Real-Time Traffic Forecast System for the Accident-Prone Large-Scale Transportation Network in the Seoul Metropolitan Area
This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the method could be applied to various roadway sections without any loss of performance or efficiency. Due to its robustness, efficiency, and versati...
Saved in:
Published in | KSCE journal of civil engineering Vol. 27; no. 7; pp. 3085 - 3096 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Civil Engineers
01.07.2023
Springer Nature B.V 대한토목학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-7988 1976-3808 |
DOI | 10.1007/s12205-023-0349-9 |
Cover
Abstract | This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the method could be applied to various roadway sections without any loss of performance or efficiency. Due to its robustness, efficiency, and versatility, the method could be implemented in the Seoul Metropolitan Area to provide traffic authorities and road users with future traffic information even under accident conditions. This is the major contribution of this research and contrasts with state-of-the-art techniques proposed by prior studies, which rely heavily on parameter tuning with large historical datasets and produce only site-specific forecasts with limited prediction horizons under recurrent traffic conditions. The proposed method makes no assumptions about the physical structure of the transportation network and can be applied to different roads under different traffic conditions without time constraints. |
---|---|
AbstractList | This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the method could be applied to various roadway sections without any loss of performance or efficiency. Due to its robustness, efficiency, and versatility, the method could be implemented in the Seoul Metropolitan Area to provide traffic authorities and road users with future traffic information even under accident conditions. This is the major contribution of this research and contrasts with state-of-the-art techniques proposed by prior studies, which rely heavily on parameter tuning with large historical datasets and produce only site-specific forecasts with limited prediction horizons under recurrent traffic conditions. The proposed method makes no assumptions about the physical structure of the transportation network and can be applied to different roads under different traffic conditions without time constraints. This study proposes a reliable and efficient real-time forecasting platform for use in an accidentpronelarge-scale transportation network. We showed the method could be applied to variousroadway sections without any loss of performance or efficiency. Due to its robustness,efficiency, and versatility, the method could be implemented in the Seoul Metropolitan Areato provide traffic authorities and road users with future traffic information even under accidentconditions. This is the major contribution of this research and contrasts with state-of-the-arttechniques proposed by prior studies, which rely heavily on parameter tuning with largehistorical datasets and produce only site-specific forecasts with limited prediction horizonsunder recurrent traffic conditions. The proposed method makes no assumptions about thephysical structure of the transportation network and can be applied to different roads underdifferent traffic conditions without time constraints. KCI Citation Count: 0 |
Author | Park, Minju Kim, Youngho Lee, Chungwon Ka, Dongju |
Author_xml | – sequence: 1 givenname: Youngho orcidid: 0000-0002-3345-6907 surname: Kim fullname: Kim, Youngho organization: Dept. of Mobility Transformation, Korea Transport Institute – sequence: 2 givenname: Minju orcidid: 0000-0001-5982-650X surname: Park fullname: Park, Minju organization: Dept. of Big Data Application, Hannam University – sequence: 3 givenname: Dongju orcidid: 0000-0002-7446-0558 surname: Ka fullname: Ka, Dongju organization: Dept. of Civil and Environmental Engineering, Seoul National University – sequence: 4 givenname: Chungwon orcidid: 0000-0002-2845-5002 surname: Lee fullname: Lee, Chungwon email: chungwon@snu.ac.kr organization: Dept. of Civil and Environmental Engineering, Seoul National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002969438$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkctKAzEUhoMoeOsDuAu4E6K5TGaSZRFvUC-0dR0ymaTGjklNUkSf3mkreDb_WXznAt8x2A8xWADOCL4kGDdXmVCKOcKUIcwqieQeOCKyqRETWOwPPaU1aqQQh2CU8zseitFGMH4EfqZW92juPyycJ-2cN_A2Jmt0LnD2nYv9gC4mWN4sHBvjOxsKeknDeTjRaWHRzOh-OxryKqaii48BPtnyFdMS-rAdnNm47uGjLSmuYu-LDnCcrD4FB0732Y7-8gS83t7Mr-_R5Pnu4Xo8QabCrKCKcS0caVvNpetkzalrhWOy08aQljSdbpmtWmlILaXgzFWS45Zh0ZnW6IqwE3Cx2xuSU0vjVdR-m4uolkmNp_MHRTCtG8qbAT7fwasUP9c2F_Ue1ykM_ykqiWSc0kYOFN1ReZV8WNj0TxGsNk7UzokanKiNEyXZL5N_gSs |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3542847 |
Cites_doi | 10.3390/s17071501 10.1016/S0968-090X(02)00009-8 10.1108/EC-12-2021-0719 10.1109/TITS.2014.2311123 10.1016/j.trc.2014.01.005 10.3141/1855-04 10.1016/j.trc.2021.103466 10.3390/s19102229 10.1109/COMST.2014.2339817 10.3141/1768-19 10.1016/j.sbspro.2013.08.076 10.1080/15472450903287781 10.1016/0191-2615(84)90002-X 10.1111/j.1467-8667.2009.00620.x 10.1016/0191-2615(93)90038-C 10.1109/TITS.2019.2935152 10.1016/j.trc.2012.08.004 10.1061/(ASCE)0733-947X(2002)128:6(490) 10.1109/TITS.2012.2203122 10.1080/15472450.2013.824762 10.1016/0191-2615(94)90002-7 10.1109/TITS.2011.2174051 10.1111/j.1467-9892.1987.tb00435.x 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1016/S0010-4655(99)00366-5 10.1049/cp:20020221 10.3141/2482-17 |
ContentType | Journal Article |
Copyright | Korean Society of Civil Engineers 2023 Korean Society of Civil Engineers 2023. |
Copyright_xml | – notice: Korean Society of Civil Engineers 2023 – notice: Korean Society of Civil Engineers 2023. |
DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
DOI | 10.1007/s12205-023-0349-9 |
DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Korean Citation Index |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3808 |
EndPage | 3096 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10267257 10_1007_s12205_023_0349_9 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACDTI ACYCR |
ID | FETCH-LOGICAL-c403t-435a8f1bba59fd9652fb8f39dacc1b17dab3e4b9c1699853f4950b308dcbca413 |
IEDL.DBID | 8FG |
ISSN | 1226-7988 |
IngestDate | Sun Jan 19 03:36:35 EST 2025 Tue Aug 12 16:40:32 EDT 2025 Fri Feb 21 02:43:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Non-recurrent traffic congestion Real-time traffic prediction Large-scale transportation network Prediction horizon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-435a8f1bba59fd9652fb8f39dacc1b17dab3e4b9c1699853f4950b308dcbca413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7446-0558 0000-0002-2845-5002 0000-0001-5982-650X 0000-0002-3345-6907 |
OpenAccessLink | https://dx.doi.org/10.1007/s12205-023-0349-9 |
PQID | 2919352279 |
PQPubID | 1496355 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10267257 proquest_journals_2919352279 springer_journals_10_1007_s12205_023_0349_9 |
PublicationCentury | 2000 |
PublicationDate | 20230700 20230701 2023-07 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | KSCE journal of civil engineering |
PublicationTitleAbbrev | KSCE J Civ Eng |
PublicationYear | 2023 |
Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
References | Han, Zhang, Yang, Yuan, Li, Cui, Zhang, Wang (CR16) 2022; 39 Chen, Chien (CR9) 2001; 1768 Hamad, Shourijeh, Lee, Faghri (CR15) 2009; 24 Zhang, Liu, Yang, Wei, Dong (CR39) 2013; 96 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (CR42) 2020; 21 Ahmed (CR1) 1983; 24 Newell (CR24) 1993; 27 Kim, Rim, Oh, Jeong, Kim (CR21) 2015; 2482 CR34 Yu, Wu, Wang, Wang, Ma (CR38) 2017; 17 Chrobok (CR11) 2005 Daganzo (CR13) 1994; 28 Ishak, Al-Deek (CR18) 2002; 128 Åström (CR2) 2002 CR30 Zhang, Yao, Hu, Zhao, Li, Hu (CR40) 2019; 19 Okutani, Stephanedes (CR25) 1984; 18 Vlahogianni, Karlaftis, Golias (CR32) 2014; 43 Djahel, Doolan, Muntean, Murphy (CR14) 2015; 17 Sugiyama (CR28) 1999; 121 Chien, Liu, Ozbay (CR10) 2003; 1855 Chan, Dillon, Singh, Chang (CR8) 2012; 13 CR4 CR3 Byon, Abdulhai, Shalaby (CR5) 2009; 13 Huang, Song, Hong, Xie (CR17) 2014; 15 Zhao, Li, Li, Liu (CR41) 2021; 2037 May (CR23) 1990 CR7 Kim (CR19) 2002 CR29 Yakowitz (CR36) 1987; 8 CR26 Smith, Williams, Keith Oswald (CR27) 2002; 10 Byon, Liang (CR6) 2014; 18 Williams, Hoel (CR35) 2003; 129 Kim, Kang, Park (CR20) 2015; 11 Van Lint, Van Hinsbergen (CR31) 2012; 22 Cui, Dong, Zhu, Li, Wang (CR12) 2022; 9 Lee, Rhee (CR22) 2022; 134 Wang, Shi (CR33) 2013; 27 Ye, Szeto, Wong (CR37) 2012; 13 |
References_xml | – year: 1990 ident: CR23 publication-title: Traffic flow fundamentals – volume: 17 start-page: 1501 issue: 7 year: 2017 ident: CR38 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in Transportation Networks publication-title: Sensors doi: 10.3390/s17071501 – volume: 24 start-page: 309 issue: 6 year: 1983 end-page: 310 ident: CR1 article-title: Stochastic processes in freeway traffic Part I. Robust prediction models publication-title: Traffic Engineering & Control – volume: 10 start-page: 303 issue: 4 year: 2002 end-page: 321 ident: CR27 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/S0968-090X(02)00009-8 – volume: 39 start-page: 3400 issue: 10 year: 2022 end-page: 3415 ident: CR16 article-title: Car-following traffic model based on PID control: Modelling and simulation publication-title: Engineering Computations doi: 10.1108/EC-12-2021-0719 – ident: CR4 – volume: 9 start-page: 1017 issue: 6 year: 2022 end-page: 1026 ident: CR12 article-title: Identifying accident black spots based on the accident spacing distribution publication-title: Journal of Traffic and Transportation Engineering – volume: 15 start-page: 2191 issue: 5 year: 2014 end-page: 2201 ident: CR17 article-title: Deep architecture for traffic flow prediction: Deep belief networks with multitask learning publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2311123 – ident: CR30 – volume: 43 start-page: 3 year: 2014 end-page: 19 ident: CR32 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2014.01.005 – volume: 1855 start-page: 32 issue: 1 year: 2003 end-page: 40 ident: CR10 article-title: Predicting travel times for the South Jersey real-time motorist information system publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/1855-04 – year: 2005 ident: CR11 publication-title: Theory and application of advanced traffic forecast methods – volume: 134 start-page: 103466 year: 2022 ident: CR22 article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2021.103466 – volume: 19 start-page: 2229 issue: 10 year: 2019 ident: CR40 article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of Transportation Networks publication-title: Sensors doi: 10.3390/s19102229 – volume: 17 start-page: 125 issue: 1 year: 2015 end-page: 151 ident: CR14 article-title: A communications-oriented perspective on traffic management systems for Smart Cities: Challenges and innovative approaches publication-title: IEEE Communications Surveys Tutorials doi: 10.1109/COMST.2014.2339817 – volume: 1768 start-page: 157 issue: 1 year: 2001 end-page: 161 ident: CR9 article-title: Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path based publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/1768-19 – volume: 96 start-page: 653 year: 2013 end-page: 662 ident: CR39 article-title: An improved K-nearest neighbor model for short-term traffic flow prediction publication-title: Procedia - Social and Behavioral Sciences doi: 10.1016/j.sbspro.2013.08.076 – ident: CR29 – volume: 13 start-page: 161 issue: 4 year: 2009 end-page: 170 ident: CR5 article-title: Real-time transportation mode detection via tracking global positioning system mobile devices publication-title: Journal of Intelligent Transportation Systems doi: 10.1080/15472450903287781 – volume: 18 start-page: 1 issue: 1 year: 1984 end-page: 11 ident: CR25 article-title: Dynamic prediction of traffic volume through Kalman filtering theory publication-title: Transportation Research Part B: Methodological doi: 10.1016/0191-2615(84)90002-X – volume: 24 start-page: 551 issue: 8 year: 2009 end-page: 576 ident: CR15 article-title: Near-term travel speed prediction utilizing hilbert-huang transform publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2009.00620.x – volume: 11 start-page: 1885 year: 2015 end-page: 1898 ident: CR20 article-title: Application of traffic state prediction methods to urban expressway network in the City of Seoul publication-title: Journal of the Eastern Asia Society for Transportation Studies – volume: 2037 start-page: 012065 issue: 1 year: 2021 ident: CR41 article-title: CNN-LSTM based traffic prediction using spatial-temporal features publication-title: Journal of Physics: Conference Series – volume: 27 start-page: 281 issue: 4 year: 1993 end-page: 287 ident: CR24 article-title: A simplified theory of kinematic waves in highway traffic, Part I: General theory publication-title: Transportation Research Part B: Methodological doi: 10.1016/0191-2615(93)90038-C – volume: 21 start-page: 3848 issue: 9 year: 2020 end-page: 3858 ident: CR42 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2935152 – volume: 27 start-page: 219 year: 2013 end-page: 232 ident: CR33 article-title: Short-term traffic speed forecasting hybrid model based on Chaos–wavelet analysis-support vector machine theory publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2012.08.004 – ident: CR3 – volume: 22 start-page: 22 issue: 1 year: 2012 end-page: 41 ident: CR31 article-title: Short-term traffic and travel time prediction models publication-title: Artificial Intelligence Applications to Critical Transportation Issues – volume: 128 start-page: 490 issue: 6 year: 2002 end-page: 498 ident: CR18 article-title: Performance evaluation of short-term time-series traffic prediction model publication-title: Journal of Transportation Engineering doi: 10.1061/(ASCE)0733-947X(2002)128:6(490) – volume: 13 start-page: 1727 issue: 4 year: 2012 end-page: 1737 ident: CR37 article-title: Short-term traffic speed forecasting based on data recorded at irregular intervals publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2012.2203122 – volume: 18 start-page: 264 issue: 3 year: 2014 end-page: 272 ident: CR6 article-title: Real-time transportation mode detection using smartphones and artificial neural networks: Performance comparisons between smartphones and conventional global positioning system sensors publication-title: Journal of Intelligent Transportation Systems doi: 10.1080/15472450.2013.824762 – volume: 28 start-page: 269 issue: 4 year: 1994 end-page: 287 ident: CR13 article-title: The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory publication-title: Transportation Research Part B: Methodological doi: 10.1016/0191-2615(94)90002-7 – ident: CR34 – volume: 13 start-page: 644 issue: 2 year: 2012 end-page: 654 ident: CR8 article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2011.2174051 – ident: CR7 – volume: 8 start-page: 235 issue: 2 year: 1987 end-page: 247 ident: CR36 article-title: Nearest-Neighbour Methods for time series analysis publication-title: Journal of Time Series Analysis doi: 10.1111/j.1467-9892.1987.tb00435.x – volume: 129 start-page: 664 issue: 6 year: 2003 end-page: 672 ident: CR35 article-title: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: Theoretical basis and empirical results publication-title: Journal of Transportation Engineering doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – year: 2002 ident: CR2 publication-title: Control system design lecture notes for ME 155A – ident: CR26 – volume: 121 start-page: 399 year: 1999 end-page: 401 ident: CR28 article-title: Optimal velocity model for traffic flow publication-title: Computer Physics Communications doi: 10.1016/S0010-4655(99)00366-5 – year: 2002 ident: CR19 publication-title: Online traffic flow model applying the dynamic flow-density relations doi: 10.1049/cp:20020221 – volume: 2482 start-page: 133 issue: 1 year: 2015 end-page: 140 ident: CR21 article-title: Multiple-step traffic speed forecasting strategy for Winter Freeway operations publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/2482-17 |
SSID | ssj0000327835 |
Score | 2.2861896 |
Snippet | This study proposes a reliable and efficient real-time forecasting platform for use in an accident-prone large-scale transportation network. We showed the... This study proposes a reliable and efficient real-time forecasting platform for use in an accidentpronelarge-scale transportation network. We showed the method... |
SourceID | nrf proquest springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 3085 |
SubjectTerms | Accident conditions Accuracy Algorithms Civil Engineering Data processing Driving conditions Engineering Environmental engineering Forecasting Geotechnical Engineering & Applied Earth Sciences Industrial Pollution Prevention Kalman filters Machine learning Metropolitan areas Real time Roads & highways Traffic accidents & safety Traffic congestion Traffic information Transportation Engineering Transportation networks Transportation planning 토목공학 |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4UegJZWLC9Zam_IKImdbHxcISiPgqoCEj1ZfqLVoqy0m73w65nJQ0tRL5wSKXHk6HM832RmvgH4YVWSeOsjpxbGXI5Kwa1Pc15I45zA07Ipj76-Kc7v5eVD_tDVcS_6bPc-JNns1KtiN6oJ5WhjOGmqcPUR1nLyTwawNv7592r1ayUR1D6CkhdxSMFJkauPZ_7vOWhVqnn8h2G-CYo2tuZsE-76WbYpJtPjZW2P3fMbAcd3vsYWbHTck43bxfIZPoTqC3x6pUi4Dc9_kDhyqgthaMVIXoJR805nFjVrxc0ZslyGrJGNnaOGpDX_PZ9Vgf2ilHJ-i5A3Q1vF9AZ2dtOmmrNJ1Qy8DbPlE7sOddOgYYLsFKcUzFe4Pzu9OznnXXsG7mQiao5Ey5QxtdbkKnpV5Fm0ZRTKI8qpTUfeWBGkVS4t0KfLRURfLLEiKb2zzqDx_AaDCie4A8yERKbeGiGClZmLqggyk-hrFdFnWQxD-I4Q6ambaJLDpuPjTE_nGkn_hU6pixZuPUPY7yHU3Ze40JlCipqTTuIQjnpEVpdXqs0Ei0ZYNMGi1e677t6D9ayBlPJ492FQz5fhANlKbQ-71fkCQybh9A priority: 102 providerName: Springer Nature |
Title | Real-Time Traffic Forecast System for the Accident-Prone Large-Scale Transportation Network in the Seoul Metropolitan Area |
URI | https://link.springer.com/article/10.1007/s12205-023-0349-9 https://www.proquest.com/docview/2919352279 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002969438 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | KSCE Journal of Civil Engineering, 2023, 27(7), , pp.3085-3096 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AFBBN dateStart: 19971201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1976-3808 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: BENPR dateStart: 19971201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1976-3808 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: 8FG dateStart: 19971201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: U2A dateStart: 19971201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LThsxFLV4bMoCtdCKFIoswQ5ZjB8zzKxQUiVQWiIERKIry08UUU0gGTZ8fe91Jg2w6MojjTyyfDz2sX3vOYQc2irLvPWRoYUxUyelZNbznBXKOCfhsUzp0ZfD4nykLu7yu_bAbdaGVS7mxDRR-4nDM_JjUQHVyFHv7vTxiaFrFN6uthYaq2SdCxhJmCk-OPt3xpJJ9JHAKEYOLIOhNNfiYjNlz2GSKYNFi6FICwOSuVpP4xuq-e52NC06g49ks2WLtDuH9xNZCfUW2XilIbhNXq6B6jHM5KCw7qAgBEW7TWdmDZ3LkVPgpRR4Hu06hxaiDbuaTupAf2EQOLsBkFLVucZ5AooO58HhdFynijdh8vyHXoYmWSqMgU9Ck4L5TEaD_u33c9YaKjCnMtkwoEamjNxak1fRV0Uuoi2jrDzgwi0_8cbKoGzleAG7sFxG2D1lVmald9YZWO6-kLUaGrhDqAmZ4t4aKYNVwsWqCEoo2B0V0QsRQ4ccQF_qBzfWKGCN5f1EP0w10PQfmqPvFUwWHbK36Gvd_jszvUS6Q44W_b98vdRZRvg0wKcRPl19_f_HdskHkbDGUNs9stZMn8M3IBSN3U-jZp-sdwe93hDLs98_-1D2-sOra3g7Et2_rTDOUg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB215QAcEJ9iSwFLwAlZJLaTJgeEKmDZpbsrRFupN-NPtCrKlt1UCH4Uv5EZZ8MCB249JVJky_JM7Df2zHsAT22dZd76yEnCmKv9SnLr84KXyjgn8bVK5dHTWTk6Ue9Pi9Mt-NnXwlBaZb8mpoXaLxydkb8QNUKNgvjuXp1_5aQaRbervYRG5xaH4fs3DNlWL8dv0L7PhBi-PX494mtVAe5UJluO-MBUMbfWFHX0dVmIaKsoa4-Dy22-742VQdna5SWGIoWMGEJkVmaVd9YZXPOx3224oqSUxNVfDd_9PtPJJOlWUNZkjqiGExVYf5GaqvWoqJXjJsmJFIYjqN1ulvEvaPvPbWza5IY34cYanbKDzp1uwVZobsP1PzgL78CPjwgtOVWOMNzniICCkbynM6uWdfTnDHEwQ1zJDpwjydKWf1gumsAmlHTOj9ApUtOOUz05Bpt1yehs3qSGR2Fx8YVNQ5skHOaIX3FIwdyFk0uZ6nuw0-AA7wMzIVO5t0bKYJVwsS6DEgqjsTJ6IWIYwBOcS33m5poIs-n5eaHPlhrDgrHOSWcLF6cB7PVzrdf_6kpvPGsAz_v533ze8DqT-TSaT5P5dL37_84ew9XR8XSiJ-PZ4QO4JpLdKc13D3ba5UV4iGCmtY-SBzH4dNku-wtsDgbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF9BvQmwbZJa3Nc1MXnIuqCt5CnLCtd2a0Xf70z7dZV8eKphTal5EuZb5qZ7yPkyMgocsYFhhbGTJzmnBkXpywT2loOp3nVHn3XzS574vo5fZ74nI6bavdmS7LuaUCVpqI8eXPhZNr4hv2hDOINQ30VJmfJvIBQjdlXL2l__WSJOBpJYBkjDMgYanM1O5t_PQXiSzEKP7jmr-3RKup0VsjyhC7Sdo3vKpnxxRpZ-iYiuE4-HoDrMWzloBB4UBGCot-m1eOS1nrkFIgpBaJH29aih2jJ7kfDwtNbrAJnj4BSNbQWOa-Qot26Opz2i2rgox--v9I7X1aeCn0glPBKXm-QXufi6eySTRwVmBURLxlwI52H2BidyuBklibB5IFLB8DEJj512nAvjLRxBmlYygOkT5HhUe6ssRri3SaZK-AFtwjVPhKxM5pzb0Rig8y8SASkR1lwSRJ8ixzCXKqB7StUsMbjy1ANRgp4-pWK0fgK8GqR3Wau1eTjGatEAqtMUdqwRY6b-Z9engotI3wK4FMIn5Lb_7r7gCzcn3fU7VX3ZocsJtUqwCrcXTJXjt79HnCN0uxX6-kT9-bMYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Traffic+Forecast+System+for+the+Accident-Prone+Large-Scale+Transportation+Network+in+the+Seoul+Metropolitan+Area&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Kim%2C+Youngho&rft.au=Park%2C+Minju&rft.au=Ka%2C+Dongju&rft.au=Lee%2C+Chungwon&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=27&rft.issue=7&rft.spage=3085&rft.epage=3096&rft_id=info:doi/10.1007%2Fs12205-023-0349-9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |