Decomposition algorithms for on-line estimation with nonlinear DAE models

In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are described by a set of Ordinary Differential Equations (ODE) subject to initial values, discretized and solved under a simultaneous solution...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 21; no. 3; pp. 283 - 299
Main Authors Albuquerque, João S., Biegler, L.T.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.1997
Elsevier
Subjects
Online AccessGet full text
ISSN0098-1354
1873-4375
DOI10.1016/S0098-1354(96)90029-0

Cover

Abstract In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are described by a set of Ordinary Differential Equations (ODE) subject to initial values, discretized and solved under a simultaneous solution strategy within an Error-in-all-Variable-Measurements (EVM) framework. In this paper, we extend this work to systems described by Differential and Algebraic Equations (DAE), for both initial value (IVP) and boundary value (BVP) problems. The resulting discretized NLP problems are usually large both in the number of variables and the number of degrees-of-freedom, and the size of the problem grows linearly with the number of data samples or the number of discretizations, making them difficult to solve with general purpose NLP solvers. We discretize the DAE model with an implicit Runge-Kutta scheme (IRK) so that higher index and stiff problems can be solved, and use the SQP method to solve the resulting NLP. Under the assumption that the measurement errors are independently distributed, the optimality conditions for each data set at the QP subproblem level are decoupled so that the first order conditions in the state variables, input variables and the stage derivatives can be solved recursively and expressed as functions of the optimality conditions in the parameters, thus reducing the size of the QP subproblem and turning the solution effort linear with both the number of sample points and the number of discretization points. We use two decoupling procedures depending on whether the DAE system is expressed as an IVP or a BVP. For the IVP we extend the technique used in our previous paper and use an affine transform which expresses the directions in the variables and the multipliers as functions of the steps in the parameters. For the BVP we use a selected variable elimination procedure so that the optimality conditions in the state and input variables, stage derivatives and multipliers of the QP subproblem will be transformed into an almost block diagonal system of linear equations. We then solve this system using SOLVEBLOCK, a solution method linear with the number of blocks to reduce the size of the QP subproblem to the dimension of the parameters. As seen in our examples, these approaches are therefore much faster than general purpose NLP solvers. In this paper we also present a case where an IVP is unstable and difficult to solve, but stable and well behaved when rewritten as a BVP.
AbstractList A Differential and Algebraic Equations (DAE) model was discretized using an implicit Runge-Kutta scheme to solve higher index and stiff problems. For initial value problems, a decoupling technique was used with an affine transform expressing the direction in the variables and the multipliers as function of steps in the parameter. The boundary value problems were solved by a selected variable elimination procedure to transform the optimality conditions in the state and input variables, stage derivatives and multipliers of the quadratic programming (QP) subproblem into an almost block diagonal system of linear equations. The system was then solved by SOLVEBLOCK to reduce the size of the QP subproblem to the dimension of the parameters.
In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are described by a set of Ordinary Differential Equations (ODE) subject to initial values, discretized and solved under a simultaneous solution strategy within an Error-in-all-Variable-Measurements (EVM) framework. In this paper, we extend this work to systems described by Differential and Algebraic Equations (DAE), for both initial value (IVP) and boundary value (BVP) problems. The resulting discretized NLP problems are usually large both in the number of variables and the number of degrees-of-freedom, and the size of the problem grows linearly with the number of data samples or the number of discretizations, making them difficult to solve with general purpose NLP solvers. We discretize the DAE model with an implicit Runge-Kutta scheme (IRK) so that higher index and stiff problems can be solved, and use the SQP method to solve the resulting NLP. Under the assumption that the measurement errors are independently distributed, the optimality conditions for each data set at the QP subproblem level are decoupled so that the first order conditions in the state variables, input variables and the stage derivatives can be solved recursively and expressed as functions of the optimality conditions in the parameters, thus reducing the size of the QP subproblem and turning the solution effort linear with both the number of sample points and the number of discretization points. We use two decoupling procedures depending on whether the DAE system is expressed as an IVP or a BVP. For the IVP we extend the technique used in our previous paper and use an affine transform which expresses the directions in the variables and the multipliers as functions of the steps in the parameters. For the BVP we use a selected variable elimination procedure so that the optimality conditions in the state and input variables, stage derivatives and multipliers of the QP subproblem will be transformed into an almost block diagonal system of linear equations. We then solve this system using SOLVEBLOCK, a solution method linear with the number of blocks to reduce the size of the QP subproblem to the dimension of the parameters. As seen in our examples, these approaches are therefore much faster than general purpose NLP solvers. In this paper we also present a case where an IVP is unstable and difficult to solve, but stable and well behaved when rewritten as a BVP.
Author Biegler, L.T.
Albuquerque, João S.
Author_xml – sequence: 1
  givenname: João S.
  surname: Albuquerque
  fullname: Albuquerque, João S.
– sequence: 2
  givenname: L.T.
  surname: Biegler
  fullname: Biegler, L.T.
  email: biegler@cmu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2525145$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQhoMouH78BKEHET1UJ03StHiQZXfVBcGDeg7ZdKqRtlmTqvjvTbviwYungZnnHWaePbLduQ4JOaJwToHmFw8AZZFSJvhpmZ-VAFmZwhaZ0EKylDMptsnkF9kleyG8QoR4UUzIco7GtWsXbG9dl-jm2Xnbv7QhqZ1PXJc2tsMEQ29bPRKfcZrEA4a-9sl8ukhaV2ETDshOrZuAhz91nzxdLx5nt-nd_c1yNr1LDQfWpyzHlWYZZSuuAapCx1oxbaipMywxA1ZzLRnPpBSlrFdg5EpITnUZf5UiZ_vkZLN37d3be7xMtTYYbBrdoXsPKssFUAARweMfUAejm9rrztig1j6-4r9UJjJB-YCJDWa8C8Fj_UtQUINfNfpVgzxV5mr0qyDmLv_kjO1HR73Xtvk3fbVJR3P4YdGrYCx2Bivr0fSqcvafDd9ZFZYO
CODEN CCENDW
CitedBy_id crossref_primary_10_1002_aic_690480111
crossref_primary_10_1021_ie960752v
crossref_primary_10_1002_aic_690430414
crossref_primary_10_1016_S0377_0427_00_00302_2
crossref_primary_10_3182_20090712_4_TR_2008_00129
crossref_primary_10_1016_j_ces_2010_04_020
crossref_primary_10_1016_j_compchemeng_2004_07_008
crossref_primary_10_1016_S0098_1354_00_00302_1
crossref_primary_10_1016_j_conengprac_2012_04_003
crossref_primary_10_3390_math13060944
crossref_primary_10_1007_s00158_004_0509_6
crossref_primary_10_1016_j_cep_2006_06_021
crossref_primary_10_1016_S0009_2509_01_00376_1
crossref_primary_10_1016_S1474_6670_17_43218_6
crossref_primary_10_1371_journal_pcbi_1006828
crossref_primary_10_3182_20050703_6_CZ_1902_00067
crossref_primary_10_1016_j_ifacol_2018_09_536
crossref_primary_10_1016_S0967_0661_00_00110_6
crossref_primary_10_1016_S1474_6670_17_57017_2
crossref_primary_10_1109_TAC_2002_808470
crossref_primary_10_1002_ppsc_200800028
crossref_primary_10_1016_S0009_2509_00_00488_7
crossref_primary_10_2514_1_60820
crossref_primary_10_1016_j_compchemeng_2003_11_003
crossref_primary_10_1109_TCST_2022_3215102
crossref_primary_10_1016_j_compchemeng_2014_04_013
crossref_primary_10_1016_S0959_1524_98_00009_2
Cites_doi 10.1016/0098-1354(94)00107-Y
10.1016/0098-1354(85)80004-1
10.1137/0903023
10.1016/0098-1354(90)80007-X
10.1137/0909004
10.1093/imanum/7.3.371
10.1021/ie00043a029
10.1016/0098-1354(94)E0001-4
10.1137/0726054
10.1016/0098-1354(91)87028-8
10.1137/0728059
10.1145/355873.355880
ContentType Journal Article
Copyright 1996
1997 INIST-CNRS
Copyright_xml – notice: 1996
– notice: 1997 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0098-1354(96)90029-0
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-4375
EndPage 299
ExternalDocumentID 2525145
10_1016_S0098_1354_96_90029_0
S0098135496900290
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNUV
ABTAH
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
BBWZM
CITATION
EFKBS
EJD
FEDTE
GBLVA
HLY
HLZ
HVGLF
NDZJH
P-8
SCE
SEW
WUQ
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
RIG
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c403t-36eba3213b4a00d8ab4ad3ac1cf2e9e203f4a734277597fb0c7b5741a91017563
IEDL.DBID AIKHN
ISSN 0098-1354
IngestDate Thu Oct 02 10:04:22 EDT 2025
Mon Jul 21 09:15:38 EDT 2025
Thu Apr 24 23:02:04 EDT 2025
Wed Oct 01 04:01:36 EDT 2025
Fri Feb 23 02:27:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Parameter estimation
Differential equation
Initial value problem
Non linear programming
Dynamical system
Runge Kutta method
Quadratic programming
Non linear system
Modeling
Boundary value problem
Non linear model
Algebraic equation
Dynamic model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-36eba3213b4a00d8ab4ad3ac1cf2e9e203f4a734277597fb0c7b5741a91017563
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26501005
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_26501005
pascalfrancis_primary_2525145
crossref_primary_10_1016_S0098_1354_96_90029_0
crossref_citationtrail_10_1016_S0098_1354_96_90029_0
elsevier_sciencedirect_doi_10_1016_S0098_1354_96_90029_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-01-01
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – month: 01
  year: 1997
  text: 1997-01-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & chemical engineering
PublicationYear 1997
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ascher, Petzold (BIB9) 1991; 28
Ascher, Mattheij, Russell (BIB5) 1988
Tjoa, Biegler (BIB21) 1991; 30
Cuthrell, Biegler (BIB13) 1985; 9
Schmid, Biegler (BIB15) 1994; 8
Santos, Oliveira, Biegler (BIB19) June 1995
Albuquerque, Biegler (BIB1) 1995; 19
Campbell (BIB3) 1994
Petzold (BIB7) 1982; 3
De Boor, Weiss (BIB16) 1980; 6
Tanartkit, Biegler (BIB6) 1995; 34
Brenan, Petzold (BIB8) 1989; 26
Gill, Murray, Wright (BIB14) 1981
Bock (BIB18) 1982
Bachmann, Brull, Mrziglod, Pallaske (BIB11) 1990; 14
Fletcher, Xu (BIB20) 1979; 7
Kim, Liebman, Edgar (BIB2) 1991; 15
Perry (BIB17) 1984
Chung, Westerberg (BIB12) 1991
Gear (BIB10) 1988; 9
Brenan, Campbell, Petzold (BIB4) 1989
Bachmann (10.1016/S0098-1354(96)90029-0_BIB11) 1990; 14
Santos (10.1016/S0098-1354(96)90029-0_BIB19) 1995
Perry (10.1016/S0098-1354(96)90029-0_BIB17) 1984
Kim (10.1016/S0098-1354(96)90029-0_BIB2) 1991; 15
Petzold (10.1016/S0098-1354(96)90029-0_BIB7) 1982; 3
Brenan (10.1016/S0098-1354(96)90029-0_BIB8) 1989; 26
Schmid (10.1016/S0098-1354(96)90029-0_BIB15) 1994; 8
De Boor (10.1016/S0098-1354(96)90029-0_BIB16) 1980; 6
Campbell (10.1016/S0098-1354(96)90029-0_BIB3) 1994
Chung (10.1016/S0098-1354(96)90029-0_BIB12) 1991
Cuthrell (10.1016/S0098-1354(96)90029-0_BIB13) 1985; 9
Tjoa (10.1016/S0098-1354(96)90029-0_BIB21) 1991; 30
Ascher (10.1016/S0098-1354(96)90029-0_BIB9) 1991; 28
Albuquerque (10.1016/S0098-1354(96)90029-0_BIB1) 1995; 19
Gear (10.1016/S0098-1354(96)90029-0_BIB10) 1988; 9
Fletcher (10.1016/S0098-1354(96)90029-0_BIB20) 1979; 7
Brenan (10.1016/S0098-1354(96)90029-0_BIB4) 1989
Tanartkit (10.1016/S0098-1354(96)90029-0_BIB6) 1995; 34
Bock (10.1016/S0098-1354(96)90029-0_BIB18) 1982
Ascher (10.1016/S0098-1354(96)90029-0_BIB5) 1988
Gill (10.1016/S0098-1354(96)90029-0_BIB14) 1981
References_xml – volume: 19
  start-page: 1031
  year: 1995
  ident: BIB1
  article-title: Decomposition Algorithms for On-line Estimation with Nonlinear Models
  publication-title: Computers Chem. Engng.
– year: 1988
  ident: BIB5
  publication-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
– year: 1989
  ident: BIB4
  article-title: Numerical Solution of Initial-Value Problems
  publication-title: Differential-Algebraic Equations
– volume: 9
  start-page: 39
  year: 1988
  ident: BIB10
  article-title: Differential-Algebraic Equation Index Transformations
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 1994
  ident: BIB3
  article-title: High Index Differential Algebraic Equations
  publication-title: Mechanics of Structures and Machines
– volume: 26
  start-page: 976
  year: 1989
  ident: BIB8
  article-title: The Numerical Solution of Higher Index Differential/Algebraic Equations by Implicit Methods
  publication-title: SIAM J. Numer. Anal.
– volume: 14
  start-page: 1271
  year: 1990
  ident: BIB11
  article-title: On methods for reducing the Index of Differential Algebraic Equations
  publication-title: Computers Chem. Engng.
– year: 1982
  ident: BIB18
  article-title: Recent Advances in Parameter Identification Techniques for O.D.E.
  publication-title: Numerical Treatment of Inverse Problems in Differential and Integral Equations
– volume: 30
  start-page: 376
  year: 1991
  ident: BIB21
  article-title: Simultaneous Solution and Optimization Strategies for Parameter Estimation of Differential-Algebraic Equation Systems
  publication-title: I and EC Res.
– volume: 3
  start-page: 367
  year: 1982
  ident: BIB7
  article-title: Differential/Algebraic Equations are not ODE's
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 1984
  ident: BIB17
  publication-title: Perry's Chemical Engineering Handbook
– year: 1991
  ident: BIB12
  article-title: Solving Index and Near Index Problems in Dynamic Simulation
  publication-title: PhD dissertation thesis
– start-page: 33
  year: June 1995
  end-page: 38
  ident: BIB19
  article-title: Reliable and Efficient Optimization Strategies for Nonlinear Model Predictive Control
  publication-title: Proceedings of the 4
– volume: 28
  start-page: 1097
  year: 1991
  ident: BIB9
  article-title: Projected Implicit Runge-Kutta Methods for Differential-Algebraic Equations
  publication-title: SIAM J. Numer. Anal.
– year: 1981
  ident: BIB14
  publication-title: Practical Optimization
– volume: 8
  start-page: 817
  year: 1994
  ident: BIB15
  article-title: Quadratic Programming Methods for Tailored Reduced Hessian SQP
  publication-title: Computers and Chem. Engng.
– volume: 9
  start-page: 257
  year: 1985
  ident: BIB13
  article-title: Improved Infeasible Path Optimization for Sequential Modular Simulators—II: The Optimization Algorithm
  publication-title: Computers Chem. Engng.
– volume: 6
  start-page: 80
  year: 1980
  ident: BIB16
  article-title: SOLVEBLOK: A Package for Solving Almost Block Diagonal Linear Systems
  publication-title: ACM Transactions on Mathematical Software
– volume: 7
  start-page: 371
  year: 1979
  ident: BIB20
  article-title: Hydrid Methods for Nonlinear Least Squares
  publication-title: IMA J. Numer. Anal.
– volume: 15
  start-page: 663
  year: 1991
  ident: BIB2
  article-title: A Sequential Error-in-Variables Method for Nonlinear Dynamic Systems
  publication-title: Computers Chem. Engng.
– volume: 34
  start-page: 1253
  year: 1995
  ident: BIB6
  publication-title: Stable Decomposition for Dynamic Optimization, Industrial and Engineering Chemistry Research
– year: 1988
  ident: 10.1016/S0098-1354(96)90029-0_BIB5
– year: 1982
  ident: 10.1016/S0098-1354(96)90029-0_BIB18
  article-title: Recent Advances in Parameter Identification Techniques for O.D.E.
– volume: 19
  start-page: 1031
  year: 1995
  ident: 10.1016/S0098-1354(96)90029-0_BIB1
  article-title: Decomposition Algorithms for On-line Estimation with Nonlinear Models
  publication-title: Computers Chem. Engng.
  doi: 10.1016/0098-1354(94)00107-Y
– year: 1991
  ident: 10.1016/S0098-1354(96)90029-0_BIB12
  article-title: Solving Index and Near Index Problems in Dynamic Simulation
– year: 1994
  ident: 10.1016/S0098-1354(96)90029-0_BIB3
  article-title: High Index Differential Algebraic Equations
  publication-title: Mechanics of Structures and Machines
– volume: 30
  start-page: 376
  year: 1991
  ident: 10.1016/S0098-1354(96)90029-0_BIB21
  article-title: Simultaneous Solution and Optimization Strategies for Parameter Estimation of Differential-Algebraic Equation Systems
  publication-title: I and EC Res.
– volume: 9
  start-page: 257
  year: 1985
  ident: 10.1016/S0098-1354(96)90029-0_BIB13
  article-title: Improved Infeasible Path Optimization for Sequential Modular Simulators—II: The Optimization Algorithm
  publication-title: Computers Chem. Engng.
  doi: 10.1016/0098-1354(85)80004-1
– volume: 3
  start-page: 367
  year: 1982
  ident: 10.1016/S0098-1354(96)90029-0_BIB7
  article-title: Differential/Algebraic Equations are not ODE's
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0903023
– volume: 14
  start-page: 1271
  year: 1990
  ident: 10.1016/S0098-1354(96)90029-0_BIB11
  article-title: On methods for reducing the Index of Differential Algebraic Equations
  publication-title: Computers Chem. Engng.
  doi: 10.1016/0098-1354(90)80007-X
– year: 1981
  ident: 10.1016/S0098-1354(96)90029-0_BIB14
– volume: 9
  start-page: 39
  year: 1988
  ident: 10.1016/S0098-1354(96)90029-0_BIB10
  article-title: Differential-Algebraic Equation Index Transformations
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0909004
– volume: 7
  start-page: 371
  year: 1979
  ident: 10.1016/S0098-1354(96)90029-0_BIB20
  article-title: Hydrid Methods for Nonlinear Least Squares
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/7.3.371
– volume: 34
  start-page: 1253
  year: 1995
  ident: 10.1016/S0098-1354(96)90029-0_BIB6
  publication-title: Stable Decomposition for Dynamic Optimization, Industrial and Engineering Chemistry Research
  doi: 10.1021/ie00043a029
– volume: 8
  start-page: 817
  year: 1994
  ident: 10.1016/S0098-1354(96)90029-0_BIB15
  article-title: Quadratic Programming Methods for Tailored Reduced Hessian SQP
  publication-title: Computers and Chem. Engng.
  doi: 10.1016/0098-1354(94)E0001-4
– volume: 26
  start-page: 976
  year: 1989
  ident: 10.1016/S0098-1354(96)90029-0_BIB8
  article-title: The Numerical Solution of Higher Index Differential/Algebraic Equations by Implicit Methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0726054
– year: 1984
  ident: 10.1016/S0098-1354(96)90029-0_BIB17
– start-page: 33
  year: 1995
  ident: 10.1016/S0098-1354(96)90029-0_BIB19
  article-title: Reliable and Efficient Optimization Strategies for Nonlinear Model Predictive Control
– volume: 15
  start-page: 663
  year: 1991
  ident: 10.1016/S0098-1354(96)90029-0_BIB2
  article-title: A Sequential Error-in-Variables Method for Nonlinear Dynamic Systems
  publication-title: Computers Chem. Engng.
  doi: 10.1016/0098-1354(91)87028-8
– volume: 28
  start-page: 1097
  year: 1991
  ident: 10.1016/S0098-1354(96)90029-0_BIB9
  article-title: Projected Implicit Runge-Kutta Methods for Differential-Algebraic Equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728059
– volume: 6
  start-page: 80
  year: 1980
  ident: 10.1016/S0098-1354(96)90029-0_BIB16
  article-title: SOLVEBLOK: A Package for Solving Almost Block Diagonal Linear Systems
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/355873.355880
– year: 1989
  ident: 10.1016/S0098-1354(96)90029-0_BIB4
  article-title: Numerical Solution of Initial-Value Problems
SSID ssj0002488
Score 1.6273226
Snippet In a previous paper we presented an algorithm for solving the large nonlinear problems that arise in dynamic state and parameter estimation. These problems are...
A Differential and Algebraic Equations (DAE) model was discretized using an implicit Runge-Kutta scheme to solve higher index and stiff problems. For initial...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 283
SubjectTerms Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Exact sciences and technology
Title Decomposition algorithms for on-line estimation with nonlinear DAE models
URI https://dx.doi.org/10.1016/S0098-1354(96)90029-0
https://www.proquest.com/docview/26501005
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSysxEB-0Xp6IqE-xfubwDnqIZpPsbnIsflCV50nBW0jSrBZqW9p69W93sh9VERE8LYSdZJlJ5iM78xuAf4V3HM2wpLnXgsrcBaolCzRXRRpSmTmhYzXy_9usey-vH9KHBThramFiWmWt-yudXmrreuS05ubpuN-PNb5aJQLjGwzwGNcYty-h_VGqBUudq5vu7Vwhc6lUA50ZCd4LeapJysEjnR2X81D2nYlaGdspMq6oOl58Ud6lRbpcg9XalSSd6mvXYSEMN2D5A8DgX7g6DzFnvE7MInbwOJr0Z0_PU4K-KhkNaXQySQTaqCoYSbyWJcMKPsNOyHnngpS9cqabcH95cXfWpXXzBOolEzMqsuCs4Ilw0jLWUxafPWF94gsedOBMFNLmQvI8x5iicMznLkX3wup4SNNMbEELlwvbQFTupRdWW68z2WOFisW6LnMRe1Aj_9ogG34ZXyOLxwYXA_OeQoavmchmozNTstmwNpzMycYVtMZPBKoRhvm0Rwyq_59I9z8Jb74gT9HBk2kbDhthGjxf8aeJHYbRy9RwdGETVFU7v198F_5UoLfx4mYPWrPJS9hHV2bmDmDx5DU5qDfsGxPa68M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG6IHtQY4zOiIj140EO1tN1Hj0QwoMgJEm5NW7pKokAAr_52p_sAjTEknjZp-th8bacz7cw3CF0l1jA4hgWJrORERMYRKagjUZwELhCh4dJHIz93w1ZfPA6CQQndF7Ew3q0yl_2ZTE-ldV5yl6N5Nx2NfIyvjGsc7Bsw8CiTYLdvioBF3gK7_Vz5eTARxwVxpq--CuPJukgLr2V4k_ZC6F8H1O5UzwG2JMt38Ut0p-fRwz7ayxVJXM_-9QCV3PgQ7XyjFzxC7YbzHuO5WxbWby-T2Wjx-j7HoKniyZh4FRN7mo0sfhH7S1k8zsgz9Aw36k2cZsqZH6P-Q7N33yJ56gRiBeULwkNnNGc1boSmdBhr-A65tjWbMCcdozwROuIC4AKLIjHURiYA5UJLv0WDkJ-gDRjOnSIcR1ZYrqW2MhRDmsQ-VNeExjMPSsCvjESBl7I5r7hPb_GmVg5kUE15mJUMVQqzomV0u2w2zYg11jWIi8lQP1aIAuG_rmnlx-QtB2QBqHciKKNqMZkKdpd_MtFjN_mYKwYKbA0E1dn_B6-irVbvuaM67e7TOdrO6G_9Fc4F2ljMPlwFlJqFuUwX7Rf8M-yL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+algorithms+for+on-line+estimation+with+nonlinear+DAE+models&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Albuquerque%2C+Jo%C3%A3o+S.&rft.au=Biegler%2C+L.T.&rft.date=1997-01-01&rft.issn=0098-1354&rft.volume=21&rft.issue=3&rft.spage=283&rft.epage=299&rft_id=info:doi/10.1016%2FS0098-1354%2896%2990029-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0098_1354_96_90029_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon