Decomposition algorithms for on-line estimation with nonlinear DAE models
In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are described by a set of Ordinary Differential Equations (ODE) subject to initial values, discretized and solved under a simultaneous solution...
Saved in:
| Published in | Computers & chemical engineering Vol. 21; no. 3; pp. 283 - 299 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.01.1997
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-1354 1873-4375 |
| DOI | 10.1016/S0098-1354(96)90029-0 |
Cover
| Abstract | In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are described by a set of Ordinary Differential Equations (ODE) subject to initial values, discretized and solved under a simultaneous solution strategy within an Error-in-all-Variable-Measurements (EVM) framework. In this paper, we extend this work to systems described by Differential and Algebraic Equations (DAE), for both initial value (IVP) and boundary value (BVP) problems. The resulting discretized NLP problems are usually large both in the number of variables and the number of degrees-of-freedom, and the size of the problem grows linearly with the number of data samples or the number of discretizations, making them difficult to solve with general purpose NLP solvers. We discretize the DAE model with an implicit Runge-Kutta scheme (IRK) so that higher index and stiff problems can be solved, and use the SQP method to solve the resulting NLP. Under the assumption that the measurement errors are independently distributed, the optimality conditions for each data set at the QP subproblem level are decoupled so that the first order conditions in the state variables, input variables and the stage derivatives can be solved recursively and expressed as functions of the optimality conditions in the parameters, thus reducing the size of the QP subproblem and turning the solution effort linear with both the number of sample points and the number of discretization points. We use two decoupling procedures depending on whether the DAE system is expressed as an IVP or a BVP. For the IVP we extend the technique used in our previous paper and use an affine transform which expresses the directions in the variables and the multipliers as functions of the steps in the parameters. For the BVP we use a selected variable elimination procedure so that the optimality conditions in the state and input variables, stage derivatives and multipliers of the QP subproblem will be transformed into an almost block diagonal system of linear equations. We then solve this system using SOLVEBLOCK, a solution method linear with the number of blocks to reduce the size of the QP subproblem to the dimension of the parameters. As seen in our examples, these approaches are therefore much faster than general purpose NLP solvers. In this paper we also present a case where an IVP is unstable and difficult to solve, but stable and well behaved when rewritten as a BVP. |
|---|---|
| AbstractList | A Differential and Algebraic Equations (DAE) model was discretized using an implicit Runge-Kutta scheme to solve higher index and stiff problems. For initial value problems, a decoupling technique was used with an affine transform expressing the direction in the variables and the multipliers as function of steps in the parameter. The boundary value problems were solved by a selected variable elimination procedure to transform the optimality conditions in the state and input variables, stage derivatives and multipliers of the quadratic programming (QP) subproblem into an almost block diagonal system of linear equations. The system was then solved by SOLVEBLOCK to reduce the size of the QP subproblem to the dimension of the parameters. In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are described by a set of Ordinary Differential Equations (ODE) subject to initial values, discretized and solved under a simultaneous solution strategy within an Error-in-all-Variable-Measurements (EVM) framework. In this paper, we extend this work to systems described by Differential and Algebraic Equations (DAE), for both initial value (IVP) and boundary value (BVP) problems. The resulting discretized NLP problems are usually large both in the number of variables and the number of degrees-of-freedom, and the size of the problem grows linearly with the number of data samples or the number of discretizations, making them difficult to solve with general purpose NLP solvers. We discretize the DAE model with an implicit Runge-Kutta scheme (IRK) so that higher index and stiff problems can be solved, and use the SQP method to solve the resulting NLP. Under the assumption that the measurement errors are independently distributed, the optimality conditions for each data set at the QP subproblem level are decoupled so that the first order conditions in the state variables, input variables and the stage derivatives can be solved recursively and expressed as functions of the optimality conditions in the parameters, thus reducing the size of the QP subproblem and turning the solution effort linear with both the number of sample points and the number of discretization points. We use two decoupling procedures depending on whether the DAE system is expressed as an IVP or a BVP. For the IVP we extend the technique used in our previous paper and use an affine transform which expresses the directions in the variables and the multipliers as functions of the steps in the parameters. For the BVP we use a selected variable elimination procedure so that the optimality conditions in the state and input variables, stage derivatives and multipliers of the QP subproblem will be transformed into an almost block diagonal system of linear equations. We then solve this system using SOLVEBLOCK, a solution method linear with the number of blocks to reduce the size of the QP subproblem to the dimension of the parameters. As seen in our examples, these approaches are therefore much faster than general purpose NLP solvers. In this paper we also present a case where an IVP is unstable and difficult to solve, but stable and well behaved when rewritten as a BVP. |
| Author | Biegler, L.T. Albuquerque, João S. |
| Author_xml | – sequence: 1 givenname: João S. surname: Albuquerque fullname: Albuquerque, João S. – sequence: 2 givenname: L.T. surname: Biegler fullname: Biegler, L.T. email: biegler@cmu.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2525145$$DView record in Pascal Francis |
| BookMark | eNqFkE1LxDAQhoMouH78BKEHET1UJ03StHiQZXfVBcGDeg7ZdKqRtlmTqvjvTbviwYungZnnHWaePbLduQ4JOaJwToHmFw8AZZFSJvhpmZ-VAFmZwhaZ0EKylDMptsnkF9kleyG8QoR4UUzIco7GtWsXbG9dl-jm2Xnbv7QhqZ1PXJc2tsMEQ29bPRKfcZrEA4a-9sl8ukhaV2ETDshOrZuAhz91nzxdLx5nt-nd_c1yNr1LDQfWpyzHlWYZZSuuAapCx1oxbaipMywxA1ZzLRnPpBSlrFdg5EpITnUZf5UiZ_vkZLN37d3be7xMtTYYbBrdoXsPKssFUAARweMfUAejm9rrztig1j6-4r9UJjJB-YCJDWa8C8Fj_UtQUINfNfpVgzxV5mr0qyDmLv_kjO1HR73Xtvk3fbVJR3P4YdGrYCx2Bivr0fSqcvafDd9ZFZYO |
| CODEN | CCENDW |
| CitedBy_id | crossref_primary_10_1002_aic_690480111 crossref_primary_10_1021_ie960752v crossref_primary_10_1002_aic_690430414 crossref_primary_10_1016_S0377_0427_00_00302_2 crossref_primary_10_3182_20090712_4_TR_2008_00129 crossref_primary_10_1016_j_ces_2010_04_020 crossref_primary_10_1016_j_compchemeng_2004_07_008 crossref_primary_10_1016_S0098_1354_00_00302_1 crossref_primary_10_1016_j_conengprac_2012_04_003 crossref_primary_10_3390_math13060944 crossref_primary_10_1007_s00158_004_0509_6 crossref_primary_10_1016_j_cep_2006_06_021 crossref_primary_10_1016_S0009_2509_01_00376_1 crossref_primary_10_1016_S1474_6670_17_43218_6 crossref_primary_10_1371_journal_pcbi_1006828 crossref_primary_10_3182_20050703_6_CZ_1902_00067 crossref_primary_10_1016_j_ifacol_2018_09_536 crossref_primary_10_1016_S0967_0661_00_00110_6 crossref_primary_10_1016_S1474_6670_17_57017_2 crossref_primary_10_1109_TAC_2002_808470 crossref_primary_10_1002_ppsc_200800028 crossref_primary_10_1016_S0009_2509_00_00488_7 crossref_primary_10_2514_1_60820 crossref_primary_10_1016_j_compchemeng_2003_11_003 crossref_primary_10_1109_TCST_2022_3215102 crossref_primary_10_1016_j_compchemeng_2014_04_013 crossref_primary_10_1016_S0959_1524_98_00009_2 |
| Cites_doi | 10.1016/0098-1354(94)00107-Y 10.1016/0098-1354(85)80004-1 10.1137/0903023 10.1016/0098-1354(90)80007-X 10.1137/0909004 10.1093/imanum/7.3.371 10.1021/ie00043a029 10.1016/0098-1354(94)E0001-4 10.1137/0726054 10.1016/0098-1354(91)87028-8 10.1137/0728059 10.1145/355873.355880 |
| ContentType | Journal Article |
| Copyright | 1996 1997 INIST-CNRS |
| Copyright_xml | – notice: 1996 – notice: 1997 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/S0098-1354(96)90029-0 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1873-4375 |
| EndPage | 299 |
| ExternalDocumentID | 2525145 10_1016_S0098_1354_96_90029_0 S0098135496900290 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNUV ABTAH ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-Q HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SST SSZ T5K VH1 ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADNMO AEBSH AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF BBWZM CITATION EFKBS EJD FEDTE GBLVA HLY HLZ HVGLF NDZJH P-8 SCE SEW WUQ ~HD AFXIZ AGCQF AGRNS BNPGV IQODW RIG SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c403t-36eba3213b4a00d8ab4ad3ac1cf2e9e203f4a734277597fb0c7b5741a91017563 |
| IEDL.DBID | AIKHN |
| ISSN | 0098-1354 |
| IngestDate | Thu Oct 02 10:04:22 EDT 2025 Mon Jul 21 09:15:38 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Wed Oct 01 04:01:36 EDT 2025 Fri Feb 23 02:27:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Parameter estimation Differential equation Initial value problem Non linear programming Dynamical system Runge Kutta method Quadratic programming Non linear system Modeling Boundary value problem Non linear model Algebraic equation Dynamic model |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-36eba3213b4a00d8ab4ad3ac1cf2e9e203f4a734277597fb0c7b5741a91017563 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 26501005 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_26501005 pascalfrancis_primary_2525145 crossref_primary_10_1016_S0098_1354_96_90029_0 crossref_citationtrail_10_1016_S0098_1354_96_90029_0 elsevier_sciencedirect_doi_10_1016_S0098_1354_96_90029_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1997-01-01 |
| PublicationDateYYYYMMDD | 1997-01-01 |
| PublicationDate_xml | – month: 01 year: 1997 text: 1997-01-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 1997 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Ascher, Petzold (BIB9) 1991; 28 Ascher, Mattheij, Russell (BIB5) 1988 Tjoa, Biegler (BIB21) 1991; 30 Cuthrell, Biegler (BIB13) 1985; 9 Schmid, Biegler (BIB15) 1994; 8 Santos, Oliveira, Biegler (BIB19) June 1995 Albuquerque, Biegler (BIB1) 1995; 19 Campbell (BIB3) 1994 Petzold (BIB7) 1982; 3 De Boor, Weiss (BIB16) 1980; 6 Tanartkit, Biegler (BIB6) 1995; 34 Brenan, Petzold (BIB8) 1989; 26 Gill, Murray, Wright (BIB14) 1981 Bock (BIB18) 1982 Bachmann, Brull, Mrziglod, Pallaske (BIB11) 1990; 14 Fletcher, Xu (BIB20) 1979; 7 Kim, Liebman, Edgar (BIB2) 1991; 15 Perry (BIB17) 1984 Chung, Westerberg (BIB12) 1991 Gear (BIB10) 1988; 9 Brenan, Campbell, Petzold (BIB4) 1989 Bachmann (10.1016/S0098-1354(96)90029-0_BIB11) 1990; 14 Santos (10.1016/S0098-1354(96)90029-0_BIB19) 1995 Perry (10.1016/S0098-1354(96)90029-0_BIB17) 1984 Kim (10.1016/S0098-1354(96)90029-0_BIB2) 1991; 15 Petzold (10.1016/S0098-1354(96)90029-0_BIB7) 1982; 3 Brenan (10.1016/S0098-1354(96)90029-0_BIB8) 1989; 26 Schmid (10.1016/S0098-1354(96)90029-0_BIB15) 1994; 8 De Boor (10.1016/S0098-1354(96)90029-0_BIB16) 1980; 6 Campbell (10.1016/S0098-1354(96)90029-0_BIB3) 1994 Chung (10.1016/S0098-1354(96)90029-0_BIB12) 1991 Cuthrell (10.1016/S0098-1354(96)90029-0_BIB13) 1985; 9 Tjoa (10.1016/S0098-1354(96)90029-0_BIB21) 1991; 30 Ascher (10.1016/S0098-1354(96)90029-0_BIB9) 1991; 28 Albuquerque (10.1016/S0098-1354(96)90029-0_BIB1) 1995; 19 Gear (10.1016/S0098-1354(96)90029-0_BIB10) 1988; 9 Fletcher (10.1016/S0098-1354(96)90029-0_BIB20) 1979; 7 Brenan (10.1016/S0098-1354(96)90029-0_BIB4) 1989 Tanartkit (10.1016/S0098-1354(96)90029-0_BIB6) 1995; 34 Bock (10.1016/S0098-1354(96)90029-0_BIB18) 1982 Ascher (10.1016/S0098-1354(96)90029-0_BIB5) 1988 Gill (10.1016/S0098-1354(96)90029-0_BIB14) 1981 |
| References_xml | – volume: 19 start-page: 1031 year: 1995 ident: BIB1 article-title: Decomposition Algorithms for On-line Estimation with Nonlinear Models publication-title: Computers Chem. Engng. – year: 1988 ident: BIB5 publication-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations – year: 1989 ident: BIB4 article-title: Numerical Solution of Initial-Value Problems publication-title: Differential-Algebraic Equations – volume: 9 start-page: 39 year: 1988 ident: BIB10 article-title: Differential-Algebraic Equation Index Transformations publication-title: SIAM J. Sci. Stat. Comput. – year: 1994 ident: BIB3 article-title: High Index Differential Algebraic Equations publication-title: Mechanics of Structures and Machines – volume: 26 start-page: 976 year: 1989 ident: BIB8 article-title: The Numerical Solution of Higher Index Differential/Algebraic Equations by Implicit Methods publication-title: SIAM J. Numer. Anal. – volume: 14 start-page: 1271 year: 1990 ident: BIB11 article-title: On methods for reducing the Index of Differential Algebraic Equations publication-title: Computers Chem. Engng. – year: 1982 ident: BIB18 article-title: Recent Advances in Parameter Identification Techniques for O.D.E. publication-title: Numerical Treatment of Inverse Problems in Differential and Integral Equations – volume: 30 start-page: 376 year: 1991 ident: BIB21 article-title: Simultaneous Solution and Optimization Strategies for Parameter Estimation of Differential-Algebraic Equation Systems publication-title: I and EC Res. – volume: 3 start-page: 367 year: 1982 ident: BIB7 article-title: Differential/Algebraic Equations are not ODE's publication-title: SIAM J. Sci. Stat. Comput. – year: 1984 ident: BIB17 publication-title: Perry's Chemical Engineering Handbook – year: 1991 ident: BIB12 article-title: Solving Index and Near Index Problems in Dynamic Simulation publication-title: PhD dissertation thesis – start-page: 33 year: June 1995 end-page: 38 ident: BIB19 article-title: Reliable and Efficient Optimization Strategies for Nonlinear Model Predictive Control publication-title: Proceedings of the 4 – volume: 28 start-page: 1097 year: 1991 ident: BIB9 article-title: Projected Implicit Runge-Kutta Methods for Differential-Algebraic Equations publication-title: SIAM J. Numer. Anal. – year: 1981 ident: BIB14 publication-title: Practical Optimization – volume: 8 start-page: 817 year: 1994 ident: BIB15 article-title: Quadratic Programming Methods for Tailored Reduced Hessian SQP publication-title: Computers and Chem. Engng. – volume: 9 start-page: 257 year: 1985 ident: BIB13 article-title: Improved Infeasible Path Optimization for Sequential Modular Simulators—II: The Optimization Algorithm publication-title: Computers Chem. Engng. – volume: 6 start-page: 80 year: 1980 ident: BIB16 article-title: SOLVEBLOK: A Package for Solving Almost Block Diagonal Linear Systems publication-title: ACM Transactions on Mathematical Software – volume: 7 start-page: 371 year: 1979 ident: BIB20 article-title: Hydrid Methods for Nonlinear Least Squares publication-title: IMA J. Numer. Anal. – volume: 15 start-page: 663 year: 1991 ident: BIB2 article-title: A Sequential Error-in-Variables Method for Nonlinear Dynamic Systems publication-title: Computers Chem. Engng. – volume: 34 start-page: 1253 year: 1995 ident: BIB6 publication-title: Stable Decomposition for Dynamic Optimization, Industrial and Engineering Chemistry Research – year: 1988 ident: 10.1016/S0098-1354(96)90029-0_BIB5 – year: 1982 ident: 10.1016/S0098-1354(96)90029-0_BIB18 article-title: Recent Advances in Parameter Identification Techniques for O.D.E. – volume: 19 start-page: 1031 year: 1995 ident: 10.1016/S0098-1354(96)90029-0_BIB1 article-title: Decomposition Algorithms for On-line Estimation with Nonlinear Models publication-title: Computers Chem. Engng. doi: 10.1016/0098-1354(94)00107-Y – year: 1991 ident: 10.1016/S0098-1354(96)90029-0_BIB12 article-title: Solving Index and Near Index Problems in Dynamic Simulation – year: 1994 ident: 10.1016/S0098-1354(96)90029-0_BIB3 article-title: High Index Differential Algebraic Equations publication-title: Mechanics of Structures and Machines – volume: 30 start-page: 376 year: 1991 ident: 10.1016/S0098-1354(96)90029-0_BIB21 article-title: Simultaneous Solution and Optimization Strategies for Parameter Estimation of Differential-Algebraic Equation Systems publication-title: I and EC Res. – volume: 9 start-page: 257 year: 1985 ident: 10.1016/S0098-1354(96)90029-0_BIB13 article-title: Improved Infeasible Path Optimization for Sequential Modular Simulators—II: The Optimization Algorithm publication-title: Computers Chem. Engng. doi: 10.1016/0098-1354(85)80004-1 – volume: 3 start-page: 367 year: 1982 ident: 10.1016/S0098-1354(96)90029-0_BIB7 article-title: Differential/Algebraic Equations are not ODE's publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0903023 – volume: 14 start-page: 1271 year: 1990 ident: 10.1016/S0098-1354(96)90029-0_BIB11 article-title: On methods for reducing the Index of Differential Algebraic Equations publication-title: Computers Chem. Engng. doi: 10.1016/0098-1354(90)80007-X – year: 1981 ident: 10.1016/S0098-1354(96)90029-0_BIB14 – volume: 9 start-page: 39 year: 1988 ident: 10.1016/S0098-1354(96)90029-0_BIB10 article-title: Differential-Algebraic Equation Index Transformations publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0909004 – volume: 7 start-page: 371 year: 1979 ident: 10.1016/S0098-1354(96)90029-0_BIB20 article-title: Hydrid Methods for Nonlinear Least Squares publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/7.3.371 – volume: 34 start-page: 1253 year: 1995 ident: 10.1016/S0098-1354(96)90029-0_BIB6 publication-title: Stable Decomposition for Dynamic Optimization, Industrial and Engineering Chemistry Research doi: 10.1021/ie00043a029 – volume: 8 start-page: 817 year: 1994 ident: 10.1016/S0098-1354(96)90029-0_BIB15 article-title: Quadratic Programming Methods for Tailored Reduced Hessian SQP publication-title: Computers and Chem. Engng. doi: 10.1016/0098-1354(94)E0001-4 – volume: 26 start-page: 976 year: 1989 ident: 10.1016/S0098-1354(96)90029-0_BIB8 article-title: The Numerical Solution of Higher Index Differential/Algebraic Equations by Implicit Methods publication-title: SIAM J. Numer. Anal. doi: 10.1137/0726054 – year: 1984 ident: 10.1016/S0098-1354(96)90029-0_BIB17 – start-page: 33 year: 1995 ident: 10.1016/S0098-1354(96)90029-0_BIB19 article-title: Reliable and Efficient Optimization Strategies for Nonlinear Model Predictive Control – volume: 15 start-page: 663 year: 1991 ident: 10.1016/S0098-1354(96)90029-0_BIB2 article-title: A Sequential Error-in-Variables Method for Nonlinear Dynamic Systems publication-title: Computers Chem. Engng. doi: 10.1016/0098-1354(91)87028-8 – volume: 28 start-page: 1097 year: 1991 ident: 10.1016/S0098-1354(96)90029-0_BIB9 article-title: Projected Implicit Runge-Kutta Methods for Differential-Algebraic Equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/0728059 – volume: 6 start-page: 80 year: 1980 ident: 10.1016/S0098-1354(96)90029-0_BIB16 article-title: SOLVEBLOK: A Package for Solving Almost Block Diagonal Linear Systems publication-title: ACM Transactions on Mathematical Software doi: 10.1145/355873.355880 – year: 1989 ident: 10.1016/S0098-1354(96)90029-0_BIB4 article-title: Numerical Solution of Initial-Value Problems |
| SSID | ssj0002488 |
| Score | 1.6273226 |
| Snippet | In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are... A Differential and Algebraic Equations (DAE) model was discretized using an implicit Runge-Kutta scheme to solve higher index and stiff problems. For initial... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 283 |
| SubjectTerms | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
| Title | Decomposition algorithms for on-line estimation with nonlinear DAE models |
| URI | https://dx.doi.org/10.1016/S0098-1354(96)90029-0 https://www.proquest.com/docview/26501005 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSysxEB-0Xp6IqE-xfubwDnqIZpPsbnIsflCV50nBW0jSrBZqW9p69W93sh9VERE8LYSdZJlJ5iM78xuAf4V3HM2wpLnXgsrcBaolCzRXRRpSmTmhYzXy_9usey-vH9KHBThramFiWmWt-yudXmrreuS05ubpuN-PNb5aJQLjGwzwGNcYty-h_VGqBUudq5vu7Vwhc6lUA50ZCd4LeapJysEjnR2X81D2nYlaGdspMq6oOl58Ud6lRbpcg9XalSSd6mvXYSEMN2D5A8DgX7g6DzFnvE7MInbwOJr0Z0_PU4K-KhkNaXQySQTaqCoYSbyWJcMKPsNOyHnngpS9cqabcH95cXfWpXXzBOolEzMqsuCs4Ilw0jLWUxafPWF94gsedOBMFNLmQvI8x5iicMznLkX3wup4SNNMbEELlwvbQFTupRdWW68z2WOFisW6LnMRe1Aj_9ogG34ZXyOLxwYXA_OeQoavmchmozNTstmwNpzMycYVtMZPBKoRhvm0Rwyq_59I9z8Jb74gT9HBk2kbDhthGjxf8aeJHYbRy9RwdGETVFU7v198F_5UoLfx4mYPWrPJS9hHV2bmDmDx5DU5qDfsGxPa68M |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG6IHtQY4zOiIj140EO1tN1Hj0QwoMgJEm5NW7pKokAAr_52p_sAjTEknjZp-th8bacz7cw3CF0l1jA4hgWJrORERMYRKagjUZwELhCh4dJHIz93w1ZfPA6CQQndF7Ew3q0yl_2ZTE-ldV5yl6N5Nx2NfIyvjGsc7Bsw8CiTYLdvioBF3gK7_Vz5eTARxwVxpq--CuPJukgLr2V4k_ZC6F8H1O5UzwG2JMt38Ut0p-fRwz7ayxVJXM_-9QCV3PgQ7XyjFzxC7YbzHuO5WxbWby-T2Wjx-j7HoKniyZh4FRN7mo0sfhH7S1k8zsgz9Aw36k2cZsqZH6P-Q7N33yJ56gRiBeULwkNnNGc1boSmdBhr-A65tjWbMCcdozwROuIC4AKLIjHURiYA5UJLv0WDkJ-gDRjOnSIcR1ZYrqW2MhRDmsQ-VNeExjMPSsCvjESBl7I5r7hPb_GmVg5kUE15mJUMVQqzomV0u2w2zYg11jWIi8lQP1aIAuG_rmnlx-QtB2QBqHciKKNqMZkKdpd_MtFjN_mYKwYKbA0E1dn_B6-irVbvuaM67e7TOdrO6G_9Fc4F2ljMPlwFlJqFuUwX7Rf8M-yL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+algorithms+for+on-line+estimation+with+nonlinear+DAE+models&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Albuquerque%2C+Jo%C3%A3o+S.&rft.au=Biegler%2C+L.T.&rft.date=1997-01-01&rft.issn=0098-1354&rft.volume=21&rft.issue=3&rft.spage=283&rft.epage=299&rft_id=info:doi/10.1016%2FS0098-1354%2896%2990029-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0098_1354_96_90029_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |