Neural network algorithms predict new diffusion MRI data for multi-compartmental analysis of brain microstructure in a clinical setting

High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. Thi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 102; pp. 9 - 19
Main Authors Murray, Cayden, Oladosu, Olayinka, Joshi, Manish, Kolind, Shannon, Oh, Jiwon, Zhang, Yunyan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.10.2023
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2023.03.023

Cover

Abstract High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease.
AbstractList High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease.
High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease.High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis requires multiple acquisitions of diffusion images (multi-shell HARDI), which is time consuming and often impractical in clinical settings. This study aimed to establish neural network models that can predict new diffusion datasets from clinically feasible brain diffusion MRI for multi-shell HARDI. The development included 2 algorithms: multi-layer perceptron (MLP) and convolutional neural network (CNN). Both followed a voxel-based approach for model training (70%), validation (15%), and testing (15%). The investigations involved 2 multi-shell HARDI datasets: 1) 11 healthy subjects from the Human Connectome Project (HCP); and 2) 10 local subjects with multiple sclerosis (MS). To assess outcomes, we conducted neurite orientation dispersion and density imaging using both predicted and original data and compared their orientation dispersion index (ODI) and neurite density index (NDI) in different brain tissues with 2 measures: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Results showed that both models achieved robust predictions, which provided competitive ODI and NDI, especially in brain white matter. The CNN outperformed MLP with the HCP data on both PSNR (p < 0.001) and SSIM (p < 0.01). With the MS data, the models performed similarly. Overall, the optimized neural networks can help generate non-acquired brain diffusion MRI, which will make advanced HARDI analysis possible in clinical practice following further validation. Enabling detailed characterization of brain microstructure will allow enhanced understanding of brain function in both health and disease.
Author Murray, Cayden
Oh, Jiwon
Joshi, Manish
Kolind, Shannon
Oladosu, Olayinka
Zhang, Yunyan
Author_xml – sequence: 1
  givenname: Cayden
  surname: Murray
  fullname: Murray, Cayden
  organization: Department of Neuroscience, University of Calgary, AB, Canada
– sequence: 2
  givenname: Olayinka
  surname: Oladosu
  fullname: Oladosu, Olayinka
  organization: Department of Neuroscience, University of Calgary, AB, Canada
– sequence: 3
  givenname: Manish
  surname: Joshi
  fullname: Joshi, Manish
  organization: Department of Radiology, University of Calgary, AB, Canada
– sequence: 4
  givenname: Shannon
  surname: Kolind
  fullname: Kolind, Shannon
  organization: Department of Medicine (Neurology), University of British Columbia, BC, Canada
– sequence: 5
  givenname: Jiwon
  surname: Oh
  fullname: Oh, Jiwon
  organization: Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Canada
– sequence: 6
  givenname: Yunyan
  surname: Zhang
  fullname: Zhang, Yunyan
  email: yunyzhan@ucalgary.ca
  organization: Hotchkiss Brain Institute, University of Calgary, AB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37031880$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEYh4NU7Lb6AbxIjl5mzZ_JJIMnKdUWqoIoeAuZzJua7UyyJhnLfgK_drNs66GHSgKB5HleyO93go5CDIDQa0rWlNDu3WY9J79mhPE1qZvxZ2hFleSNUH17hFZEctJIJn4eo5OcN4QQwbh4gY65JJwqRVbo7xdYkplwgHIb0w0203VMvvyaM94mGL0t9ekWj965JfsY8Odvl3g0xWAXE56XqfjGxnlrUpkhlDrJBDPtss84Ojwk4wOevU0xl7TYsiTA9cZgO_ngbcUzlOLD9Uv03Jkpw6v78xT9-Hj-_eyiufr66fLsw1VjW8JLIwYFRtGBwyip6Kxjgrc9JUNP-o7SVqmetQMTnRzV6KiizrRCqY5yw2RPBn6K3h7mblP8vUAuevbZwjSZAHHJulI9lXWRir65R5dhhlFvk59N2umH8CpAD8D-ezmB-4dQovcF6Y2uBel9QZrUzXh15CPH-mJKTbbUrKYnzfcHE2o8fzwkna2HYGtJCWzRY_RP2v0j-6GBG9j9x70DgMW_Eg
CitedBy_id crossref_primary_10_1162_imag_a_00353
Cites_doi 10.1016/j.earscirev.2019.103076
10.1097/00004728-200107000-00002
10.1002/mrm.21277
10.1212/01.wnl.0000184471.83948.e0
10.2174/157015911796557911
10.1016/j.neuroimage.2020.117017
10.1109/42.906424
10.1016/j.jneumeth.2020.108908
10.1212/NXI.0000000000000502
10.1016/j.neuroimage.2015.10.019
10.3389/fninf.2014.00008
10.1177/1352458519885107
10.1016/j.neuroimage.2013.04.127
10.1002/mrm.24623
10.1016/j.jneumeth.2022.109671
10.1016/j.neubiorev.2017.01.002
10.1016/j.neuroimage.2015.07.067
10.1038/s41598-019-48671-7
10.1007/s13244-018-0639-9
10.1016/j.neuroimage.2017.02.013
10.1016/S1053-8119(03)00336-7
10.1002/mrm.20059
10.1109/TMI.2016.2551324
10.1002/mrm.27568
10.1371/journal.pone.0167884
10.3892/etm.2017.4410
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mri.2023.03.023
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 19
ExternalDocumentID 37031880
10_1016_j_mri_2023_03_023
S0730725X23000693
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c403t-5b8ea81b3ed7156cf2534910b909611488924b2567d8df181fa4588613a2790b3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Oct 02 09:58:08 EDT 2025
Wed Feb 19 02:24:22 EST 2025
Thu Oct 16 04:42:15 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Fri Feb 23 02:34:22 EST 2024
Tue Oct 14 19:40:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multilayer perceptron
Brain microstructure
Neurite orientation dispersion and density imaging
High angular resolution diffusion imaging
Convolutional neural network
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-5b8ea81b3ed7156cf2534910b909611488924b2567d8df181fa4588613a2790b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37031880
PQID 2799171710
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2799171710
pubmed_primary_37031880
crossref_primary_10_1016_j_mri_2023_03_023
crossref_citationtrail_10_1016_j_mri_2023_03_023
elsevier_sciencedirect_doi_10_1016_j_mri_2023_03_023
elsevier_clinicalkey_doi_10_1016_j_mri_2023_03_023
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
2023-Oct
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Loma, Heyman (bb0015) 2011; 9
Fick, Wassermann, Deriche (bb0155) 2019; 13
Tian, Bilgic, Fan, Liao, Ngamsombat, Hu (bb0065) 2020; 219
Kamiya, Hori, Aoki (bb0025) 2020; 346
Hosseinpour, Jonkman, Oladosu, Pridham, Pike, Inglese (bb0125) 2022; 379
Chen, Dong, Zhang, Lin, Shen, Yap (bb0180) 2018
Yamashita, Nishio, Do, Togashi (bb0145) 2018; 9
Andersson, Sotiropoulos (bb0100) 2016; 125
Clevert, Unterthiner, Hochreiter (bb0140) 2016
Golkov, Dosovitskiy, Sperl, Menzel, Czisch, Samann (bb0070) 2016; 35
Descoteaux, Angelino, Fitzgibbons, Deriche (bb0105) 2007; 58
Kingsley, Monahan (bb0040) 2004; 51
Huang, Chen, Zhang (bb0010) 2017; 13
Descoteaux (bb0020) 2023
Andersson, Skare, Ashburner (bb0090) 2003; 20
Rovaris, Gass, Bammer, Hickman, Ciccarelli, Miller (bb0005) 2005; 65
Timmers, Roebroeck, Bastiani, Jansma, Rubio-Gozalbo, Zhang (bb0045) 2016; 11
Marius, Balas, Perescu-Popescu, Mastorakis (bb0135) 2009; 8
Larochelle, Bengio, Jerome, P L. (bb0120) 2009
Liashchynskyi, Liashchynskyi (bb0150) 2019
Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux (bb0110) 2014; 8
Fukutomi, Glasser, Murata, Akasaka, Fujimoto, Yamamoto (bb0175) 2019; 9
Collorone, Cawley, Grussu, Prados, Tona, Calvi (bb0050) 2020; 26
Nedjati-Gilani, Schneider, Hall, Cawley, Hill, Ciccarelli (bb0075) 2017; 150
Koppers, Merhof (bb0115) 2018
Burdette, Durden, Elster, Yen (bb0035) 2001; 25
Zhang, Brady, Smith (bb0160) 2001; 20
Gibbons, Hodgson, Chaudhari, Richards, Majersik, Adluru (bb0170) 2019; 81
Piotrowski, Napiorkowski, Piotrowska (bb0165) 2020; 201
Spanò, Giulietti, Pisani, Morreale, Tuzzi, Nocentini (bb0055) 2018; 5
Andersson, Sotiropoulos (bb0095) 2015; 122
Abadi, Barham, Chen, Chen, Davis, Dean (bb0130) 2016
Tuch (bb0030) 2002
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bb0080) 2013; 80
Vieira, Pinaya, Mechelli (bb0060) 2017; 74
Sotiropoulos, Moeller, Jbabdi, Xu, Andersson, Auerbach (bb0085) 2013; 70
Kingsley (10.1016/j.mri.2023.03.023_bb0040) 2004; 51
Gibbons (10.1016/j.mri.2023.03.023_bb0170) 2019; 81
Rovaris (10.1016/j.mri.2023.03.023_bb0005) 2005; 65
Tian (10.1016/j.mri.2023.03.023_bb0065) 2020; 219
Collorone (10.1016/j.mri.2023.03.023_bb0050) 2020; 26
Spanò (10.1016/j.mri.2023.03.023_bb0055) 2018; 5
Loma (10.1016/j.mri.2023.03.023_bb0015) 2011; 9
Andersson (10.1016/j.mri.2023.03.023_bb0095) 2015; 122
Hosseinpour (10.1016/j.mri.2023.03.023_bb0125) 2022; 379
Kamiya (10.1016/j.mri.2023.03.023_bb0025) 2020; 346
Nedjati-Gilani (10.1016/j.mri.2023.03.023_bb0075) 2017; 150
Descoteaux (10.1016/j.mri.2023.03.023_bb0105) 2007; 58
Descoteaux (10.1016/j.mri.2023.03.023_bb0020) 2023
Yamashita (10.1016/j.mri.2023.03.023_bb0145) 2018; 9
Marius (10.1016/j.mri.2023.03.023_bb0135) 2009; 8
Liashchynskyi (10.1016/j.mri.2023.03.023_bb0150) 2019
Sotiropoulos (10.1016/j.mri.2023.03.023_bb0085) 2013; 70
Abadi (10.1016/j.mri.2023.03.023_bb0130) 2016
Chen (10.1016/j.mri.2023.03.023_bb0180) 2018
Fick (10.1016/j.mri.2023.03.023_bb0155) 2019; 13
Koppers (10.1016/j.mri.2023.03.023_bb0115) 2018
Piotrowski (10.1016/j.mri.2023.03.023_bb0165) 2020; 201
Zhang (10.1016/j.mri.2023.03.023_bb0160) 2001; 20
Tuch (10.1016/j.mri.2023.03.023_bb0030) 2002
Huang (10.1016/j.mri.2023.03.023_bb0010) 2017; 13
Andersson (10.1016/j.mri.2023.03.023_bb0100) 2016; 125
Vieira (10.1016/j.mri.2023.03.023_bb0060) 2017; 74
Glasser (10.1016/j.mri.2023.03.023_bb0080) 2013; 80
Andersson (10.1016/j.mri.2023.03.023_bb0090) 2003; 20
Timmers (10.1016/j.mri.2023.03.023_bb0045) 2016; 11
Clevert (10.1016/j.mri.2023.03.023_bb0140) 2016
Fukutomi (10.1016/j.mri.2023.03.023_bb0175) 2019; 9
Burdette (10.1016/j.mri.2023.03.023_bb0035) 2001; 25
Golkov (10.1016/j.mri.2023.03.023_bb0070) 2016; 35
Larochelle (10.1016/j.mri.2023.03.023_bb0120) 2009
Garyfallidis (10.1016/j.mri.2023.03.023_bb0110) 2014; 8
References_xml – volume: 13
  start-page: 3163
  year: 2017
  end-page: 3166
  ident: bb0010
  article-title: Multiple sclerosis: pathology, diagnosis and treatments
  publication-title: Exp Ther Med
– start-page: 12
  year: 2018
  ident: bb0180
  article-title: Angular Upsampling in infant diffusion MRI using neighborhood matching in x-q space. Frontiers
  publication-title: Neuroinformatics
– volume: 58
  start-page: 497
  year: 2007
  end-page: 510
  ident: bb0105
  article-title: Regularized, fast, and robust analytical Q-ball imaging
  publication-title: Magn Reson Med
– volume: 346
  year: 2020
  ident: bb0025
  article-title: NODDI in clinical research
  publication-title: J Neurosci Methods
– volume: 150
  start-page: 119
  year: 2017
  end-page: 135
  ident: bb0075
  article-title: Machine learning based compartment models with permeability for white matter microstructure imaging
  publication-title: Neuroimage
– year: 2002
  ident: bb0030
  article-title: Diffusion MRI of complex tissue structure
– volume: 70
  start-page: 1682
  year: 2013
  end-page: 1689
  ident: bb0085
  article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE
  publication-title: Magn Reson Med
– start-page: 1
  year: 2009
  end-page: 40
  ident: bb0120
  article-title: Exploring strategies for training deep neural networks
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: bb0145
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– volume: 26
  start-page: 1647
  year: 2020
  end-page: 1657
  ident: bb0050
  article-title: Reduced neurite density in the brain and cervical spinal cord in relapsing-remitting multiple sclerosis: a NODDI study
  publication-title: Mult Scler
– volume: 8
  start-page: 8
  year: 2014
  ident: bb0110
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bb0080
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 5
  year: 2018
  ident: bb0055
  article-title: Disruption of neurite morphology parallels MS progression
  publication-title: Neurol Neuroimmunol Neuroinflamm
– volume: 219
  year: 2020
  ident: bb0065
  article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning
  publication-title: Neuroimage
– volume: 9
  start-page: 12246
  year: 2019
  ident: bb0175
  article-title: Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter
  publication-title: Sci Rep
– start-page: 1
  year: 2023
  end-page: 25
  ident: bb0020
  article-title: High agular resolution diffusion imaging (HARDI)
  publication-title: Wiley encyclopedia of electrical and electronics engineering
– volume: 35
  start-page: 1344
  year: 2016
  end-page: 1351
  ident: bb0070
  article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans Med Imaging
– volume: 65
  start-page: 1526
  year: 2005
  end-page: 1532
  ident: bb0005
  article-title: Diffusion MRI in multiple sclerosis
  publication-title: Neurology
– volume: 11
  year: 2016
  ident: bb0045
  article-title: Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI
  publication-title: PloS One
– volume: 25
  start-page: 515
  year: 2001
  end-page: 519
  ident: bb0035
  article-title: High b-value diffusion-weighted MRI of normal brain
  publication-title: J Comput Assist Tomogr
– volume: 379
  year: 2022
  ident: bb0125
  article-title: Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis
  publication-title: J Neurosci Methods
– volume: 9
  start-page: 409
  year: 2011
  end-page: 416
  ident: bb0015
  article-title: Multiple sclerosis: pathogenesis and treatment
  publication-title: Curr Neuropharmacol
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bb0090
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 51
  start-page: 996
  year: 2004
  end-page: 1001
  ident: bb0040
  article-title: Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke
  publication-title: Magn Reson Med
– start-page: 265
  year: 2016
  end-page: 283
  ident: bb0130
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation
– volume: 8
  year: 2009
  ident: bb0135
  article-title: Multilayer perceptron and neural networks
  publication-title: WSEAS Trans Circ Syst
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bb0100
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 201
  year: 2020
  ident: bb0165
  article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
  publication-title: Earth Sci Rev
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bb0160
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 81
  start-page: 2399
  year: 2019
  end-page: 2411
  ident: bb0170
  article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning
  publication-title: Magn Reson Med
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  ident: bb0060
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications
  publication-title: Neurosci Biobehav Rev
– year: 2016
  ident: bb0140
  article-title: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
– volume: 13
  year: 2019
  ident: bb0155
  article-title: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy
  publication-title: Front Neuroinform
– volume: 122
  start-page: 166
  year: 2015
  end-page: 176
  ident: bb0095
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
– year: 2018
  ident: bb0115
  article-title: DELIMIT PyTorch - An extension for Deep Learning in Diffusion Imaging
– year: 2019
  ident: bb0150
  article-title: Grid search, random search, genetic algorithm: a big comparison for NAS
– year: 2018
  ident: 10.1016/j.mri.2023.03.023_bb0115
– volume: 201
  year: 2020
  ident: 10.1016/j.mri.2023.03.023_bb0165
  article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2019.103076
– year: 2016
  ident: 10.1016/j.mri.2023.03.023_bb0140
– volume: 25
  start-page: 515
  issue: 4
  year: 2001
  ident: 10.1016/j.mri.2023.03.023_bb0035
  article-title: High b-value diffusion-weighted MRI of normal brain
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-200107000-00002
– volume: 58
  start-page: 497
  issue: 3
  year: 2007
  ident: 10.1016/j.mri.2023.03.023_bb0105
  article-title: Regularized, fast, and robust analytical Q-ball imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21277
– volume: 65
  start-page: 1526
  issue: 10
  year: 2005
  ident: 10.1016/j.mri.2023.03.023_bb0005
  article-title: Diffusion MRI in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000184471.83948.e0
– volume: 9
  start-page: 409
  issue: 3
  year: 2011
  ident: 10.1016/j.mri.2023.03.023_bb0015
  article-title: Multiple sclerosis: pathogenesis and treatment
  publication-title: Curr Neuropharmacol
  doi: 10.2174/157015911796557911
– volume: 219
  year: 2020
  ident: 10.1016/j.mri.2023.03.023_bb0065
  article-title: DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117017
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.mri.2023.03.023_bb0160
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906424
– volume: 346
  year: 2020
  ident: 10.1016/j.mri.2023.03.023_bb0025
  article-title: NODDI in clinical research
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108908
– volume: 5
  issue: 6
  year: 2018
  ident: 10.1016/j.mri.2023.03.023_bb0055
  article-title: Disruption of neurite morphology parallels MS progression
  publication-title: Neurol Neuroimmunol Neuroinflamm
  doi: 10.1212/NXI.0000000000000502
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.mri.2023.03.023_bb0100
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 13
  issue: 64
  year: 2019
  ident: 10.1016/j.mri.2023.03.023_bb0155
  article-title: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy
  publication-title: Front Neuroinform
– start-page: 1
  year: 2023
  ident: 10.1016/j.mri.2023.03.023_bb0020
  article-title: High agular resolution diffusion imaging (HARDI)
– volume: 8
  year: 2009
  ident: 10.1016/j.mri.2023.03.023_bb0135
  article-title: Multilayer perceptron and neural networks
  publication-title: WSEAS Trans Circ Syst
– volume: 8
  start-page: 8
  year: 2014
  ident: 10.1016/j.mri.2023.03.023_bb0110
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2014.00008
– volume: 26
  start-page: 1647
  issue: 13
  year: 2020
  ident: 10.1016/j.mri.2023.03.023_bb0050
  article-title: Reduced neurite density in the brain and cervical spinal cord in relapsing-remitting multiple sclerosis: a NODDI study
  publication-title: Mult Scler
  doi: 10.1177/1352458519885107
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.mri.2023.03.023_bb0080
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– start-page: 12
  year: 2018
  ident: 10.1016/j.mri.2023.03.023_bb0180
  article-title: Angular Upsampling in infant diffusion MRI using neighborhood matching in x-q space. Frontiers
  publication-title: Neuroinformatics
– start-page: 265
  year: 2016
  ident: 10.1016/j.mri.2023.03.023_bb0130
  article-title: TensorFlow: a system for large-scale machine learning
– volume: 70
  start-page: 1682
  issue: 6
  year: 2013
  ident: 10.1016/j.mri.2023.03.023_bb0085
  article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24623
– volume: 379
  year: 2022
  ident: 10.1016/j.mri.2023.03.023_bb0125
  article-title: Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109671
– volume: 74
  start-page: 58
  issue: Pt A
  year: 2017
  ident: 10.1016/j.mri.2023.03.023_bb0060
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2017.01.002
– volume: 122
  start-page: 166
  year: 2015
  ident: 10.1016/j.mri.2023.03.023_bb0095
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.067
– volume: 9
  start-page: 12246
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2023.03.023_bb0175
  article-title: Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48671-7
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2023.03.023_bb0145
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 150
  start-page: 119
  year: 2017
  ident: 10.1016/j.mri.2023.03.023_bb0075
  article-title: Machine learning based compartment models with permeability for white matter microstructure imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.013
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.mri.2023.03.023_bb0090
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 51
  start-page: 996
  issue: 5
  year: 2004
  ident: 10.1016/j.mri.2023.03.023_bb0040
  article-title: Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20059
– year: 2019
  ident: 10.1016/j.mri.2023.03.023_bb0150
– year: 2002
  ident: 10.1016/j.mri.2023.03.023_bb0030
– volume: 35
  start-page: 1344
  issue: 5
  year: 2016
  ident: 10.1016/j.mri.2023.03.023_bb0070
  article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2551324
– volume: 81
  start-page: 2399
  issue: 4
  year: 2019
  ident: 10.1016/j.mri.2023.03.023_bb0170
  article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27568
– volume: 11
  issue: 12
  year: 2016
  ident: 10.1016/j.mri.2023.03.023_bb0045
  article-title: Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI
  publication-title: PloS One
  doi: 10.1371/journal.pone.0167884
– start-page: 1
  year: 2009
  ident: 10.1016/j.mri.2023.03.023_bb0120
  article-title: Exploring strategies for training deep neural networks
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 3163
  issue: 6
  year: 2017
  ident: 10.1016/j.mri.2023.03.023_bb0010
  article-title: Multiple sclerosis: pathology, diagnosis and treatments
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2017.4410
SSID ssj0005235
Score 2.4075892
Snippet High angular resolution diffusion imaging (HARDI) is a promising method for advanced analysis of brain microstructure. However, comprehensive HARDI analysis...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Brain microstructure
Convolutional neural network
High angular resolution diffusion imaging
Multilayer perceptron
Neurite orientation dispersion and density imaging
Title Neural network algorithms predict new diffusion MRI data for multi-compartmental analysis of brain microstructure in a clinical setting
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X23000693
https://dx.doi.org/10.1016/j.mri.2023.03.023
https://www.ncbi.nlm.nih.gov/pubmed/37031880
https://www.proquest.com/docview/2799171710
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IJsaL8Vv8IDXxZDLY1o5tR0IkoIGDSsKt6bZOMTAIH_Hm1X_b99qN6AFMzHbZeA2jfXv9Pfrr-xFy6_FUJg3UCHMS3-KJSqzAYQ2L-4FssJR7nq6z3es3OgP-MPSGJdIq9sIgrTKP_Sam62id36nnvVmfjUb1Z3RO34Vki2HMDbHiJ-c-qhjUPn_SPIzIJhhbaF2sbGqO12Q-qqF-uK5z6rJNc9Mm7KnnoPYB2c_BI22a5zskJZUdkd1evjx-TL6w1AYYZIbbTeX4dQrJ_9tkQWdztFrCRx8URVFW-C8Z7T11KXJEKUBXqrmFliGlL03NfyrzmiV0mtII1SToBBl8pursaq4o3JG02F5JF0rTqE_IoH3_0upYudKCFXObLS0vCpQEAMtU4kNCF6euxzgAiShERRjImAJI0yJAR34SJCmAglTiDleAAtL1Qztip6ScTTN1TmgIADEOlSN95eg1uRhcIUwdFUK4YFxViF30sYjzMuSohjEWBd_sXcCwCBwWYcPpsgq5WzeZmRoc24zdYuBE8eshHAqYIbY14utGv7zvr2Y3hWcIeCtxqUVmarpaCOgVyIPhsCvkzLjM-tEZSgZA2Lz435dekj28MoTCK1KGAVfXAIyWUVV7fpXsNLuPnf43cdoLzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VkIALYqesRuKEFJrETpMcUQUqSzmwSNwsJ3GgiKZVF3Hjym8zYycVHAAJNadkrCb2ZPwmfp4HcBSIXGVN0gjzstARmc6cyONNR4SRavJcBIGps925abYfxOVj8FiDVrUXhmiVZey3Md1E6_JMo-zNxqDbbdyRc4Y-JlucYm7MZ2BOBH5IGdjJ-1eeh1XZRGuHzKulTUPy6g27JyQgbgqd-vynyekn8GkmofNlWCrRIzu1N7gCNV2swnynXB9fgw-qtYEGhSV3M_X61Mfs_7k3YoMhWY3x0hsjVZQJfSZjndsLRiRRhtiVGXKhY1npY1v0n6myaAnr5ywhOQnWIwqfLTs7GWqGZxSr9leykTY86nV4OD-7b7WdUmrBSYXLx06QRFohguU6CzGjS3M_4AKRRBKTJAymTBHmaQnCozCLshxRQa5oiytiAeWHsZvwDZgt-oXeAhYjQkxj7alQe2ZRLkVfiHNPxxgvuNB1cKs-lmlZh5zkMF5lRTh7kTgskoZFunj4vA7H0yYDW4TjN2O_GjhZPT3GQ4lTxG-NxLTRN_f7q9lh5RkSX0taa1GF7k9GEnsFE2H8uXXYtC4zvXVOmgEYN7f_96cHsNC-71zL64ubqx1YpCuWXbgLszj4eg9R0jjZN2_BJ4hEDWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+algorithms+predict+new+diffusion+MRI+data+for+multi-compartmental+analysis+of+brain+microstructure+in+a+clinical+setting&rft.jtitle=Magnetic+resonance+imaging&rft.au=Murray%2C+Cayden&rft.au=Oladosu%2C+Olayinka&rft.au=Joshi%2C+Manish&rft.au=Kolind%2C+Shannon&rft.date=2023-10-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=102&rft.spage=9&rft.epage=19&rft_id=info:doi/10.1016%2Fj.mri.2023.03.023&rft.externalDocID=S0730725X23000693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon