Real-Time Traffic Forecast System for the Accident-Prone Large-Scale Transportation Network in the Seoul Metropolitan Area

This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the method could be applied to various roadway sections without any loss of performance or efficiency. Due to its robustness, efficiency, and versati...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 27; no. 7; pp. 3085 - 3096
Main Authors Kim, Youngho, Park, Minju, Ka, Dongju, Lee, Chungwon
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.07.2023
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-023-0349-9

Cover

Abstract This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the method could be applied to various roadway sections without any loss of performance or efficiency. Due to its robustness, efficiency, and versatility, the method could be implemented in the Seoul Metropolitan Area to provide traffic authorities and road users with future traffic information even under accident conditions. This is the major contribution of this research and contrasts with state-of-the-art techniques proposed by prior studies, which rely heavily on parameter tuning with large historical datasets and produce only site-specific forecasts with limited prediction horizons under recurrent traffic conditions. The proposed method makes no assumptions about the physical structure of the transportation network and can be applied to different roads under different traffic conditions without time constraints.
AbstractList This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the method could be applied to various roadway sections without any loss of performance or efficiency. Due to its robustness, efficiency, and versatility, the method could be implemented in the Seoul Metropolitan Area to provide traffic authorities and road users with future traffic information even under accident conditions. This is the major contribution of this research and contrasts with state-of-the-art techniques proposed by prior studies, which rely heavily on parameter tuning with large historical datasets and produce only site-specific forecasts with limited prediction horizons under recurrent traffic conditions. The proposed method makes no assumptions about the physical structure of the transportation network and can be applied to different roads under different traffic conditions without time constraints.
This study proposes a reliable and efficient real-time forecasting platform for use in an accidentpronelarge-scale transportation network. We showed the method could be applied to variousroadway sections without any loss of performance or efficiency. Due to its robustness,efficiency, and versatility, the method could be implemented in the Seoul Metropolitan Areato provide traffic authorities and road users with future traffic information even under accidentconditions. This is the major contribution of this research and contrasts with state-of-the-arttechniques proposed by prior studies, which rely heavily on parameter tuning with largehistorical datasets and produce only site-specific forecasts with limited prediction horizonsunder recurrent traffic conditions. The proposed method makes no assumptions about thephysical structure of the transportation network and can be applied to different roads underdifferent traffic conditions without time constraints. KCI Citation Count: 0
Author Park, Minju
Kim, Youngho
Lee, Chungwon
Ka, Dongju
Author_xml – sequence: 1
  givenname: Youngho
  orcidid: 0000-0002-3345-6907
  surname: Kim
  fullname: Kim, Youngho
  organization: Dept. of Mobility Transformation, Korea Transport Institute
– sequence: 2
  givenname: Minju
  orcidid: 0000-0001-5982-650X
  surname: Park
  fullname: Park, Minju
  organization: Dept. of Big Data Application, Hannam University
– sequence: 3
  givenname: Dongju
  orcidid: 0000-0002-7446-0558
  surname: Ka
  fullname: Ka, Dongju
  organization: Dept. of Civil and Environmental Engineering, Seoul National University
– sequence: 4
  givenname: Chungwon
  orcidid: 0000-0002-2845-5002
  surname: Lee
  fullname: Lee, Chungwon
  email: chungwon@snu.ac.kr
  organization: Dept. of Civil and Environmental Engineering, Seoul National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002969438$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkctKAzEUhoMoeOsDuAu4E6K5TGaSZRFvUC-0dR0ymaTGjklNUkSf3mkreDb_WXznAt8x2A8xWADOCL4kGDdXmVCKOcKUIcwqieQeOCKyqRETWOwPPaU1aqQQh2CU8zseitFGMH4EfqZW92juPyycJ-2cN_A2Jmt0LnD2nYv9gC4mWN4sHBvjOxsKeknDeTjRaWHRzOh-OxryKqaii48BPtnyFdMS-rAdnNm47uGjLSmuYu-LDnCcrD4FB0732Y7-8gS83t7Mr-_R5Pnu4Xo8QabCrKCKcS0caVvNpetkzalrhWOy08aQljSdbpmtWmlILaXgzFWS45Zh0ZnW6IqwE3Cx2xuSU0vjVdR-m4uolkmNp_MHRTCtG8qbAT7fwasUP9c2F_Ue1ykM_ykqiWSc0kYOFN1ReZV8WNj0TxGsNk7UzokanKiNEyXZL5N_gSs
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3542847
Cites_doi 10.3390/s17071501
10.1016/S0968-090X(02)00009-8
10.1108/EC-12-2021-0719
10.1109/TITS.2014.2311123
10.1016/j.trc.2014.01.005
10.3141/1855-04
10.1016/j.trc.2021.103466
10.3390/s19102229
10.1109/COMST.2014.2339817
10.3141/1768-19
10.1016/j.sbspro.2013.08.076
10.1080/15472450903287781
10.1016/0191-2615(84)90002-X
10.1111/j.1467-8667.2009.00620.x
10.1016/0191-2615(93)90038-C
10.1109/TITS.2019.2935152
10.1016/j.trc.2012.08.004
10.1061/(ASCE)0733-947X(2002)128:6(490)
10.1109/TITS.2012.2203122
10.1080/15472450.2013.824762
10.1016/0191-2615(94)90002-7
10.1109/TITS.2011.2174051
10.1111/j.1467-9892.1987.tb00435.x
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1016/S0010-4655(99)00366-5
10.1049/cp:20020221
10.3141/2482-17
ContentType Journal Article
Copyright Korean Society of Civil Engineers 2023
Korean Society of Civil Engineers 2023.
Copyright_xml – notice: Korean Society of Civil Engineers 2023
– notice: Korean Society of Civil Engineers 2023.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s12205-023-0349-9
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 3096
ExternalDocumentID oai_kci_go_kr_ARTI_10267257
10_1007_s12205_023_0349_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACDTI
ACYCR
ID FETCH-LOGICAL-c403t-435a8f1bba59fd9652fb8f39dacc1b17dab3e4b9c1699853f4950b308dcbca413
IEDL.DBID 8FG
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:35 EST 2025
Tue Aug 12 16:40:32 EDT 2025
Fri Feb 21 02:43:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Non-recurrent traffic congestion
Real-time traffic prediction
Large-scale transportation network
Prediction horizon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-435a8f1bba59fd9652fb8f39dacc1b17dab3e4b9c1699853f4950b308dcbca413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7446-0558
0000-0002-2845-5002
0000-0001-5982-650X
0000-0002-3345-6907
OpenAccessLink https://dx.doi.org/10.1007/s12205-023-0349-9
PQID 2919352279
PQPubID 1496355
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10267257
proquest_journals_2919352279
springer_journals_10_1007_s12205_023_0349_9
PublicationCentury 2000
PublicationDate 20230700
20230701
2023-07
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2023
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References Han, Zhang, Yang, Yuan, Li, Cui, Zhang, Wang (CR16) 2022; 39
Chen, Chien (CR9) 2001; 1768
Hamad, Shourijeh, Lee, Faghri (CR15) 2009; 24
Zhang, Liu, Yang, Wei, Dong (CR39) 2013; 96
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (CR42) 2020; 21
Ahmed (CR1) 1983; 24
Newell (CR24) 1993; 27
Kim, Rim, Oh, Jeong, Kim (CR21) 2015; 2482
CR34
Yu, Wu, Wang, Wang, Ma (CR38) 2017; 17
Chrobok (CR11) 2005
Daganzo (CR13) 1994; 28
Ishak, Al-Deek (CR18) 2002; 128
Åström (CR2) 2002
CR30
Zhang, Yao, Hu, Zhao, Li, Hu (CR40) 2019; 19
Okutani, Stephanedes (CR25) 1984; 18
Vlahogianni, Karlaftis, Golias (CR32) 2014; 43
Djahel, Doolan, Muntean, Murphy (CR14) 2015; 17
Sugiyama (CR28) 1999; 121
Chien, Liu, Ozbay (CR10) 2003; 1855
Chan, Dillon, Singh, Chang (CR8) 2012; 13
CR4
CR3
Byon, Abdulhai, Shalaby (CR5) 2009; 13
Huang, Song, Hong, Xie (CR17) 2014; 15
Zhao, Li, Li, Liu (CR41) 2021; 2037
May (CR23) 1990
CR7
Kim (CR19) 2002
CR29
Yakowitz (CR36) 1987; 8
CR26
Smith, Williams, Keith Oswald (CR27) 2002; 10
Byon, Liang (CR6) 2014; 18
Williams, Hoel (CR35) 2003; 129
Kim, Kang, Park (CR20) 2015; 11
Van Lint, Van Hinsbergen (CR31) 2012; 22
Cui, Dong, Zhu, Li, Wang (CR12) 2022; 9
Lee, Rhee (CR22) 2022; 134
Wang, Shi (CR33) 2013; 27
Ye, Szeto, Wong (CR37) 2012; 13
References_xml – year: 1990
  ident: CR23
  publication-title: Traffic flow fundamentals
– volume: 17
  start-page: 1501
  issue: 7
  year: 2017
  ident: CR38
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in Transportation Networks
  publication-title: Sensors
  doi: 10.3390/s17071501
– volume: 24
  start-page: 309
  issue: 6
  year: 1983
  end-page: 310
  ident: CR1
  article-title: Stochastic processes in freeway traffic Part I. Robust prediction models
  publication-title: Traffic Engineering & Control
– volume: 10
  start-page: 303
  issue: 4
  year: 2002
  end-page: 321
  ident: CR27
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/S0968-090X(02)00009-8
– volume: 39
  start-page: 3400
  issue: 10
  year: 2022
  end-page: 3415
  ident: CR16
  article-title: Car-following traffic model based on PID control: Modelling and simulation
  publication-title: Engineering Computations
  doi: 10.1108/EC-12-2021-0719
– ident: CR4
– volume: 9
  start-page: 1017
  issue: 6
  year: 2022
  end-page: 1026
  ident: CR12
  article-title: Identifying accident black spots based on the accident spacing distribution
  publication-title: Journal of Traffic and Transportation Engineering
– volume: 15
  start-page: 2191
  issue: 5
  year: 2014
  end-page: 2201
  ident: CR17
  article-title: Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2311123
– ident: CR30
– volume: 43
  start-page: 3
  year: 2014
  end-page: 19
  ident: CR32
  article-title: Short-term traffic forecasting: Where we are and where we’re going
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2014.01.005
– volume: 1855
  start-page: 32
  issue: 1
  year: 2003
  end-page: 40
  ident: CR10
  article-title: Predicting travel times for the South Jersey real-time motorist information system
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/1855-04
– year: 2005
  ident: CR11
  publication-title: Theory and application of advanced traffic forecast methods
– volume: 134
  start-page: 103466
  year: 2022
  ident: CR22
  article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2021.103466
– volume: 19
  start-page: 2229
  issue: 10
  year: 2019
  ident: CR40
  article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of Transportation Networks
  publication-title: Sensors
  doi: 10.3390/s19102229
– volume: 17
  start-page: 125
  issue: 1
  year: 2015
  end-page: 151
  ident: CR14
  article-title: A communications-oriented perspective on traffic management systems for Smart Cities: Challenges and innovative approaches
  publication-title: IEEE Communications Surveys Tutorials
  doi: 10.1109/COMST.2014.2339817
– volume: 1768
  start-page: 157
  issue: 1
  year: 2001
  end-page: 161
  ident: CR9
  article-title: Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path based
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/1768-19
– volume: 96
  start-page: 653
  year: 2013
  end-page: 662
  ident: CR39
  article-title: An improved K-nearest neighbor model for short-term traffic flow prediction
  publication-title: Procedia - Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2013.08.076
– ident: CR29
– volume: 13
  start-page: 161
  issue: 4
  year: 2009
  end-page: 170
  ident: CR5
  article-title: Real-time transportation mode detection via tracking global positioning system mobile devices
  publication-title: Journal of Intelligent Transportation Systems
  doi: 10.1080/15472450903287781
– volume: 18
  start-page: 1
  issue: 1
  year: 1984
  end-page: 11
  ident: CR25
  article-title: Dynamic prediction of traffic volume through Kalman filtering theory
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/0191-2615(84)90002-X
– volume: 24
  start-page: 551
  issue: 8
  year: 2009
  end-page: 576
  ident: CR15
  article-title: Near-term travel speed prediction utilizing hilbert-huang transform
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2009.00620.x
– volume: 11
  start-page: 1885
  year: 2015
  end-page: 1898
  ident: CR20
  article-title: Application of traffic state prediction methods to urban expressway network in the City of Seoul
  publication-title: Journal of the Eastern Asia Society for Transportation Studies
– volume: 2037
  start-page: 012065
  issue: 1
  year: 2021
  ident: CR41
  article-title: CNN-LSTM based traffic prediction using spatial-temporal features
  publication-title: Journal of Physics: Conference Series
– volume: 27
  start-page: 281
  issue: 4
  year: 1993
  end-page: 287
  ident: CR24
  article-title: A simplified theory of kinematic waves in highway traffic, Part I: General theory
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/0191-2615(93)90038-C
– volume: 21
  start-page: 3848
  issue: 9
  year: 2020
  end-page: 3858
  ident: CR42
  article-title: T-GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2935152
– volume: 27
  start-page: 219
  year: 2013
  end-page: 232
  ident: CR33
  article-title: Short-term traffic speed forecasting hybrid model based on Chaos–wavelet analysis-support vector machine theory
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2012.08.004
– ident: CR3
– volume: 22
  start-page: 22
  issue: 1
  year: 2012
  end-page: 41
  ident: CR31
  article-title: Short-term traffic and travel time prediction models
  publication-title: Artificial Intelligence Applications to Critical Transportation Issues
– volume: 128
  start-page: 490
  issue: 6
  year: 2002
  end-page: 498
  ident: CR18
  article-title: Performance evaluation of short-term time-series traffic prediction model
  publication-title: Journal of Transportation Engineering
  doi: 10.1061/(ASCE)0733-947X(2002)128:6(490)
– volume: 13
  start-page: 1727
  issue: 4
  year: 2012
  end-page: 1737
  ident: CR37
  article-title: Short-term traffic speed forecasting based on data recorded at irregular intervals
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2012.2203122
– volume: 18
  start-page: 264
  issue: 3
  year: 2014
  end-page: 272
  ident: CR6
  article-title: Real-time transportation mode detection using smartphones and artificial neural networks: Performance comparisons between smartphones and conventional global positioning system sensors
  publication-title: Journal of Intelligent Transportation Systems
  doi: 10.1080/15472450.2013.824762
– volume: 28
  start-page: 269
  issue: 4
  year: 1994
  end-page: 287
  ident: CR13
  article-title: The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/0191-2615(94)90002-7
– ident: CR34
– volume: 13
  start-page: 644
  issue: 2
  year: 2012
  end-page: 654
  ident: CR8
  article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2011.2174051
– ident: CR7
– volume: 8
  start-page: 235
  issue: 2
  year: 1987
  end-page: 247
  ident: CR36
  article-title: Nearest-Neighbour Methods for time series analysis
  publication-title: Journal of Time Series Analysis
  doi: 10.1111/j.1467-9892.1987.tb00435.x
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  end-page: 672
  ident: CR35
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: Theoretical basis and empirical results
  publication-title: Journal of Transportation Engineering
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– year: 2002
  ident: CR2
  publication-title: Control system design lecture notes for ME 155A
– ident: CR26
– volume: 121
  start-page: 399
  year: 1999
  end-page: 401
  ident: CR28
  article-title: Optimal velocity model for traffic flow
  publication-title: Computer Physics Communications
  doi: 10.1016/S0010-4655(99)00366-5
– year: 2002
  ident: CR19
  publication-title: Online traffic flow model applying the dynamic flow-density relations
  doi: 10.1049/cp:20020221
– volume: 2482
  start-page: 133
  issue: 1
  year: 2015
  end-page: 140
  ident: CR21
  article-title: Multiple-step traffic speed forecasting strategy for Winter Freeway operations
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2482-17
SSID ssj0000327835
Score 2.2861896
Snippet This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the...
This study proposes a reliable and efficient real-time forecasting platform for use in an accidentpronelarge-scale transportation network. We showed the method...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 3085
SubjectTerms Accident conditions
Accuracy
Algorithms
Civil Engineering
Data processing
Driving conditions
Engineering
Environmental engineering
Forecasting
Geotechnical Engineering & Applied Earth Sciences
Industrial Pollution Prevention
Kalman filters
Machine learning
Metropolitan areas
Real time
Roads & highways
Traffic accidents & safety
Traffic congestion
Traffic information
Transportation Engineering
Transportation networks
Transportation planning
토목공학
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4UegJZWLC9Zam_IKImdbHxcISiPgqoCEj1ZfqLVoqy0m73w65nJQ0tRL5wSKXHk6HM832RmvgH4YVWSeOsjpxbGXI5Kwa1Pc15I45zA07Ipj76-Kc7v5eVD_tDVcS_6bPc-JNns1KtiN6oJ5WhjOGmqcPUR1nLyTwawNv7592r1ayUR1D6CkhdxSMFJkauPZ_7vOWhVqnn8h2G-CYo2tuZsE-76WbYpJtPjZW2P3fMbAcd3vsYWbHTck43bxfIZPoTqC3x6pUi4Dc9_kDhyqgthaMVIXoJR805nFjVrxc0ZslyGrJGNnaOGpDX_PZ9Vgf2ilHJ-i5A3Q1vF9AZ2dtOmmrNJ1Qy8DbPlE7sOddOgYYLsFKcUzFe4Pzu9OznnXXsG7mQiao5Ey5QxtdbkKnpV5Fm0ZRTKI8qpTUfeWBGkVS4t0KfLRURfLLEiKb2zzqDx_AaDCie4A8yERKbeGiGClZmLqggyk-hrFdFnWQxD-I4Q6ambaJLDpuPjTE_nGkn_hU6pixZuPUPY7yHU3Ze40JlCipqTTuIQjnpEVpdXqs0Ei0ZYNMGi1e677t6D9ayBlPJ492FQz5fhANlKbQ-71fkCQybh9A
  priority: 102
  providerName: Springer Nature
Title Real-Time Traffic Forecast System for the Accident-Prone Large-Scale Transportation Network in the Seoul Metropolitan Area
URI https://link.springer.com/article/10.1007/s12205-023-0349-9
https://www.proquest.com/docview/2919352279
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002969438
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2023, 27(7), , pp.3085-3096
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AFBBN
  dateStart: 19971201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1976-3808
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: BENPR
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: 8FG
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: U2A
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LThsxFLV4bMoCtdCKFIoswQ5ZjB8zzKxQUiVQWiIERKIry08UUU0gGTZ8fe91Jg2w6MojjTyyfDz2sX3vOYQc2irLvPWRoYUxUyelZNbznBXKOCfhsUzp0ZfD4nykLu7yu_bAbdaGVS7mxDRR-4nDM_JjUQHVyFHv7vTxiaFrFN6uthYaq2SdCxhJmCk-OPt3xpJJ9JHAKEYOLIOhNNfiYjNlz2GSKYNFi6FICwOSuVpP4xuq-e52NC06g49ks2WLtDuH9xNZCfUW2XilIbhNXq6B6jHM5KCw7qAgBEW7TWdmDZ3LkVPgpRR4Hu06hxaiDbuaTupAf2EQOLsBkFLVucZ5AooO58HhdFynijdh8vyHXoYmWSqMgU9Ck4L5TEaD_u33c9YaKjCnMtkwoEamjNxak1fRV0Uuoi2jrDzgwi0_8cbKoGzleAG7sFxG2D1lVmald9YZWO6-kLUaGrhDqAmZ4t4aKYNVwsWqCEoo2B0V0QsRQ4ccQF_qBzfWKGCN5f1EP0w10PQfmqPvFUwWHbK36Gvd_jszvUS6Q44W_b98vdRZRvg0wKcRPl19_f_HdskHkbDGUNs9stZMn8M3IBSN3U-jZp-sdwe93hDLs98_-1D2-sOra3g7Et2_rTDOUg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB215QAcEJ9iSwFLwAlZJLaTJgeEKmDZpbsrRFupN-NPtCrKlt1UCH4Uv5EZZ8MCB249JVJky_JM7Df2zHsAT22dZd76yEnCmKv9SnLr84KXyjgn8bVK5dHTWTk6Ue9Pi9Mt-NnXwlBaZb8mpoXaLxydkb8QNUKNgvjuXp1_5aQaRbervYRG5xaH4fs3DNlWL8dv0L7PhBi-PX494mtVAe5UJluO-MBUMbfWFHX0dVmIaKsoa4-Dy22-742VQdna5SWGIoWMGEJkVmaVd9YZXPOx3224oqSUxNVfDd_9PtPJJOlWUNZkjqiGExVYf5GaqvWoqJXjJsmJFIYjqN1ulvEvaPvPbWza5IY34cYanbKDzp1uwVZobsP1PzgL78CPjwgtOVWOMNzniICCkbynM6uWdfTnDHEwQ1zJDpwjydKWf1gumsAmlHTOj9ApUtOOUz05Bpt1yehs3qSGR2Fx8YVNQ5skHOaIX3FIwdyFk0uZ6nuw0-AA7wMzIVO5t0bKYJVwsS6DEgqjsTJ6IWIYwBOcS33m5poIs-n5eaHPlhrDgrHOSWcLF6cB7PVzrdf_6kpvPGsAz_v533ze8DqT-TSaT5P5dL37_84ew9XR8XSiJ-PZ4QO4JpLdKc13D3ba5UV4iGCmtY-SBzH4dNku-wtsDgbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF9BvQmwbZJa3Nc1MXnIuqCt5CnLCtd2a0Xf70z7dZV8eKphTal5EuZb5qZ7yPkyMgocsYFhhbGTJzmnBkXpywT2loOp3nVHn3XzS574vo5fZ74nI6bavdmS7LuaUCVpqI8eXPhZNr4hv2hDOINQ30VJmfJvIBQjdlXL2l__WSJOBpJYBkjDMgYanM1O5t_PQXiSzEKP7jmr-3RKup0VsjyhC7Sdo3vKpnxxRpZ-iYiuE4-HoDrMWzloBB4UBGCot-m1eOS1nrkFIgpBaJH29aih2jJ7kfDwtNbrAJnj4BSNbQWOa-Qot26Opz2i2rgox--v9I7X1aeCn0glPBKXm-QXufi6eySTRwVmBURLxlwI52H2BidyuBklibB5IFLB8DEJj512nAvjLRxBmlYygOkT5HhUe6ssRri3SaZK-AFtwjVPhKxM5pzb0Rig8y8SASkR1lwSRJ8ixzCXKqB7StUsMbjy1ANRgp4-pWK0fgK8GqR3Wau1eTjGatEAqtMUdqwRY6b-Z9engotI3wK4FMIn5Lb_7r7gCzcn3fU7VX3ZocsJtUqwCrcXTJXjt79HnCN0uxX6-kT9-bMYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Traffic+Forecast+System+for+the+Accident-Prone+Large-Scale+Transportation+Network+in+the+Seoul+Metropolitan+Area&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Kim%2C+Youngho&rft.au=Park%2C+Minju&rft.au=Ka%2C+Dongju&rft.au=Lee%2C+Chungwon&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=27&rft.issue=7&rft.spage=3085&rft.epage=3096&rft_id=info:doi/10.1007%2Fs12205-023-0349-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon