Ab initio floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF
We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found tha...
Saved in:
Published in | The Journal of chemical physics Vol. 132; no. 23; pp. 234102 - 234102-10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
21.06.2010
|
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.3436501 |
Cover
Abstract | We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the
ab initio
level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found that FOMO-CASCI often represents a good approximation to the state-averaged complete active space self-consistent field (SA-CASSCF) method. FOMO-CASCI is therefore an attractive alternative for use in
ab initio
photodynamics. The method is more efficient and more stable than SA-CASSCF. We also discuss some problematic cases for the FOMO-CASCI approach. Possible extensions of the FOMO-CASCI approach are discussed briefly. |
---|---|
AbstractList | We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found that FOMO-CASCI often represents a good approximation to the state-averaged complete active space self-consistent field (SA-CASSCF) method. FOMO-CASCI is therefore an attractive alternative for use in ab initio photodynamics. The method is more efficient and more stable than SA-CASSCF. We also discuss some problematic cases for the FOMO-CASCI approach. Possible extensions of the FOMO-CASCI approach are discussed briefly. We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found that FOMO-CASCI often represents a good approximation to the state-averaged complete active space self-consistent field (SA-CASSCF) method. FOMO-CASCI is therefore an attractive alternative for use in ab initio photodynamics. The method is more efficient and more stable than SA-CASSCF. We also discuss some problematic cases for the FOMO-CASCI approach. Possible extensions of the FOMO-CASCI approach are discussed briefly. We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found that FOMO-CASCI often represents a good approximation to the state-averaged complete active space self-consistent field (SA-CASSCF) method. FOMO-CASCI is therefore an attractive alternative for use in ab initio photodynamics. The method is more efficient and more stable than SA-CASSCF. We also discuss some problematic cases for the FOMO-CASCI approach. Possible extensions of the FOMO-CASCI approach are discussed briefly.We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found that FOMO-CASCI often represents a good approximation to the state-averaged complete active space self-consistent field (SA-CASSCF) method. FOMO-CASCI is therefore an attractive alternative for use in ab initio photodynamics. The method is more efficient and more stable than SA-CASSCF. We also discuss some problematic cases for the FOMO-CASCI approach. Possible extensions of the FOMO-CASCI approach are discussed briefly. |
Author | Slavíček, Petr Martínez, Todd J. |
Author_xml | – sequence: 1 givenname: Petr surname: Slavíček fullname: Slavíček, Petr organization: Department of Physical Chemistry, Institute of Chemical Technology, Prague, Technická 5,166 28 Prague 6, Czech Republic and J. Heyrovský Institute of Physical Chemistry, v.v.i.,Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic – sequence: 2 givenname: Todd surname: Martínez middlename: J. fullname: Martínez, Todd J. email: todd.martinez@stanford.edu. organization: Department of Physical Chemistry, Institute of Chemical Technology, Prague, Technická 5,166 28 Prague 6, Czech Republic and J. Heyrovský Institute of Physical Chemistry, v.v.i.,Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20572684$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1URLeFA38A-YY4pB3bWWeDuESrFpAqcSicLccZV0aOHWyngh_A_26W7F4QnMbSfO9p_N4FOQsxICGvGVwxkOKaXYlayC2wZ2TDYNdWjWzhjGwAOKtaCfKcXOT8HQBYw-sX5JzDtuFyV2_I766nLrjiIrU-6uLCA43GzNPyjIGO0aOZvU40pt4V7SsTx8ljQapNcY9I86QNUhODdQ9zWlUuFEyHfQzvaRcoWuuMw1ConqYUf7px5Uqk--7-fn_7kjy32md8dZyX5Nvtzdf9p-ruy8fP--6uMjWIUrFhQMYEt1rKodVWsobpLXI0ltdctjXnLYdBCt70IGAJoUfNhW12jZE7PohL8nb1Xa74MWMuanTZoPc6YJyzaoT4I4OFfHMk537EQU1pOTr9UqfkFuB6BUyKOSe0yiz5HL5VknZeMVCHbhRTx24Wxbu_FCfTf7EfVjafXP8Pd71aG1SnBsUTMhCjfg |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jctc_2c00578 crossref_primary_10_1021_acs_jpca_7b04504 crossref_primary_10_1063_1_4817965 crossref_primary_10_1039_D1SC02508B crossref_primary_10_1002_qua_25776 crossref_primary_10_1021_acs_jpca_2c07686 crossref_primary_10_1021_acs_jpca_3c06607 crossref_primary_10_1016_j_chemphys_2018_06_009 crossref_primary_10_1002_cbic_202200799 crossref_primary_10_1039_C7SC04221C crossref_primary_10_1021_acs_jctc_6b00893 crossref_primary_10_1080_00268976_2016_1225994 crossref_primary_10_1103_PhysRevA_101_012516 crossref_primary_10_1063_5_0063293 crossref_primary_10_1063_5_0130886 crossref_primary_10_1039_C6CP02325H crossref_primary_10_1039_D3CP06253H crossref_primary_10_1021_acs_chemrev_7b00577 crossref_primary_10_1103_PhysRevA_100_023402 crossref_primary_10_1021_acs_chemrev_1c00074 crossref_primary_10_1039_C9CP01584A crossref_primary_10_1021_acs_jctc_4c01185 crossref_primary_10_1146_annurev_physchem_042018_052425 crossref_primary_10_1146_annurev_physchem_090419_043839 crossref_primary_10_1063_5_0198333 crossref_primary_10_1021_acs_jctc_8b00381 crossref_primary_10_1063_5_0233523 crossref_primary_10_1021_jp401444c crossref_primary_10_1021_acs_jctc_7b00994 crossref_primary_10_1063_1_4966235 crossref_primary_10_1021_acs_jctc_5b00861 crossref_primary_10_1021_acs_jpca_8b10380 crossref_primary_10_1021_jp208574q crossref_primary_10_1021_acs_jpclett_1c01227 crossref_primary_10_1063_1_4905124 crossref_primary_10_1021_acs_jpca_3c07042 crossref_primary_10_1038_s41467_021_26439_w crossref_primary_10_1039_D1SC00775K crossref_primary_10_1021_acs_jpca_8b12552 crossref_primary_10_1021_acs_jpclett_3c00494 crossref_primary_10_1021_jacs_2c02511 crossref_primary_10_1007_s00214_014_1526_1 crossref_primary_10_1021_acs_jpca_0c07593 crossref_primary_10_1021_ct400598b crossref_primary_10_1021_acs_jctc_2c00005 crossref_primary_10_1063_5_0215890 crossref_primary_10_1063_1_4922352 crossref_primary_10_1021_jacs_5b08177 crossref_primary_10_1016_j_cplett_2014_07_037 crossref_primary_10_1021_acs_jctc_5b00634 crossref_primary_10_1063_1_5140243 crossref_primary_10_1063_5_0007058 crossref_primary_10_1021_jp204104j crossref_primary_10_1021_acs_jpclett_7b01707 crossref_primary_10_1021_acs_jpca_9b00952 crossref_primary_10_1021_acs_jpca_5b05658 crossref_primary_10_1021_acs_jpcc_9b04673 crossref_primary_10_1063_1_4923259 crossref_primary_10_1021_jp306257t crossref_primary_10_1063_1_4998815 crossref_primary_10_3389_fchem_2020_588808 crossref_primary_10_1063_1_4974163 crossref_primary_10_1063_5_0042147 crossref_primary_10_1039_C4RA16375C crossref_primary_10_1063_5_0018441 crossref_primary_10_1021_acs_jctc_3c00908 crossref_primary_10_1039_c0cp02106g crossref_primary_10_1016_j_cplett_2015_05_005 crossref_primary_10_1021_acs_jctc_7b00958 crossref_primary_10_1039_C9CP02188D crossref_primary_10_1021_acs_chemrev_8b00244 crossref_primary_10_1021_acs_jpcc_6b06785 crossref_primary_10_1038_s41467_022_29662_1 crossref_primary_10_1021_ct500551p crossref_primary_10_1021_jp5038798 crossref_primary_10_1021_acs_jctc_0c00575 crossref_primary_10_1063_5_0161238 crossref_primary_10_1080_00268976_2018_1483538 crossref_primary_10_1021_acs_jpca_4c03481 crossref_primary_10_1063_1_5097657 crossref_primary_10_1039_D4FD00062E crossref_primary_10_1021_acs_jpca_7b01215 crossref_primary_10_1055_a_1385_9398 crossref_primary_10_1007_s00214_011_1073_y crossref_primary_10_1063_5_0188491 crossref_primary_10_1063_5_0231409 crossref_primary_10_1021_acsearthspacechem_3c00196 crossref_primary_10_1063_1_5144527 crossref_primary_10_1021_acs_jpclett_9b00981 crossref_primary_10_1039_C7CP03564K crossref_primary_10_1021_acs_jctc_0c00644 crossref_primary_10_1063_1_5000476 crossref_primary_10_1063_5_0016487 crossref_primary_10_1021_acs_jpca_8b02426 crossref_primary_10_1063_5_0079283 crossref_primary_10_1126_science_aat0049 crossref_primary_10_1063_1_4975322 crossref_primary_10_1039_C9CP02037C crossref_primary_10_1021_jacs_1c05286 crossref_primary_10_1063_1_4976130 crossref_primary_10_1021_acs_jctc_4c00027 crossref_primary_10_1021_acs_jctc_8b01051 crossref_primary_10_1021_acs_jpca_9b11522 crossref_primary_10_1002_cphc_201100200 crossref_primary_10_1063_5_0130216 crossref_primary_10_1080_00268976_2019_1665199 crossref_primary_10_1039_D1CP05663H crossref_primary_10_1021_acs_jctc_9b01165 crossref_primary_10_1039_C8FD00088C crossref_primary_10_1002_jcc_21850 crossref_primary_10_1021_acs_jctc_0c00512 crossref_primary_10_1002_adom_202400697 crossref_primary_10_1063_5_0223628 |
Cites_doi | 10.1080/00268970412331333023 10.1063/1.1337053 10.1016/j.cplett.2004.11.069 10.1016/S0009-2614(00)00691-6 10.1021/jp0761618 10.1063/1.441727 10.1021/jp8073464 10.1002/qua.560350409 10.1063/1.478177 10.1063/1.1615955 10.1021/ar960091y 10.1021/jp9528020 10.1103/PhysRev.103.1008 10.1063/1.1376633 10.1080/00268970801901514 10.1016/j.chemphys.2004.04.018 10.1002/qua.560450203 10.1063/1.454704 10.1080/00268970500417952 10.1016/0009-2614(96)01107-4 10.1016/0375-9474(74)90230-9 10.1021/ct700037z 10.1080/00268970110095138 10.1146/annurev.physchem.49.1.233 10.1103/PhysRevB.61.1654 10.1063/1.455822 10.1016/j.cplett.2004.07.081 10.1063/1.2566692 10.1016/0009-2614(69)80154-5 10.1063/1.1615954 10.1039/b401167h 10.1002/cphc.200800649 10.1016/S0921-4526(02)00799-8 10.1103/PhysRevA.1.1285 10.1016/0009-2614(80)80726-3 10.1063/1.480853 10.1002/jcc.540141112 10.1080/01418639408240176 10.1063/1.2837662 10.1103/PhysRev.41.751 10.1080/0026897031000109293 10.1002/(SICI)1097-461X(1997)65:5<877::AID-QUA51>3.0.CO;2-T 10.1002/qua.560150605 10.1063/1.2134705 10.1002/9780470142943.ch1 10.1007/BF00551551 10.1021/ja9610895 10.1021/ja043093j 10.1002/9780470142943.ch7 10.1063/1.1675123 10.1103/PhysRev.184.672 10.1103/PhysRevB.57.1427 10.1103/PhysRevB.46.2498 10.1016/0009-2614(77)87037-1 10.1103/PhysRevB.58.13459 10.1002/0471264318.ch7 10.1063/1.465674 10.1007/s002140050361 |
ContentType | Journal Article |
Copyright | 2010 American Institute of Physics |
Copyright_xml | – notice: 2010 American Institute of Physics |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1063/1.3436501 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 234102-10 |
ExternalDocumentID | 20572684 10_1063_1_3436501 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NSF grantid: CHE-09-39169 – fundername: NSF grantid: 6046137307 – fundername: UNSPECIFIED |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c403t-1dde1132fa66d9af6171a5e2ecf24269422920d6327b030690bea23f787c682d3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 16:18:46 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 00:44:06 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Fri Jun 21 00:17:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-1dde1132fa66d9af6171a5e2ecf24269422920d6327b030690bea23f787c682d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20572684 |
PQID | 733306900 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_733306900 pubmed_primary_20572684 crossref_citationtrail_10_1063_1_3436501 crossref_primary_10_1063_1_3436501 scitation_primary_10_1063_1_3436501Ab_initio_floating |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-21 |
PublicationDateYYYYMMDD | 2010-06-21 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2010 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Yamaguchi, K.; Ohta, K.; Yabushita, S.; Fueno, T. 1977; 49 Robinson, D.; McDouall, J. 2006; 104 Coe, J.; Martínez, T. 2005; 127 Coe, J.; Martínez, T. 2008; 106 Mulliken, R. 1932; 41 Toniolo, A.; Thompson, A.; Martínez, T. 2004; 304 Ivanic, J. 2003; 119 Werner, H. 1987; 69 Mosel, U.; Zint, P.; Passler, K. 1974; 236 Schmidt, M.; Gordon, M. 1998; 49 Slater, J.; Mann, J.; Wilson, T.; Wood, J. 1969; 184 Tao, H.; Levine, B.; Martínez, T. 2009; 113A Averill, F.; Painter, G. 1992; 46 Toniolo, A.; Persico, M.; Pitea, D. 2000; 104A Coe, J.; Ong, M.; Levine, B.; Martínez, T. 2008; 112A Toniolo, A.; Ciminelli, C.; Persico, M.; Martínez, T. 2005; 123 Huzinaga, S.; Arnau, C. 1971; 54 Kozlowski, P.; Pulay, P. 1998; 100 Hunt, W.; Goddard, W. 1969; 3 Abrams, M.; Sherrill, C. 2004; 395 Potts, D.; Taylor, C.; Chaudhuri, R.; Freed, K. 2001; 114 Robinson, D.; McDouall, J. 2007; 3 Garavelli, M.; Celani, P.; Bernardi, F.; Robb, M.; Olivucci, M. 1997; 119 Lengsfield, B.; Phillips, D.; Schug, J. 1981; 74 Robinson, D.; McDouall, J. 2007; 111A Levine, B.; Coe, J.; Martínez, T. 2008; 112 Chaudhuri, R.; Freed, K.; Chattopadhyay, S.; Mahapatra, U. 2008; 128 Bofill, J.; Pulay, P. 1989; 90 Huzinaga, S.; Arnau, C. 1970; 1 Mok, D.; Neumann, R.; Handy, N. 1996; 100 Granucci, G.; Toniolo, A. 2000; 325 Zerner, M. 1989; 35 Grotheer, O.; Fähnle, M. 1998; 58 Ben-Nun, M.; Martínez, T. 2002; 121 Virshup, A.; Punwong, C.; Pogorelov, T.; Lindquist, B.; Ko, C.; Martínez, T. 2009; 113 Toniolo, A.; Persico, M.; Pitea, D. 2000; 112 Sears, J.; Sherrill, C. 2005; 103 Ziegler, T.; Rauk, A.; Baerends, E. 1977; 43 Barbatti, M.; Granucci, G.; Persico, M.; Lischka, H. 2005; 401 Springborg, M.; Albers, R.; Schmidt, K. 1998; 57 Nakao, Y.; Choe, Y.; Nakayama, K.; Hirao, K. 2002; 100 Bone, R.; Pulay, P. 1992; 45 Coe, J.; Martínez, T. 2006; 110A Granucci, G.; Persico, M.; Toniolo, A. 2001; 114 Stavrev, K.; Zerner, M. 1997; 65 Ben-Nun, M.; Quenneville, J.; Martínez, T. 2000; 104A Rabuck, A.; Scuseria, G. 1999; 110 Brandi, H.; De Matos, M.; Ferreira, R. 1980; 73 Schmidt, M.; Baldridge, K.; Boatz, J.; Elbert, S.; Gordon, M.; Jensen, J.; Koseki, S.; Matsunaga, N.; Nguyen, K.; Su, S.; Windus, T.; Dupuis, M.; Montgomery, J. 1993; 14 Coe, J.; Levine, B.; Martínez, T. 2007; 111A Pulay, P.; Hamilton, T. 1988; 88 Roos, B. 1987; 69 Mehl, M. 2000; 61 Toniolo, A.; Granucci, G.; Martínez, T. 2003; 107A Hudock, H.; Martínez, T. 2008; 9 Gidopoulos, N.; Theophilou, A. 1994; 69 Angeli, C.; Calzado, C.; Cimiraglia, R.; Evangelisti, S.; Maynau, D. 2003; 101 Beebe, N. 1979; 15 Warren, R.; Dunlap, B. 1996; 262 Brack, M.; Quentin, P. 1974; 52B Hudock, H.; Levine, B.; Thompson, A.; Satzger, H.; Townsend, D.; Gador, N.; Ullrich, S.; Stolow, A.; Martínez, T. 2007; 111A Gidopoulos, N.; Papaconstantinou, P.; Gross, E. 2002; 318 Roos, B. 1999; 32 Chaudhuri, R.; Freed, K. 2007; 126 Brueckner, K.; Wada, W. 1956; 103 Nakano, H. 1993; 99 Toniolo, A.; Olsen, S.; Manohar, L.; Martínez, T. 2004; 127 (2023061916115685700_c69) 2007; 111A (2023061916115685700_c44) 2007; 126 (2023061916115685700_c22) 1992; 46 (2023061916115685700_c42) 2001; 114 (2023061916115685700_c33) 2004; 127 (2023061916115685700_c50) 1990 (2023061916115685700_c1) 1998; 49 (2023061916115685700_c18) 1969; 184 (2023061916115685700_c29) 2003; 107A (2023061916115685700_c66) 2003; 119 (2023061916115685700_c41) 1998; 100 (2023061916115685700_c52) 2000; 104A (2023061916115685700_c9) 1956; 103 (2023061916115685700_c23) 1974; 236 (2023061916115685700_c31) 2009; 113 (2023061916115685700_c64) 1997; 65 (2023061916115685700_c13) 1988; 88 (2023061916115685700_c34) 2000; 104A (2023061916115685700_c12) 1989; 90 (2023061916115685700_c70) 2002; 100 (2023061916115685700_c36) 1998; 57 (2023061916115685700_c17) 2002; 318 (2023061916115685700_c40) 2005; 103 (2023061916115685700_c53) 2002; 121 (2023061916115685700_c27) 1998; 58 (2023061916115685700_c58) 2008; 106 (2023061916115685700_c14) 2004; 395 (2023061916115685700_c46) 2008; 112 (2023061916115685700_c11) 1979; 15 (2023061916115685700_c3) 1987; 69 (2023061916115685700_c49) 1932; 41 (2023061916115685700_c59) 2007; 111A (2023061916115685700_c6) 1993; 99 (2023061916115685700_c62) 2005; 123 (2023061916115685700_c45) 2003; 101 (2023061916115685700_c43) 2008; 128 (2023061916115685700_c68) 2007; 3 (2023061916115685700_c8) 1971; 54 (2023061916115685700_c54) 1997; 119 (2023061916115685700_c20) 1980; 73 (2023061916115685700_c25) 1999; 110 (2023061916115685700_c26) 2000; 61 (2023061916115685700_c57) 2008; 112A (2023061916115685700_c5) 1999; 32 (2023061916115685700_c47) 1993; 14 (2023061916115685700_c2) 1987; 69 (2023061916115685700_c19) 1977; 43 (2023061916115685700_c55) 2005; 127 (2023061916115685700_c15) 2000; 325 (2023061916115685700_c61) 2008; 9 (2023061916115685700_c56) 2006; 110A (2023061916115685700_c7) 1970; 1 (2023061916115685700_c39) 1981; 74 (2023061916115685700_c51) 2009; 113A 2023061916115685700_c48 (2023061916115685700_c63) 1989; 35 (2023061916115685700_c16) 1994; 69 (2023061916115685700_c4) 1996; 100 (2023061916115685700_c32) 2004; 304 (2023061916115685700_c37) 1977; 49 (2023061916115685700_c10) 1969; 3 (2023061916115685700_c65) 2003; 119 (2023061916115685700_c35) 2000; 112 (2023061916115685700_c28) 2001; 114 (2023061916115685700_c21) 1996; 262 (2023061916115685700_c67) 2006; 104 (2023061916115685700_c30) 2005; 401 (2023061916115685700_c60) 2007; 111A (2023061916115685700_c24) 1974; 52B (2023061916115685700_c38) 1992; 45 |
References_xml | – volume: 103 start-page: 803 year: 2005 publication-title: Mol. Phys. doi: 10.1080/00268970412331333023 – volume: 114 start-page: 2592 year: 2001 publication-title: J. Chem. Phys. doi: 10.1063/1.1337053 – volume: 401 start-page: 276 year: 2005 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.11.069 – volume: 100 start-page: 12 year: 1998 publication-title: Theor. Chim. Acta – volume: 325 start-page: 79 year: 2000 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00691-6 – volume: 112 start-page: 405 year: 2008 publication-title: J. Phys. Chem. B doi: 10.1021/jp0761618 – volume: 74 start-page: 5174 year: 1981 publication-title: J. Chem. Phys. doi: 10.1063/1.441727 – volume: 113 start-page: 3280 year: 2009 publication-title: J. Phys. Chem. B doi: 10.1021/jp8073464 – volume: 35 start-page: 567 year: 1989 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560350409 – volume: 52B start-page: 159 year: 1974 publication-title: Phys. Lett. – volume: 110 start-page: 695 year: 1999 publication-title: J. Chem. Phys. doi: 10.1063/1.478177 – volume: 111A start-page: 9815 year: 2007 publication-title: J. Phys. Chem. – volume: 104A start-page: 5161 year: 2000 publication-title: J. Phys. Chem. – volume: 119 start-page: 9377 year: 2003 publication-title: J. Chem. Phys. doi: 10.1063/1.1615955 – volume: 32 start-page: 137 year: 1999 publication-title: Acc. Chem. Res. doi: 10.1021/ar960091y – volume: 100 start-page: 6225 year: 1996 publication-title: J. Phys. Chem. doi: 10.1021/jp9528020 – volume: 103 start-page: 1008 year: 1956 publication-title: Phys. Rev. doi: 10.1103/PhysRev.103.1008 – volume: 114 start-page: 10608 year: 2001 publication-title: J. Chem. Phys. doi: 10.1063/1.1376633 – volume: 106 start-page: 537 year: 2008 publication-title: Mol. Phys. doi: 10.1080/00268970801901514 – volume: 304 start-page: 133 year: 2004 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2004.04.018 – volume: 45 start-page: 133 year: 1992 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560450203 – volume: 111A start-page: 8500 year: 2007 publication-title: J. Phys. Chem. – volume: 88 start-page: 4926 year: 1988 publication-title: J. Chem. Phys. doi: 10.1063/1.454704 – volume: 104 start-page: 681 year: 2006 publication-title: Mol. Phys. doi: 10.1080/00268970500417952 – volume: 262 start-page: 384 year: 1996 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)01107-4 – volume: 236 start-page: 252 year: 1974 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(74)90230-9 – volume: 113A start-page: 13656 year: 2009 publication-title: J. Phys. Chem. – volume: 110A start-page: 618 year: 2006 publication-title: J. Phys. Chem. – volume: 3 start-page: 1306 year: 2007 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700037z – volume: 100 start-page: 729 year: 2002 publication-title: Mol. Phys. doi: 10.1080/00268970110095138 – volume: 49 start-page: 233 year: 1998 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.49.1.233 – volume: 61 start-page: 1654 year: 2000 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.1654 – volume: 90 start-page: 3637 year: 1989 publication-title: J. Chem. Phys. doi: 10.1063/1.455822 – volume: 111A start-page: 11302 year: 2007 publication-title: J. Phys. Chem. – volume: 395 start-page: 227 year: 2004 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.07.081 – volume: 126 start-page: 114103 year: 2007 publication-title: J. Chem. Phys. doi: 10.1063/1.2566692 – volume: 3 start-page: 414 year: 1969 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(69)80154-5 – volume: 119 start-page: 9364 year: 2003 publication-title: J. Chem. Phys. doi: 10.1063/1.1615954 – volume: 127 start-page: 149 year: 2004 publication-title: Faraday Discuss. doi: 10.1039/b401167h – volume: 9 start-page: 2486 year: 2008 publication-title: ChemPhysChem doi: 10.1002/cphc.200800649 – volume: 318 start-page: 328 year: 2002 publication-title: Physica B doi: 10.1016/S0921-4526(02)00799-8 – volume: 1 start-page: 1285 year: 1970 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.1.1285 – volume: 73 start-page: 597 year: 1980 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)80726-3 – volume: 112 start-page: 2790 year: 2000 publication-title: J. Chem. Phys. doi: 10.1063/1.480853 – volume: 14 start-page: 1347 year: 1993 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 – volume: 69 start-page: 1067 year: 1994 publication-title: Philos. Mag. B doi: 10.1080/01418639408240176 – volume: 128 start-page: 144304 year: 2008 publication-title: J. Chem. Phys. doi: 10.1063/1.2837662 – volume: 41 start-page: 751 year: 1932 publication-title: Phys. Rev. doi: 10.1103/PhysRev.41.751 – volume: 101 start-page: 1937 year: 2003 publication-title: Mol. Phys. doi: 10.1080/0026897031000109293 – volume: 107A start-page: 3822 year: 2003 publication-title: J. Phys. Chem. – volume: 65 start-page: 877 year: 1997 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1997)65:5<877::AID-QUA51>3.0.CO;2-T – volume: 15 start-page: 589 year: 1979 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560150605 – volume: 123 start-page: 234308 year: 2005 publication-title: J. Chem. Phys. doi: 10.1063/1.2134705 – volume: 69 start-page: 1 year: 1987 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142943.ch1 – volume: 43 start-page: 261 year: 1977 publication-title: Theor. Chim. Acta doi: 10.1007/BF00551551 – volume: 119 start-page: 6891 year: 1997 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9610895 – volume: 104A start-page: 7278 year: 2000 publication-title: J. Phys. Chem. – volume: 127 start-page: 4560 year: 2005 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043093j – volume: 69 start-page: 399 year: 1987 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142943.ch7 – volume: 54 start-page: 1948 year: 1971 publication-title: J. Chem. Phys. doi: 10.1063/1.1675123 – volume: 184 start-page: 672 year: 1969 publication-title: Phys. Rev. doi: 10.1103/PhysRev.184.672 – volume: 57 start-page: 1427 year: 1998 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1427 – volume: 112A start-page: 12559 year: 2008 publication-title: J. Phys. Chem. – volume: 46 start-page: 2498 year: 1992 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.2498 – volume: 49 start-page: 555 year: 1977 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(77)87037-1 – volume: 58 start-page: 13459 year: 1998 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.13459 – volume: 121 start-page: 439 year: 2002 publication-title: Adv. Chem. Phys. doi: 10.1002/0471264318.ch7 – volume: 99 start-page: 7983 year: 1993 publication-title: J. Chem. Phys. doi: 10.1063/1.465674 – volume: 395 start-page: 227 year: 2004 ident: 2023061916115685700_c14 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.07.081 – volume: 114 start-page: 2592 year: 2001 ident: 2023061916115685700_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.1337053 – volume: 90 start-page: 3637 year: 1989 ident: 2023061916115685700_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.455822 – volume: 54 start-page: 1948 year: 1971 ident: 2023061916115685700_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.1675123 – volume: 318 start-page: 328 year: 2002 ident: 2023061916115685700_c17 publication-title: Physica B doi: 10.1016/S0921-4526(02)00799-8 – volume: 58 start-page: 13459 year: 1998 ident: 2023061916115685700_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.13459 – volume-title: Electronic Aspects of Organic Photochemistry year: 1990 ident: 2023061916115685700_c50 – volume: 110A start-page: 618 year: 2006 ident: 2023061916115685700_c56 publication-title: J. Phys. Chem. – volume: 104A start-page: 5161 year: 2000 ident: 2023061916115685700_c52 publication-title: J. Phys. Chem. – volume: 401 start-page: 276 year: 2005 ident: 2023061916115685700_c30 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.11.069 – volume: 99 start-page: 7983 year: 1993 ident: 2023061916115685700_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.465674 – volume: 112 start-page: 405 year: 2008 ident: 2023061916115685700_c46 publication-title: J. Phys. Chem. B doi: 10.1021/jp0761618 – ident: 2023061916115685700_c48 – volume: 111A start-page: 8500 year: 2007 ident: 2023061916115685700_c60 publication-title: J. Phys. Chem. – volume: 325 start-page: 79 year: 2000 ident: 2023061916115685700_c15 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00691-6 – volume: 112 start-page: 2790 year: 2000 ident: 2023061916115685700_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.480853 – volume: 104A start-page: 7278 year: 2000 ident: 2023061916115685700_c34 publication-title: J. Phys. Chem. – volume: 49 start-page: 555 year: 1977 ident: 2023061916115685700_c37 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(77)87037-1 – volume: 15 start-page: 589 year: 1979 ident: 2023061916115685700_c11 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560150605 – volume: 69 start-page: 1 year: 1987 ident: 2023061916115685700_c2 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142943.ch1 – volume: 103 start-page: 803 year: 2005 ident: 2023061916115685700_c40 publication-title: Mol. Phys. doi: 10.1080/00268970412331333023 – volume: 103 start-page: 1008 year: 1956 ident: 2023061916115685700_c9 publication-title: Phys. Rev. doi: 10.1103/PhysRev.103.1008 – volume: 236 start-page: 252 year: 1974 ident: 2023061916115685700_c23 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(74)90230-9 – volume: 110 start-page: 695 year: 1999 ident: 2023061916115685700_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.478177 – volume: 100 start-page: 12 year: 1998 ident: 2023061916115685700_c41 publication-title: Theor. Chim. Acta doi: 10.1007/s002140050361 – volume: 121 start-page: 439 year: 2002 ident: 2023061916115685700_c53 publication-title: Adv. Chem. Phys. doi: 10.1002/0471264318.ch7 – volume: 119 start-page: 9377 year: 2003 ident: 2023061916115685700_c66 publication-title: J. Chem. Phys. doi: 10.1063/1.1615955 – volume: 101 start-page: 1937 year: 2003 ident: 2023061916115685700_c45 publication-title: Mol. Phys. doi: 10.1080/0026897031000109293 – volume: 73 start-page: 597 year: 1980 ident: 2023061916115685700_c20 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)80726-3 – volume: 127 start-page: 4560 year: 2005 ident: 2023061916115685700_c55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043093j – volume: 123 start-page: 234308 year: 2005 ident: 2023061916115685700_c62 publication-title: J. Chem. Phys. doi: 10.1063/1.2134705 – volume: 3 start-page: 1306 year: 2007 ident: 2023061916115685700_c68 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700037z – volume: 114 start-page: 10608 year: 2001 ident: 2023061916115685700_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.1376633 – volume: 74 start-page: 5174 year: 1981 ident: 2023061916115685700_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.441727 – volume: 107A start-page: 3822 year: 2003 ident: 2023061916115685700_c29 publication-title: J. Phys. Chem. – volume: 41 start-page: 751 year: 1932 ident: 2023061916115685700_c49 publication-title: Phys. Rev. doi: 10.1103/PhysRev.41.751 – volume: 113A start-page: 13656 year: 2009 ident: 2023061916115685700_c51 publication-title: J. Phys. Chem. – volume: 262 start-page: 384 year: 1996 ident: 2023061916115685700_c21 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)01107-4 – volume: 88 start-page: 4926 year: 1988 ident: 2023061916115685700_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.454704 – volume: 111A start-page: 9815 year: 2007 ident: 2023061916115685700_c69 publication-title: J. Phys. Chem. – volume: 113 start-page: 3280 year: 2009 ident: 2023061916115685700_c31 publication-title: J. Phys. Chem. B doi: 10.1021/jp8073464 – volume: 46 start-page: 2498 year: 1992 ident: 2023061916115685700_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.2498 – volume: 49 start-page: 233 year: 1998 ident: 2023061916115685700_c1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.49.1.233 – volume: 61 start-page: 1654 year: 2000 ident: 2023061916115685700_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.1654 – volume: 9 start-page: 2486 year: 2008 ident: 2023061916115685700_c61 publication-title: ChemPhysChem doi: 10.1002/cphc.200800649 – volume: 127 start-page: 149 year: 2004 ident: 2023061916115685700_c33 publication-title: Faraday Discuss. doi: 10.1039/b401167h – volume: 57 start-page: 1427 year: 1998 ident: 2023061916115685700_c36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1427 – volume: 111A start-page: 11302 year: 2007 ident: 2023061916115685700_c59 publication-title: J. Phys. Chem. – volume: 1 start-page: 1285 year: 1970 ident: 2023061916115685700_c7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.1.1285 – volume: 119 start-page: 9364 year: 2003 ident: 2023061916115685700_c65 publication-title: J. Chem. Phys. doi: 10.1063/1.1615954 – volume: 65 start-page: 877 year: 1997 ident: 2023061916115685700_c64 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1997)65:5<877::AID-QUA51>3.0.CO;2-T – volume: 3 start-page: 414 year: 1969 ident: 2023061916115685700_c10 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(69)80154-5 – volume: 184 start-page: 672 year: 1969 ident: 2023061916115685700_c18 publication-title: Phys. Rev. doi: 10.1103/PhysRev.184.672 – volume: 100 start-page: 6225 year: 1996 ident: 2023061916115685700_c4 publication-title: J. Phys. Chem. doi: 10.1021/jp9528020 – volume: 126 start-page: 114103 year: 2007 ident: 2023061916115685700_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.2566692 – volume: 106 start-page: 537 year: 2008 ident: 2023061916115685700_c58 publication-title: Mol. Phys. doi: 10.1080/00268970801901514 – volume: 104 start-page: 681 year: 2006 ident: 2023061916115685700_c67 publication-title: Mol. Phys. doi: 10.1080/00268970500417952 – volume: 69 start-page: 1067 year: 1994 ident: 2023061916115685700_c16 publication-title: Philos. Mag. B doi: 10.1080/01418639408240176 – volume: 69 start-page: 399 year: 1987 ident: 2023061916115685700_c3 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142943.ch7 – volume: 128 start-page: 144304 year: 2008 ident: 2023061916115685700_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.2837662 – volume: 43 start-page: 261 year: 1977 ident: 2023061916115685700_c19 publication-title: Theor. Chim. Acta doi: 10.1007/BF00551551 – volume: 52B start-page: 159 year: 1974 ident: 2023061916115685700_c24 publication-title: Phys. Lett. – volume: 304 start-page: 133 year: 2004 ident: 2023061916115685700_c32 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2004.04.018 – volume: 35 start-page: 567 year: 1989 ident: 2023061916115685700_c63 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560350409 – volume: 32 start-page: 137 year: 1999 ident: 2023061916115685700_c5 publication-title: Acc. Chem. Res. doi: 10.1021/ar960091y – volume: 119 start-page: 6891 year: 1997 ident: 2023061916115685700_c54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9610895 – volume: 45 start-page: 133 year: 1992 ident: 2023061916115685700_c38 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560450203 – volume: 14 start-page: 1347 year: 1993 ident: 2023061916115685700_c47 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 – volume: 100 start-page: 729 year: 2002 ident: 2023061916115685700_c70 publication-title: Mol. Phys. doi: 10.1080/00268970110095138 – volume: 112A start-page: 12559 year: 2008 ident: 2023061916115685700_c57 publication-title: J. Phys. Chem. |
SSID | ssj0001724 |
Score | 2.3647273 |
Snippet | We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the
ab initio... We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 234102 |
Title | Ab initio floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF |
URI | http://dx.doi.org/10.1063/1.3436501 https://www.ncbi.nlm.nih.gov/pubmed/20572684 https://www.proquest.com/docview/733306900 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ti9MwHA5zh5x-ED3f5htB_CCUzrbp0tZvZVOOwxNhO7hvJUlTGc5WZneo3_2__SVp0u12wumXMkrXhjxP8nuS_F4QehUKlrIw4zDEgcFxJrjP0jLwpUjKjE1kyXXuztOP9PgsPjmfnA8GP7e8ljYtH4tfV8aV_A-qcA9wVVGy_4CseyncgN-AL1wBYbheC-Oce0vl_NN41aphxoHZZQ32vtrKt16z5qo2iK_9x0El6wwaF9KD2URob_Vq-XnTUUHlj1ibaIdu01DqLBPaF10lIP-xNNGOSrVO8_l8uuMZ2IeaaZErbD4Cs4PiBPx8xS70Gf1Mq9mZ_NI5CztfYZXfwDxRm03uRVOW3sl4e5tCnbBT38Q-u7CB0FfLJWN4zGwbpJmfUFMv1E3H_X7nxgYj783zIKzUlsOYxAQkZtgbM3uAf8nGOc9DfeZOSREW3V9voIMooTQaooN8dvph7sw4KLsuhbdpt01LRckb991dMbO3QrmNDkHHGJeKLdWyuIvudEjg3HDnHhrI-ggdTm2VvyN085MB5j76nXNs2IQtm3DPJuzYhC-zCRs2Yc0mvMMmvMWmtzivseMS3uESbhtsuPQAnb1_t5ge-12RDl_EAWn9EOxjCJhVjFIY3RUo4hDGeCRFZcKkI1UPraQkSrhan2YBlywiFRgKQdOoJA_RsG5q-RjhLOY0KLNAiETGiYzSisVJwsBeT4hgZTpCr21vF7ZbVSGVVbGH6gi9dI9-M2lbrnoIW8gK6HV1UsZq2Wy-FwkhuqnBCD0yULq3RLDAURmSRmjisP37J3JeGOQKi9yT67TsKbrVj6FnaNiuN_I5iN-Wv-ho-gerC7Ap |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+floating+occupation+molecular+orbital-complete+active+space+configuration+interaction%3A+An+efficient+approximation+to+CASSCF&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Slav%C3%AD%C4%8Dek%2C+Petr&rft.au=Mart%C3%ADnez%2C+Todd+J.&rft.date=2010-06-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=132&rft.issue=23&rft_id=info:doi/10.1063%2F1.3436501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3436501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |