 70 start-page: 1682 year: 2013 end-page: 1689 ident: bb0085 article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE publication-title: Magn Reson Med – start-page: 1 year: 2009 end-page: 40 ident: bb0120 article-title: Exploring strategies for training deep neural networks publication-title: J Mach Learn Res – volume: 9 start-page: 611 year: 2018 end-page: 629 ident: bb0145 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging – volume: 26 start-page: 1647 year: 2020 end-page: 1657 ident: bb0050 article-title: Reduced neurite density in the brain and cervical spinal cord in relapsing-remitting multiple sclerosis: a NODDI study publication-title: Mult Scler – volume: 8 start-page: 8 year: 2014 ident: bb0110 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bb0080 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 5 year: 2018 ident: bb0055 article-title: Disruption of neurite morphology parallels MS progression publication-title: Neurol Neuroimmunol Neuroinflamm – volume: 219 year: 2020 ident: bb0065 article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning publication-title: Neuroimage – volume: 9 start-page: 12246 year: 2019 ident: bb0175 article-title: Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter publication-title: Sci Rep – start-page: 1 year: 2023 end-page: 25 ident: bb0020 article-title: High agular resolution diffusion imaging (HARDI) publication-title: Wiley encyclopedia of electrical and electronics engineering – volume: 35 start-page: 1344 year: 2016 end-page: 1351 ident: bb0070 article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans Med Imaging – volume: 65 start-page: 1526 year: 2005 end-page: 1532 ident: bb0005 article-title: Diffusion MRI in multiple sclerosis publication-title: Neurology – volume: 11 year: 2016 ident: bb0045 article-title: Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI publication-title: PloS One – volume: 25 start-page: 515 year: 2001 end-page: 519 ident: bb0035 article-title: High b-value diffusion-weighted MRI of normal brain publication-title: J Comput Assist Tomogr – volume: 379 year: 2022 ident: bb0125 article-title: Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis publication-title: J Neurosci Methods – volume: 9 start-page: 409 year: 2011 end-page: 416 ident: bb0015 article-title: Multiple sclerosis: pathogenesis and treatment publication-title: Curr Neuropharmacol – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bb0090 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 51 start-page: 996 year: 2004 end-page: 1001 ident: bb0040 article-title: Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke publication-title: Magn Reson Med – start-page: 265 year: 2016 end-page: 283 ident: bb0130 article-title: TensorFlow: a system for large-scale machine learning publication-title: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation – volume: 8 year: 2009 ident: bb0135 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans Circ Syst – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bb0100 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 201 year: 2020 ident: bb0165 article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling publication-title: Earth Sci Rev – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bb0160 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 81 start-page: 2399 year: 2019 end-page: 2411 ident: bb0170 article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning publication-title: Magn Reson Med – volume: 74 start-page: 58 year: 2017 end-page: 75 ident: bb0060 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications publication-title: Neurosci Biobehav Rev – year: 2016 ident: bb0140 article-title: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) – volume: 13 year: 2019 ident: bb0155 article-title: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy publication-title: Front Neuroinform – volume: 122 start-page: 166 year: 2015 end-page: 176 ident: bb0095 article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage – year: 2018 ident: bb0115 article-title: DELIMIT PyTorch - An extension for Deep Learning in Diffusion Imaging – year: 2019 ident: bb0150 article-title: Grid search, random search, genetic algorithm: a big comparison for NAS – year: 2018 ident: 10.1016/j.mri.2023.03.023_bb0115 – volume: 201 year: 2020 ident: 10.1016/j.mri.2023.03.023_bb0165 article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2019.103076 – year: 2016 ident: 10.1016/j.mri.2023.03.023_bb0140 – volume: 25 start-page: 515 issue: 4 year: 2001 ident: 10.1016/j.mri.2023.03.023_bb0035 article-title: High b-value diffusion-weighted MRI of normal brain publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-200107000-00002 – volume: 58 start-page: 497 issue: 3 year: 2007 ident: 10.1016/j.mri.2023.03.023_bb0105 article-title: Regularized, fast, and robust analytical Q-ball imaging publication-title: Magn Reson Med doi: 10.1002/mrm.21277 – volume: 65 start-page: 1526 issue: 10 year: 2005 ident: 10.1016/j.mri.2023.03.023_bb0005 article-title: Diffusion MRI in multiple sclerosis publication-title: Neurology doi: 10.1212/01.wnl.0000184471.83948.e0 – volume: 9 start-page: 409 issue: 3 year: 2011 ident: 10.1016/j.mri.2023.03.023_bb0015 article-title: Multiple sclerosis: pathogenesis and treatment publication-title: Curr Neuropharmacol doi: 10.2174/157015911796557911 – volume: 219 year: 2020 ident: 10.1016/j.mri.2023.03.023_bb0065 article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117017 – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.mri.2023.03.023_bb0160 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 346 year: 2020 ident: 10.1016/j.mri.2023.03.023_bb0025 article-title: NODDI in clinical research publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2020.108908 – volume: 5 issue: 6 year: 2018 ident: 10.1016/j.mri.2023.03.023_bb0055 article-title: Disruption of neurite morphology parallels MS progression publication-title: Neurol Neuroimmunol Neuroinflamm doi: 10.1212/NXI.0000000000000502 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.mri.2023.03.023_bb0100 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 13 issue: 64 year: 2019 ident: 10.1016/j.mri.2023.03.023_bb0155 article-title: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy publication-title: Front Neuroinform – start-page: 1 year: 2023 ident: 10.1016/j.mri.2023.03.023_bb0020 article-title: High agular resolution diffusion imaging (HARDI) – volume: 8 year: 2009 ident: 10.1016/j.mri.2023.03.023_bb0135 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans Circ Syst – volume: 8 start-page: 8 year: 2014 ident: 10.1016/j.mri.2023.03.023_bb0110 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform doi: 10.3389/fninf.2014.00008 – volume: 26 start-page: 1647 issue: 13 year: 2020 ident: 10.1016/j.mri.2023.03.023_bb0050 article-title: Reduced neurite density in the brain and cervical spinal cord in relapsing-remitting multiple sclerosis: a NODDI study publication-title: Mult Scler doi: 10.1177/1352458519885107 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.mri.2023.03.023_bb0080 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – start-page: 12 year: 2018 ident: 10.1016/j.mri.2023.03.023_bb0180 article-title: Angular Upsampling in infant diffusion MRI using neighborhood matching in x-q space. Frontiers publication-title: Neuroinformatics – start-page: 265 year: 2016 ident: 10.1016/j.mri.2023.03.023_bb0130 article-title: TensorFlow: a system for large-scale machine learning – volume: 70 start-page: 1682 issue: 6 year: 2013 ident: 10.1016/j.mri.2023.03.023_bb0085 article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE publication-title: Magn Reson Med doi: 10.1002/mrm.24623 – volume: 379 year: 2022 ident: 10.1016/j.mri.2023.03.023_bb0125 article-title: Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2022.109671 – volume: 74 start-page: 58 issue: Pt A year: 2017 ident: 10.1016/j.mri.2023.03.023_bb0060 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2017.01.002 – volume: 122 start-page: 166 year: 2015 ident: 10.1016/j.mri.2023.03.023_bb0095 article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.067 – volume: 9 start-page: 12246 issue: 1 year: 2019 ident: 10.1016/j.mri.2023.03.023_bb0175 article-title: Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter publication-title: Sci Rep doi: 10.1038/s41598-019-48671-7 – volume: 9 start-page: 611 issue: 4 year: 2018 ident: 10.1016/j.mri.2023.03.023_bb0145 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – volume: 150 start-page: 119 year: 2017 ident: 10.1016/j.mri.2023.03.023_bb0075 article-title: Machine learning based compartment models with permeability for white matter microstructure imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.013 – volume: 20 start-page: 870 issue: 2 year: 2003 ident: 10.1016/j.mri.2023.03.023_bb0090 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 51 start-page: 996 issue: 5 year: 2004 ident: 10.1016/j.mri.2023.03.023_bb0040 article-title: Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke publication-title: Magn Reson Med doi: 10.1002/mrm.20059 – year: 2019 ident: 10.1016/j.mri.2023.03.023_bb0150 – year: 2002 ident: 10.1016/j.mri.2023.03.023_bb0030 – volume: 35 start-page: 1344 issue: 5 year: 2016 ident: 10.1016/j.mri.2023.03.023_bb0070 article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2551324 – volume: 81 start-page: 2399 issue: 4 year: 2019 ident: 10.1016/j.mri.2023.03.023_bb0170 article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning publication-title: Magn Reson Med doi: 10.1002/mrm.27568 – volume: 11 issue: 12 year: 2016 ident: 10.1016/j.mri.2023.03.023_bb0045 article-title: Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI publication-title: PloS One doi: 10.1371/journal.pone.0167884 – start-page: 1 year: 2009 ident: 10.1016/j.mri.2023.03.023_bb0120 article-title: Exploring strategies for training deep neural networks publication-title: J Mach Learn Res – volume: 13 start-page: 3163 issue: 6 year: 2017 ident: 10.1016/j.mri.2023.03.023_bb0010 article-title: Multiple sclerosis: pathology, diagnosis and treatments publication-title: Exp Ther Med doi: 10.3892/etm.2017.4410  | 
    
| SSID | ssj0005235 | 
    
| Score | 2.4075892 | 
    
| Snippet | High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 9 | 
    
| SubjectTerms | Brain microstructure Convolutional neural network High angular resolution diffusion imaging Multilayer perceptron Neurite orientation dispersion and density imaging  | 
    
| Title | Neural network algorithms predict new diffusion MRI data for multi-compartmental analysis of brain microstructure in a clinical setting | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X23000693 https://dx.doi.org/10.1016/j.mri.2023.03.023 https://www.ncbi.nlm.nih.gov/pubmed/37031880 https://www.proquest.com/docview/2799171710  | 
    
| Volume | 102 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IJsaL8Vv8IDXxZDLY1o5tR0IkoIGDSsKt6bZOMTAIH_Hm1X_b99qN6AFMzHbZeA2jfXv9Pfrr-xFy6_FUJg3UCHMS3-KJSqzAYQ2L-4FssJR7nq6z3es3OgP-MPSGJdIq9sIgrTKP_Sam62id36nnvVmfjUb1Z3RO34Vki2HMDbHiJ-c-qhjUPn_SPIzIJhhbaF2sbGqO12Q-qqF-uK5z6rJNc9Mm7KnnoPYB2c_BI22a5zskJZUdkd1evjx-TL6w1AYYZIbbTeX4dQrJ_9tkQWdztFrCRx8URVFW-C8Z7T11KXJEKUBXqrmFliGlL03NfyrzmiV0mtII1SToBBl8pursaq4o3JG02F5JF0rTqE_IoH3_0upYudKCFXObLS0vCpQEAMtU4kNCF6euxzgAiShERRjImAJI0yJAR34SJCmAglTiDleAAtL1Qztip6ScTTN1TmgIADEOlSN95eg1uRhcIUwdFUK4YFxViF30sYjzMuSohjEWBd_sXcCwCBwWYcPpsgq5WzeZmRoc24zdYuBE8eshHAqYIbY14utGv7zvr2Y3hWcIeCtxqUVmarpaCOgVyIPhsCvkzLjM-tEZSgZA2Lz435dekj28MoTCK1KGAVfXAIyWUVV7fpXsNLuPnf43cdoLzQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VkIALYqesRuKEFJrETpMcUQUqSzmwSNwsJ3GgiKZVF3Hjym8zYycVHAAJNadkrCb2ZPwmfp4HcBSIXGVN0gjzstARmc6cyONNR4SRavJcBIGps925abYfxOVj8FiDVrUXhmiVZey3Md1E6_JMo-zNxqDbbdyRc4Y-JlucYm7MZ2BOBH5IGdjJ-1eeh1XZRGuHzKulTUPy6g27JyQgbgqd-vynyekn8GkmofNlWCrRIzu1N7gCNV2swnynXB9fgw-qtYEGhSV3M_X61Mfs_7k3YoMhWY3x0hsjVZQJfSZjndsLRiRRhtiVGXKhY1npY1v0n6myaAnr5ywhOQnWIwqfLTs7GWqGZxSr9leykTY86nV4OD-7b7WdUmrBSYXLx06QRFohguU6CzGjS3M_4AKRRBKTJAymTBHmaQnCozCLshxRQa5oiytiAeWHsZvwDZgt-oXeAhYjQkxj7alQe2ZRLkVfiHNPxxgvuNB1cKs-lmlZh5zkMF5lRTh7kTgskoZFunj4vA7H0yYDW4TjN2O_GjhZPT3GQ4lTxG-NxLTRN_f7q9lh5RkSX0taa1GF7k9GEnsFE2H8uXXYtC4zvXVOmgEYN7f_96cHsNC-71zL64ubqx1YpCuWXbgLszj4eg9R0jjZN2_BJ4hEDWI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+algorithms+predict+new+diffusion+MRI+data+for+multi-compartmental+analysis+of+brain+microstructure+in+a+clinical+setting&rft.jtitle=Magnetic+resonance+imaging&rft.au=Murray%2C+Cayden&rft.au=Oladosu%2C+Olayinka&rft.au=Joshi%2C+Manish&rft.au=Kolind%2C+Shannon&rft.date=2023-10-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=102&rft.spage=9&rft.epage=19&rft_id=info:doi/10.1016%2Fj.mri.2023.03.023&rft.externalDocID=S0730725X23000693 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |