Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition
The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response func...
        Saved in:
      
    
          | Published in | Human brain mapping Vol. 43; no. 13; pp. 4045 - 4073 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.09.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1065-9471 1097-0193 1097-0193  | 
| DOI | 10.1002/hbm.25902 | 
Cover
| Abstract | The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.
We show that EEG features of BOLD‐fMRI dynamics can be obtained using the canonical polyadic decomposition. Hemodynamic response functions are also estimated in the process, which allows one to model BOLD‐fMRI signals using EEG signals. We employ our method on simulated data, as well as publicly available task‐based and resting‐state EEG‐fMRI data. | 
    
|---|---|
| AbstractList | The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. We show that EEG features of BOLD‐fMRI dynamics can be obtained using the canonical polyadic decomposition. Hemodynamic response functions are also estimated in the process, which allows one to model BOLD‐fMRI signals using EEG signals. We employ our method on simulated data, as well as publicly available task‐based and resting‐state EEG‐fMRI data. The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology that explain the variance of BOLD time‐series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD‐fMRI data. We propose a framework for extracting the spatial distribution of these time‐frequency features while also estimating more flexible, region‐specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD‐fMRI and can be used to construct estimates of BOLD time‐series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task‐based and resting‐state EEG‐fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter‐subject variability with regards to EEG‐to‐BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects. We show that EEG features of BOLD‐fMRI dynamics can be obtained using the canonical polyadic decomposition. Hemodynamic response functions are also estimated in the process, which allows one to model BOLD‐fMRI signals using EEG signals. We employ our method on simulated data, as well as publicly available task‐based and resting‐state EEG‐fMRI data.  | 
    
| Author | Mitsis, Georgios D. Mann‐Krzisnik, Dylan  | 
    
| AuthorAffiliation | 1 Graduate Program in Biological and Biomedical Engineering McGill University Montréal Quebec Canada 2 Department of Bioengineering McGill University Montréal Quebec Canada  | 
    
| AuthorAffiliation_xml | – name: 1 Graduate Program in Biological and Biomedical Engineering McGill University Montréal Quebec Canada – name: 2 Department of Bioengineering McGill University Montréal Quebec Canada  | 
    
| Author_xml | – sequence: 1 givenname: Dylan orcidid: 0000-0003-2874-7272 surname: Mann‐Krzisnik fullname: Mann‐Krzisnik, Dylan email: dylan.mann-krzisnik@mail.mcgill.ca organization: McGill University – sequence: 2 givenname: Georgios D. orcidid: 0000-0001-9975-5128 surname: Mitsis fullname: Mitsis, Georgios D. organization: McGill University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35567768$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kctu1jAQhSNURC-w4AVQJDaAlNaOYzveIEFVKFIRG1hbjjP-f1eOHeyEkjUvjtOUqwQrj2a-OTpzfFwc-OChKB5jdIoRqs_23XBaU4Hqe8URRoJXCAtysNaMVqLh-LA4TukaIYwpwg-KQ0Ip45y1R8W3i69TVHqyfleCAz3FMO6XZIMLO6uVK3WIEZyaIJXBlGb2mQ0-Dwa18zBZXUZIueE1lDb3VqFeTaqc01pOeyi1yn5vxcbgFtXnnR50GMaQ7Cr2sLhvlEvw6O49KT69ufh4flldfXj77vzVVaUbROqKoFYjY7hpOWMdBUpNrwgXtGl0W3NGmhYZhBVnhjW9qhshKFYd60HpTnFNTooXm-7sR7XcKOfkGLPnuEiM5JqkzEnK2yQz_HKDx7kboNfgc06_FoKy8s-Jt3u5C1-kILxpBc0Cz-4EYvg8Q5rkYJMG55SHMCdZM9bwVtSIZPTpX-h1mGMOOVMcYUIQETxTT3539NPKj8_MwPMN0DGkFMH897yzjb2xDpZ_g_Ly9ftt4zt5MMGk | 
    
| Cites_doi | 10.1016/j.neuroimage.2007.11.059 10.3389/fnins.2016.00102 10.1371/journal.pcbi.1006136 10.3389/fnins.2014.00258 10.2307/2983351 10.1038/nrn3963 10.1109/TMI.2014.2379914 10.1109/TBME.2014.2311996 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroimage.2004.03.038 10.3389/fnins.2017.00115 10.3389/fninf.2013.00010 10.1098/rspa.2003.1247 10.7554/eLife.28927 10.1137/07070111X 10.3389/fnins.2019.00416 10.1002/9780471679370 10.1016/j.neuroimage.2016.09.027 10.1016/j.neuroimage.2012.06.078 10.1038/s41598-021-85386-0 10.1016/j.neuroimage.2020.116707 10.1073/pnas.0700668104 10.1097/00004647-199701000-00009 10.1109/78.554307 10.1089/brain.2012.0088 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2018.02.061 10.1016/j.clinph.2008.07.284 10.7554/eLife.62324 10.1006/nimg.2000.0630 10.1016/j.neuroimage.2017.03.023 10.1016/j.neuroimage.2019.116150 10.1016/j.sigpro.2011.03.008 10.1101/2020.09.09.290296 10.1088/1741-2560/13/4/046026 10.1109/JPROC.2015.2455028 10.1002/hbm.22623 10.23919/EUSIPCO.2017.8081162 10.1016/j.neuroimage.2019.116373 10.3389/fnins.2015.00254 10.1016/j.neuroimage.2007.07.040 10.1523/JNEUROSCI.3985-11.2012 10.1016/j.jneumeth.2015.03.018 10.1016/j.neuroimage.2012.11.015 10.1002/mrm.1910390109 10.1002/0471722960 10.1038/s41597-020-0498-3 10.3389/fnhum.2018.00029 10.1073/pnas.1112685108 10.3390/s18020405 10.1016/j.neuroimage.2007.01.022 10.3389/fnins.2015.00467 10.1016/j.neuroimage.2008.09.029 10.1016/j.neuroimage.2013.08.048 10.1097/WNP.0000000000000411 10.1371/journal.pone.0153404 10.1016/S1053-8119(03)00202-7 10.1016/j.mri.2021.10.028 10.3389/fnins.2013.00267 10.1007/978-1-4757-3978-7 10.3389/fphys.2018.01688 10.1016/j.neuroimage.2005.09.062 10.1016/j.neuroimage.2014.05.018 10.1109/TSP.2012.2215030 10.1016/j.neuroimage.2009.06.060 10.3389/fnins.2016.00313 10.1016/j.neuroimage.2013.11.047 10.1016/j.neuroimage.2011.09.050 10.1007/s10994-009-5153-3 10.1371/journal.pcbi.1004225 10.1002/cem.773 10.1038/s41598-017-03073-5 10.1007/s10548-022-00898-w 10.1016/J.NEUROIMAGE.2006.01.021 10.1006/nimg.1997.0306 10.1016/j.neuroimage.2014.03.028 10.1016/j.neuroimage.2004.10.043 10.1097/01.wnr.0000047685.08940.d0 10.1146/annurev-neuro-071013-014111  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/hbm.25902 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| DocumentTitleAlternate | Mann‐Krzisnik and Mitsis | 
    
| EISSN | 1097-0193 | 
    
| EndPage | 4073 | 
    
| ExternalDocumentID | 10.1002/hbm.25902 PMC9374895 35567768 10_1002_hbm_25902 HBM25902  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Canada First Research Excellence Fund – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 34362 – fundername: Fonds de Recherche du Québec ‐ Nature et Technologies funderid: PR191780‐2016 – fundername: ; – fundername: Fonds de Recherche du Québec ‐ Nature et Technologies grantid: PR191780‐2016 – fundername: ; grantid: 34362  | 
    
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PUEGO CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4032-308c0ff7f8766b5e55fda379544c82763480f01a76f64da249951ab6deacba7c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1065-9471 1097-0193  | 
    
| IngestDate | Sun Oct 26 04:10:16 EDT 2025 Tue Sep 30 16:47:52 EDT 2025 Fri Sep 05 06:17:19 EDT 2025 Tue Oct 07 06:13:32 EDT 2025 Mon Jul 21 06:17:33 EDT 2025 Wed Oct 01 01:55:49 EDT 2025 Wed Jan 22 16:23:35 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Keywords | magnetic resonance imaging electrophysiology motor-imagery computational modelling neurovascular coupling resting-state tensor decomposition  | 
    
| Language | English | 
    
| License | Attribution 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4032-308c0ff7f8766b5e55fda379544c82763480f01a76f64da249951ab6deacba7c3 | 
    
| Notes | Funding information Canada First Research Excellence Fund; Fonds de Recherche du Québec ‐ Nature et Technologies, Grant/Award Number: PR191780‐2016; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: 34362 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Canada First Research Excellence Fund; Fonds de Recherche du Québec ‐ Nature et Technologies, Grant/Award Number: PR191780‐2016; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: 34362  | 
    
| ORCID | 0000-0003-2874-7272 0000-0001-9975-5128  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25902 | 
    
| PMID | 35567768 | 
    
| PQID | 2701330397 | 
    
| PQPubID | 996345 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_hbm_25902 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9374895 proquest_miscellaneous_2664789203 proquest_journals_2701330397 pubmed_primary_35567768 crossref_primary_10_1002_hbm_25902 wiley_primary_10_1002_hbm_25902_HBM25902  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2022 | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio  | 
    
| PublicationTitle | Human brain mapping | 
    
| PublicationTitleAlternate | Hum Brain Mapp | 
    
| PublicationYear | 2022 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2009; 44 2012; 60 2007; 104 2004; 22 2015; 34 2017; 7 2015; 36 2006; 30 2006; 31 2015; 103 2013; 67 2019; 13 2002; 13 1997; 45 2019; 202 2003; 17 2017; 152 2003; 19 2012; 59 2013; 7 2014; 61 2007; 35 2009; 48 2020; 207 2005; 25 2007; 38 2004; 134 2018; 7 2020; 7 2018; 9 2009; 51 2018; 173 2019; 20 2000; 12 2017; 34 2008; 119 1997; 17 2020; 213 2014; 96 2014; 8 2012; 63 2012; 62 2015; 16 2014; 90 2010; 79 2015; 248 2004; 460 2015; 11 2016; 10 2004 2003 2015; 9 2014; 84 2012; 32 2016; 13 2016; 11 2018; 18 1998; 39 2012; 2 2011; 108 2021; 11 2022 2011; 91 2020 2017; 11 2014; 37 2018 2017 2016 2018; 12 1998; 7 1996; 159 2008; 40 2017; 145 2018; 14 2014; 102 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_24_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_68_1 e_1_2_12_62_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_81_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_77_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_75_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_71_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 Tange O. (e_1_2_12_74_1) 2018 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_40_1 e_1_2_12_82_1 Kossaifi J. (e_1_2_12_45_1) 2019; 20 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_9_1  | 
    
| References_xml | – volume: 18 issue: 2 year: 2018 article-title: An advanced bio‐inspired photoplethysmography (PPG) and ECG pattern recognition system for medical assessment publication-title: Sensors – volume: 7 start-page: 30 issue: 1 year: 1998 end-page: 40 article-title: Event‐related fMRI: Characterizing differential responses publication-title: NeuroImage – start-page: 228 year: 2022 end-page: 250 article-title: A multi‐measure approach for assessing the performance of fMRI preprocessing strategies in resting‐state functional connectivity publication-title: Magnetic Resonance Imaging – year: 2020 article-title: Modeling the hemodynamic response function using simultaneous EEG‐fMRI data and convolutional sparse coding analysis with rank‐1 constraints publication-title: BioRxiv – volume: 60 start-page: 6257 issue: 12 year: 2012 end-page: 6269 article-title: Exact wavelets on the ball publication-title: IEEE Transactions on Signal Processing – volume: 22 start-page: 1023 issue: 3 year: 2004 end-page: 1034 article-title: Concurrent EEG/fMRI analysis by multiway partial least squares publication-title: NeuroImage – volume: 96 start-page: 22 year: 2014 end-page: 35 article-title: Reduction of motion‐related artifacts in resting state fMRI using aCompCor publication-title: NeuroImage – volume: 7 year: 2013 article-title: MEG and EEG data analysis with MNE‐python publication-title: Frontiers in Neuroscience – volume: 13 start-page: 2487 issue: 18 year: 2002 end-page: 2492 article-title: Simultaneous EEG and fMRI of the alpha rhythm publication-title: Neuroreport – volume: 12 start-page: 466 issue: 4 year: 2000 end-page: 477 article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics publication-title: NeuroImage – volume: 17 start-page: 64 issue: 1 year: 1997 end-page: 72 article-title: A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation publication-title: Journal of Cerebral Blood Flow and Metabolism – article-title: Physiological and head motion signatures in static and time‐varying functional connectivity and their subject publication-title: eLife – volume: 202 issue: July year: 2019 article-title: Identification of physiological response functions to correct for fluctuations in resting‐state fMRI related to heart rate and respiration publication-title: NeuroImage – volume: 119 start-page: 2762 issue: 12 year: 2008 end-page: 2774 article-title: Effects of fluctuating physiological rhythms during prolonged EEG‐fMRI studies publication-title: Clinical Neurophysiology – volume: 63 start-page: 1712 issue: 3 year: 2012 end-page: 1719 article-title: Periodic changes in fMRI connectivity publication-title: NeuroImage – volume: 79 start-page: 5 issue: 1–2 year: 2010 end-page: 27 article-title: Temporal kernel CCA and its application in multimodal neuronal data analysis publication-title: Machine Learning – volume: 67 start-page: 137 year: 2013 end-page: 152 article-title: Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: Implications for single‐subject and group analyses publication-title: NeuroImage – volume: 7 issue: MAY year: 2013 article-title: The virtual brain: A simulator of primate brain network dynamics publication-title: Frontiers in Neuroinformatics – volume: 45 start-page: 434 issue: 2 year: 1997 end-page: 444 article-title: A blind source separation technique using second‐order statistics publication-title: IEEE Transactions on Signal Processing – volume: 11 start-page: 1 issue: 4 year: 2015 end-page: 21 article-title: General relationship of global topology, local dynamics, and directionality in large‐scale brain networks publication-title: PLoS Computational Biology – year: 2018 – volume: 36 start-page: 391 issue: 1 year: 2015 end-page: 414 article-title: Electrophysiological correlates of the BOLD signal for EEG‐informed fMRI publication-title: Human Brain Mapping – volume: 13 issue: 4 year: 2016 article-title: What can be found in scalp EEG spectrum beyond common frequency bands. EEG‐fMRI study publication-title: Journal of Neural Engineering – volume: 9 start-page: 1 issue: November year: 2018 end-page: 6 article-title: Switch‐off” of respiratory sinus arrhythmia can occur in a minority of subjects during functional magnetic resonance imaging (fMRI) publication-title: Frontiers in Physiology – volume: 159 start-page: 631 issue: 3 year: 1996 article-title: The jackknife and bootstrap publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society) – volume: 207 year: 2020 article-title: BOLD and EEG signal variability at rest differently relate to aging in the human brain publication-title: NeuroImage – volume: 38 start-page: 387 issue: 3 year: 2007 end-page: 401 article-title: Comparing hemodynamic models with DCM publication-title: NeuroImage – volume: 9 start-page: 1 issue: DEC year: 2015 end-page: 12 article-title: Investigating human neurovascular coupling using functional neuroimaging: A critical review of dynamic models publication-title: Frontiers in Neuroscience – volume: 248 start-page: 59 year: 2015 end-page: 69 article-title: Tensor decomposition of EEG signals: A brief review publication-title: Journal of Neuroscience Methods – volume: 14 issue: 5 year: 2018 article-title: Design of optimal nonlinear network controllers for Alzheimer's disease publication-title: PLoS Computational Biology – year: 2004 – volume: 16 start-page: 430 issue: 7 year: 2015 end-page: 439 article-title: Rethinking segregation and integration: Contributions of whole‐brain modelling publication-title: Nature Reviews Neuroscience – volume: 10 issue: MAR year: 2016 article-title: Hemodynamic response to interictal epileptiform discharges addressed by personalized EEG‐fNIRS recordings publication-title: Frontiers in Neuroscience – volume: 19 start-page: 1273 issue: 4 year: 2003 end-page: 1302 article-title: Dynamic causal modelling publication-title: NeuroImage – volume: 31 start-page: 968 issue: 3 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 37 start-page: 161 year: 2014 end-page: 181 article-title: Coupling mechanism and significance of the BOLD signal: A status report publication-title: Annual Review of Neuroscience – volume: 34 start-page: 1155 issue: 5 year: 2015 end-page: 1163 article-title: Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering publication-title: IEEE Transactions on Medical Imaging – volume: 91 start-page: 2810 issue: 12 year: 2011 end-page: 2821 article-title: Activelets: Wavelets for sparse representation of hemodynamic responses publication-title: Signal Processing – year: 2022 article-title: Modeling the hemodynamic response function using EEG‐fMRI data during eyes‐open resting‐state conditions and motor task execution publication-title: Brain Topography – volume: 12 start-page: 1 issue: February year: 2018 end-page: 23 article-title: EEG‐informed fMRI: A review of data analysis methods publication-title: Frontiers in Human Neuroscience – volume: 9 issue: JUL year: 2015 article-title: Group‐level component analyses of EEG: Validation and evaluation publication-title: Frontiers in Neuroscience – volume: 10 start-page: 1 issue: JUN year: 2016 end-page: 9 article-title: Systemic low‐frequency oscillations in BOLD signal vary with tissue type publication-title: Frontiers in Neuroscience – volume: 13 issue: MAY year: 2019 article-title: Unraveling diagnostic biomarkers of schizophrenia through structure‐revealing fusion of multi‐modal neuroimaging data publication-title: Frontiers in Neuroscience – volume: 104 start-page: 13170 issue: 32 year: 2007 end-page: 13175 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 254 issue: 5 year: 2012 end-page: 264 article-title: EEG alpha Power modulation of fMRI resting‐state connectivity publication-title: Brain Connectivity – volume: 20 start-page: 1 issue: 26 year: 2019 end-page: 6 article-title: TensorLy: Tensor learning in python. In publication-title: Journal of Machine Learning Research – volume: 39 start-page: 41 issue: 1 year: 1998 end-page: 52 article-title: Nonlinear event‐related responses in fMRI publication-title: Magnetic Resonance in Medicine – volume: 35 start-page: 1142 issue: 3 year: 2007 end-page: 1151 article-title: The hemodynamic response of the alpha rhythm: An EEG/fMRI study publication-title: NeuroImage – volume: 32 start-page: 1396 issue: 4 year: 2012 end-page: 1407 article-title: The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies publication-title: Journal of Neuroscience – volume: 7 start-page: 1 year: 2018 end-page: 30 article-title: Inferring multi‐scale neural mechanisms with brain network modelling publication-title: eLife – year: 2003 – volume: 460 start-page: 373 issue: 2041 year: 2004 end-page: 402 article-title: Numerical methods for strong solutions of stochastic differential equations: An overview publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 134 start-page: 9 issue: 1 year: 2004 end-page: 21 article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 152 start-page: 538 issue: February year: 2017 end-page: 550 article-title: Single or multiple frequency generators in on‐going brain activity: A mechanistic whole‐brain model of empirical MEG data publication-title: NeuroImage – volume: 11 start-page: 5964 issue: 1 year: 2021 article-title: Deconvolution of hemodynamic responses along the cortical surface using personalized functional near infrared spectroscopy publication-title: Scientific Reports – volume: 84 start-page: 320 year: 2014 end-page: 341 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage – volume: 44 start-page: 857 issue: 3 year: 2009 end-page: 869 article-title: Influence of heart rate on the BOLD signal: The cardiac response function publication-title: NeuroImage – volume: 25 start-page: 294 issue: 1 year: 2005 end-page: 311 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: NeuroImage – volume: 48 start-page: 63 issue: 1 year: 2009 end-page: 72 article-title: Accurate and robust brain image alignment using boundary‐based registration publication-title: NeuroImage – volume: 51 start-page: 455 issue: 3 year: 2009 end-page: 500 article-title: Tensor decompositions and applications publication-title: SIAM Review – year: 2016 – volume: 90 start-page: 423 year: 2014 end-page: 435 article-title: Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band‐pass filtered oscillations publication-title: NeuroImage – volume: 40 start-page: 644 issue: 2 year: 2008 end-page: 654 article-title: The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration publication-title: NeuroImage – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 14 article-title: The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core publication-title: Scientific Reports – volume: 173 start-page: 322 issue: March year: 2018 end-page: 331 article-title: Characterization of the hemodynamic response function across the majority of human cerebral cortex publication-title: NeuroImage – volume: 213 issue: February year: 2020 article-title: Resting‐state “physiological networks publication-title: NeuroImage – volume: 11 issue: MAR year: 2017 article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses publication-title: Frontiers in Neuroscience – volume: 30 start-page: 203 issue: 1 year: 2006 end-page: 213 article-title: Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter‐subject variability publication-title: NeuroImage – volume: 108 start-page: 16783 issue: 40 year: 2011 end-page: 16788 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 62 start-page: 782 issue: 2 year: 2012 end-page: 790 article-title: FSL publication-title: NeuroImage – volume: 34 start-page: 527 issue: 6 year: 2017 end-page: 533 article-title: Relationship between alpha rhythm and the default mode network: An EEG‐fMRI study publication-title: Journal of Clinical Neurophysiology – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 15 article-title: Simultaneous EEG‐fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration publication-title: Scientific Data – volume: 61 start-page: 1555 issue: 5 year: 2014 end-page: 1564 article-title: A review of multitaper spectral analysis publication-title: IEEE Transactions on Biomedical Engineering – volume: 59 start-page: 1997 issue: 3 year: 2012 end-page: 2006 article-title: Neurovascular coupling is brain region‐dependent publication-title: NeuroImage – volume: 11 start-page: 1 issue: 4 year: 2016 end-page: 17 article-title: NODDI and tensor‐based microstructural indices as predictors of functional connectivity publication-title: PLoS One – volume: 145 start-page: 1 issue: June 2015 year: 2017 end-page: 10 article-title: Distinctive time‐lagged resting‐state networks revealed by simultaneous EEG‐fMRI publication-title: NeuroImage – volume: 17 start-page: 16 issue: 1 year: 2003 end-page: 33 article-title: Centering and scaling in component analysis publication-title: Journal of Chemometrics – volume: 103 start-page: 1531 issue: 9 year: 2015 end-page: 1559 article-title: Tensor analysis and fusion of multimodal brain images publication-title: Proceedings of the IEEE – volume: 8 start-page: 1 issue: August year: 2014 end-page: 16 article-title: Relating resting‐state fMRI and EEG whole‐brain connectomes across frequency bands publication-title: Frontiers in Neuroscience – volume: 102 start-page: 3 issue: P1 year: 2014 end-page: 10 article-title: General overview on the merits of multimodal neuroimaging data fusion. In publication-title: NeuroImage – year: 2017 – ident: e_1_2_12_8_1 doi: 10.1016/j.neuroimage.2007.11.059 – ident: e_1_2_12_62_1 doi: 10.3389/fnins.2016.00102 – ident: e_1_2_12_68_1 doi: 10.1371/journal.pcbi.1006136 – ident: e_1_2_12_22_1 doi: 10.3389/fnins.2014.00258 – ident: e_1_2_12_83_1 doi: 10.2307/2983351 – ident: e_1_2_12_20_1 doi: 10.1038/nrn3963 – ident: e_1_2_12_72_1 doi: 10.1109/TMI.2014.2379914 – ident: e_1_2_12_4_1 doi: 10.1109/TBME.2014.2311996 – ident: e_1_2_12_23_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_12_56_1 doi: 10.1016/j.neuroimage.2004.03.038 – ident: e_1_2_12_61_1 doi: 10.3389/fnins.2017.00115 – ident: e_1_2_12_69_1 doi: 10.3389/fninf.2013.00010 – ident: e_1_2_12_12_1 doi: 10.1098/rspa.2003.1247 – ident: e_1_2_12_71_1 doi: 10.7554/eLife.28927 – ident: e_1_2_12_44_1 doi: 10.1137/07070111X – volume-title: GNU Parallel 2018 year: 2018 ident: e_1_2_12_74_1 – ident: e_1_2_12_3_1 doi: 10.3389/fnins.2019.00416 – ident: e_1_2_12_55_1 doi: 10.1002/9780471679370 – ident: e_1_2_12_26_1 doi: 10.1016/j.neuroimage.2016.09.027 – ident: e_1_2_12_35_1 doi: 10.1016/j.neuroimage.2012.06.078 – ident: e_1_2_12_51_1 doi: 10.1038/s41598-021-85386-0 – ident: e_1_2_12_16_1 doi: 10.1016/j.neuroimage.2020.116707 – ident: e_1_2_12_53_1 doi: 10.1073/pnas.0700668104 – ident: e_1_2_12_13_1 doi: 10.1097/00004647-199701000-00009 – ident: e_1_2_12_6_1 doi: 10.1109/78.554307 – ident: e_1_2_12_70_1 doi: 10.1089/brain.2012.0088 – ident: e_1_2_12_39_1 doi: 10.1016/j.neuroimage.2011.09.015 – ident: e_1_2_12_75_1 doi: 10.1016/j.neuroimage.2018.02.061 – ident: e_1_2_12_77_1 doi: 10.1016/j.clinph.2008.07.284 – ident: e_1_2_12_82_1 doi: 10.7554/eLife.62324 – ident: e_1_2_12_29_1 doi: 10.1006/nimg.2000.0630 – volume: 20 start-page: 1 issue: 26 year: 2019 ident: e_1_2_12_45_1 article-title: TensorLy: Tensor learning in python. In publication-title: Journal of Machine Learning Research – ident: e_1_2_12_18_1 doi: 10.1016/j.neuroimage.2017.03.023 – ident: e_1_2_12_41_1 doi: 10.1016/j.neuroimage.2019.116150 – ident: e_1_2_12_43_1 doi: 10.1016/j.sigpro.2011.03.008 – ident: e_1_2_12_64_1 doi: 10.1101/2020.09.09.290296 – ident: e_1_2_12_54_1 doi: 10.1088/1741-2560/13/4/046026 – ident: e_1_2_12_40_1 doi: 10.1109/JPROC.2015.2455028 – ident: e_1_2_12_59_1 doi: 10.1002/hbm.22623 – ident: e_1_2_12_79_1 doi: 10.23919/EUSIPCO.2017.8081162 – ident: e_1_2_12_46_1 doi: 10.1016/j.neuroimage.2019.116373 – ident: e_1_2_12_38_1 doi: 10.3389/fnins.2015.00254 – ident: e_1_2_12_73_1 doi: 10.1016/j.neuroimage.2007.07.040 – ident: e_1_2_12_52_1 doi: 10.1523/JNEUROSCI.3985-11.2012 – ident: e_1_2_12_80_1 – ident: e_1_2_12_17_1 doi: 10.1016/j.jneumeth.2015.03.018 – ident: e_1_2_12_49_1 doi: 10.1016/j.neuroimage.2012.11.015 – ident: e_1_2_12_28_1 doi: 10.1002/mrm.1910390109 – ident: e_1_2_12_81_1 doi: 10.1002/0471722960 – ident: e_1_2_12_50_1 doi: 10.1038/s41597-020-0498-3 – ident: e_1_2_12_2_1 doi: 10.3389/fnhum.2018.00029 – ident: e_1_2_12_11_1 doi: 10.1073/pnas.1112685108 – ident: e_1_2_12_67_1 doi: 10.3390/s18020405 – ident: e_1_2_12_58_1 doi: 10.1016/j.neuroimage.2007.01.022 – ident: e_1_2_12_37_1 doi: 10.3389/fnins.2015.00467 – ident: e_1_2_12_15_1 doi: 10.1016/j.neuroimage.2008.09.029 – ident: e_1_2_12_63_1 doi: 10.1016/j.neuroimage.2013.08.048 – ident: e_1_2_12_9_1 doi: 10.1097/WNP.0000000000000411 – ident: e_1_2_12_21_1 doi: 10.1371/journal.pone.0153404 – ident: e_1_2_12_30_1 doi: 10.1016/S1053-8119(03)00202-7 – ident: e_1_2_12_42_1 doi: 10.1016/j.mri.2021.10.028 – ident: e_1_2_12_33_1 doi: 10.3389/fnins.2013.00267 – ident: e_1_2_12_47_1 doi: 10.1007/978-1-4757-3978-7 – ident: e_1_2_12_66_1 doi: 10.3389/fphys.2018.01688 – ident: e_1_2_12_32_1 doi: 10.1016/j.neuroimage.2005.09.062 – ident: e_1_2_12_78_1 doi: 10.1016/j.neuroimage.2014.05.018 – ident: e_1_2_12_48_1 doi: 10.1109/TSP.2012.2215030 – ident: e_1_2_12_34_1 doi: 10.1016/j.neuroimage.2009.06.060 – ident: e_1_2_12_76_1 doi: 10.3389/fnins.2016.00313 – ident: e_1_2_12_14_1 doi: 10.1016/j.neuroimage.2013.11.047 – ident: e_1_2_12_25_1 doi: 10.1016/j.neuroimage.2011.09.050 – ident: e_1_2_12_7_1 doi: 10.1007/s10994-009-5153-3 – ident: e_1_2_12_57_1 doi: 10.1371/journal.pcbi.1004225 – ident: e_1_2_12_10_1 doi: 10.1002/cem.773 – ident: e_1_2_12_19_1 doi: 10.1038/s41598-017-03073-5 – ident: e_1_2_12_65_1 doi: 10.1007/s10548-022-00898-w – ident: e_1_2_12_24_1 doi: 10.1016/J.NEUROIMAGE.2006.01.021 – ident: e_1_2_12_27_1 doi: 10.1006/nimg.1997.0306 – ident: e_1_2_12_60_1 doi: 10.1016/j.neuroimage.2014.03.028 – ident: e_1_2_12_5_1 doi: 10.1016/j.neuroimage.2004.10.043 – ident: e_1_2_12_31_1 doi: 10.1097/01.wnr.0000047685.08940.d0 – ident: e_1_2_12_36_1 doi: 10.1146/annurev-neuro-071013-014111  | 
    
| SSID | ssj0011501 | 
    
| Score | 2.4106455 | 
    
| Snippet | The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features... The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 4045 | 
    
| SubjectTerms | Brain - physiology Brain Mapping - methods computational modelling Coupling Decomposition EEG Electroencephalography Electroencephalography - methods Electrophysiological Phenomena Electrophysiology Feature extraction Functional magnetic resonance imaging Hemodynamic responses Hemodynamics Humans Impulse response Magnetic resonance imaging Magnetic Resonance Imaging - methods motor‐imagery neurovascular coupling Neurovascular Coupling - physiology Noise Noise measurement Physiological effects Response functions resting‐state Spatial distribution tensor decomposition Tensors  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SFNpeSpq0iZsH6oPSixNZT5uckpCwFFJySCA3I9vSJrBrL80u7Z77xzuSH2UJLbkZNEaC0cx8I818AvicWZOo0tEYjVDGwloRGyuqmHIjBFdFKl1g-_yuRjfi2628XYPjvhem5YcYDty8ZQR_7Q3cFA9Hf0lD74rpIfPkI8_geYI4xm9vJq6GKwREOiHbwhgbZ-iCe1ohyo6GX1eD0SOE-bhQ8uWinpnlTzOZrILZEI0uNuB1ByPJSav3N7Bm603YOqkxhZ4uyRcSCjvDifkmvLjs7s-34Pf5r3loi6rHpHsAZ9ZLem2R0j_WMfH4kzSO-KDXnhWSqRnXvt-RYHreeJIOS-6n4YUj4otMia-fHxNEkwR11YRmSzJrJkuDU5PK-sr1rjzsLdxcnF-fjeLuGYa4FJSzmNO0pM5ph45TFdJK6SrDdSaFKFOG_kmk1NHEaOWUqAzmc4jaTKEq9OmF0SV_B-s4sd0BIitdIp5IRKkCU1lqU0RYmeacF5VNZAQfe33ks5ZtI295lVmOSsuD0iLY6zWVdwb3kDONWBbDcaYj-DAMo6n4-w9T22aBMso31maM8gi2W8UOsyDsUhpTrwj0isoHAU_DvTpS398FOu4sMPjg2j8Nm-N_i_8ats2_JfLR6WX4eP900V14xXxbRqh924P1-Y-F3UewNC8OglH8AYL-Emw priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25902 https://www.ncbi.nlm.nih.gov/pubmed/35567768 https://www.proquest.com/docview/2701330397 https://www.proquest.com/docview/2664789203 https://pubmed.ncbi.nlm.nih.gov/PMC9374895 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25902  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 43 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xrQRceOzyCCyVeQhxSUkdP5JjF3VVIW1VrahUTsFJnO6KNo2WVlCu_HHGjhNRViAkLlGkOLGTzHi-sWe-AXgVazUQWRH4qITcZ1ozX2mW-0GoGAtFGvHCsn1OxHjG3s_53NU5NbkwNT9Eu-BmNMPO10bBq7yo53m3u0_fXqSrPjUEJAfQFRzBeAe6s8l0-NHucQrux87lCgznKGKVhlvo13v3LdI1mHk9WvLWtqzU7qtaLvcRrTVJp3fhU_MydSTK5_52k_az77_xPP7H296DOw6ukmEtX_fhhi4P4WhYoqu-2pHXxAaQ2pX5Q7h55vbpj-DH6NvGpl-VC-IK7VRNSyMVJDNFQZYG55J1QYxxrdckyUotSpNXSa60cRJQJMnlylZSIiaYlZg4_QVB1EpQJtY2qZNU6-VOYdck1yZC3oWhPYDZ6ejDu7Hvyj34GQtC6odBlAVFIQucoEXKNedFrkIZc8ayiOI8yKKgCAZKikKwXKHfiOhQpSJH25EqmYUPoYMd68dAeC4zxC0DlgnLiBbpCJFcLMMwTHM94B68aH55UtWsHknN30wT_MqJ_coeHDfCkDjF_pJQiZgZzX4sPXjeXkaVNPssqtTrLbYRJoE3pkHowaNadtpeEN4JiS6eB3JPqtoGhu57_0p5eWFpv2PLFIRjf9nK398G_8aK059bJOOTM3vy5J8e-BRuU5P5YcPrjqGzudrqZ4jHNmkPDiib4lHOZQ-6J6PJ9Lxn1zbM8Zz2nE7-BNEiPCk | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlEuqLQ8Ai2YhxCXUMfPROqloFYLdCsOrdRb5CT2ttJusoJdwZ754x07D7SqQNxWyqwc6cvMfGPPfAZ4m1mTqNLRGJ1QxsJaERsrqphyIwRXRSpdUPs8U6ML8eVSXm7AYT8L0-pDDBtu3jNCvPYO7jekD_6ohl4Vsw_Mq4_cgbtCJcqXXkx8G84QkOqEcguTbJxhDO51hSg7GP66no1uUczbnZJby3puVj_NdLrOZkM6OtmGBx2PJEct8A9hw9Y7sHtUYw09W5F3JHR2hi3zHbg37g7Qd-H38a9FmIuqJ6S7AWfeW3q4SOlv65h6AkoaR3zWazcLycxMaj_wSLA-b7xKhyXXs3DFEfFdpsQ30E8I0kmCYDVh2pLMm-nK4NKksr51vesPewQXJ8fnn0Zxdw9DXArKWcxpWlLntMPIqQpppXSV4TqTQpQpwwAlUupoYrRySlQGCzqkbaZQFQb1wuiSP4ZNXNg-BSIrXSKhSESpglRZalOkWJnmnBeVTWQEr3s88nkrt5G3wsosR9DyAFoEez1SeedxP3KmkcxiPs50BK-Gx-gr_gDE1LZZoo3yk7UZozyCJy2wwyrIu5TG2isCvQb5YOB1uNef1NdXQY87CxI--O5vho_jXy__Pnw2f7fIRx_H4cez_zd9CVuj8_Fpfvr57OtzuM_8jEZohNuDzcX3pd1H5rQoXgQHuQFG6BXY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIhVeCrQcgQLmEOIl22x8JRIvhXa1HK0QolJfUOQ49rbqbhLBrmB55Y8zdg60VCDEW6RM5Bwznm-cbz4DPE2NGgptoxCDkIfMGBYqw4owoooxKvKEW6_2eSTGx-zNCT9ZgxddL0yjD9EvuLnI8PO1C3BTF3b3l2roaT4bxE595BJcZjxNHKFv_0MvHuWgji-3MMmGKc7Bna5QFO_2l65mowsQ8yJT8sqirNXyq5pOV9GsT0eja_Cpe5CGhXI-WMzzgf7-m8bj_z7pddhscSrZaxzrBqyZcgu290qs0WdL8ox45qhfkt-CjcP2B_02_Dj4Nvd9V-WEtDvs1J2lcwei3W4gUwdwSWWJy6rNYiSZqUnpGioJ1v-VUwEx5Gzmt1AijsVKHEF_QhCuEnSGyndzkrqaLhUOTQrjqPEt_-wmHI8OPr4ah-0-D6FmEY1DGiU6slZanJlFzg3ntlBUppwxncQ4AbIkstFQSWEFKxQWjAgLVS4KTBq5kpregnUc2NwBwgupEbAMmRZeCi0xCUK4VFJK88IMeQCPu--d1Y2cR9YIN8cZvuXMv-UAdjpPyNqI_pLFEsEy5vtUBvCoP42x6H6wqNJUC7QRrnM3jSMawO3GcfpRENcJibVdAHLFpXoDp_O9eqY8O_V636mXCMJ7f9I7399u_rn3pT9bZOOXh_7g7r-bPoSN9_uj7N3ro7f34GrsWkA8z24H1uefF-Y-ArN5_sDH30_RmTYJ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKkEvPFqghoKWhxAXh433ZR8DahUhteJApHIya3s3rUgcqySCcOWPM7teW4QKhMQtkjdZ2_lm55vdmW8AXmRGj2RpaYxGKGJuDI-14VVMmeacySIV1qt9nsrJlL87E2ehz6mrhWn1IfoNN2cZfr12Bt5Utl3nw-l-8vq8WAwTJ0ByHXakQDI-gJ3p6fvxR3_GKUWchZCLOs1R5CqdttCv3932SFdo5tVsyZvrutGbr3o-32a03iUd34ZP3cO0mSifh-tVMSy__6bz-B9PewduBbpKxi2-7sI1U-_B_rjGUH2xIS-JTyD1O_N7cOMknNPvw4-jbytfflXPSGi003QjHSpI6ZqCzB3PJUtLnHNt9yTJQs9qV1dJLo0LEhCS5GLhOykRl8xKXJ7-jCBrJYiJpS_qJM1yvtE4NamMy5APaWj3YHp89OHtJA7tHuKSU5bEjKYltVZZXKBlIYwQttJMZYLzMk1wHeQptXSklbSSVxrjRmSHupAV-o5Cq5LdhwFObA6AiEqVyFtGvJReES01KTK5TDHGisqMRATPur88b1pVj7zVb05yfMu5f8sRHHZgyINhf8kThZwZ3X6mInjaX0aTdOcsujbLNY6RroA3SyiL4EGLnX4WpHdSYYgXgdpCVT_AyX1vX6kvzr3sd-aVgvDen_f4-9vNv_Jw-vOIfPLmxH94-E8_-Ah2E1f54dPrDmGwulybx8jHVsWTYHM_Aa9iNvM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+electrophysiological+correlates+of+functional+magnetic+resonance+imaging+data+using+the+canonical+polyadic+decomposition&rft.jtitle=Human+brain+mapping&rft.au=Mann%E2%80%90Krzisnik%2C+Dylan&rft.au=Mitsis%2C+Georgios+D.&rft.date=2022-09-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=43&rft.issue=13&rft.spage=4045&rft.epage=4073&rft_id=info:doi/10.1002%2Fhbm.25902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25902 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |