Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition

The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response func...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 13; pp. 4045 - 4073
Main Authors Mann‐Krzisnik, Dylan, Mitsis, Georgios D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25902

Cover

Abstract The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. We show that EEG features of BOLD‐fMRI dynamics can be obtained using the canonical polyadic decomposition. Hemodynamic response functions are also estimated in the process, which allows one to model BOLD‐fMRI signals using EEG signals. We employ our method on simulated data, as well as publicly available task‐based and resting‐state EEG‐fMRI data.
AbstractList The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. We show that EEG features of BOLD‐fMRI dynamics can be obtained using the canonical polyadic decomposition. Hemodynamic response functions are also estimated in the process, which allows one to model BOLD‐fMRI signals using EEG signals. We employ our method on simulated data, as well as publicly available task‐based and resting‐state EEG‐fMRI data.
The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.
The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.
The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. We show that EEG features of BOLD‐fMRI dynamics can be obtained using the canonical polyadic decomposition. Hemodynamic response functions are also estimated in the process, which allows one to model BOLD‐fMRI signals using EEG signals. We employ our method on simulated data, as well as publicly available task‐based and resting‐state EEG‐fMRI data.
Author Mitsis, Georgios D.
Mann‐Krzisnik, Dylan
AuthorAffiliation 1 Graduate Program in Biological and Biomedical Engineering McGill University Montréal Quebec Canada
2 Department of Bioengineering McGill University Montréal Quebec Canada
AuthorAffiliation_xml – name: 1 Graduate Program in Biological and Biomedical Engineering McGill University Montréal Quebec Canada
– name: 2 Department of Bioengineering McGill University Montréal Quebec Canada
Author_xml – sequence: 1
  givenname: Dylan
  orcidid: 0000-0003-2874-7272
  surname: Mann‐Krzisnik
  fullname: Mann‐Krzisnik, Dylan
  email: dylan.mann-krzisnik@mail.mcgill.ca
  organization: McGill University
– sequence: 2
  givenname: Georgios D.
  orcidid: 0000-0001-9975-5128
  surname: Mitsis
  fullname: Mitsis, Georgios D.
  organization: McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35567768$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1jAQhSNURC-w4AVQJDaAlNaOYzveIEFVKFIRG1hbjjP-f1eOHeyEkjUvjtOUqwQrj2a-OTpzfFwc-OChKB5jdIoRqs_23XBaU4Hqe8URRoJXCAtysNaMVqLh-LA4TukaIYwpwg-KQ0Ip45y1R8W3i69TVHqyfleCAz3FMO6XZIMLO6uVK3WIEZyaIJXBlGb2mQ0-Dwa18zBZXUZIueE1lDb3VqFeTaqc01pOeyi1yn5vxcbgFtXnnR50GMaQ7Cr2sLhvlEvw6O49KT69ufh4flldfXj77vzVVaUbROqKoFYjY7hpOWMdBUpNrwgXtGl0W3NGmhYZhBVnhjW9qhshKFYd60HpTnFNTooXm-7sR7XcKOfkGLPnuEiM5JqkzEnK2yQz_HKDx7kboNfgc06_FoKy8s-Jt3u5C1-kILxpBc0Cz-4EYvg8Q5rkYJMG55SHMCdZM9bwVtSIZPTpX-h1mGMOOVMcYUIQETxTT3539NPKj8_MwPMN0DGkFMH897yzjb2xDpZ_g_Ly9ftt4zt5MMGk
Cites_doi 10.1016/j.neuroimage.2007.11.059
10.3389/fnins.2016.00102
10.1371/journal.pcbi.1006136
10.3389/fnins.2014.00258
10.2307/2983351
10.1038/nrn3963
10.1109/TMI.2014.2379914
10.1109/TBME.2014.2311996
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2004.03.038
10.3389/fnins.2017.00115
10.3389/fninf.2013.00010
10.1098/rspa.2003.1247
10.7554/eLife.28927
10.1137/07070111X
10.3389/fnins.2019.00416
10.1002/9780471679370
10.1016/j.neuroimage.2016.09.027
10.1016/j.neuroimage.2012.06.078
10.1038/s41598-021-85386-0
10.1016/j.neuroimage.2020.116707
10.1073/pnas.0700668104
10.1097/00004647-199701000-00009
10.1109/78.554307
10.1089/brain.2012.0088
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2018.02.061
10.1016/j.clinph.2008.07.284
10.7554/eLife.62324
10.1006/nimg.2000.0630
10.1016/j.neuroimage.2017.03.023
10.1016/j.neuroimage.2019.116150
10.1016/j.sigpro.2011.03.008
10.1101/2020.09.09.290296
10.1088/1741-2560/13/4/046026
10.1109/JPROC.2015.2455028
10.1002/hbm.22623
10.23919/EUSIPCO.2017.8081162
10.1016/j.neuroimage.2019.116373
10.3389/fnins.2015.00254
10.1016/j.neuroimage.2007.07.040
10.1523/JNEUROSCI.3985-11.2012
10.1016/j.jneumeth.2015.03.018
10.1016/j.neuroimage.2012.11.015
10.1002/mrm.1910390109
10.1002/0471722960
10.1038/s41597-020-0498-3
10.3389/fnhum.2018.00029
10.1073/pnas.1112685108
10.3390/s18020405
10.1016/j.neuroimage.2007.01.022
10.3389/fnins.2015.00467
10.1016/j.neuroimage.2008.09.029
10.1016/j.neuroimage.2013.08.048
10.1097/WNP.0000000000000411
10.1371/journal.pone.0153404
10.1016/S1053-8119(03)00202-7
10.1016/j.mri.2021.10.028
10.3389/fnins.2013.00267
10.1007/978-1-4757-3978-7
10.3389/fphys.2018.01688
10.1016/j.neuroimage.2005.09.062
10.1016/j.neuroimage.2014.05.018
10.1109/TSP.2012.2215030
10.1016/j.neuroimage.2009.06.060
10.3389/fnins.2016.00313
10.1016/j.neuroimage.2013.11.047
10.1016/j.neuroimage.2011.09.050
10.1007/s10994-009-5153-3
10.1371/journal.pcbi.1004225
10.1002/cem.773
10.1038/s41598-017-03073-5
10.1007/s10548-022-00898-w
10.1016/J.NEUROIMAGE.2006.01.021
10.1006/nimg.1997.0306
10.1016/j.neuroimage.2014.03.028
10.1016/j.neuroimage.2004.10.043
10.1097/01.wnr.0000047685.08940.d0
10.1146/annurev-neuro-071013-014111
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.25902
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Mann‐Krzisnik and Mitsis
EISSN 1097-0193
EndPage 4073
ExternalDocumentID 10.1002/hbm.25902
PMC9374895
35567768
10_1002_hbm_25902
HBM25902
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canada First Research Excellence Fund
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 34362
– fundername: Fonds de Recherche du Québec ‐ Nature et Technologies
  funderid: PR191780‐2016
– fundername: ;
– fundername: Fonds de Recherche du Québec ‐ Nature et Technologies
  grantid: PR191780‐2016
– fundername: ;
  grantid: 34362
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4032-308c0ff7f8766b5e55fda379544c82763480f01a76f64da249951ab6deacba7c3
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:10:16 EDT 2025
Tue Sep 30 16:47:52 EDT 2025
Fri Sep 05 06:17:19 EDT 2025
Tue Oct 07 06:13:32 EDT 2025
Mon Jul 21 06:17:33 EDT 2025
Wed Oct 01 01:55:49 EDT 2025
Wed Jan 22 16:23:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords magnetic resonance imaging
electrophysiology
motor-imagery
computational modelling
neurovascular coupling
resting-state
tensor decomposition
Language English
License Attribution
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4032-308c0ff7f8766b5e55fda379544c82763480f01a76f64da249951ab6deacba7c3
Notes Funding information
Canada First Research Excellence Fund; Fonds de Recherche du Québec ‐ Nature et Technologies, Grant/Award Number: PR191780‐2016; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: 34362
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Canada First Research Excellence Fund; Fonds de Recherche du Québec ‐ Nature et Technologies, Grant/Award Number: PR191780‐2016; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: 34362
ORCID 0000-0003-2874-7272
0000-0001-9975-5128
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25902
PMID 35567768
PQID 2701330397
PQPubID 996345
PageCount 29
ParticipantIDs unpaywall_primary_10_1002_hbm_25902
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9374895
proquest_miscellaneous_2664789203
proquest_journals_2701330397
pubmed_primary_35567768
crossref_primary_10_1002_hbm_25902
wiley_primary_10_1002_hbm_25902_HBM25902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 44
2012; 60
2007; 104
2004; 22
2015; 34
2017; 7
2015; 36
2006; 30
2006; 31
2015; 103
2013; 67
2019; 13
2002; 13
1997; 45
2019; 202
2003; 17
2017; 152
2003; 19
2012; 59
2013; 7
2014; 61
2007; 35
2009; 48
2020; 207
2005; 25
2007; 38
2004; 134
2018; 7
2020; 7
2018; 9
2009; 51
2018; 173
2019; 20
2000; 12
2017; 34
2008; 119
1997; 17
2020; 213
2014; 96
2014; 8
2012; 63
2012; 62
2015; 16
2014; 90
2010; 79
2015; 248
2004; 460
2015; 11
2016; 10
2004
2003
2015; 9
2014; 84
2012; 32
2016; 13
2016; 11
2018; 18
1998; 39
2012; 2
2011; 108
2021; 11
2022
2011; 91
2020
2017; 11
2014; 37
2018
2017
2016
2018; 12
1998; 7
1996; 159
2008; 40
2017; 145
2018; 14
2014; 102
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_24_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_68_1
e_1_2_12_62_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_81_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_77_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_75_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_71_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
Tange O. (e_1_2_12_74_1) 2018
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_40_1
e_1_2_12_82_1
Kossaifi J. (e_1_2_12_45_1) 2019; 20
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_9_1
References_xml – volume: 18
  issue: 2
  year: 2018
  article-title: An advanced bio‐inspired photoplethysmography (PPG) and ECG pattern recognition system for medical assessment
  publication-title: Sensors
– volume: 7
  start-page: 30
  issue: 1
  year: 1998
  end-page: 40
  article-title: Event‐related fMRI: Characterizing differential responses
  publication-title: NeuroImage
– start-page: 228
  year: 2022
  end-page: 250
  article-title: A multi‐measure approach for assessing the performance of fMRI preprocessing strategies in resting‐state functional connectivity
  publication-title: Magnetic Resonance Imaging
– year: 2020
  article-title: Modeling the hemodynamic response function using simultaneous EEG‐fMRI data and convolutional sparse coding analysis with rank‐1 constraints
  publication-title: BioRxiv
– volume: 60
  start-page: 6257
  issue: 12
  year: 2012
  end-page: 6269
  article-title: Exact wavelets on the ball
  publication-title: IEEE Transactions on Signal Processing
– volume: 22
  start-page: 1023
  issue: 3
  year: 2004
  end-page: 1034
  article-title: Concurrent EEG/fMRI analysis by multiway partial least squares
  publication-title: NeuroImage
– volume: 96
  start-page: 22
  year: 2014
  end-page: 35
  article-title: Reduction of motion‐related artifacts in resting state fMRI using aCompCor
  publication-title: NeuroImage
– volume: 7
  year: 2013
  article-title: MEG and EEG data analysis with MNE‐python
  publication-title: Frontiers in Neuroscience
– volume: 13
  start-page: 2487
  issue: 18
  year: 2002
  end-page: 2492
  article-title: Simultaneous EEG and fMRI of the alpha rhythm
  publication-title: Neuroreport
– volume: 12
  start-page: 466
  issue: 4
  year: 2000
  end-page: 477
  article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics
  publication-title: NeuroImage
– volume: 17
  start-page: 64
  issue: 1
  year: 1997
  end-page: 72
  article-title: A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– article-title: Physiological and head motion signatures in static and time‐varying functional connectivity and their subject
  publication-title: eLife
– volume: 202
  issue: July
  year: 2019
  article-title: Identification of physiological response functions to correct for fluctuations in resting‐state fMRI related to heart rate and respiration
  publication-title: NeuroImage
– volume: 119
  start-page: 2762
  issue: 12
  year: 2008
  end-page: 2774
  article-title: Effects of fluctuating physiological rhythms during prolonged EEG‐fMRI studies
  publication-title: Clinical Neurophysiology
– volume: 63
  start-page: 1712
  issue: 3
  year: 2012
  end-page: 1719
  article-title: Periodic changes in fMRI connectivity
  publication-title: NeuroImage
– volume: 79
  start-page: 5
  issue: 1–2
  year: 2010
  end-page: 27
  article-title: Temporal kernel CCA and its application in multimodal neuronal data analysis
  publication-title: Machine Learning
– volume: 67
  start-page: 137
  year: 2013
  end-page: 152
  article-title: Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: Implications for single‐subject and group analyses
  publication-title: NeuroImage
– volume: 7
  issue: MAY
  year: 2013
  article-title: The virtual brain: A simulator of primate brain network dynamics
  publication-title: Frontiers in Neuroinformatics
– volume: 45
  start-page: 434
  issue: 2
  year: 1997
  end-page: 444
  article-title: A blind source separation technique using second‐order statistics
  publication-title: IEEE Transactions on Signal Processing
– volume: 11
  start-page: 1
  issue: 4
  year: 2015
  end-page: 21
  article-title: General relationship of global topology, local dynamics, and directionality in large‐scale brain networks
  publication-title: PLoS Computational Biology
– year: 2018
– volume: 36
  start-page: 391
  issue: 1
  year: 2015
  end-page: 414
  article-title: Electrophysiological correlates of the BOLD signal for EEG‐informed fMRI
  publication-title: Human Brain Mapping
– volume: 13
  issue: 4
  year: 2016
  article-title: What can be found in scalp EEG spectrum beyond common frequency bands. EEG‐fMRI study
  publication-title: Journal of Neural Engineering
– volume: 9
  start-page: 1
  issue: November
  year: 2018
  end-page: 6
  article-title: Switch‐off” of respiratory sinus arrhythmia can occur in a minority of subjects during functional magnetic resonance imaging (fMRI)
  publication-title: Frontiers in Physiology
– volume: 159
  start-page: 631
  issue: 3
  year: 1996
  article-title: The jackknife and bootstrap
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
– volume: 207
  year: 2020
  article-title: BOLD and EEG signal variability at rest differently relate to aging in the human brain
  publication-title: NeuroImage
– volume: 38
  start-page: 387
  issue: 3
  year: 2007
  end-page: 401
  article-title: Comparing hemodynamic models with DCM
  publication-title: NeuroImage
– volume: 9
  start-page: 1
  issue: DEC
  year: 2015
  end-page: 12
  article-title: Investigating human neurovascular coupling using functional neuroimaging: A critical review of dynamic models
  publication-title: Frontiers in Neuroscience
– volume: 248
  start-page: 59
  year: 2015
  end-page: 69
  article-title: Tensor decomposition of EEG signals: A brief review
  publication-title: Journal of Neuroscience Methods
– volume: 14
  issue: 5
  year: 2018
  article-title: Design of optimal nonlinear network controllers for Alzheimer's disease
  publication-title: PLoS Computational Biology
– year: 2004
– volume: 16
  start-page: 430
  issue: 7
  year: 2015
  end-page: 439
  article-title: Rethinking segregation and integration: Contributions of whole‐brain modelling
  publication-title: Nature Reviews Neuroscience
– volume: 10
  issue: MAR
  year: 2016
  article-title: Hemodynamic response to interictal epileptiform discharges addressed by personalized EEG‐fNIRS recordings
  publication-title: Frontiers in Neuroscience
– volume: 19
  start-page: 1273
  issue: 4
  year: 2003
  end-page: 1302
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 37
  start-page: 161
  year: 2014
  end-page: 181
  article-title: Coupling mechanism and significance of the BOLD signal: A status report
  publication-title: Annual Review of Neuroscience
– volume: 34
  start-page: 1155
  issue: 5
  year: 2015
  end-page: 1163
  article-title: Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering
  publication-title: IEEE Transactions on Medical Imaging
– volume: 91
  start-page: 2810
  issue: 12
  year: 2011
  end-page: 2821
  article-title: Activelets: Wavelets for sparse representation of hemodynamic responses
  publication-title: Signal Processing
– year: 2022
  article-title: Modeling the hemodynamic response function using EEG‐fMRI data during eyes‐open resting‐state conditions and motor task execution
  publication-title: Brain Topography
– volume: 12
  start-page: 1
  issue: February
  year: 2018
  end-page: 23
  article-title: EEG‐informed fMRI: A review of data analysis methods
  publication-title: Frontiers in Human Neuroscience
– volume: 9
  issue: JUL
  year: 2015
  article-title: Group‐level component analyses of EEG: Validation and evaluation
  publication-title: Frontiers in Neuroscience
– volume: 10
  start-page: 1
  issue: JUN
  year: 2016
  end-page: 9
  article-title: Systemic low‐frequency oscillations in BOLD signal vary with tissue type
  publication-title: Frontiers in Neuroscience
– volume: 13
  issue: MAY
  year: 2019
  article-title: Unraveling diagnostic biomarkers of schizophrenia through structure‐revealing fusion of multi‐modal neuroimaging data
  publication-title: Frontiers in Neuroscience
– volume: 104
  start-page: 13170
  issue: 32
  year: 2007
  end-page: 13175
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 254
  issue: 5
  year: 2012
  end-page: 264
  article-title: EEG alpha Power modulation of fMRI resting‐state connectivity
  publication-title: Brain Connectivity
– volume: 20
  start-page: 1
  issue: 26
  year: 2019
  end-page: 6
  article-title: TensorLy: Tensor learning in python. In
  publication-title: Journal of Machine Learning Research
– volume: 39
  start-page: 41
  issue: 1
  year: 1998
  end-page: 52
  article-title: Nonlinear event‐related responses in fMRI
  publication-title: Magnetic Resonance in Medicine
– volume: 35
  start-page: 1142
  issue: 3
  year: 2007
  end-page: 1151
  article-title: The hemodynamic response of the alpha rhythm: An EEG/fMRI study
  publication-title: NeuroImage
– volume: 32
  start-page: 1396
  issue: 4
  year: 2012
  end-page: 1407
  article-title: The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies
  publication-title: Journal of Neuroscience
– volume: 7
  start-page: 1
  year: 2018
  end-page: 30
  article-title: Inferring multi‐scale neural mechanisms with brain network modelling
  publication-title: eLife
– year: 2003
– volume: 460
  start-page: 373
  issue: 2041
  year: 2004
  end-page: 402
  article-title: Numerical methods for strong solutions of stochastic differential equations: An overview
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 152
  start-page: 538
  issue: February
  year: 2017
  end-page: 550
  article-title: Single or multiple frequency generators in on‐going brain activity: A mechanistic whole‐brain model of empirical MEG data
  publication-title: NeuroImage
– volume: 11
  start-page: 5964
  issue: 1
  year: 2021
  article-title: Deconvolution of hemodynamic responses along the cortical surface using personalized functional near infrared spectroscopy
  publication-title: Scientific Reports
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 44
  start-page: 857
  issue: 3
  year: 2009
  end-page: 869
  article-title: Influence of heart rate on the BOLD signal: The cardiac response function
  publication-title: NeuroImage
– volume: 25
  start-page: 294
  issue: 1
  year: 2005
  end-page: 311
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: NeuroImage
– volume: 48
  start-page: 63
  issue: 1
  year: 2009
  end-page: 72
  article-title: Accurate and robust brain image alignment using boundary‐based registration
  publication-title: NeuroImage
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  article-title: Tensor decompositions and applications
  publication-title: SIAM Review
– year: 2016
– volume: 90
  start-page: 423
  year: 2014
  end-page: 435
  article-title: Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band‐pass filtered oscillations
  publication-title: NeuroImage
– volume: 40
  start-page: 644
  issue: 2
  year: 2008
  end-page: 654
  article-title: The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration
  publication-title: NeuroImage
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 14
  article-title: The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core
  publication-title: Scientific Reports
– volume: 173
  start-page: 322
  issue: March
  year: 2018
  end-page: 331
  article-title: Characterization of the hemodynamic response function across the majority of human cerebral cortex
  publication-title: NeuroImage
– volume: 213
  issue: February
  year: 2020
  article-title: Resting‐state “physiological networks
  publication-title: NeuroImage
– volume: 11
  issue: MAR
  year: 2017
  article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses
  publication-title: Frontiers in Neuroscience
– volume: 30
  start-page: 203
  issue: 1
  year: 2006
  end-page: 213
  article-title: Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter‐subject variability
  publication-title: NeuroImage
– volume: 108
  start-page: 16783
  issue: 40
  year: 2011
  end-page: 16788
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  article-title: FSL
  publication-title: NeuroImage
– volume: 34
  start-page: 527
  issue: 6
  year: 2017
  end-page: 533
  article-title: Relationship between alpha rhythm and the default mode network: An EEG‐fMRI study
  publication-title: Journal of Clinical Neurophysiology
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  article-title: Simultaneous EEG‐fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration
  publication-title: Scientific Data
– volume: 61
  start-page: 1555
  issue: 5
  year: 2014
  end-page: 1564
  article-title: A review of multitaper spectral analysis
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 59
  start-page: 1997
  issue: 3
  year: 2012
  end-page: 2006
  article-title: Neurovascular coupling is brain region‐dependent
  publication-title: NeuroImage
– volume: 11
  start-page: 1
  issue: 4
  year: 2016
  end-page: 17
  article-title: NODDI and tensor‐based microstructural indices as predictors of functional connectivity
  publication-title: PLoS One
– volume: 145
  start-page: 1
  issue: June 2015
  year: 2017
  end-page: 10
  article-title: Distinctive time‐lagged resting‐state networks revealed by simultaneous EEG‐fMRI
  publication-title: NeuroImage
– volume: 17
  start-page: 16
  issue: 1
  year: 2003
  end-page: 33
  article-title: Centering and scaling in component analysis
  publication-title: Journal of Chemometrics
– volume: 103
  start-page: 1531
  issue: 9
  year: 2015
  end-page: 1559
  article-title: Tensor analysis and fusion of multimodal brain images
  publication-title: Proceedings of the IEEE
– volume: 8
  start-page: 1
  issue: August
  year: 2014
  end-page: 16
  article-title: Relating resting‐state fMRI and EEG whole‐brain connectomes across frequency bands
  publication-title: Frontiers in Neuroscience
– volume: 102
  start-page: 3
  issue: P1
  year: 2014
  end-page: 10
  article-title: General overview on the merits of multimodal neuroimaging data fusion. In
  publication-title: NeuroImage
– year: 2017
– ident: e_1_2_12_8_1
  doi: 10.1016/j.neuroimage.2007.11.059
– ident: e_1_2_12_62_1
  doi: 10.3389/fnins.2016.00102
– ident: e_1_2_12_68_1
  doi: 10.1371/journal.pcbi.1006136
– ident: e_1_2_12_22_1
  doi: 10.3389/fnins.2014.00258
– ident: e_1_2_12_83_1
  doi: 10.2307/2983351
– ident: e_1_2_12_20_1
  doi: 10.1038/nrn3963
– ident: e_1_2_12_72_1
  doi: 10.1109/TMI.2014.2379914
– ident: e_1_2_12_4_1
  doi: 10.1109/TBME.2014.2311996
– ident: e_1_2_12_23_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_12_56_1
  doi: 10.1016/j.neuroimage.2004.03.038
– ident: e_1_2_12_61_1
  doi: 10.3389/fnins.2017.00115
– ident: e_1_2_12_69_1
  doi: 10.3389/fninf.2013.00010
– ident: e_1_2_12_12_1
  doi: 10.1098/rspa.2003.1247
– ident: e_1_2_12_71_1
  doi: 10.7554/eLife.28927
– ident: e_1_2_12_44_1
  doi: 10.1137/07070111X
– volume-title: GNU Parallel 2018
  year: 2018
  ident: e_1_2_12_74_1
– ident: e_1_2_12_3_1
  doi: 10.3389/fnins.2019.00416
– ident: e_1_2_12_55_1
  doi: 10.1002/9780471679370
– ident: e_1_2_12_26_1
  doi: 10.1016/j.neuroimage.2016.09.027
– ident: e_1_2_12_35_1
  doi: 10.1016/j.neuroimage.2012.06.078
– ident: e_1_2_12_51_1
  doi: 10.1038/s41598-021-85386-0
– ident: e_1_2_12_16_1
  doi: 10.1016/j.neuroimage.2020.116707
– ident: e_1_2_12_53_1
  doi: 10.1073/pnas.0700668104
– ident: e_1_2_12_13_1
  doi: 10.1097/00004647-199701000-00009
– ident: e_1_2_12_6_1
  doi: 10.1109/78.554307
– ident: e_1_2_12_70_1
  doi: 10.1089/brain.2012.0088
– ident: e_1_2_12_39_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_12_75_1
  doi: 10.1016/j.neuroimage.2018.02.061
– ident: e_1_2_12_77_1
  doi: 10.1016/j.clinph.2008.07.284
– ident: e_1_2_12_82_1
  doi: 10.7554/eLife.62324
– ident: e_1_2_12_29_1
  doi: 10.1006/nimg.2000.0630
– volume: 20
  start-page: 1
  issue: 26
  year: 2019
  ident: e_1_2_12_45_1
  article-title: TensorLy: Tensor learning in python. In
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_18_1
  doi: 10.1016/j.neuroimage.2017.03.023
– ident: e_1_2_12_41_1
  doi: 10.1016/j.neuroimage.2019.116150
– ident: e_1_2_12_43_1
  doi: 10.1016/j.sigpro.2011.03.008
– ident: e_1_2_12_64_1
  doi: 10.1101/2020.09.09.290296
– ident: e_1_2_12_54_1
  doi: 10.1088/1741-2560/13/4/046026
– ident: e_1_2_12_40_1
  doi: 10.1109/JPROC.2015.2455028
– ident: e_1_2_12_59_1
  doi: 10.1002/hbm.22623
– ident: e_1_2_12_79_1
  doi: 10.23919/EUSIPCO.2017.8081162
– ident: e_1_2_12_46_1
  doi: 10.1016/j.neuroimage.2019.116373
– ident: e_1_2_12_38_1
  doi: 10.3389/fnins.2015.00254
– ident: e_1_2_12_73_1
  doi: 10.1016/j.neuroimage.2007.07.040
– ident: e_1_2_12_52_1
  doi: 10.1523/JNEUROSCI.3985-11.2012
– ident: e_1_2_12_80_1
– ident: e_1_2_12_17_1
  doi: 10.1016/j.jneumeth.2015.03.018
– ident: e_1_2_12_49_1
  doi: 10.1016/j.neuroimage.2012.11.015
– ident: e_1_2_12_28_1
  doi: 10.1002/mrm.1910390109
– ident: e_1_2_12_81_1
  doi: 10.1002/0471722960
– ident: e_1_2_12_50_1
  doi: 10.1038/s41597-020-0498-3
– ident: e_1_2_12_2_1
  doi: 10.3389/fnhum.2018.00029
– ident: e_1_2_12_11_1
  doi: 10.1073/pnas.1112685108
– ident: e_1_2_12_67_1
  doi: 10.3390/s18020405
– ident: e_1_2_12_58_1
  doi: 10.1016/j.neuroimage.2007.01.022
– ident: e_1_2_12_37_1
  doi: 10.3389/fnins.2015.00467
– ident: e_1_2_12_15_1
  doi: 10.1016/j.neuroimage.2008.09.029
– ident: e_1_2_12_63_1
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_2_12_9_1
  doi: 10.1097/WNP.0000000000000411
– ident: e_1_2_12_21_1
  doi: 10.1371/journal.pone.0153404
– ident: e_1_2_12_30_1
  doi: 10.1016/S1053-8119(03)00202-7
– ident: e_1_2_12_42_1
  doi: 10.1016/j.mri.2021.10.028
– ident: e_1_2_12_33_1
  doi: 10.3389/fnins.2013.00267
– ident: e_1_2_12_47_1
  doi: 10.1007/978-1-4757-3978-7
– ident: e_1_2_12_66_1
  doi: 10.3389/fphys.2018.01688
– ident: e_1_2_12_32_1
  doi: 10.1016/j.neuroimage.2005.09.062
– ident: e_1_2_12_78_1
  doi: 10.1016/j.neuroimage.2014.05.018
– ident: e_1_2_12_48_1
  doi: 10.1109/TSP.2012.2215030
– ident: e_1_2_12_34_1
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: e_1_2_12_76_1
  doi: 10.3389/fnins.2016.00313
– ident: e_1_2_12_14_1
  doi: 10.1016/j.neuroimage.2013.11.047
– ident: e_1_2_12_25_1
  doi: 10.1016/j.neuroimage.2011.09.050
– ident: e_1_2_12_7_1
  doi: 10.1007/s10994-009-5153-3
– ident: e_1_2_12_57_1
  doi: 10.1371/journal.pcbi.1004225
– ident: e_1_2_12_10_1
  doi: 10.1002/cem.773
– ident: e_1_2_12_19_1
  doi: 10.1038/s41598-017-03073-5
– ident: e_1_2_12_65_1
  doi: 10.1007/s10548-022-00898-w
– ident: e_1_2_12_24_1
  doi: 10.1016/J.NEUROIMAGE.2006.01.021
– ident: e_1_2_12_27_1
  doi: 10.1006/nimg.1997.0306
– ident: e_1_2_12_60_1
  doi: 10.1016/j.neuroimage.2014.03.028
– ident: e_1_2_12_5_1
  doi: 10.1016/j.neuroimage.2004.10.043
– ident: e_1_2_12_31_1
  doi: 10.1097/01.wnr.0000047685.08940.d0
– ident: e_1_2_12_36_1
  doi: 10.1146/annurev-neuro-071013-014111
SSID ssj0011501
Score 2.4106455
Snippet The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features...
The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4045
SubjectTerms Brain - physiology
Brain Mapping - methods
computational modelling
Coupling
Decomposition
EEG
Electroencephalography
Electroencephalography - methods
Electrophysiological Phenomena
Electrophysiology
Feature extraction
Functional magnetic resonance imaging
Hemodynamic responses
Hemodynamics
Humans
Impulse response
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
motor‐imagery
neurovascular coupling
Neurovascular Coupling - physiology
Noise
Noise measurement
Physiological effects
Response functions
resting‐state
Spatial distribution
tensor decomposition
Tensors
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SFNpeSpq0iZsH6oPSixNZT5uckpCwFFJySCA3I9vSJrBrL80u7Z77xzuSH2UJLbkZNEaC0cx8I818AvicWZOo0tEYjVDGwloRGyuqmHIjBFdFKl1g-_yuRjfi2628XYPjvhem5YcYDty8ZQR_7Q3cFA9Hf0lD74rpIfPkI8_geYI4xm9vJq6GKwREOiHbwhgbZ-iCe1ohyo6GX1eD0SOE-bhQ8uWinpnlTzOZrILZEI0uNuB1ByPJSav3N7Bm603YOqkxhZ4uyRcSCjvDifkmvLjs7s-34Pf5r3loi6rHpHsAZ9ZLem2R0j_WMfH4kzSO-KDXnhWSqRnXvt-RYHreeJIOS-6n4YUj4otMia-fHxNEkwR11YRmSzJrJkuDU5PK-sr1rjzsLdxcnF-fjeLuGYa4FJSzmNO0pM5ph45TFdJK6SrDdSaFKFOG_kmk1NHEaOWUqAzmc4jaTKEq9OmF0SV_B-s4sd0BIitdIp5IRKkCU1lqU0RYmeacF5VNZAQfe33ks5ZtI295lVmOSsuD0iLY6zWVdwb3kDONWBbDcaYj-DAMo6n4-w9T22aBMso31maM8gi2W8UOsyDsUhpTrwj0isoHAU_DvTpS398FOu4sMPjg2j8Nm-N_i_8ats2_JfLR6WX4eP900V14xXxbRqh924P1-Y-F3UewNC8OglH8AYL-Emw
  priority: 102
  providerName: Wiley-Blackwell
Title Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25902
https://www.ncbi.nlm.nih.gov/pubmed/35567768
https://www.proquest.com/docview/2701330397
https://www.proquest.com/docview/2664789203
https://pubmed.ncbi.nlm.nih.gov/PMC9374895
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25902
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xrQRceOzyCCyVeQhxSUkdP5JjF3VVIW1VrahUTsFJnO6KNo2WVlCu_HHGjhNRViAkLlGkOLGTzHi-sWe-AXgVazUQWRH4qITcZ1ozX2mW-0GoGAtFGvHCsn1OxHjG3s_53NU5NbkwNT9Eu-BmNMPO10bBq7yo53m3u0_fXqSrPjUEJAfQFRzBeAe6s8l0-NHucQrux87lCgznKGKVhlvo13v3LdI1mHk9WvLWtqzU7qtaLvcRrTVJp3fhU_MydSTK5_52k_az77_xPP7H296DOw6ukmEtX_fhhi4P4WhYoqu-2pHXxAaQ2pX5Q7h55vbpj-DH6NvGpl-VC-IK7VRNSyMVJDNFQZYG55J1QYxxrdckyUotSpNXSa60cRJQJMnlylZSIiaYlZg4_QVB1EpQJtY2qZNU6-VOYdck1yZC3oWhPYDZ6ejDu7Hvyj34GQtC6odBlAVFIQucoEXKNedFrkIZc8ayiOI8yKKgCAZKikKwXKHfiOhQpSJH25EqmYUPoYMd68dAeC4zxC0DlgnLiBbpCJFcLMMwTHM94B68aH55UtWsHknN30wT_MqJ_coeHDfCkDjF_pJQiZgZzX4sPXjeXkaVNPssqtTrLbYRJoE3pkHowaNadtpeEN4JiS6eB3JPqtoGhu57_0p5eWFpv2PLFIRjf9nK398G_8aK059bJOOTM3vy5J8e-BRuU5P5YcPrjqGzudrqZ4jHNmkPDiib4lHOZQ-6J6PJ9Lxn1zbM8Zz2nE7-BNEiPCk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlEuqLQ8Ai2YhxCXUMfPROqloFYLdCsOrdRb5CT2ttJusoJdwZ754x07D7SqQNxWyqwc6cvMfGPPfAZ4m1mTqNLRGJ1QxsJaERsrqphyIwRXRSpdUPs8U6ML8eVSXm7AYT8L0-pDDBtu3jNCvPYO7jekD_6ohl4Vsw_Mq4_cgbtCJcqXXkx8G84QkOqEcguTbJxhDO51hSg7GP66no1uUczbnZJby3puVj_NdLrOZkM6OtmGBx2PJEct8A9hw9Y7sHtUYw09W5F3JHR2hi3zHbg37g7Qd-H38a9FmIuqJ6S7AWfeW3q4SOlv65h6AkoaR3zWazcLycxMaj_wSLA-b7xKhyXXs3DFEfFdpsQ30E8I0kmCYDVh2pLMm-nK4NKksr51vesPewQXJ8fnn0Zxdw9DXArKWcxpWlLntMPIqQpppXSV4TqTQpQpwwAlUupoYrRySlQGCzqkbaZQFQb1wuiSP4ZNXNg-BSIrXSKhSESpglRZalOkWJnmnBeVTWQEr3s88nkrt5G3wsosR9DyAFoEez1SeedxP3KmkcxiPs50BK-Gx-gr_gDE1LZZoo3yk7UZozyCJy2wwyrIu5TG2isCvQb5YOB1uNef1NdXQY87CxI--O5vho_jXy__Pnw2f7fIRx_H4cez_zd9CVuj8_Fpfvr57OtzuM_8jEZohNuDzcX3pd1H5rQoXgQHuQFG6BXY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIhVeCrQcgQLmEOIl22x8JRIvhXa1HK0QolJfUOQ49rbqbhLBrmB55Y8zdg60VCDEW6RM5Bwznm-cbz4DPE2NGgptoxCDkIfMGBYqw4owoooxKvKEW6_2eSTGx-zNCT9ZgxddL0yjD9EvuLnI8PO1C3BTF3b3l2roaT4bxE595BJcZjxNHKFv_0MvHuWgji-3MMmGKc7Bna5QFO_2l65mowsQ8yJT8sqirNXyq5pOV9GsT0eja_Cpe5CGhXI-WMzzgf7-m8bj_z7pddhscSrZaxzrBqyZcgu290qs0WdL8ox45qhfkt-CjcP2B_02_Dj4Nvd9V-WEtDvs1J2lcwei3W4gUwdwSWWJy6rNYiSZqUnpGioJ1v-VUwEx5Gzmt1AijsVKHEF_QhCuEnSGyndzkrqaLhUOTQrjqPEt_-wmHI8OPr4ah-0-D6FmEY1DGiU6slZanJlFzg3ntlBUppwxncQ4AbIkstFQSWEFKxQWjAgLVS4KTBq5kpregnUc2NwBwgupEbAMmRZeCi0xCUK4VFJK88IMeQCPu--d1Y2cR9YIN8cZvuXMv-UAdjpPyNqI_pLFEsEy5vtUBvCoP42x6H6wqNJUC7QRrnM3jSMawO3GcfpRENcJibVdAHLFpXoDp_O9eqY8O_V636mXCMJ7f9I7399u_rn3pT9bZOOXh_7g7r-bPoSN9_uj7N3ro7f34GrsWkA8z24H1uefF-Y-ArN5_sDH30_RmTYJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKkEvPFqghoKWhxAXh433ZR8DahUhteJApHIya3s3rUgcqySCcOWPM7teW4QKhMQtkjdZ2_lm55vdmW8AXmRGj2RpaYxGKGJuDI-14VVMmeacySIV1qt9nsrJlL87E2ehz6mrhWn1IfoNN2cZfr12Bt5Utl3nw-l-8vq8WAwTJ0ByHXakQDI-gJ3p6fvxR3_GKUWchZCLOs1R5CqdttCv3932SFdo5tVsyZvrutGbr3o-32a03iUd34ZP3cO0mSifh-tVMSy__6bz-B9PewduBbpKxi2-7sI1U-_B_rjGUH2xIS-JTyD1O_N7cOMknNPvw4-jbytfflXPSGi003QjHSpI6ZqCzB3PJUtLnHNt9yTJQs9qV1dJLo0LEhCS5GLhOykRl8xKXJ7-jCBrJYiJpS_qJM1yvtE4NamMy5APaWj3YHp89OHtJA7tHuKSU5bEjKYltVZZXKBlIYwQttJMZYLzMk1wHeQptXSklbSSVxrjRmSHupAV-o5Cq5LdhwFObA6AiEqVyFtGvJReES01KTK5TDHGisqMRATPur88b1pVj7zVb05yfMu5f8sRHHZgyINhf8kThZwZ3X6mInjaX0aTdOcsujbLNY6RroA3SyiL4EGLnX4WpHdSYYgXgdpCVT_AyX1vX6kvzr3sd-aVgvDen_f4-9vNv_Jw-vOIfPLmxH94-E8_-Ah2E1f54dPrDmGwulybx8jHVsWTYHM_Aa9iNvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+electrophysiological+correlates+of+functional+magnetic+resonance+imaging+data+using+the+canonical+polyadic+decomposition&rft.jtitle=Human+brain+mapping&rft.au=Mann%E2%80%90Krzisnik%2C+Dylan&rft.au=Mitsis%2C+Georgios+D.&rft.date=2022-09-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=43&rft.issue=13&rft.spage=4045&rft.epage=4073&rft_id=info:doi/10.1002%2Fhbm.25902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon