Generating Rare Surgical Events Using CycleGAN: Addressing Lack of Data for Artificial Intelligence Event Recognition

Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of surgical research Vol. 283; pp. 594 - 605
Main Authors Mohamadipanah, Hossein, Kearse, LaDonna, Wise, Brett, Backhus, Leah, Pugh, Carla
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2023
Subjects
Online AccessGet full text
ISSN0022-4804
1095-8673
1095-8673
DOI10.1016/j.jss.2022.11.008

Cover

Abstract Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field. A generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used. The performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images). The result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence.
AbstractList Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field. A generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used. The performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images). The result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence.
Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field.INTRODUCTIONArtificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few public video data sources that demonstrate critical yet rare events which are insufficient to train AI for reliable video event recognition. We suggest that a generative AI algorithm can create artificial massive bleeding images for minimally invasive lobectomy that can be used to augment the current lack of data in this field.A generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used.MATERIALS AND METHODSA generative adversarial network (GAN) algorithm was used (CycleGAN) to generate artificial massive bleeding event images. To train CycleGAN, six videos of minimally invasive lobectomies were utilized from which 1819 frames of nonbleeding instances and 3178 frames of massive bleeding instances were used.The performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images).RESULTSThe performance of the CycleGAN algorithm was tested on a new video that was not used during the training process. The trained CycleGAN was able to alter the laparoscopic lobectomy images according to their corresponding massive bleeding images, where the contents of the original images were preserved (e.g., location of tools in the scene) and the style of each image is changed to massive bleeding (i.e., blood automatically added to appropriate locations on the images).The result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence.CONCLUSIONSThe result could suggest a promising approach to supplement the lack of data for the rare massive bleeding event that can occur during minimally invasive lobectomy. Future work could be dedicated to developing AI algorithms to identify surgical strategies and actions that potentially lead to massive bleeding and warn surgeons prior to this event occurrence.
Author Backhus, Leah
Pugh, Carla
Kearse, LaDonna
Mohamadipanah, Hossein
Wise, Brett
Author_xml – sequence: 1
  givenname: Hossein
  surname: Mohamadipanah
  fullname: Mohamadipanah, Hossein
  organization: Department of Surgery, Stanford University School of Medicine, Stanford, California
– sequence: 2
  givenname: LaDonna
  surname: Kearse
  fullname: Kearse, LaDonna
  organization: Department of Surgery, Stanford University School of Medicine, Stanford, California
– sequence: 3
  givenname: Brett
  orcidid: 0000-0002-5807-8244
  surname: Wise
  fullname: Wise, Brett
  organization: Department of Surgery, Stanford University School of Medicine, Stanford, California
– sequence: 4
  givenname: Leah
  surname: Backhus
  fullname: Backhus, Leah
  organization: VA Palo Alto Health Care System, Surgery Service, Palo Alto, California
– sequence: 5
  givenname: Carla
  orcidid: 0000-0001-9139-8082
  surname: Pugh
  fullname: Pugh, Carla
  email: cpugh@stanford.edu
  organization: Department of Surgery, Stanford University School of Medicine, Stanford, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36442259$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFD8AF-cglqf8kjgOn1VK2lVYgFXq2XHu88jbrFNuptN8ehy0ceihzscbzfqPRe2foJIwBEHpPSU0JFRe7epdSzQhjNaU1IfIVWlDSt5UUHT9BC1ImVSNJc4rOUtqR0vcdf4NOuWgaxtp-gaY1BIg6-7DFNzoC_jHFrTd6wJePEHLCt2kerQ5mgPXy2ye8tDZC-vO50eYejw5_0VljN0a8jNk7b3yhr0OGYfBbCAaOq_ANmHEbfPZjeIteOz0kePf0nqPbr5c_V1fV5vv6erXcVKYhPFdtqy0rZVwPkrSNtYJw7jRnQLgkzHZN13HRgqPyzjDpLAgnmJC96IwEy8_Rx-Pehzj-miBltffJlMN0gHFKinUNE23Pe1mkH56k090erHqIfq_jQf21qgjoUWDimFIE909CiZrjUDtV4lBzHIpSVeIoTPeMMT7r2YEctR9eJD8fSSj2PHqIKhk_m2l9BJOVHf2LdP-MNoMPc6z3cPgP-xtNC7dO
CitedBy_id crossref_primary_10_3390_s23041958
crossref_primary_10_3390_surgeries6010007
crossref_primary_10_1097_ICU_0000000000001033
crossref_primary_10_3390_info15010012
crossref_primary_10_1145_3653456
Cites_doi 10.1038/s41551-017-0132-7
10.1097/SLA.0000000000003460
10.1109/TMI.2016.2593957
10.1016/j.cpsurg.2022.101125
10.1016/j.thorsurg.2008.04.007
10.1097/SLA.0000000000004207
10.1007/s11934-021-01043-z
10.1136/bmjopen-2019-029507
10.1513/AnnalsATS.201606-429OC
10.1016/j.jss.2021.07.003
10.1016/j.surg.2016.06.006
10.1109/TMI.2017.2787657
10.1016/j.media.2019.101572
10.1016/j.athoracsur.2013.07.117
10.1177/1553350608315953
10.21037/acs.2019.02.03
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jss.2022.11.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1095-8673
EndPage 605
ExternalDocumentID 36442259
10_1016_j_jss_2022_11_008
S0022480422007478
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEK
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
LG5
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OK-
OW-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UHS
WUQ
X7M
XPP
Z5R
ZGI
ZMT
ZU3
ZXP
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
ZA5
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c403t-55ad2222cf9e8054dd6033fa32e03802d7477365ef18bc28fde6f6268967c8ed3
IEDL.DBID .~1
ISSN 0022-4804
1095-8673
IngestDate Tue Sep 30 23:56:29 EDT 2025
Mon Jul 21 06:04:17 EDT 2025
Wed Oct 01 05:17:05 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Fri Feb 23 02:38:20 EST 2024
Tue Oct 14 19:35:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Artificial intelligence
Lobectomy
CycleGAN
Lack of data
Massive bleeding
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-55ad2222cf9e8054dd6033fa32e03802d7477365ef18bc28fde6f6268967c8ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5807-8244
0000-0001-9139-8082
PMID 36442259
PQID 2742659398
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2742659398
pubmed_primary_36442259
crossref_primary_10_1016_j_jss_2022_11_008
crossref_citationtrail_10_1016_j_jss_2022_11_008
elsevier_sciencedirect_doi_10_1016_j_jss_2022_11_008
elsevier_clinicalkey_doi_10_1016_j_jss_2022_11_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-Mar
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of surgical research
PublicationTitleAlternate J Surg Res
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mohamadipanah, Perumalla, Yang (bib18) 2022; 59
Hashimoto, Rosman, Witkowski (bib13) 2019; 270
Lee, Choi, Jung (bib19) 2019
Korndorffer, Hawn, Spain (bib1) 2020; 272
Twinanda, Shehata, Mutter, Marescaux, de Mathelin, Padoy (bib16) 2017; 36
Lim, Batchelor, Shackcloth (bib4) 2019; 9
Kent, Wang, Whyte, Curran, Flores, Gangadharan (bib7) 2014; 97
Dunning, Walker (bib12) 2012; 1
Maier-Hein, Vedula, Speidel (bib2) 2017; 1
Goodfellow, Pouget-Abadie, Mirza (bib8) 2014
Xu, Anwar, Barnes (bib21) 2020
Gonzalez-Rivas, Stupnik, Fernandez (bib6) 2016; 49
Zhu, Park, Isola, Efros (bib9) 2020
Grogan, Jones (bib3) 2008; 18
Mohamadipanah, Kearse, Witt (bib17) 2021; 268
Engelhardt, De Simone, Full, Karck, Wolf (bib20) 2018
Desai, Natt, Kim, Bime (bib5) 2017; 14
Schmidt, Luccioni, Mukkavilli (bib10) 2019
Judkins, Oleynikov, Stergiou (bib23) 2008; 15
Rothermel, Lipman (bib24) 2016; 160
Jin, Li, Dou (bib15) 2020; 59
Ma, Reddy, Vanstrum, Hung (bib22) 2021; 22
Novellis, Jadoon, Cariboni, Bottoni, Pardolesi, Veronesi (bib11) 2019; 8
Jin, Dou, Chen (bib14) 2018; 37
Xu (10.1016/j.jss.2022.11.008_bib21) 2020
Schmidt (10.1016/j.jss.2022.11.008_bib10)
Ma (10.1016/j.jss.2022.11.008_bib22) 2021; 22
Kent (10.1016/j.jss.2022.11.008_bib7) 2014; 97
Gonzalez-Rivas (10.1016/j.jss.2022.11.008_bib6) 2016; 49
Twinanda (10.1016/j.jss.2022.11.008_bib16) 2017; 36
Maier-Hein (10.1016/j.jss.2022.11.008_bib2) 2017; 1
Dunning (10.1016/j.jss.2022.11.008_bib12) 2012; 1
Mohamadipanah (10.1016/j.jss.2022.11.008_bib17) 2021; 268
Engelhardt (10.1016/j.jss.2022.11.008_bib20) 2018
Mohamadipanah (10.1016/j.jss.2022.11.008_bib18) 2022; 59
Rothermel (10.1016/j.jss.2022.11.008_bib24) 2016; 160
Jin (10.1016/j.jss.2022.11.008_bib14) 2018; 37
Lim (10.1016/j.jss.2022.11.008_bib4) 2019; 9
Desai (10.1016/j.jss.2022.11.008_bib5) 2017; 14
Goodfellow (10.1016/j.jss.2022.11.008_bib8)
Novellis (10.1016/j.jss.2022.11.008_bib11) 2019; 8
Jin (10.1016/j.jss.2022.11.008_bib15) 2020; 59
Judkins (10.1016/j.jss.2022.11.008_bib23) 2008; 15
Grogan (10.1016/j.jss.2022.11.008_bib3) 2008; 18
Korndorffer (10.1016/j.jss.2022.11.008_bib1) 2020; 272
Zhu (10.1016/j.jss.2022.11.008_bib9)
Hashimoto (10.1016/j.jss.2022.11.008_bib13) 2019; 270
Lee (10.1016/j.jss.2022.11.008_bib19)
References_xml – volume: 59
  start-page: 101572
  year: 2020
  ident: bib15
  article-title: Multi-task recurrent convolutional network with correlation loss for surgical video analysis
  publication-title: Med Image Anal
– volume: 97
  start-page: 236
  year: 2014
  end-page: 242
  ident: bib7
  article-title: Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database
  publication-title: Ann Thorac Surg
– volume: 22
  start-page: 26
  year: 2021
  ident: bib22
  article-title: Innovations in urologic surgical training
  publication-title: Curr Urol Rep
– volume: 15
  start-page: 59
  year: 2008
  end-page: 68
  ident: bib23
  article-title: Enhanced robotic surgical training using augmented visual feedback
  publication-title: Surg Innov
– year: 2020
  ident: bib9
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks. ArXiv170310593 Cs
– volume: 49
  start-page: i17
  year: 2016
  end-page: i24
  ident: bib6
  article-title: Intraoperative bleeding control by uniportal video-assisted thoracoscopic surgery †
  publication-title: Eur J Cardiothorac Surg
– volume: 270
  start-page: 414
  year: 2019
  end-page: 421
  ident: bib13
  article-title: Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy
  publication-title: Ann Surg
– year: 2014
  ident: bib8
  article-title: Generative adversarial networks. ArXiv14062661 Cs stat
– volume: 36
  start-page: 86
  year: 2017
  end-page: 97
  ident: bib16
  article-title: EndoNet: a deep architecture for recognition tasks on laparoscopic videos
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 101125
  year: 2022
  ident: bib18
  article-title: Artificial intelligence in surgery: a research team perspective
  publication-title: Curr Probl Surg
– year: 2019
  ident: bib10
  article-title: Visualizing the consequences of climate change using cycle-consistent adversarial networks. ArXiv190503709 Cs
– volume: 268
  start-page: 318
  year: 2021
  end-page: 325
  ident: bib17
  article-title: Can deep learning algorithms help identify surgical workflow and techniques?
  publication-title: J Surg Res
– year: 2019
  ident: bib19
  article-title: Davincigan: unpaired surgical instrument translation for data augmentation. In: International Conference on Medical Imaging with Deep Learning
– start-page: 732
  year: 2020
  end-page: 741
  ident: bib21
  article-title: Ofgan: realistic rendition of synthetic colonoscopy videos
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lecture Notes in Computer Science
– volume: 9
  start-page: e029507
  year: 2019
  ident: bib4
  article-title: Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study)
  publication-title: BMJ Open
– volume: 272
  start-page: 523
  year: 2020
  end-page: 528
  ident: bib1
  article-title: Situating artificial intelligence in surgery: a focus on disease severity
  publication-title: Ann Surg
– volume: 1
  start-page: 691
  year: 2017
  end-page: 696
  ident: bib2
  article-title: Surgical data science for next-generation interventions
  publication-title: Nat Biomed Eng
– volume: 18
  start-page: 249
  year: 2008
  end-page: 258
  ident: bib3
  article-title: VATS lobectomy is better than open thoracotomy: what is the evidence for short-term outcomes?
  publication-title: Thorac Surg Clin
– volume: 8
  start-page: 292
  year: 2019
  end-page: 295
  ident: bib11
  article-title: Management of robotic bleeding complications
  publication-title: Ann Cardiothorac Surg
– volume: 14
  start-page: 262
  year: 2017
  end-page: 266
  ident: bib5
  article-title: Decreased in-hospital mortality after lobectomy using video-assisted thoracoscopic surgery compared with open thoracotomy
  publication-title: Ann Am Thorac Soc
– volume: 1
  start-page: 109
  year: 2012
  end-page: 110
  ident: bib12
  article-title: Pulmonary artery bleeding caused during VATS lobectomy
  publication-title: Ann Cardiothorac Surg
– volume: 37
  start-page: 1114
  year: 2018
  end-page: 1126
  ident: bib14
  article-title: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network
  publication-title: IEEE Trans Med Imaging
– start-page: 747
  year: 2018
  end-page: 755
  ident: bib20
  article-title: Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 160
  start-page: 946
  year: 2016
  end-page: 953
  ident: bib24
  article-title: Estimation of blood loss is inaccurate and unreliable
  publication-title: Surgery
– volume: 49
  start-page: i17
  year: 2016
  ident: 10.1016/j.jss.2022.11.008_bib6
  article-title: Intraoperative bleeding control by uniportal video-assisted thoracoscopic surgery †
  publication-title: Eur J Cardiothorac Surg
– volume: 1
  start-page: 691
  year: 2017
  ident: 10.1016/j.jss.2022.11.008_bib2
  article-title: Surgical data science for next-generation interventions
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-017-0132-7
– volume: 270
  start-page: 414
  year: 2019
  ident: 10.1016/j.jss.2022.11.008_bib13
  article-title: Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003460
– volume: 36
  start-page: 86
  year: 2017
  ident: 10.1016/j.jss.2022.11.008_bib16
  article-title: EndoNet: a deep architecture for recognition tasks on laparoscopic videos
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2593957
– volume: 1
  start-page: 109
  year: 2012
  ident: 10.1016/j.jss.2022.11.008_bib12
  article-title: Pulmonary artery bleeding caused during VATS lobectomy
  publication-title: Ann Cardiothorac Surg
– start-page: 747
  year: 2018
  ident: 10.1016/j.jss.2022.11.008_bib20
  article-title: Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries
– volume: 59
  start-page: 101125
  year: 2022
  ident: 10.1016/j.jss.2022.11.008_bib18
  article-title: Artificial intelligence in surgery: a research team perspective
  publication-title: Curr Probl Surg
  doi: 10.1016/j.cpsurg.2022.101125
– volume: 18
  start-page: 249
  year: 2008
  ident: 10.1016/j.jss.2022.11.008_bib3
  article-title: VATS lobectomy is better than open thoracotomy: what is the evidence for short-term outcomes?
  publication-title: Thorac Surg Clin
  doi: 10.1016/j.thorsurg.2008.04.007
– ident: 10.1016/j.jss.2022.11.008_bib8
– volume: 272
  start-page: 523
  year: 2020
  ident: 10.1016/j.jss.2022.11.008_bib1
  article-title: Situating artificial intelligence in surgery: a focus on disease severity
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004207
– volume: 22
  start-page: 26
  year: 2021
  ident: 10.1016/j.jss.2022.11.008_bib22
  article-title: Innovations in urologic surgical training
  publication-title: Curr Urol Rep
  doi: 10.1007/s11934-021-01043-z
– volume: 9
  start-page: e029507
  year: 2019
  ident: 10.1016/j.jss.2022.11.008_bib4
  article-title: Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study)
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-029507
– volume: 14
  start-page: 262
  year: 2017
  ident: 10.1016/j.jss.2022.11.008_bib5
  article-title: Decreased in-hospital mortality after lobectomy using video-assisted thoracoscopic surgery compared with open thoracotomy
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201606-429OC
– volume: 268
  start-page: 318
  year: 2021
  ident: 10.1016/j.jss.2022.11.008_bib17
  article-title: Can deep learning algorithms help identify surgical workflow and techniques?
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2021.07.003
– ident: 10.1016/j.jss.2022.11.008_bib10
– volume: 160
  start-page: 946
  year: 2016
  ident: 10.1016/j.jss.2022.11.008_bib24
  article-title: Estimation of blood loss is inaccurate and unreliable
  publication-title: Surgery
  doi: 10.1016/j.surg.2016.06.006
– volume: 37
  start-page: 1114
  year: 2018
  ident: 10.1016/j.jss.2022.11.008_bib14
  article-title: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2787657
– volume: 59
  start-page: 101572
  year: 2020
  ident: 10.1016/j.jss.2022.11.008_bib15
  article-title: Multi-task recurrent convolutional network with correlation loss for surgical video analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101572
– start-page: 732
  year: 2020
  ident: 10.1016/j.jss.2022.11.008_bib21
  article-title: Ofgan: realistic rendition of synthetic colonoscopy videos
– volume: 97
  start-page: 236
  year: 2014
  ident: 10.1016/j.jss.2022.11.008_bib7
  article-title: Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2013.07.117
– volume: 15
  start-page: 59
  year: 2008
  ident: 10.1016/j.jss.2022.11.008_bib23
  article-title: Enhanced robotic surgical training using augmented visual feedback
  publication-title: Surg Innov
  doi: 10.1177/1553350608315953
– ident: 10.1016/j.jss.2022.11.008_bib9
– volume: 8
  start-page: 292
  year: 2019
  ident: 10.1016/j.jss.2022.11.008_bib11
  article-title: Management of robotic bleeding complications
  publication-title: Ann Cardiothorac Surg
  doi: 10.21037/acs.2019.02.03
– ident: 10.1016/j.jss.2022.11.008_bib19
SSID ssj0002973
Score 2.4141276
Snippet Artificial Intelligence (AI) has shown promise in facilitating surgical video review through automatic recognition of surgical activities/events. There are few...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 594
SubjectTerms Algorithms
Artificial Intelligence
CycleGAN
Deep learning
Humans
Lack of data
Laparoscopy
Lobectomy
Massive bleeding
Surgeons
Title Generating Rare Surgical Events Using CycleGAN: Addressing Lack of Data for Artificial Intelligence Event Recognition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022480422007478
https://dx.doi.org/10.1016/j.jss.2022.11.008
https://www.ncbi.nlm.nih.gov/pubmed/36442259
https://www.proquest.com/docview/2742659398
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-8673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002973
  issn: 0022-4804
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-8673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002973
  issn: 0022-4804
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-8673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002973
  issn: 0022-4804
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-8673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002973
  issn: 0022-4804
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002973
  issn: 0022-4804
  databaseCode: AKRWK
  dateStart: 19610101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL15E8VUfJYInYdvtJtmHt1JbWx89VAu9LWmSBatsSx8HL_52J8mmKmgFr0tmN0yyM1_IN98gdCElk4wJ36snMvNoFHJvBIndiyScP_hIMWrKox96YWdAb4dsWEJNVwujaZVF7Lcx3UTr4kmt8GZt-vysa3wh_cRaw8qqwOsKdhrpLgbV90-ah-7N5BTD9Wh3s2k4XuO5VuwOgqoW8tQdJn_OTb9hT5OD2jtouwCPuGHnt4tKKt9DS6screnLuM9nCj8uZyac4ZbmMs6xYQXg5huY3DR6V7ghpSG_wsN7Ll7wJMPXfMExwFfzaqspgbtfxDrtq3DfsY0m-T4atFtPzY5XNFPwBPXJwmOMS8ACgcgSFQNOkzL0Cck4CZRPYj-Q4MKIhExl9XgkgjiTKszgtBMnYSRiJckB2sgnuTpCWEoScYAlIkwY5UTAGZfTWDKSqYAwSsrId25MRaE0rhtevKaOUjZOwfOp9jycQFLwfBldrkymVmZj3eDArU3q6kch4qWQBNYZ0ZXRtw32l9m5W_wUfjx9m8JzNVnCoAjADUtIAmMO7a5YTZ0AyoRAmRz_76MnaEt3tbdUt1O0sZgt1Rlgn8WoYjZ3BW02uned3gfuzAFn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VD3oRxfczgidhdc1jH95KtbZae6gK3kKaZMEHW6ntwYu_3UmyqQo-wGvIZJdJduYb9ss3CO1rzTXnKo6Oc11ELE1k1IfEHqUa6g_ZN5y569FX3aR1yy7u-F0NNcJdGEurrGK_j-kuWlcjR5U3j57v7-0dX0g_mdWw8irwU2iGcZLaCuzw7YPnYZszBclwOz382nQkr4cXK9lNyKFV8rQtJr9PTj-BT5eEmgtovkKPuO5fcBHVTLmExl462vKXcU8ODb4eD108w2eWzPiCHS0AN17B5LzePcF1rR37FQY7Uj3iQYFP5UhiwK9uaS8qgduf1Dr9UrgX6EaDchndNs9uGq2o6qYQKRbTUcS51AAGiCpykwFQ0zqJKS0kJSamWUw0-DClCTfFcdZXJCu0SQood7I8SVVmNF1B0-WgNGsIa01TCbhEJTlnkioociXLNKeFIZQzuo7i4EahKqlx2_HiSQRO2YMAzwvreShBBHh-HR1MTJ69zsZvk0nYGxEukELIE5AFfjNiE6MvJ-wvs72w-QK-PPs7RZZmMIZJKaAbntMc5qz6UzF5dQowEyJlvvG_h-6i2dbNVUd02t3LTTRnW9x73tsWmh4Nx2YbgNCov-MO-jvVdgL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Rare+Surgical+Events+Using+CycleGAN%3A+Addressing+Lack+of+Data+for+Artificial+Intelligence+Event+Recognition&rft.jtitle=The+Journal+of+surgical+research&rft.au=Mohamadipanah%2C+Hossein&rft.au=Kearse%2C+LaDonna&rft.au=Wise%2C+Brett&rft.au=Backhus%2C+Leah&rft.date=2023-03-01&rft.issn=0022-4804&rft.volume=283&rft.spage=594&rft.epage=605&rft_id=info:doi/10.1016%2Fj.jss.2022.11.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jss_2022_11_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4804&client=summon