LoVis: Local Pattern Visualization for Model Refinement
Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful...
Saved in:
Published in | Computer graphics forum Vol. 33; no. 3; pp. 331 - 340 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7055 1467-8659 1467-8659 |
DOI | 10.1111/cgf.12389 |
Cover
Abstract | Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study. |
---|---|
AbstractList | Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study. Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre-selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study. [PUBLICATION ABSTRACT] |
Author | Higgins, Huong N. Ward, Matthew O. Zhao, Kaiyu Rundensteiner, Elke A. |
Author_xml | – sequence: 1 givenname: Kaiyu surname: Zhao fullname: Zhao, Kaiyu organization: Worcester Polytechnic Institute, Worcester, MA 01760 – sequence: 2 givenname: Matthew O. surname: Ward fullname: Ward, Matthew O. organization: Worcester Polytechnic Institute, Worcester, MA 01760 – sequence: 3 givenname: Elke A. surname: Rundensteiner fullname: Rundensteiner, Elke A. organization: Worcester Polytechnic Institute, Worcester, MA 01760 – sequence: 4 givenname: Huong N. surname: Higgins fullname: Higgins, Huong N. organization: Worcester Polytechnic Institute, Worcester, MA 01760 |
BookMark | eNp9kM1OGzEUha0KpIbAom8wUjct0hB7xj8z3VWBBKRAAbVF6sa6mbErg2MHe0YQnh6HAAtEeze-sr5zdc7ZQVvOO4XQJ4IPSJpR81cfkKKs6g9oQCgXecVZvYUGmKRdYMY-op0YrzHGVHA2QGLmf5v4LZv5Bmx2Dl2ngsvSVw_WPEBnvMu0D9mpb5XNLpU2Ti2U63bRtgYb1d7zO0S_Jkc_x8f57Mf0ZPx9ljcUl3U-p6LRLSkLShhrGYYa2pbMueBakaLmDLdVofmcF4wCcCBcC6wwq3QtgDZQDtH-5m7vlrC6A2vlMpgFhJUkWK4jyxRZPkVO8JcNvAz-tlexkwsTG2UtOOX7KFMHhBWClzShn9-g174PLkWRhFG2rqtkiRptqCb4GIPSsjHdUyldAGPftfD1jeJ_dp-v3xmrVv8G5Xg6eVHkG4WJnbp_VUC4kcmvYPLqbConrKrFIf8jL8pHgpyfEA |
CitedBy_id | crossref_primary_10_1177_14738716221142005 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1109_TVCG_2020_3030352 crossref_primary_10_1111_cgf_14034 crossref_primary_10_1080_23729333_2016_1184551 crossref_primary_10_1145_3047009 crossref_primary_10_1016_j_visinf_2022_10_002 crossref_primary_10_1109_TVCG_2018_2864499 |
Cites_doi | 10.1109/VAST.2009.5333431 10.1109/VAST.2012.6400488 10.1145/1656274.1656278 10.1109/TVCG.2009.153 10.1109/VAST.2011.6102448 10.1109/INFVIS.2005.1532142 10.1080/00031305.1983.10482733 10.1145/2339530.2339588 10.1109/IV.2008.17 10.1016/j.inffus.2004.04.004 10.1109/TVCG.2013.125 10.1162/153244303322753616 10.1109/VISUAL.1990.146386 10.1126/science.187.4175.398 10.1016/j.jcae.2010.04.002 10.1007/978-3-642-04898-2_594 10.1109/VAST.2011.6102450 10.1126/science.1205438 10.1109/TVCG.2009.84 10.1007/978-1-4612-4444-8_1 10.1109/TVCG.2006.76 10.1057/ivs.2009.4 |
ContentType | Journal Article |
Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ADTOC UNPAY |
DOI | 10.1111/cgf.12389 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Technology Research Database Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 340 |
ExternalDocumentID | 10.1111/cgf.12389 3372545581 10_1111_cgf_12389 CGF12389 ark_67375_WNG_F5897D6Z_Q |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ADTOC UNPAY |
ID | FETCH-LOGICAL-c4039-b47cfd1324155d50a9add1b676fe129650d82f6b6254aa6a16f70e058f97a4ca3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 1467-8659 |
IngestDate | Tue Aug 19 22:42:53 EDT 2025 Fri Sep 05 03:44:41 EDT 2025 Fri Jul 25 23:46:13 EDT 2025 Wed Oct 01 06:32:41 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Jan 22 16:24:44 EST 2025 Sun Sep 21 06:15:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4039-b47cfd1324155d50a9add1b676fe129650d82f6b6254aa6a16f70e058f97a4ca3 |
Notes | ArticleID:CGF12389 Supporting Information istex:04BB49D2BEF702C0A7E2DEF63EC65F84D61C1B54 ark:/67375/WNG-F5897D6Z-Q SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12389 |
PQID | 1545016735 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | unpaywall_primary_10_1111_cgf_12389 proquest_miscellaneous_1671527634 proquest_journals_1545016735 crossref_citationtrail_10_1111_cgf_12389 crossref_primary_10_1111_cgf_12389 wiley_primary_10_1111_cgf_12389_CGF12389 istex_primary_ark_67375_WNG_F5897D6Z_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Wu Y., Gaunt C., Gray S.: A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics 6, 1 (2010), 34-45. 4 Huber P.J.: Robust statistics. Springer, Berlin Heidelberg, 2011. 5 R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0. URL: http://www.R-project.org/. 1 Kaufman L., Rousseeuw P.J.: Finding groups in data: an introduction to cluster analysis, vol. 344. John Wiley & Sons, 2009. 7 Guyon I., Elisseeff A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3 (2003), 1157-1182. 1 Cook R.D., Weisberg S.: Residuals and influence in regression, vol. 5. Chapman and Hall New York, 1982. 6 Kruskal J.B., Landwehr J.M.: Icicle plots: Better displays for hierarchical clustering. The American Statistician 37, 2 (1983), 162-168. 7 McGuffin M.J., Robert J.-M.: Quantifying the space-efficiency of 2d graphical representations of trees. Information Visualization 9, 2 (2010), 115-140. 7 Elmqvist N., Fekete J.-D.: Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Transactions on Visualization and Computer Graphics 16, 3 (2010), 439-454. 7 Brown G., Wyatt J., Harris R., Yao X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 1 (2005), 5-20. 2 Muhlbacher T., Piringer H.: A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 1962-1971. 1, 2, 4, 5 Tukey J.W.: Exploratory data analysis. Addison-Wesley, Reading, Massachusetts, 1977. 4 Bickel P.J., Hammel E.A., OŠConnell J.W., et al.: Sex bias in graduate admissions: Data from berkeley. Science 187, 4175 (1975), 398-404. 1, 2 Reshef D.N., Reshef Y.A., Finucane H.K., Grossman S.R., McVean G., Turnbaugh P.J., Lander E.S., Mitzenmacher M., Sabeti P.C.: Detecting novel associations in large data sets. Science 334, 6062 (2011), 1518-1524. 2 Johansson S., Johansson J.: Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 993-1000. 1, 2 Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 10-18. 1 Kosara R., Bendix F., Hauser H.: Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 558-568. 9 2013; 19 2009; 11 2011; 334 2010; 16 2012 2006; 12 1990 2011 2000 1982; 5 2009 2003; 3 2008 2005; 6 2009; 344 2005 2004 1975; 187 2013 1983; 37 2009; 15 2010; 6 2010; 9 1977 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_14_2 R Core Team (e_1_2_7_24_2) 2012 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 Tukey J.W. (e_1_2_7_30_2) 1977 e_1_2_7_29_2 Talbot J. (e_1_2_7_28_2) 2009 Havre S. (e_1_2_7_11_2) 2000 Kaufman L. (e_1_2_7_16_2) 2009 e_1_2_7_25_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 Kruskal J.B. (e_1_2_7_15_2) 1983; 37 |
References_xml | – reference: Kruskal J.B., Landwehr J.M.: Icicle plots: Better displays for hierarchical clustering. The American Statistician 37, 2 (1983), 162-168. 7 – reference: Reshef D.N., Reshef Y.A., Finucane H.K., Grossman S.R., McVean G., Turnbaugh P.J., Lander E.S., Mitzenmacher M., Sabeti P.C.: Detecting novel associations in large data sets. Science 334, 6062 (2011), 1518-1524. 2 – reference: Tukey J.W.: Exploratory data analysis. Addison-Wesley, Reading, Massachusetts, 1977. 4 – reference: McGuffin M.J., Robert J.-M.: Quantifying the space-efficiency of 2d graphical representations of trees. Information Visualization 9, 2 (2010), 115-140. 7 – reference: Muhlbacher T., Piringer H.: A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 1962-1971. 1, 2, 4, 5 – reference: Johansson S., Johansson J.: Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 993-1000. 1, 2 – reference: Brown G., Wyatt J., Harris R., Yao X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 1 (2005), 5-20. 2 – reference: Bickel P.J., Hammel E.A., OŠConnell J.W., et al.: Sex bias in graduate admissions: Data from berkeley. Science 187, 4175 (1975), 398-404. 1, 2 – reference: Kosara R., Bendix F., Hauser H.: Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 558-568. 9 – reference: R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0. URL: http://www.R-project.org/. 1 – reference: Wu Y., Gaunt C., Gray S.: A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics 6, 1 (2010), 34-45. 4 – reference: Huber P.J.: Robust statistics. Springer, Berlin Heidelberg, 2011. 5 – reference: Elmqvist N., Fekete J.-D.: Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Transactions on Visualization and Computer Graphics 16, 3 (2010), 439-454. 7 – reference: Guyon I., Elisseeff A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3 (2003), 1157-1182. 1 – reference: Kaufman L., Rousseeuw P.J.: Finding groups in data: an introduction to cluster analysis, vol. 344. John Wiley & Sons, 2009. 7 – reference: Cook R.D., Weisberg S.: Residuals and influence in regression, vol. 5. Chapman and Hall New York, 1982. 6 – reference: Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 10-18. 1 – volume: 5 year: 1982 – year: 2011 – start-page: 230 year: 1990 end-page: 237 – start-page: 352 year: 2012 end-page: 360 – start-page: 129 year: 2011 end-page: 138 – volume: 37 start-page: 162 issue: 2 year: 1983 end-page: 168 article-title: Icicle plots: Better displays for hierarchical clustering publication-title: The American Statistician – start-page: 63 year: 2012 end-page: 72 – volume: 187 start-page: 398 issue: 4175 year: 1975 end-page: 404 article-title: Sex bias in graduate admissions: Data from berkeley publication-title: Science – start-page: 1283 year: 2009 end-page: 1292 – start-page: 111 year: 2011 end-page: 120 – year: 1977 – volume: 15 start-page: 993 issue: 6 year: 2009 end-page: 1000 article-title: Interactive dimensionality reduction through user‐defined combinations of quality metrics publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 19 start-page: 1962 issue: 12 year: 2013 end-page: 1971 article-title: A partition‐based framework for building and validating regression models publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 65 year: 2004 end-page: 72 – year: 2012 – start-page: 89 year: 2004 end-page: 96 – volume: 344 year: 2009 – start-page: 75 year: 2009 end-page: 82 – start-page: 115 year: 2000 end-page: 123 – volume: 9 start-page: 115 issue: 2 year: 2010 end-page: 140 article-title: Quantifying the space‐efficiency of 2d graphical representations of trees publication-title: Information Visualization – volume: 12 start-page: 558 issue: 4 year: 2006 end-page: 568 article-title: Parallel sets: Interactive exploration and visual analysis of categorical data publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 240 year: 2008 end-page: 245 – volume: 6 start-page: 34 issue: 1 year: 2010 end-page: 45 article-title: A comparison of alternative bankruptcy prediction models publication-title: Journal of Contemporary Accounting & Economics – volume: 3 start-page: 1157 year: 2003 end-page: 1182 article-title: An introduction to variable and feature selection publication-title: The Journal of Machine Learning Research – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 article-title: The weka data mining software: an update publication-title: ACM SIGKDD Explorations Newsletter – volume: 334 start-page: 1518 issue: 6062 year: 2011 end-page: 1524 article-title: Detecting novel associations in large data sets publication-title: Science – volume: 6 start-page: 5 issue: 1 year: 2005 end-page: 20 article-title: Diversity creation methods: a survey and categorisation publication-title: Information Fusion – start-page: 73 year: 2004 end-page: 80 – start-page: 157 year: 2005 end-page: 164 – volume: 16 start-page: 439 issue: 3 year: 2010 end-page: 454 article-title: Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2013 – ident: e_1_2_7_8_2 doi: 10.1109/VAST.2009.5333431 – ident: e_1_2_7_29_2 doi: 10.1109/VAST.2012.6400488 – volume-title: Exploratory data analysis year: 1977 ident: e_1_2_7_30_2 – ident: e_1_2_7_10_2 doi: 10.1145/1656274.1656278 – ident: e_1_2_7_13_2 doi: 10.1109/TVCG.2009.153 – start-page: 115 volume-title: IEEE Symposium on Information Visualization year: 2000 ident: e_1_2_7_11_2 – ident: e_1_2_7_27_2 – ident: e_1_2_7_18_2 doi: 10.1109/VAST.2011.6102448 – ident: e_1_2_7_31_2 doi: 10.1109/INFVIS.2005.1532142 – volume: 37 start-page: 162 issue: 2 year: 1983 ident: e_1_2_7_15_2 article-title: Icicle plots: Better displays for hierarchical clustering publication-title: The American Statistician doi: 10.1080/00031305.1983.10482733 – ident: e_1_2_7_26_2 – ident: e_1_2_7_7_2 doi: 10.1145/2339530.2339588 – ident: e_1_2_7_21_2 doi: 10.1109/IV.2008.17 – volume-title: Finding groups in data: an introduction to cluster analysis year: 2009 ident: e_1_2_7_16_2 – ident: e_1_2_7_3_2 doi: 10.1016/j.inffus.2004.04.004 – ident: e_1_2_7_23_2 – ident: e_1_2_7_19_2 doi: 10.1109/TVCG.2013.125 – ident: e_1_2_7_6_2 doi: 10.1162/153244303322753616 – ident: e_1_2_7_17_2 doi: 10.1109/VISUAL.1990.146386 – ident: e_1_2_7_2_2 doi: 10.1126/science.187.4175.398 – ident: e_1_2_7_32_2 doi: 10.1016/j.jcae.2010.04.002 – ident: e_1_2_7_12_2 doi: 10.1007/978-3-642-04898-2_594 – ident: e_1_2_7_9_2 doi: 10.1109/VAST.2011.6102450 – ident: e_1_2_7_25_2 doi: 10.1126/science.1205438 – ident: e_1_2_7_5_2 doi: 10.1109/TVCG.2009.84 – ident: e_1_2_7_22_2 – ident: e_1_2_7_4_2 doi: 10.1007/978-1-4612-4444-8_1 – ident: e_1_2_7_14_2 doi: 10.1109/TVCG.2006.76 – ident: e_1_2_7_33_2 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_2_7_24_2 – start-page: 1283 volume-title: Proceedings of the 27th international conference on Human factors in computing systems year: 2009 ident: e_1_2_7_28_2 – ident: e_1_2_7_20_2 doi: 10.1057/ivs.2009.4 |
SSID | ssj0004765 |
Score | 2.1691601 |
Snippet | Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to... Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre-selected variables, it is challenging to... |
SourceID | unpaywall proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 331 |
SubjectTerms | Analysis Categories and Subject Descriptors (according to ACM CCS) Construction Data points Generalized linear models H.5.2 [Information Interfaces and Presentation]: User Interfaces-Graphical user interfaces (GUI) Mathematical models Pattern recognition Representations Studies Tasks Trends Visual Visualization |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B-wA8AAMmso0pfAjtJVU_7HPC27Stm9BWDURh7MWzE1uaVqXV1optfz13-dKKACHxFiXnKPH5zr-zfb8DeCesT0XWsxGiVZHwMo2M9aQQZZTvE0BKepw7fDTCg7H4eCJPqjqnnAtT8kM0C25sGYW_ZgOfZb7087WpUwDpO-R64-Q-tJF3mFrQHo-Ot7_XjN7MFVPmF5EvRplU3EJLbZdmpDZ37vUS3HywyGfm5oeZTJYBbDEDDZ_AWf3t5cGTi85ibjvp7S-0jv_xc0_hcYVOw-1yOK3APZc_g0d3OAufgzqcfj2_-hAe8iQYHhf0nHlItzg7s8zpDAkIh1xkbRJ-dp6a8grkCxgP977sHERV9YUoFbw9bIVKfUbBKkOOTHZNQq6wZ1GhdwQSCNllcd-jpQBKGIOmh151XVfGPlFGpGawCq18mruXECLJYd_ZWMq-8ANMEp95Ql5eICqRuQC2ag3otKIm5woZE12HKNQXuuiLAN40orOSj-N3Qu8LNTYS5vKCD7Apqb-N9vVQxonaxVP9KYCNWs-6st0rzaCSB89ABvC6eUxWx1spJnfTBcmg4nrAOBABvG3Gx9--aKtQ958l9M7-sLhY-6cXrsNDgm6iPLS2Aa355cK9Ing0t5uVCfwEzokLGw priority: 102 providerName: Unpaywall |
Title | LoVis: Local Pattern Visualization for Model Refinement |
URI | https://api.istex.fr/ark:/67375/WNG-F5897D6Z-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12389 https://www.proquest.com/docview/1545016735 https://www.proquest.com/docview/1671527634 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12389 |
UnpaywallVersion | publishedVersion |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Business Source Ultimate customDbUrl: eissn: 1467-8659 dateEnd: 20241005 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: AKVCP dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8659 dateEnd: 20241005 omitProxy: true ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8659 dateEnd: 20241005 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0167-7055 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QeEAfRFFDBUlFY3jp5XrdjxaeCHoQgxckniIh2ey2u8Zw6RHuLgp_vTPbDzijxvjWtLPJdmZn97e7M78BeMWMy1kRm0gIIyPmeB5p49AgUkvXQ4CUxZQ7_H4gDofs3Sk_XYDdJhem4odoD9zIM_x8TQ6uzeSOk-dfXQen3ZSS9-KE-yvak1vqKCYFb3i9iTGmZhWiKJ625dxatERq_TEHNJdn5aW-_q5Ho3no6tee_gqcN72uQk4uOrOp6eQ3vxA6_udvPYQHNSYN96pB9AgWbLkK9-8wFT4GeTT-9G2yEx7R0hcee1LOMsRXlJNZZXKGCH9DKq02Ck-sw6Z07vgEhv23H_cPo7rmQpQzuhQ2TOauwC0qAY2Cd3WGE2BshBTOIjRAPFekPScMbpuY1kLHwsmu7fLUZVKzXCdPYbEcl3YNQoFyomdNynmPuURkmSsc4i3HhJCssAFsN9pXeU1ITnUxRqrZmKAulNdFAFut6GXFwvE7odfehK2EvrqgsDXJ1efBgerzNJNvxJn6EMBGY2NVe-xEEZSkwZLwAF60n9HX6AJFl3Y8QxkhqQqwSFgAL9ux8bcebXtT_1lC7R_0_cOzfxddh3uI2lgVr7YBi9OrmX2OyGhqNr0LbMLScHC89-UnN8AIRg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gPKAPoqhxFXUFY3jZy320013jiwGPU48LEkBiYpp2tzWGyx6Bu4j89czsl5xRY3zb7E6T7kyn_bWd-Q3AC2F9KrKOjRCtioSXaWSsJ4Moo3yXAFLS4dzh3REODsX7Y3m8AK_rXJiSH6I5cGPPKOZrdnA-kL7m5elX36J5N05uwBLfz7Fbbu__JI8SCmXN7M2cMRWvEMfxNE3nVqMlVuzFHNRcnuWn5sd3Mx7Pg9di9emvwJe632XQyUlrNrWt9PIXSsf__bE7cLuCpeGbchzdhQWXr8Kta2SF90ANJ0ffzl-FQ179wr2ClzMP6RWnZZbJnCEh4JCrq43DfeepKR893ofD_tuDrUFUlV2IUsH3wlao1Ge0S2Wskcm2SWgO7FhU6B2hA4J0Wdz1aGnnJIxB00Gv2q4tY58oI1LTewCL-SR3DyFEksOus7GUXeF7mCQ-8wS5vEBUInMBbNbq12nFSc6lMca63puQLnShiwDWG9HTkojjd0IvCxs2EubshCPXlNSfRju6L-NEbeNn_TGAtdrIunLac81okkdLTwbwvPlM7sZ3KCZ3kxnJoOJCwNgTAWw0g-NvPdosbP1nCb210y8eHv276DNYHhzsDvXw3ejDY7hJIE6U4WtrsDg9m7knBJSm9mnhD1dl6gqy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC2o_1DduW3V9IP2yxz2Sya5-ktZt1fOoxWoRISS7iUiPvaO9Q9u_3pl92RMV8duyO4HsTCb5TTLzC8ATYX0m8p6NEK2KhJdZZKwngyijfJ8AUtLj2uG3I9w7FK-P5NESPG9qYSp-iHbDjT2jnK_Zwae5v-Dk2RffoWk3Ti7BikCKrhgRHfzkjhIKZUPszZQxNa0Qp_G0TRcWoxXW6_cFpHllXkzN2TczHi9i13LxSa_B56bbVc7JcWc-s53s_BdGx__8r-uwVoPS8EU1im7AkituwuoFqsJboIaTD19Pn4VDXvvC_ZKVswjpFRdlVqWcIeHfkO9WG4cHzlNT3ni8DYfpy_fbe1F96UKUCT4VtkJlPqcYlZFGLrsmoRmwZ1Ghd4QNCNDlcd-jpbhJGIOmh151XVfGPlFGZGZwB5aLSeHuQogkh31nYyn7wg8wSXzuCXB5gahE7gLYarSvs5qRnC_GGOsmMiFd6FIXATxqRacVDcfvhJ6WJmwlzMkx560pqT-OdnUq40Tt4Cf9LoDNxsa6dtlTzViSB8tABvCw_UzOxicopnCTOcmg4muAcSACeNyOjb_1aKs09Z8l9PZuWj6s_7voA7i8v5Pq4avRmw24SghOVLlrm7A8O5m7e4SSZvZ-6Q0_ADp8CWE |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B-wA8AAMmso0pfAjtJVU_7HPC27Stm9BWDURh7MWzE1uaVqXV1optfz13-dKKACHxFiXnKPH5zr-zfb8DeCesT0XWsxGiVZHwMo2M9aQQZZTvE0BKepw7fDTCg7H4eCJPqjqnnAtT8kM0C25sGYW_ZgOfZb7087WpUwDpO-R64-Q-tJF3mFrQHo-Ot7_XjN7MFVPmF5EvRplU3EJLbZdmpDZ37vUS3HywyGfm5oeZTJYBbDEDDZ_AWf3t5cGTi85ibjvp7S-0jv_xc0_hcYVOw-1yOK3APZc_g0d3OAufgzqcfj2_-hAe8iQYHhf0nHlItzg7s8zpDAkIh1xkbRJ-dp6a8grkCxgP977sHERV9YUoFbw9bIVKfUbBKkOOTHZNQq6wZ1GhdwQSCNllcd-jpQBKGIOmh151XVfGPlFGpGawCq18mruXECLJYd_ZWMq-8ANMEp95Ql5eICqRuQC2ag3otKIm5woZE12HKNQXuuiLAN40orOSj-N3Qu8LNTYS5vKCD7Apqb-N9vVQxonaxVP9KYCNWs-6st0rzaCSB89ABvC6eUxWx1spJnfTBcmg4nrAOBABvG3Gx9--aKtQ958l9M7-sLhY-6cXrsNDgm6iPLS2Aa355cK9Ing0t5uVCfwEzokLGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LoVis%3A+Local+Pattern+Visualization+for+Model+Refinement&rft.jtitle=Computer+graphics+forum&rft.au=Zhao%2C+Kaiyu&rft.au=Ward%2C+Matthew+O.&rft.au=Rundensteiner%2C+Elke+A.&rft.au=Higgins%2C+Huong+N.&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=331&rft.epage=340&rft_id=info:doi/10.1111%2Fcgf.12389&rft.externalDBID=10.1111%252Fcgf.12389&rft.externalDocID=CGF12389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |