Generating Rare Surgical Events Using CycleGAN: Addressing Lack of Data for Artificial Intelligence Event Recognition
Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition....
        Saved in:
      
    
          | Published in | The Journal of surgical research Vol. 283; pp. 594 - 605 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.03.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-4804 1095-8673 1095-8673  | 
| DOI | 10.1016/j.jss.2022.11.008 | 
Cover
| Abstract | Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field.
A generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used.
The performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images).
The result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence. | 
    
|---|---|
| AbstractList | Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field.
A generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used.
The performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images).
The result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence. Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field.INTRODUCTIONArtificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field.A generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used.MATERIALS AND METHODSA generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used.The performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images).RESULTSThe performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images).The result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence.CONCLUSIONSThe result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence.  | 
    
| Author | Backhus, Leah Pugh, Carla Kearse, LaDonna Mohamadipanah, Hossein Wise, Brett  | 
    
| Author_xml | – sequence: 1 givenname: Hossein surname: Mohamadipanah fullname: Mohamadipanah, Hossein organization: Department of Surgery, Stanford University School of Medicine, Stanford, California – sequence: 2 givenname: LaDonna surname: Kearse fullname: Kearse, LaDonna organization: Department of Surgery, Stanford University School of Medicine, Stanford, California – sequence: 3 givenname: Brett orcidid: 0000-0002-5807-8244 surname: Wise fullname: Wise, Brett organization: Department of Surgery, Stanford University School of Medicine, Stanford, California – sequence: 4 givenname: Leah surname: Backhus fullname: Backhus, Leah organization: VA Palo Alto Health Care System, Surgery Service, Palo Alto, California – sequence: 5 givenname: Carla orcidid: 0000-0001-9139-8082 surname: Pugh fullname: Pugh, Carla email: cpugh@stanford.edu organization: Department of Surgery, Stanford University School of Medicine, Stanford, California  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36442259$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU9v1DAQxS1URLeFD8AF-cglqf8kjgOn1VK2lVYgFXq2XHu88jbrFNuptN8ehy0ceihzscbzfqPRe2foJIwBEHpPSU0JFRe7epdSzQhjNaU1IfIVWlDSt5UUHT9BC1ImVSNJc4rOUtqR0vcdf4NOuWgaxtp-gaY1BIg6-7DFNzoC_jHFrTd6wJePEHLCt2kerQ5mgPXy2ye8tDZC-vO50eYejw5_0VljN0a8jNk7b3yhr0OGYfBbCAaOq_ANmHEbfPZjeIteOz0kePf0nqPbr5c_V1fV5vv6erXcVKYhPFdtqy0rZVwPkrSNtYJw7jRnQLgkzHZN13HRgqPyzjDpLAgnmJC96IwEy8_Rx-Pehzj-miBltffJlMN0gHFKinUNE23Pe1mkH56k090erHqIfq_jQf21qgjoUWDimFIE909CiZrjUDtV4lBzHIpSVeIoTPeMMT7r2YEctR9eJD8fSSj2PHqIKhk_m2l9BJOVHf2LdP-MNoMPc6z3cPgP-xtNC7dO | 
    
| CitedBy_id | crossref_primary_10_3390_s23041958 crossref_primary_10_3390_surgeries6010007 crossref_primary_10_1097_ICU_0000000000001033 crossref_primary_10_3390_info15010012 crossref_primary_10_1145_3653456  | 
    
| Cites_doi | 10.1038/s41551-017-0132-7 10.1097/SLA.0000000000003460 10.1109/TMI.2016.2593957 10.1016/j.cpsurg.2022.101125 10.1016/j.thorsurg.2008.04.007 10.1097/SLA.0000000000004207 10.1007/s11934-021-01043-z 10.1136/bmjopen-2019-029507 10.1513/AnnalsATS.201606-429OC 10.1016/j.jss.2021.07.003 10.1016/j.surg.2016.06.006 10.1109/TMI.2017.2787657 10.1016/j.media.2019.101572 10.1016/j.athoracsur.2013.07.117 10.1177/1553350608315953 10.21037/acs.2019.02.03  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.jss.2022.11.008 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1095-8673 | 
    
| EndPage | 605 | 
    
| ExternalDocumentID | 36442259 10_1016_j_jss_2022_11_008 S0022480422007478  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEK HMK HMO HVGLF HZ~ IHE J1W J5H KOM LG5 M29 M41 MO0 N9A O-L O9- OAUVE OK- OW- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UHS WUQ X7M XPP Z5R ZGI ZMT ZU3 ZXP ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR RIG ZA5 AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c403t-55ad2222cf9e8054dd6033fa32e03802d7477365ef18bc28fde6f6268967c8ed3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0022-4804 1095-8673  | 
    
| IngestDate | Tue Sep 30 23:56:29 EDT 2025 Mon Jul 21 06:04:17 EDT 2025 Wed Oct 01 05:17:05 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Fri Feb 23 02:38:20 EST 2024 Tue Oct 14 19:35:55 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Deep learning Artificial intelligence Lobectomy CycleGAN Lack of data Massive bleeding  | 
    
| Language | English | 
    
| License | Copyright © 2022 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c403t-55ad2222cf9e8054dd6033fa32e03802d7477365ef18bc28fde6f6268967c8ed3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-5807-8244 0000-0001-9139-8082  | 
    
| PMID | 36442259 | 
    
| PQID | 2742659398 | 
    
| PQPubID | 23479 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_2742659398 pubmed_primary_36442259 crossref_primary_10_1016_j_jss_2022_11_008 crossref_citationtrail_10_1016_j_jss_2022_11_008 elsevier_sciencedirect_doi_10_1016_j_jss_2022_11_008 elsevier_clinicalkey_doi_10_1016_j_jss_2022_11_008  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2023 2023-03-00 2023-Mar 20230301  | 
    
| PublicationDateYYYYMMDD | 2023-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | The Journal of surgical research | 
    
| PublicationTitleAlternate | J Surg Res | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Mohamadipanah, Perumalla, Yang (bib18) 2022; 59 Hashimoto, Rosman, Witkowski (bib13) 2019; 270 Lee, Choi, Jung (bib19) 2019 Korndorffer, Hawn, Spain (bib1) 2020; 272 Twinanda, Shehata, Mutter, Marescaux, de Mathelin, Padoy (bib16) 2017; 36 Lim, Batchelor, Shackcloth (bib4) 2019; 9 Kent, Wang, Whyte, Curran, Flores, Gangadharan (bib7) 2014; 97 Dunning, Walker (bib12) 2012; 1 Maier-Hein, Vedula, Speidel (bib2) 2017; 1 Goodfellow, Pouget-Abadie, Mirza (bib8) 2014 Xu, Anwar, Barnes (bib21) 2020 Gonzalez-Rivas, Stupnik, Fernandez (bib6) 2016; 49 Zhu, Park, Isola, Efros (bib9) 2020 Grogan, Jones (bib3) 2008; 18 Mohamadipanah, Kearse, Witt (bib17) 2021; 268 Engelhardt, De Simone, Full, Karck, Wolf (bib20) 2018 Desai, Natt, Kim, Bime (bib5) 2017; 14 Schmidt, Luccioni, Mukkavilli (bib10) 2019 Judkins, Oleynikov, Stergiou (bib23) 2008; 15 Rothermel, Lipman (bib24) 2016; 160 Jin, Li, Dou (bib15) 2020; 59 Ma, Reddy, Vanstrum, Hung (bib22) 2021; 22 Novellis, Jadoon, Cariboni, Bottoni, Pardolesi, Veronesi (bib11) 2019; 8 Jin, Dou, Chen (bib14) 2018; 37 Xu (10.1016/j.jss.2022.11.008_bib21) 2020 Schmidt (10.1016/j.jss.2022.11.008_bib10) Ma (10.1016/j.jss.2022.11.008_bib22) 2021; 22 Kent (10.1016/j.jss.2022.11.008_bib7) 2014; 97 Gonzalez-Rivas (10.1016/j.jss.2022.11.008_bib6) 2016; 49 Twinanda (10.1016/j.jss.2022.11.008_bib16) 2017; 36 Maier-Hein (10.1016/j.jss.2022.11.008_bib2) 2017; 1 Dunning (10.1016/j.jss.2022.11.008_bib12) 2012; 1 Mohamadipanah (10.1016/j.jss.2022.11.008_bib17) 2021; 268 Engelhardt (10.1016/j.jss.2022.11.008_bib20) 2018 Mohamadipanah (10.1016/j.jss.2022.11.008_bib18) 2022; 59 Rothermel (10.1016/j.jss.2022.11.008_bib24) 2016; 160 Jin (10.1016/j.jss.2022.11.008_bib14) 2018; 37 Lim (10.1016/j.jss.2022.11.008_bib4) 2019; 9 Desai (10.1016/j.jss.2022.11.008_bib5) 2017; 14 Goodfellow (10.1016/j.jss.2022.11.008_bib8) Novellis (10.1016/j.jss.2022.11.008_bib11) 2019; 8 Jin (10.1016/j.jss.2022.11.008_bib15) 2020; 59 Judkins (10.1016/j.jss.2022.11.008_bib23) 2008; 15 Grogan (10.1016/j.jss.2022.11.008_bib3) 2008; 18 Korndorffer (10.1016/j.jss.2022.11.008_bib1) 2020; 272 Zhu (10.1016/j.jss.2022.11.008_bib9) Hashimoto (10.1016/j.jss.2022.11.008_bib13) 2019; 270 Lee (10.1016/j.jss.2022.11.008_bib19)  | 
    
| References_xml | – volume: 59 start-page: 101572 year: 2020 ident: bib15 article-title: Multi-task recurrent convolutional network with correlation loss for surgical video analysis publication-title: Med Image Anal – volume: 97 start-page: 236 year: 2014 end-page: 242 ident: bib7 article-title: Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database publication-title: Ann Thorac Surg – volume: 22 start-page: 26 year: 2021 ident: bib22 article-title: Innovations in urologic surgical training publication-title: Curr Urol Rep – volume: 15 start-page: 59 year: 2008 end-page: 68 ident: bib23 article-title: Enhanced robotic surgical training using augmented visual feedback publication-title: Surg Innov – year: 2020 ident: bib9 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks. ArXiv170310593 Cs – volume: 49 start-page: i17 year: 2016 end-page: i24 ident: bib6 article-title: Intraoperative bleeding control by uniportal video-assisted thoracoscopic surgery † publication-title: Eur J Cardiothorac Surg – volume: 270 start-page: 414 year: 2019 end-page: 421 ident: bib13 article-title: Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy publication-title: Ann Surg – year: 2014 ident: bib8 article-title: Generative adversarial networks. ArXiv14062661 Cs stat – volume: 36 start-page: 86 year: 2017 end-page: 97 ident: bib16 article-title: EndoNet: a deep architecture for recognition tasks on laparoscopic videos publication-title: IEEE Trans Med Imaging – volume: 59 start-page: 101125 year: 2022 ident: bib18 article-title: Artificial intelligence in surgery: a research team perspective publication-title: Curr Probl Surg – year: 2019 ident: bib10 article-title: Visualizing the consequences of climate change using cycle-consistent adversarial networks. ArXiv190503709 Cs – volume: 268 start-page: 318 year: 2021 end-page: 325 ident: bib17 article-title: Can deep learning algorithms help identify surgical workflow and techniques? publication-title: J Surg Res – year: 2019 ident: bib19 article-title: Davincigan: unpaired surgical instrument translation for data augmentation. In: International Conference on Medical Imaging with Deep Learning – start-page: 732 year: 2020 end-page: 741 ident: bib21 article-title: Ofgan: realistic rendition of synthetic colonoscopy videos publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lecture Notes in Computer Science – volume: 9 start-page: e029507 year: 2019 ident: bib4 article-title: Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study) publication-title: BMJ Open – volume: 272 start-page: 523 year: 2020 end-page: 528 ident: bib1 article-title: Situating artificial intelligence in surgery: a focus on disease severity publication-title: Ann Surg – volume: 1 start-page: 691 year: 2017 end-page: 696 ident: bib2 article-title: Surgical data science for next-generation interventions publication-title: Nat Biomed Eng – volume: 18 start-page: 249 year: 2008 end-page: 258 ident: bib3 article-title: VATS lobectomy is better than open thoracotomy: what is the evidence for short-term outcomes? publication-title: Thorac Surg Clin – volume: 8 start-page: 292 year: 2019 end-page: 295 ident: bib11 article-title: Management of robotic bleeding complications publication-title: Ann Cardiothorac Surg – volume: 14 start-page: 262 year: 2017 end-page: 266 ident: bib5 article-title: Decreased in-hospital mortality after lobectomy using video-assisted thoracoscopic surgery compared with open thoracotomy publication-title: Ann Am Thorac Soc – volume: 1 start-page: 109 year: 2012 end-page: 110 ident: bib12 article-title: Pulmonary artery bleeding caused during VATS lobectomy publication-title: Ann Cardiothorac Surg – volume: 37 start-page: 1114 year: 2018 end-page: 1126 ident: bib14 article-title: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network publication-title: IEEE Trans Med Imaging – start-page: 747 year: 2018 end-page: 755 ident: bib20 article-title: Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 160 start-page: 946 year: 2016 end-page: 953 ident: bib24 article-title: Estimation of blood loss is inaccurate and unreliable publication-title: Surgery – volume: 49 start-page: i17 year: 2016 ident: 10.1016/j.jss.2022.11.008_bib6 article-title: Intraoperative bleeding control by uniportal video-assisted thoracoscopic surgery † publication-title: Eur J Cardiothorac Surg – volume: 1 start-page: 691 year: 2017 ident: 10.1016/j.jss.2022.11.008_bib2 article-title: Surgical data science for next-generation interventions publication-title: Nat Biomed Eng doi: 10.1038/s41551-017-0132-7 – volume: 270 start-page: 414 year: 2019 ident: 10.1016/j.jss.2022.11.008_bib13 article-title: Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy publication-title: Ann Surg doi: 10.1097/SLA.0000000000003460 – volume: 36 start-page: 86 year: 2017 ident: 10.1016/j.jss.2022.11.008_bib16 article-title: EndoNet: a deep architecture for recognition tasks on laparoscopic videos publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2593957 – volume: 1 start-page: 109 year: 2012 ident: 10.1016/j.jss.2022.11.008_bib12 article-title: Pulmonary artery bleeding caused during VATS lobectomy publication-title: Ann Cardiothorac Surg – start-page: 747 year: 2018 ident: 10.1016/j.jss.2022.11.008_bib20 article-title: Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries – volume: 59 start-page: 101125 year: 2022 ident: 10.1016/j.jss.2022.11.008_bib18 article-title: Artificial intelligence in surgery: a research team perspective publication-title: Curr Probl Surg doi: 10.1016/j.cpsurg.2022.101125 – volume: 18 start-page: 249 year: 2008 ident: 10.1016/j.jss.2022.11.008_bib3 article-title: VATS lobectomy is better than open thoracotomy: what is the evidence for short-term outcomes? publication-title: Thorac Surg Clin doi: 10.1016/j.thorsurg.2008.04.007 – ident: 10.1016/j.jss.2022.11.008_bib8 – volume: 272 start-page: 523 year: 2020 ident: 10.1016/j.jss.2022.11.008_bib1 article-title: Situating artificial intelligence in surgery: a focus on disease severity publication-title: Ann Surg doi: 10.1097/SLA.0000000000004207 – volume: 22 start-page: 26 year: 2021 ident: 10.1016/j.jss.2022.11.008_bib22 article-title: Innovations in urologic surgical training publication-title: Curr Urol Rep doi: 10.1007/s11934-021-01043-z – volume: 9 start-page: e029507 year: 2019 ident: 10.1016/j.jss.2022.11.008_bib4 article-title: Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study) publication-title: BMJ Open doi: 10.1136/bmjopen-2019-029507 – volume: 14 start-page: 262 year: 2017 ident: 10.1016/j.jss.2022.11.008_bib5 article-title: Decreased in-hospital mortality after lobectomy using video-assisted thoracoscopic surgery compared with open thoracotomy publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201606-429OC – volume: 268 start-page: 318 year: 2021 ident: 10.1016/j.jss.2022.11.008_bib17 article-title: Can deep learning algorithms help identify surgical workflow and techniques? publication-title: J Surg Res doi: 10.1016/j.jss.2021.07.003 – ident: 10.1016/j.jss.2022.11.008_bib10 – volume: 160 start-page: 946 year: 2016 ident: 10.1016/j.jss.2022.11.008_bib24 article-title: Estimation of blood loss is inaccurate and unreliable publication-title: Surgery doi: 10.1016/j.surg.2016.06.006 – volume: 37 start-page: 1114 year: 2018 ident: 10.1016/j.jss.2022.11.008_bib14 article-title: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2787657 – volume: 59 start-page: 101572 year: 2020 ident: 10.1016/j.jss.2022.11.008_bib15 article-title: Multi-task recurrent convolutional network with correlation loss for surgical video analysis publication-title: Med Image Anal doi: 10.1016/j.media.2019.101572 – start-page: 732 year: 2020 ident: 10.1016/j.jss.2022.11.008_bib21 article-title: Ofgan: realistic rendition of synthetic colonoscopy videos – volume: 97 start-page: 236 year: 2014 ident: 10.1016/j.jss.2022.11.008_bib7 article-title: Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database publication-title: Ann Thorac Surg doi: 10.1016/j.athoracsur.2013.07.117 – volume: 15 start-page: 59 year: 2008 ident: 10.1016/j.jss.2022.11.008_bib23 article-title: Enhanced robotic surgical training using augmented visual feedback publication-title: Surg Innov doi: 10.1177/1553350608315953 – ident: 10.1016/j.jss.2022.11.008_bib9 – volume: 8 start-page: 292 year: 2019 ident: 10.1016/j.jss.2022.11.008_bib11 article-title: Management of robotic bleeding complications publication-title: Ann Cardiothorac Surg doi: 10.21037/acs.2019.02.03 – ident: 10.1016/j.jss.2022.11.008_bib19  | 
    
| SSID | ssj0002973 | 
    
| Score | 2.4141276 | 
    
| Snippet | Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 594 | 
    
| SubjectTerms | Algorithms Artificial Intelligence CycleGAN Deep learning Humans Lack of data Laparoscopy Lobectomy Massive bleeding Surgeons  | 
    
| Title | Generating Rare Surgical Events Using CycleGAN: Addressing Lack of Data for Artificial Intelligence Event Recognition | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022480422007478 https://dx.doi.org/10.1016/j.jss.2022.11.008 https://www.ncbi.nlm.nih.gov/pubmed/36442259 https://www.proquest.com/docview/2742659398  | 
    
| Volume | 283 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-8673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002973 issn: 0022-4804 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-8673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002973 issn: 0022-4804 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-8673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002973 issn: 0022-4804 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-8673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002973 issn: 0022-4804 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002973 issn: 0022-4804 databaseCode: AKRWK dateStart: 19610101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL15E8VUfJYInYdvtJtmHt1JbWx89VAu9LWmSBatsSx8HL_52J8mmKmgFr0tmN0yyM1_IN98gdCElk4wJ36snMvNoFHJvBIndiyScP_hIMWrKox96YWdAb4dsWEJNVwujaZVF7Lcx3UTr4kmt8GZt-vysa3wh_cRaw8qqwOsKdhrpLgbV90-ah-7N5BTD9Wh3s2k4XuO5VuwOgqoW8tQdJn_OTb9hT5OD2jtouwCPuGHnt4tKKt9DS6screnLuM9nCj8uZyac4ZbmMs6xYQXg5huY3DR6V7ghpSG_wsN7Ll7wJMPXfMExwFfzaqspgbtfxDrtq3DfsY0m-T4atFtPzY5XNFPwBPXJwmOMS8ACgcgSFQNOkzL0Cck4CZRPYj-Q4MKIhExl9XgkgjiTKszgtBMnYSRiJckB2sgnuTpCWEoScYAlIkwY5UTAGZfTWDKSqYAwSsrId25MRaE0rhtevKaOUjZOwfOp9jycQFLwfBldrkymVmZj3eDArU3q6kch4qWQBNYZ0ZXRtw32l9m5W_wUfjx9m8JzNVnCoAjADUtIAmMO7a5YTZ0AyoRAmRz_76MnaEt3tbdUt1O0sZgt1Rlgn8WoYjZ3BW02uned3gfuzAFn | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VD3oRxfczgidhdc1jH95KtbZae6gK3kKaZMEHW6ntwYu_3UmyqQo-wGvIZJdJduYb9ss3CO1rzTXnKo6Oc11ELE1k1IfEHqUa6g_ZN5y569FX3aR1yy7u-F0NNcJdGEurrGK_j-kuWlcjR5U3j57v7-0dX0g_mdWw8irwU2iGcZLaCuzw7YPnYZszBclwOz382nQkr4cXK9lNyKFV8rQtJr9PTj-BT5eEmgtovkKPuO5fcBHVTLmExl462vKXcU8ODb4eD108w2eWzPiCHS0AN17B5LzePcF1rR37FQY7Uj3iQYFP5UhiwK9uaS8qgduf1Dr9UrgX6EaDchndNs9uGq2o6qYQKRbTUcS51AAGiCpykwFQ0zqJKS0kJSamWUw0-DClCTfFcdZXJCu0SQood7I8SVVmNF1B0-WgNGsIa01TCbhEJTlnkioociXLNKeFIZQzuo7i4EahKqlx2_HiSQRO2YMAzwvreShBBHh-HR1MTJ69zsZvk0nYGxEukELIE5AFfjNiE6MvJ-wvs72w-QK-PPs7RZZmMIZJKaAbntMc5qz6UzF5dQowEyJlvvG_h-6i2dbNVUd02t3LTTRnW9x73tsWmh4Nx2YbgNCov-MO-jvVdgL8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Rare+Surgical+Events+Using+CycleGAN%3A+Addressing+Lack+of+Data+for+Artificial+Intelligence+Event+Recognition&rft.jtitle=The+Journal+of+surgical+research&rft.au=Mohamadipanah%2C+Hossein&rft.au=Kearse%2C+LaDonna&rft.au=Wise%2C+Brett&rft.au=Backhus%2C+Leah&rft.date=2023-03-01&rft.issn=0022-4804&rft.volume=283&rft.spage=594&rft.epage=605&rft_id=info:doi/10.1016%2Fj.jss.2022.11.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jss_2022_11_008 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4804&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4804&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4804&client=summon |