LoVis: Local Pattern Visualization for Model Refinement

Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 33; no. 3; pp. 331 - 340
Main Authors Zhao, Kaiyu, Ward, Matthew O., Rundensteiner, Elke A., Higgins, Huong N.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2014
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
1467-8659
DOI10.1111/cgf.12389

Cover

Abstract Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study.
AbstractList Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study.
Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre-selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study. [PUBLICATION ABSTRACT]
Author Higgins, Huong N.
Ward, Matthew O.
Zhao, Kaiyu
Rundensteiner, Elke A.
Author_xml – sequence: 1
  givenname: Kaiyu
  surname: Zhao
  fullname: Zhao, Kaiyu
  organization: Worcester Polytechnic Institute, Worcester, MA 01760
– sequence: 2
  givenname: Matthew O.
  surname: Ward
  fullname: Ward, Matthew O.
  organization: Worcester Polytechnic Institute, Worcester, MA 01760
– sequence: 3
  givenname: Elke A.
  surname: Rundensteiner
  fullname: Rundensteiner, Elke A.
  organization: Worcester Polytechnic Institute, Worcester, MA 01760
– sequence: 4
  givenname: Huong N.
  surname: Higgins
  fullname: Higgins, Huong N.
  organization: Worcester Polytechnic Institute, Worcester, MA 01760
BookMark eNp9kM1OGzEUha0KpIbAom8wUjct0hB7xj8z3VWBBKRAAbVF6sa6mbErg2MHe0YQnh6HAAtEeze-sr5zdc7ZQVvOO4XQJ4IPSJpR81cfkKKs6g9oQCgXecVZvYUGmKRdYMY-op0YrzHGVHA2QGLmf5v4LZv5Bmx2Dl2ngsvSVw_WPEBnvMu0D9mpb5XNLpU2Ti2U63bRtgYb1d7zO0S_Jkc_x8f57Mf0ZPx9ljcUl3U-p6LRLSkLShhrGYYa2pbMueBakaLmDLdVofmcF4wCcCBcC6wwq3QtgDZQDtH-5m7vlrC6A2vlMpgFhJUkWK4jyxRZPkVO8JcNvAz-tlexkwsTG2UtOOX7KFMHhBWClzShn9-g174PLkWRhFG2rqtkiRptqCb4GIPSsjHdUyldAGPftfD1jeJ_dp-v3xmrVv8G5Xg6eVHkG4WJnbp_VUC4kcmvYPLqbConrKrFIf8jL8pHgpyfEA
CitedBy_id crossref_primary_10_1177_14738716221142005
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1109_TVCG_2020_3030352
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1080_23729333_2016_1184551
crossref_primary_10_1145_3047009
crossref_primary_10_1016_j_visinf_2022_10_002
crossref_primary_10_1109_TVCG_2018_2864499
Cites_doi 10.1109/VAST.2009.5333431
10.1109/VAST.2012.6400488
10.1145/1656274.1656278
10.1109/TVCG.2009.153
10.1109/VAST.2011.6102448
10.1109/INFVIS.2005.1532142
10.1080/00031305.1983.10482733
10.1145/2339530.2339588
10.1109/IV.2008.17
10.1016/j.inffus.2004.04.004
10.1109/TVCG.2013.125
10.1162/153244303322753616
10.1109/VISUAL.1990.146386
10.1126/science.187.4175.398
10.1016/j.jcae.2010.04.002
10.1007/978-3-642-04898-2_594
10.1109/VAST.2011.6102450
10.1126/science.1205438
10.1109/TVCG.2009.84
10.1007/978-1-4612-4444-8_1
10.1109/TVCG.2006.76
10.1057/ivs.2009.4
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ADTOC
UNPAY
DOI 10.1111/cgf.12389
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Technology Research Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 340
ExternalDocumentID 10.1111/cgf.12389
3372545581
10_1111_cgf_12389
CGF12389
ark_67375_WNG_F5897D6Z_Q
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ADTOC
UNPAY
ID FETCH-LOGICAL-c4039-b47cfd1324155d50a9add1b676fe129650d82f6b6254aa6a16f70e058f97a4ca3
IEDL.DBID DR2
ISSN 0167-7055
1467-8659
IngestDate Tue Aug 19 22:42:53 EDT 2025
Fri Sep 05 03:44:41 EDT 2025
Fri Jul 25 23:46:13 EDT 2025
Wed Oct 01 06:32:41 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Jan 22 16:24:44 EST 2025
Sun Sep 21 06:15:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4039-b47cfd1324155d50a9add1b676fe129650d82f6b6254aa6a16f70e058f97a4ca3
Notes ArticleID:CGF12389
Supporting Information
istex:04BB49D2BEF702C0A7E2DEF63EC65F84D61C1B54
ark:/67375/WNG-F5897D6Z-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12389
PQID 1545016735
PQPubID 30877
PageCount 10
ParticipantIDs unpaywall_primary_10_1111_cgf_12389
proquest_miscellaneous_1671527634
proquest_journals_1545016735
crossref_citationtrail_10_1111_cgf_12389
crossref_primary_10_1111_cgf_12389
wiley_primary_10_1111_cgf_12389_CGF12389
istex_primary_ark_67375_WNG_F5897D6Z_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Wu Y., Gaunt C., Gray S.: A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics 6, 1 (2010), 34-45. 4
Huber P.J.: Robust statistics. Springer, Berlin Heidelberg, 2011. 5
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0. URL: http://www.R-project.org/. 1
Kaufman L., Rousseeuw P.J.: Finding groups in data: an introduction to cluster analysis, vol. 344. John Wiley & Sons, 2009. 7
Guyon I., Elisseeff A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3 (2003), 1157-1182. 1
Cook R.D., Weisberg S.: Residuals and influence in regression, vol. 5. Chapman and Hall New York, 1982. 6
Kruskal J.B., Landwehr J.M.: Icicle plots: Better displays for hierarchical clustering. The American Statistician 37, 2 (1983), 162-168. 7
McGuffin M.J., Robert J.-M.: Quantifying the space-efficiency of 2d graphical representations of trees. Information Visualization 9, 2 (2010), 115-140. 7
Elmqvist N., Fekete J.-D.: Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Transactions on Visualization and Computer Graphics 16, 3 (2010), 439-454. 7
Brown G., Wyatt J., Harris R., Yao X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 1 (2005), 5-20. 2
Muhlbacher T., Piringer H.: A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 1962-1971. 1, 2, 4, 5
Tukey J.W.: Exploratory data analysis. Addison-Wesley, Reading, Massachusetts, 1977. 4
Bickel P.J., Hammel E.A., OŠConnell J.W., et al.: Sex bias in graduate admissions: Data from berkeley. Science 187, 4175 (1975), 398-404. 1, 2
Reshef D.N., Reshef Y.A., Finucane H.K., Grossman S.R., McVean G., Turnbaugh P.J., Lander E.S., Mitzenmacher M., Sabeti P.C.: Detecting novel associations in large data sets. Science 334, 6062 (2011), 1518-1524. 2
Johansson S., Johansson J.: Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 993-1000. 1, 2
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 10-18. 1
Kosara R., Bendix F., Hauser H.: Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 558-568. 9
2013; 19
2009; 11
2011; 334
2010; 16
2012
2006; 12
1990
2011
2000
1982; 5
2009
2003; 3
2008
2005; 6
2009; 344
2005
2004
1975; 187
2013
1983; 37
2009; 15
2010; 6
2010; 9
1977
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_14_2
R Core Team (e_1_2_7_24_2) 2012
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
Tukey J.W. (e_1_2_7_30_2) 1977
e_1_2_7_29_2
Talbot J. (e_1_2_7_28_2) 2009
Havre S. (e_1_2_7_11_2) 2000
Kaufman L. (e_1_2_7_16_2) 2009
e_1_2_7_25_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
Kruskal J.B. (e_1_2_7_15_2) 1983; 37
References_xml – reference: Kruskal J.B., Landwehr J.M.: Icicle plots: Better displays for hierarchical clustering. The American Statistician 37, 2 (1983), 162-168. 7
– reference: Reshef D.N., Reshef Y.A., Finucane H.K., Grossman S.R., McVean G., Turnbaugh P.J., Lander E.S., Mitzenmacher M., Sabeti P.C.: Detecting novel associations in large data sets. Science 334, 6062 (2011), 1518-1524. 2
– reference: Tukey J.W.: Exploratory data analysis. Addison-Wesley, Reading, Massachusetts, 1977. 4
– reference: McGuffin M.J., Robert J.-M.: Quantifying the space-efficiency of 2d graphical representations of trees. Information Visualization 9, 2 (2010), 115-140. 7
– reference: Muhlbacher T., Piringer H.: A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 1962-1971. 1, 2, 4, 5
– reference: Johansson S., Johansson J.: Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 993-1000. 1, 2
– reference: Brown G., Wyatt J., Harris R., Yao X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 1 (2005), 5-20. 2
– reference: Bickel P.J., Hammel E.A., OŠConnell J.W., et al.: Sex bias in graduate admissions: Data from berkeley. Science 187, 4175 (1975), 398-404. 1, 2
– reference: Kosara R., Bendix F., Hauser H.: Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 558-568. 9
– reference: R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0. URL: http://www.R-project.org/. 1
– reference: Wu Y., Gaunt C., Gray S.: A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics 6, 1 (2010), 34-45. 4
– reference: Huber P.J.: Robust statistics. Springer, Berlin Heidelberg, 2011. 5
– reference: Elmqvist N., Fekete J.-D.: Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Transactions on Visualization and Computer Graphics 16, 3 (2010), 439-454. 7
– reference: Guyon I., Elisseeff A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3 (2003), 1157-1182. 1
– reference: Kaufman L., Rousseeuw P.J.: Finding groups in data: an introduction to cluster analysis, vol. 344. John Wiley & Sons, 2009. 7
– reference: Cook R.D., Weisberg S.: Residuals and influence in regression, vol. 5. Chapman and Hall New York, 1982. 6
– reference: Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 10-18. 1
– volume: 5
  year: 1982
– year: 2011
– start-page: 230
  year: 1990
  end-page: 237
– start-page: 352
  year: 2012
  end-page: 360
– start-page: 129
  year: 2011
  end-page: 138
– volume: 37
  start-page: 162
  issue: 2
  year: 1983
  end-page: 168
  article-title: Icicle plots: Better displays for hierarchical clustering
  publication-title: The American Statistician
– start-page: 63
  year: 2012
  end-page: 72
– volume: 187
  start-page: 398
  issue: 4175
  year: 1975
  end-page: 404
  article-title: Sex bias in graduate admissions: Data from berkeley
  publication-title: Science
– start-page: 1283
  year: 2009
  end-page: 1292
– start-page: 111
  year: 2011
  end-page: 120
– year: 1977
– volume: 15
  start-page: 993
  issue: 6
  year: 2009
  end-page: 1000
  article-title: Interactive dimensionality reduction through user‐defined combinations of quality metrics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 19
  start-page: 1962
  issue: 12
  year: 2013
  end-page: 1971
  article-title: A partition‐based framework for building and validating regression models
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 65
  year: 2004
  end-page: 72
– year: 2012
– start-page: 89
  year: 2004
  end-page: 96
– volume: 344
  year: 2009
– start-page: 75
  year: 2009
  end-page: 82
– start-page: 115
  year: 2000
  end-page: 123
– volume: 9
  start-page: 115
  issue: 2
  year: 2010
  end-page: 140
  article-title: Quantifying the space‐efficiency of 2d graphical representations of trees
  publication-title: Information Visualization
– volume: 12
  start-page: 558
  issue: 4
  year: 2006
  end-page: 568
  article-title: Parallel sets: Interactive exploration and visual analysis of categorical data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 240
  year: 2008
  end-page: 245
– volume: 6
  start-page: 34
  issue: 1
  year: 2010
  end-page: 45
  article-title: A comparison of alternative bankruptcy prediction models
  publication-title: Journal of Contemporary Accounting & Economics
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  article-title: An introduction to variable and feature selection
  publication-title: The Journal of Machine Learning Research
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  article-title: The weka data mining software: an update
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 334
  start-page: 1518
  issue: 6062
  year: 2011
  end-page: 1524
  article-title: Detecting novel associations in large data sets
  publication-title: Science
– volume: 6
  start-page: 5
  issue: 1
  year: 2005
  end-page: 20
  article-title: Diversity creation methods: a survey and categorisation
  publication-title: Information Fusion
– start-page: 73
  year: 2004
  end-page: 80
– start-page: 157
  year: 2005
  end-page: 164
– volume: 16
  start-page: 439
  issue: 3
  year: 2010
  end-page: 454
  article-title: Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2013
– ident: e_1_2_7_8_2
  doi: 10.1109/VAST.2009.5333431
– ident: e_1_2_7_29_2
  doi: 10.1109/VAST.2012.6400488
– volume-title: Exploratory data analysis
  year: 1977
  ident: e_1_2_7_30_2
– ident: e_1_2_7_10_2
  doi: 10.1145/1656274.1656278
– ident: e_1_2_7_13_2
  doi: 10.1109/TVCG.2009.153
– start-page: 115
  volume-title: IEEE Symposium on Information Visualization
  year: 2000
  ident: e_1_2_7_11_2
– ident: e_1_2_7_27_2
– ident: e_1_2_7_18_2
  doi: 10.1109/VAST.2011.6102448
– ident: e_1_2_7_31_2
  doi: 10.1109/INFVIS.2005.1532142
– volume: 37
  start-page: 162
  issue: 2
  year: 1983
  ident: e_1_2_7_15_2
  article-title: Icicle plots: Better displays for hierarchical clustering
  publication-title: The American Statistician
  doi: 10.1080/00031305.1983.10482733
– ident: e_1_2_7_26_2
– ident: e_1_2_7_7_2
  doi: 10.1145/2339530.2339588
– ident: e_1_2_7_21_2
  doi: 10.1109/IV.2008.17
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 2009
  ident: e_1_2_7_16_2
– ident: e_1_2_7_3_2
  doi: 10.1016/j.inffus.2004.04.004
– ident: e_1_2_7_23_2
– ident: e_1_2_7_19_2
  doi: 10.1109/TVCG.2013.125
– ident: e_1_2_7_6_2
  doi: 10.1162/153244303322753616
– ident: e_1_2_7_17_2
  doi: 10.1109/VISUAL.1990.146386
– ident: e_1_2_7_2_2
  doi: 10.1126/science.187.4175.398
– ident: e_1_2_7_32_2
  doi: 10.1016/j.jcae.2010.04.002
– ident: e_1_2_7_12_2
  doi: 10.1007/978-3-642-04898-2_594
– ident: e_1_2_7_9_2
  doi: 10.1109/VAST.2011.6102450
– ident: e_1_2_7_25_2
  doi: 10.1126/science.1205438
– ident: e_1_2_7_5_2
  doi: 10.1109/TVCG.2009.84
– ident: e_1_2_7_22_2
– ident: e_1_2_7_4_2
  doi: 10.1007/978-1-4612-4444-8_1
– ident: e_1_2_7_14_2
  doi: 10.1109/TVCG.2006.76
– ident: e_1_2_7_33_2
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: e_1_2_7_24_2
– start-page: 1283
  volume-title: Proceedings of the 27th international conference on Human factors in computing systems
  year: 2009
  ident: e_1_2_7_28_2
– ident: e_1_2_7_20_2
  doi: 10.1057/ivs.2009.4
SSID ssj0004765
Score 2.1691601
Snippet Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to...
Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre-selected variables, it is challenging to...
SourceID unpaywall
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Construction
Data points
Generalized linear models
H.5.2 [Information Interfaces and Presentation]: User Interfaces-Graphical user interfaces (GUI)
Mathematical models
Pattern recognition
Representations
Studies
Tasks
Trends
Visual
Visualization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B-wA8AAMmso0pfAjtJVU_7HPC27Stm9BWDURh7MWzE1uaVqXV1optfz13-dKKACHxFiXnKPH5zr-zfb8DeCesT0XWsxGiVZHwMo2M9aQQZZTvE0BKepw7fDTCg7H4eCJPqjqnnAtT8kM0C25sGYW_ZgOfZb7087WpUwDpO-R64-Q-tJF3mFrQHo-Ot7_XjN7MFVPmF5EvRplU3EJLbZdmpDZ37vUS3HywyGfm5oeZTJYBbDEDDZ_AWf3t5cGTi85ibjvp7S-0jv_xc0_hcYVOw-1yOK3APZc_g0d3OAufgzqcfj2_-hAe8iQYHhf0nHlItzg7s8zpDAkIh1xkbRJ-dp6a8grkCxgP977sHERV9YUoFbw9bIVKfUbBKkOOTHZNQq6wZ1GhdwQSCNllcd-jpQBKGIOmh151XVfGPlFGpGawCq18mruXECLJYd_ZWMq-8ANMEp95Ql5eICqRuQC2ag3otKIm5woZE12HKNQXuuiLAN40orOSj-N3Qu8LNTYS5vKCD7Apqb-N9vVQxonaxVP9KYCNWs-6st0rzaCSB89ABvC6eUxWx1spJnfTBcmg4nrAOBABvG3Gx9--aKtQ958l9M7-sLhY-6cXrsNDgm6iPLS2Aa355cK9Ing0t5uVCfwEzokLGw
  priority: 102
  providerName: Unpaywall
Title LoVis: Local Pattern Visualization for Model Refinement
URI https://api.istex.fr/ark:/67375/WNG-F5897D6Z-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12389
https://www.proquest.com/docview/1545016735
https://www.proquest.com/docview/1671527634
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12389
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Business Source Ultimate
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241005
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: AKVCP
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8659
  dateEnd: 20241005
  omitProxy: true
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241005
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0167-7055
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QeEAfRFFDBUlFY3jp5XrdjxaeCHoQgxckniIh2ey2u8Zw6RHuLgp_vTPbDzijxvjWtLPJdmZn97e7M78BeMWMy1kRm0gIIyPmeB5p49AgUkvXQ4CUxZQ7_H4gDofs3Sk_XYDdJhem4odoD9zIM_x8TQ6uzeSOk-dfXQen3ZSS9-KE-yvak1vqKCYFb3i9iTGmZhWiKJ625dxatERq_TEHNJdn5aW-_q5Ho3no6tee_gqcN72uQk4uOrOp6eQ3vxA6_udvPYQHNSYN96pB9AgWbLkK9-8wFT4GeTT-9G2yEx7R0hcee1LOMsRXlJNZZXKGCH9DKq02Ck-sw6Z07vgEhv23H_cPo7rmQpQzuhQ2TOauwC0qAY2Cd3WGE2BshBTOIjRAPFekPScMbpuY1kLHwsmu7fLUZVKzXCdPYbEcl3YNQoFyomdNynmPuURkmSsc4i3HhJCssAFsN9pXeU1ITnUxRqrZmKAulNdFAFut6GXFwvE7odfehK2EvrqgsDXJ1efBgerzNJNvxJn6EMBGY2NVe-xEEZSkwZLwAF60n9HX6AJFl3Y8QxkhqQqwSFgAL9ux8bcebXtT_1lC7R_0_cOzfxddh3uI2lgVr7YBi9OrmX2OyGhqNr0LbMLScHC89-UnN8AIRg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gPKAPoqhxFXUFY3jZy320013jiwGPU48LEkBiYpp2tzWGyx6Bu4j89czsl5xRY3zb7E6T7kyn_bWd-Q3AC2F9KrKOjRCtioSXaWSsJ4Moo3yXAFLS4dzh3REODsX7Y3m8AK_rXJiSH6I5cGPPKOZrdnA-kL7m5elX36J5N05uwBLfz7Fbbu__JI8SCmXN7M2cMRWvEMfxNE3nVqMlVuzFHNRcnuWn5sd3Mx7Pg9di9emvwJe632XQyUlrNrWt9PIXSsf__bE7cLuCpeGbchzdhQWXr8Kta2SF90ANJ0ffzl-FQ179wr2ClzMP6RWnZZbJnCEh4JCrq43DfeepKR893ofD_tuDrUFUlV2IUsH3wlao1Ge0S2Wskcm2SWgO7FhU6B2hA4J0Wdz1aGnnJIxB00Gv2q4tY58oI1LTewCL-SR3DyFEksOus7GUXeF7mCQ-8wS5vEBUInMBbNbq12nFSc6lMca63puQLnShiwDWG9HTkojjd0IvCxs2EubshCPXlNSfRju6L-NEbeNn_TGAtdrIunLac81okkdLTwbwvPlM7sZ3KCZ3kxnJoOJCwNgTAWw0g-NvPdosbP1nCb210y8eHv276DNYHhzsDvXw3ejDY7hJIE6U4WtrsDg9m7knBJSm9mnhD1dl6gqy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC2o_1DduW3V9IP2yxz2Sya5-ktZt1fOoxWoRISS7iUiPvaO9Q9u_3pl92RMV8duyO4HsTCb5TTLzC8ATYX0m8p6NEK2KhJdZZKwngyijfJ8AUtLj2uG3I9w7FK-P5NESPG9qYSp-iHbDjT2jnK_Zwae5v-Dk2RffoWk3Ti7BikCKrhgRHfzkjhIKZUPszZQxNa0Qp_G0TRcWoxXW6_cFpHllXkzN2TczHi9i13LxSa_B56bbVc7JcWc-s53s_BdGx__8r-uwVoPS8EU1im7AkituwuoFqsJboIaTD19Pn4VDXvvC_ZKVswjpFRdlVqWcIeHfkO9WG4cHzlNT3ni8DYfpy_fbe1F96UKUCT4VtkJlPqcYlZFGLrsmoRmwZ1Ghd4QNCNDlcd-jpbhJGIOmh151XVfGPlFGZGZwB5aLSeHuQogkh31nYyn7wg8wSXzuCXB5gahE7gLYarSvs5qRnC_GGOsmMiFd6FIXATxqRacVDcfvhJ6WJmwlzMkx560pqT-OdnUq40Tt4Cf9LoDNxsa6dtlTzViSB8tABvCw_UzOxicopnCTOcmg4muAcSACeNyOjb_1aKs09Z8l9PZuWj6s_7voA7i8v5Pq4avRmw24SghOVLlrm7A8O5m7e4SSZvZ-6Q0_ADp8CWE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B-wA8AAMmso0pfAjtJVU_7HPC27Stm9BWDURh7MWzE1uaVqXV1optfz13-dKKACHxFiXnKPH5zr-zfb8DeCesT0XWsxGiVZHwMo2M9aQQZZTvE0BKepw7fDTCg7H4eCJPqjqnnAtT8kM0C25sGYW_ZgOfZb7087WpUwDpO-R64-Q-tJF3mFrQHo-Ot7_XjN7MFVPmF5EvRplU3EJLbZdmpDZ37vUS3HywyGfm5oeZTJYBbDEDDZ_AWf3t5cGTi85ibjvp7S-0jv_xc0_hcYVOw-1yOK3APZc_g0d3OAufgzqcfj2_-hAe8iQYHhf0nHlItzg7s8zpDAkIh1xkbRJ-dp6a8grkCxgP977sHERV9YUoFbw9bIVKfUbBKkOOTHZNQq6wZ1GhdwQSCNllcd-jpQBKGIOmh151XVfGPlFGpGawCq18mruXECLJYd_ZWMq-8ANMEp95Ql5eICqRuQC2ag3otKIm5woZE12HKNQXuuiLAN40orOSj-N3Qu8LNTYS5vKCD7Apqb-N9vVQxonaxVP9KYCNWs-6st0rzaCSB89ABvC6eUxWx1spJnfTBcmg4nrAOBABvG3Gx9--aKtQ958l9M7-sLhY-6cXrsNDgm6iPLS2Aa355cK9Ing0t5uVCfwEzokLGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LoVis%3A+Local+Pattern+Visualization+for+Model+Refinement&rft.jtitle=Computer+graphics+forum&rft.au=Zhao%2C+Kaiyu&rft.au=Ward%2C+Matthew+O.&rft.au=Rundensteiner%2C+Elke+A.&rft.au=Higgins%2C+Huong+N.&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=331&rft.epage=340&rft_id=info:doi/10.1111%2Fcgf.12389&rft.externalDBID=10.1111%252Fcgf.12389&rft.externalDocID=CGF12389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon