Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery

As sensor parameters and atmospheric conditions create uncertainties for at−sensor radiation detection, radiometric consistency among satellite images is difficult to achieve. Relative radiometric normalization is a method that can improve multi−image consistency with accurate pseudo−invariant featu...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 4; p. 2525
Main Authors Chen, Lei, Ma, Ying, Lian, Yi, Zhang, Hu, Yu, Yanmiao, Lin, Yanzhen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app13042525

Cover

Abstract As sensor parameters and atmospheric conditions create uncertainties for at−sensor radiation detection, radiometric consistency among satellite images is difficult to achieve. Relative radiometric normalization is a method that can improve multi−image consistency with accurate pseudo−invariant features (PIFs), especially over large areas or long time series satellite images. Although there are algorithms that manually or automatically select PIFs, the spatial mismatch of satellite images can affect PIF extraction, particularly with artificial pixels. To alleviate this problem, we proposed to use Landsat−8 OLI as the reference image and Sentinel−2A as the subject image, to apply pseudo−invariant features−based algorithms with polygon features through the single−band and multiple−band regression. Compared to pseudo−invariant point features, hyperspectral library, and histogram matching approaches, the results demonstrate the superiority of the proposed algorithms with correlation coefficients of 0.9948 and 0.9945, and an RMSE of 0.0097 and 0.0095 with multiple− and single−band regression, respectively. We also found more accurate linear fitting and better shape matching through band scattering and reflectance frequency analysis. The proposed algorithms are a significant improvement in radiometric normalization, within artificial pixels, achieving spectral signature consistency.
AbstractList As sensor parameters and atmospheric conditions create uncertainties for at−sensor radiation detection, radiometric consistency among satellite images is difficult to achieve. Relative radiometric normalization is a method that can improve multi−image consistency with accurate pseudo−invariant features (PIFs), especially over large areas or long time series satellite images. Although there are algorithms that manually or automatically select PIFs, the spatial mismatch of satellite images can affect PIF extraction, particularly with artificial pixels. To alleviate this problem, we proposed to use Landsat−8 OLI as the reference image and Sentinel−2A as the subject image, to apply pseudo−invariant features−based algorithms with polygon features through the single−band and multiple−band regression. Compared to pseudo−invariant point features, hyperspectral library, and histogram matching approaches, the results demonstrate the superiority of the proposed algorithms with correlation coefficients of 0.9948 and 0.9945, and an RMSE of 0.0097 and 0.0095 with multiple− and single−band regression, respectively. We also found more accurate linear fitting and better shape matching through band scattering and reflectance frequency analysis. The proposed algorithms are a significant improvement in radiometric normalization, within artificial pixels, achieving spectral signature consistency.
Audience Academic
Author Ma, Ying
Lin, Yanzhen
Yu, Yanmiao
Lian, Yi
Chen, Lei
Zhang, Hu
Author_xml – sequence: 1
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
– sequence: 2
  givenname: Ying
  surname: Ma
  fullname: Ma, Ying
– sequence: 3
  givenname: Yi
  surname: Lian
  fullname: Lian, Yi
– sequence: 4
  givenname: Hu
  surname: Zhang
  fullname: Zhang, Hu
– sequence: 5
  givenname: Yanmiao
  surname: Yu
  fullname: Yu, Yanmiao
– sequence: 6
  givenname: Yanzhen
  surname: Lin
  fullname: Lin, Yanzhen
BookMark eNp9Uc1u1DAYjFCRKKUnXsASR9jinyR2jsuKQqQVraCcoy_-CV4ldrAdquUJOHPgAfskdbsIVUhgS5-t8cxorHlaHDnvdFE8J_iMsQa_hnkmDJe0otWj4phiXq9YSfjRg_uT4jTGHc6rIUwQfFz8-gjK-kmnYCX64MMEo_0OyXqHPkfrBgToMupF-ZsfP1v3DYIFl9ClH_dDppxrSEvQMT--gagVWo-DDzZ9mdB1nmjjXdLT7AM47ZeIPmmXrNNj5tM1AqfQNo8IKQMCXWxb1E4w6LB_Vjw2MEZ9-vs8Ka7O315t3q-2F-_azXq7kiVmaVU2XLIeuOmrWouaqZISKhRgCsIYKivoFTDaM05JwypDq16AMo3RteKkYidFe7BVHnbdHOwEYd95sN094MPQQUhWjrrTfc9JXQuDRVkarkGzShnJatOAzFD2enXwWtwM-2sYxz-GBHd3DXUPGsr0Fwf6HPzXRcfU7fwSXP5sRzlvKsqxuGOdHVgD5AzWGZ8CyLyVnqzM_Rub8TWvSCMEEU0WkINABh9j0KaTNt33mYV2_EeUl39p_hf8FgRvxo4
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122172
crossref_primary_10_3390_rs15184399
crossref_primary_10_3390_technologies11020046
crossref_primary_10_3390_s24072272
Cites_doi 10.3390/rs13193990
10.1016/j.rse.2006.03.008
10.1080/01431161.2022.2102951
10.1080/10106049.2017.1367424
10.1007/s11356-019-07216-1
10.1007/978-3-662-03978-6
10.1080/01431161.2016.1213922
10.1109/LGRS.2019.2899969
10.1016/j.atmosres.2020.105308
10.3390/rs5062763
10.3390/rs9121319
10.1016/j.isprsjprs.2018.11.007
10.1016/j.rse.2007.07.013
10.1080/15481603.2020.1799546
10.1016/j.isprsjprs.2022.10.019
10.1109/JSTARS.2020.3028062
10.3390/rs8050411
10.2747/1548-1603.49.5.755
10.1109/JSTARS.2021.3069919
10.1016/j.apm.2013.01.006
10.1016/0034-4257(91)90062-B
10.3390/s18124505
10.1007/s40314-015-0254-z
10.1080/01431160601086019
10.3390/rs14081777
10.1016/j.inffus.2004.12.002
10.3390/rs13163125
10.1016/j.compag.2019.104893
10.1016/j.ufug.2020.126675
10.1109/TGRS.2021.3063151
10.3390/rs61211810
10.1007/s12665-020-09220-y
10.2747/1548-1603.46.3.249
10.1016/j.isprsjprs.2015.05.002
10.1109/LGRS.2020.3047344
10.1080/17538947.2015.1111951
10.1080/01431161.2021.1934912
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app13042525
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (via ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ebb71668f0844f7eae35dfc36f9ac844
10.3390/app13042525
A751988189
10_3390_app13042525
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c403t-497c3ba7fb56e863d42128da02a8ff2c5abda32b3721935f25b8adf9fe6d7153
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Fri Oct 03 12:50:57 EDT 2025
Sun Oct 26 03:26:35 EDT 2025
Mon Jun 30 07:32:49 EDT 2025
Mon Oct 20 16:22:00 EDT 2025
Thu Oct 16 04:42:39 EDT 2025
Thu Apr 24 22:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-497c3ba7fb56e863d42128da02a8ff2c5abda32b3721935f25b8adf9fe6d7153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/ebb71668f0844f7eae35dfc36f9ac844
PQID 2779527085
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ebb71668f0844f7eae35dfc36f9ac844
unpaywall_primary_10_3390_app13042525
proquest_journals_2779527085
gale_infotracacademiconefile_A751988189
crossref_citationtrail_10_3390_app13042525
crossref_primary_10_3390_app13042525
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_26) 2020; 13
Bonnet (ref_10) 2022; 19
Leach (ref_14) 2019; 164
Zhou (ref_24) 2016; 37
Elvidge (ref_29) 1995; 61
Silva (ref_37) 2013; 5
ref_13
Razzak (ref_16) 2023; 195
ref_35
ref_34
Rahman (ref_36) 2014; 6
Moghimi (ref_33) 2022; 60
Mansaray (ref_2) 2020; 57
Nazeer (ref_12) 2021; 249
Saradjian (ref_30) 2005; 6
Loiseau (ref_4) 2019; 82
ref_17
Sadeghi (ref_19) 2013; 37
Pu (ref_5) 2020; 53
Xu (ref_27) 2021; 42
Hall (ref_20) 1991; 35
Schroeder (ref_3) 2006; 103
Rahman (ref_7) 2015; 106
Syariz (ref_22) 2019; 147
Sadeghi (ref_21) 2017; 36
Lin (ref_25) 2019; 16
ref_23
Kim (ref_38) 2012; 49
Henchiri (ref_1) 2020; 27
Hong (ref_32) 2008; 29
Moghimi (ref_18) 2021; 14
Santra (ref_15) 2019; 34
Moghimi (ref_39) 2022; 43
Deliry (ref_6) 2020; 79
ref_9
ref_8
Canty (ref_28) 2008; 112
Yan (ref_11) 2016; 9
Im (ref_31) 2009; 46
References_xml – ident: ref_34
  doi: 10.3390/rs13193990
– volume: 103
  start-page: 16
  year: 2006
  ident: ref_3
  article-title: Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.008
– volume: 43
  start-page: 3927
  year: 2022
  ident: ref_39
  article-title: Tensor-based keypoint detection and switching regression model for relative radiometric normalization of bitemporal multispectral images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2022.2102951
– volume: 34
  start-page: 98
  year: 2019
  ident: ref_15
  article-title: Relative Radiometric Normalisation-performance testing of selected techniques and impact analysis on vegetation and water bodies
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1367424
– volume: 27
  start-page: 5873
  year: 2020
  ident: ref_1
  article-title: Monitoring land cover change detection with NOAA-AVHRR and MODIS remotely sensed data in the North and West of Africa from 1982 to 2015
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-07216-1
– ident: ref_35
  doi: 10.1007/978-3-662-03978-6
– volume: 37
  start-page: 4554
  year: 2016
  ident: ref_24
  article-title: A new model for the automatic relative radiometric normalization of multiple images with pseudo-invariant features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1213922
– volume: 16
  start-page: 1353
  year: 2019
  ident: ref_25
  article-title: Pseudoinvariant feature selection using multitemporal MAD for optical satellite images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2899969
– volume: 249
  start-page: 105308
  year: 2021
  ident: ref_12
  article-title: Evaluation of atmospheric correction methods for low to high resolutions satellite remote sensing data
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105308
– volume: 5
  start-page: 2763
  year: 2013
  ident: ref_37
  article-title: Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression
  publication-title: Remote Sens.
  doi: 10.3390/rs5062763
– ident: ref_23
  doi: 10.3390/rs9121319
– volume: 147
  start-page: 56
  year: 2019
  ident: ref_22
  article-title: Spectral-consistent relative radiometric normalization for multitemporal Landsat 8 imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.007
– volume: 112
  start-page: 1025
  year: 2008
  ident: ref_28
  article-title: Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.013
– volume: 61
  start-page: 1255
  year: 1995
  ident: ref_29
  article-title: Relative radiometric normalization of Landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 57
  start-page: 785
  year: 2020
  ident: ref_2
  article-title: Evaluation of machine learning models for rice dry biomass estimation and mapping using quad-source optical imagery
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2020.1799546
– volume: 195
  start-page: 1
  year: 2023
  ident: ref_16
  article-title: Multi-spectral multi-image super-resolution of Sentinel-2 with radiometric consistency losses and its effect on building delineation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.10.019
– volume: 13
  start-page: 6029
  year: 2020
  ident: ref_26
  article-title: Robust radiometric normalization of multitemporal satellite images via block adjustment without master images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3028062
– ident: ref_13
  doi: 10.3390/rs8050411
– volume: 49
  start-page: 755
  year: 2012
  ident: ref_38
  article-title: Automatic pseudo-invariant feature extraction for the relative radiometric normalization of hyperion hyperspectral images
  publication-title: GIScience Remote Sens.
  doi: 10.2747/1548-1603.49.5.755
– volume: 14
  start-page: 4063
  year: 2021
  ident: ref_18
  article-title: Comparison of Keypoint Detectors and Descriptors for Relative Radiometric Normalization of Bitemporal Remote Sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3069919
– volume: 37
  start-page: 6437
  year: 2013
  ident: ref_19
  article-title: A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.01.006
– volume: 35
  start-page: 11
  year: 1991
  ident: ref_20
  article-title: Radiometric rectification: Toward a common radiometric response among multidate, multisensor images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90062-B
– ident: ref_8
  doi: 10.3390/s18124505
– volume: 36
  start-page: 825
  year: 2017
  ident: ref_21
  article-title: A new automatic regression-based approach for relative radiometric normalization of multitemporal satellite imagery
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-015-0254-z
– volume: 29
  start-page: 425
  year: 2008
  ident: ref_32
  article-title: A comparative study on radiometric normalization using high resolution satellite images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160601086019
– ident: ref_9
  doi: 10.3390/rs14081777
– volume: 6
  start-page: 235
  year: 2005
  ident: ref_30
  article-title: Automatic normalization of satellite images using unchanged pixels within urban areas
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2004.12.002
– ident: ref_17
  doi: 10.3390/rs13163125
– volume: 164
  start-page: 104893
  year: 2019
  ident: ref_14
  article-title: Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104893
– volume: 53
  start-page: 126675
  year: 2020
  ident: ref_5
  article-title: Mapping urban tree species by integrating multi-seasonal high resolution pléiades satellite imagery with airborne LiDAR data
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2020.126675
– volume: 60
  start-page: 5400820
  year: 2022
  ident: ref_33
  article-title: Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3063151
– volume: 6
  start-page: 11810
  year: 2014
  ident: ref_36
  article-title: An assessment of polynomial regression techniques for the relative radiometric normalization (RRN) of high-resolution multi-temporal airborne thermal infrared (TIR) imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs61211810
– volume: 79
  start-page: 471
  year: 2020
  ident: ref_6
  article-title: Assessment of human-induced environmental disaster in the Aral Sea using Landsat satellite images
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-020-09220-y
– volume: 46
  start-page: 249
  year: 2009
  ident: ref_31
  article-title: Characteristics of search spaces for identifying optimum thresholds in change detection studies
  publication-title: GIScience Remote Sens.
  doi: 10.2747/1548-1603.46.3.249
– volume: 106
  start-page: 82
  year: 2015
  ident: ref_7
  article-title: A comparison of four relative radiometric normalization (RRN) techniques for mosaicing H-res multi-temporal thermal infrared (TIR) flight-lines of a complex urban scene
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.002
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_10
  article-title: Random Sampling-Based Relative Radiometric Normalization
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3047344
– volume: 9
  start-page: 649
  year: 2016
  ident: ref_11
  article-title: Radiometric normalization of overlapping LiDAR intensity data for reduction of striping noise
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2015.1111951
– volume: 42
  start-page: 6155
  year: 2021
  ident: ref_27
  article-title: A novel automatic method on pseudo-invariant features extraction for enhancing the relative radiometric normalization of high-resolution images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1934912
– volume: 82
  start-page: 101905
  year: 2019
  ident: ref_4
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
SSID ssj0000913810
Score 2.287201
Snippet As sensor parameters and atmospheric conditions create uncertainties for at−sensor radiation detection, radiometric consistency among satellite images is...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2525
SubjectTerms Algorithms
Analysis
contemporaneous satellite images
Earth resources technology satellites
Libraries
multiple−band regression
pseudo−invariant polygon features
Radiation
Regression analysis
Remote sensing
Sensors
single−band regression
SummonAdditionalLinks – databaseName: ProQuest Central (via ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6V7QF6QLSACBTkQxE_UkSaH9s5ILSLWnVRWValSL1FdmwvhzRZuhvQvgFnDjwgT8JM1rtdCdSrM4kcz3j8je35BuCAWyc4VzaMbJKFqU7SUMbChFxyBAsyU6ZLpP044idf0g8X2cUWjFa5MHStcuUTO0dtmpL2yN_EQuRZLBAhvJt-C6lqFJ2urkpoKF9awbztKMZuwXZMzFg92B4cjcZn610XYsGUh9EyUS_BeJ_OiQ8ppM-oWPbG0tQx-P_rp3fgdltP1eKHqqqNhej4Htz1CJL1lyrfhS1b78HOBq_gHuz6GTtjLz2t9Kv78PtMGcq1J0p-NiKoWvkcTNbdG2CKjWe2Nc2fn7-G9XeMoXHQ2bipFhMUIajYYmiODwe48BnWryY4PPOvl4y2ctk1y1Vtm3bGPtMtpNpWKB_3maoNO6WkYjXHBsk-nQ7Z8JLoMxYP4Pz46Pz9SeirMoRlGiVzKklXJloJpzNuUaOGzpSlUVGspHNxmSltVBLrBGPLPMlcnGmpjMud5Uagf30Ivbqp7SNgpZVWpiqVSkYpvppryy2GgNYKkTgdBfB6pY-i9IzlVDijKjByIeUVG8oL4GAtPF0SdfxfbECKXYsQu3bX0FxNCj9ZC6s1hpFcukimqRNWoR0bVybc5arEpgBekFkU5AOwQ6XyqQz4W8SmVfQF4mKJUCgPYH9lOYV3DrPi2pQDeL62ppt6_fjmzzyBOzFir-Vl8n3oza9a-xSx0lw_8xPgL8wCGbc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVQeoAegBYQgYJ8KOJD2mZjrz_2hFJE1aASImilctraaztUbHejZLco_ALOHPiB_BLGiRMiQAiJq3cs2drx-L3dmTcI7XLrBOfKRrGlLEo0TSJJhIm45AAWJFNmXkj7esAPT5JXp-w09DmdhrRKoOLn8yBNgGRHEGZFp0s7SYcwwjpj455fhk9JXS6AY3HOIAZvcAZgvIU2TgbD3nvfUm45eVGVR4Hc-5_CXc_fme-MvXYPzeX6fw_Km-hqU47V7JMqirVb5-AGOluud5Fs8nGvqfVe_vkXKcf_2NBNdD0gUtxbuNAWumLLbbS5plO4jbZCBJjiJ0Gm-ukt9O2tMr5230v844GHvkWo6cTzPASs8HBqG1N9__K1X14CJ4eXiIdVMRuBiYeeDVB9eLgPF6nBvWJUTc7rDxfYfxrGP1WzSls1U_zOZzWVtgB70sOqNPjIFymrGgYkfnPUx_0LL8cxu42OD14evziMQpeHKE9iWvsWdznVSjjNuAUPMf4ftTQqJko6R3KmtFGUaApcNaXMEaalMi51lhsB8foOapVVae8inFtpZaISqWScwNRUW26BUlorBHU6bqNny1ee5UEB3TfiKDJgQt4_sjX_aKPdlfF4IfzxZ7N97zsrE6_WPR-oJqMsHP7Mag20lEsXyyRxwio4F8bllLtU5TDURo-952U-psCCchVKI2BbXp0r6wnA2RKgVdpGO0vnzEKwmWZEiJQRAeC5jR6tHPZvq773j3b30TUCoG6Rpb6DWvWksQ8AhNX6YThoPwCbIjEW
  priority: 102
  providerName: Unpaywall
Title Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery
URI https://www.proquest.com/docview/2779527085
https://www.mdpi.com/2076-3417/13/4/2525/pdf?version=1677136652
https://doaj.org/article/ebb71668f0844f7eae35dfc36f9ac844
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BOUAPiBYQgbLyoYgfKSLNj-0cs6hLF5VlVVqpnCI7tgtSmlTdLGjfgDMHHpAnYSZJl0gguHCMM4kcz3j8Tez5BmCXWyc4V9YPbJT4sY5iX4bC-FxyBAsyUaZNpH074wcn8ZvT5HRQ6ovOhHX0wN3AvbRaI6Tn0gUyjp2wCt9pXBFxl6oCm8j7BjIdBFOtD073iLqqS8iLMK6n_eA9Ct0TKoo9WIJapv7f_fEm3FxWF2r1RZXlYMGZ3IHbPVJkWdfDLbhmq23YHPAHbsNWPzMX7FlPH_38Lnw_UoZy6ol6n80IkpZ9riVrzwcwxeYLuzT1j6_fptVnjJVxcNm8LldnKEKQcIkhON4c4wJnWFae1Zefmo_njH7Zsl9sVpWtlwv2nk4bVbZE-TBjqjLskJKHVYMNkr07nLLpOdFkrO7B8WT_-NWB31df8Is4iBoqPVdEWgmnE25Rc4b2jqVRQaikc2GRKG1UFOoIY8g0SlyYaKmMS53lRqAfvQ8bVV3ZB8AKK62MVSyVDGJ8NNWWWwz1rBUicjrw4MWVPvKiZyanAhlljhEKKS8fKM-D3bXwRUfI8WexMSl2LUIs2m0D2lbe21b-L9vy4CmZRU5zHTtUqD5lAT-LWLPyTCD-lQh5Ug92riwn753AIg-FSJNQIKj14Mnamv7W64f_o9eP4FaISKw7Wr4DG83l0j5G5NToEVyXk9cjuDHen82PRu2UwauT2Tz78BOj8yDO
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaq9lB6QLSASCngQyt-pBUbe3-8hwol0CqhaYhKkHqzvGs7HLa7IZtQ5Q04c-BteBmehJmNk0YC9dard3bl1djzY898HyGHkbFxFCnj-YaHXpDywBMs1l4kIggWRKh03Uh73o86X4KPl-HlBvm97IXBssqlTawNtS4zPCN_y-I4CVkMEcK78TcPWaPwdnVJoaEctYI-riHGXGPHmZlfQwpXHXc_gL6PGDs9Gb7veI5lwMsCn0-RYi3jqYptGkYGZqjxjlRo5TMlrGVZqFKtOEs55EoJDy0LU6G0TayJdNxE0gjwAFsBh-9skq32SX9wsTrkQdBN0fQXfYGcJz5eSzfxBCFEbu41T1gTBvzrFnbI9qwYq_m1yvM1v3f6gNx3ASttLVbYLtkwxR7ZWYMx3CO7zkBU9JVDsX79kPy6UBpb-5EBgPYxMs5dyyetyxSoooPKzHT558fPbvEdUnbQMR2U-XwEIhiZziamgodt8LOatvIRaGP69YriyTG9AdUqTDmr6GcseipMDvKsRVWhaQ97mNUUBgT91OvS7hWidcwfkeFdqOcx2SzKwjwhNDPCiEAFQgk_gFeT1EQGMk5j4pjb1G-QN0t9yMwBpCNPRy4hUULlyTXlNcjhSni8wAX5v1gbFbsSQTDveqCcjKSzDdKkKWStkbC-CAIbGwXbRtuMRzZRGQw1yEtcFhJNDkwoU65zAn4LwbtkK4YwXEDklTTIwXLlSGeLKnmzcxrkaLWabpv1_u2feUG2O8Pznux1-2dPyT0GYd-ijv2AbE4nM_MMwrRp-txtBkrkHW-_vzVXVsM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqIgE9IFpABAr40IofadWNvWt7DwillNDQECJopd5W9toOh-1u6CZUeQPOHHgXXocnYWazSSOBeuvVO4m8Oz-eGc98Q8iOcF4KoV0QOh4HkeFRoJi0gVACnAUVa1s30n4ciMOT6MNpfLpGfi96YbCscmETa0Ntywxz5HtMyiRmEjyEPd-URQwPum_G3wKcIIU3rYtxGnMROXKzCwjfqte9A-D1LmPdd8dvD4NmwkCQRSGf4Hi1jBstvYmFg91ZvB9VVodMK-9ZFmtjNWeGQ5yU8Niz2ChtfeKdsLKNAyPA-t-QCOKOTerd98v0DsJtqnY47wjkPAnxQrqNuYMYp3KvnIH1qIB_D4QNcmtajPXsQuf5yonXvUvuNK4q7cxla5OsuWKLbKwAGG6RzcY0VPRFg1_98h759VlbbOpH7H86QJ84b5o9aV2gQDUdVm5qyz8_fvaK7xCsA3fpsMxnIyBBn3R67ip4uA8nrKWdfATffvL1jGLOmF7CaRWunFb0C5Y7FS4HetahurC0j93LegILin7q92jvDHE6ZvfJ8XUw5wFZL8rCPSQ0c8qpSEdKqzCCnybGCQexpnNScm_CFnm14EeaNdDoOKEjTyFEQualK8xrkZ0l8XiOCPJ_sn1k7JIEYbzrhfJ8lDZWIXXGQLwqlA9VFHnpNCiM9RkXPtEZLLXIcxSLFI0NbCjTTc8EvBbCdqUdCQ64Ap8raZHtheSkjRWq0kudaZHdpTRdtetHV__NM3ITlC7t9wZHj8ltBv7evIB9m6xPzqfuCfhnE_O01gRK0mvWvL_3AVRd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVQeoAegBYQgYJ8KOJD2mZjrz_2hFJE1aASImilctraaztUbHejZLco_ALOHPiB_BLGiRMiQAiJq3cs2drx-L3dmTcI7XLrBOfKRrGlLEo0TSJJhIm45AAWJFNmXkj7esAPT5JXp-w09DmdhrRKoOLn8yBNgGRHEGZFp0s7SYcwwjpj455fhk9JXS6AY3HOIAZvcAZgvIU2TgbD3nvfUm45eVGVR4Hc-5_CXc_fme-MvXYPzeX6fw_Km-hqU47V7JMqirVb5-AGOluud5Fs8nGvqfVe_vkXKcf_2NBNdD0gUtxbuNAWumLLbbS5plO4jbZCBJjiJ0Gm-ukt9O2tMr5230v844GHvkWo6cTzPASs8HBqG1N9__K1X14CJ4eXiIdVMRuBiYeeDVB9eLgPF6nBvWJUTc7rDxfYfxrGP1WzSls1U_zOZzWVtgB70sOqNPjIFymrGgYkfnPUx_0LL8cxu42OD14evziMQpeHKE9iWvsWdznVSjjNuAUPMf4ftTQqJko6R3KmtFGUaApcNaXMEaalMi51lhsB8foOapVVae8inFtpZaISqWScwNRUW26BUlorBHU6bqNny1ee5UEB3TfiKDJgQt4_sjX_aKPdlfF4IfzxZ7N97zsrE6_WPR-oJqMsHP7Mag20lEsXyyRxwio4F8bllLtU5TDURo-952U-psCCchVKI2BbXp0r6wnA2RKgVdpGO0vnzEKwmWZEiJQRAeC5jR6tHPZvq773j3b30TUCoG6Rpb6DWvWksQ8AhNX6YThoPwCbIjEW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiometric+Normalization+Using+a+Pseudo%E2%88%92Invariant+Polygon+Features%E2%88%92Based+Algorithm+with+Contemporaneous+Sentinel%E2%88%922A+and+Landsat%E2%88%928+OLI+Imagery&rft.jtitle=Applied+sciences&rft.au=Lei+Chen&rft.au=Ying+Ma&rft.au=Yi+Lian&rft.au=Hu+Zhang&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2525&rft_id=info:doi/10.3390%2Fapp13042525&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ebb71668f0844f7eae35dfc36f9ac844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon