Content‐based image retrieval using Gaussian–Hermite moments and firefly and grey wolf optimization
Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compres...
Saved in:
| Published in | CAAI Transactions on Intelligence Technology Vol. 6; no. 2; pp. 135 - 146 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Beijing
John Wiley & Sons, Inc
01.06.2021
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2468-2322 2468-6557 2468-2322 |
| DOI | 10.1049/cit2.12040 |
Cover
| Abstract | Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compressed with principal component analysis. The compressed feature set is multiplied with the weight matrix array, which has the same size as the feature vector. Hybrid firefly and grey wolf optimization (FAGWO) is used to prevent the premature convergence of optimization in the firefly algorithm. The retrieval of images in CBIR is carried out in an OpenCV python environment with K‐nearest neighbours and random forest algorithm classifiers. The fitness function for FAGWO is the accuracy of the classifier. The FAGWO algorithm derives the optimum weights from a randomly generated initial population. When these optimized weights are applied, the proposed algorithm shows better precision/recall and efficiency than other techniques such as exact legendre moments, Region‐based image retrieval, K‐means clustering and Color descriptor wavelet‐based texture descriptor retrieval technique. In terms of optimization, hybrid FAGWO outperformed various optimization techniques (when used alone) like Particle Swarm Optmization, Genetic Algorithm, Grey‐Wolf Optimization and FireFly algorithm. |
|---|---|
| AbstractList | Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compressed with principal component analysis. The compressed feature set is multiplied with the weight matrix array, which has the same size as the feature vector. Hybrid firefly and grey wolf optimization (FAGWO) is used to prevent the premature convergence of optimization in the firefly algorithm. The retrieval of images in CBIR is carried out in an OpenCV python environment with K‐nearest neighbours and random forest algorithm classifiers. The fitness function for FAGWO is the accuracy of the classifier. The FAGWO algorithm derives the optimum weights from a randomly generated initial population. When these optimized weights are applied, the proposed algorithm shows better precision/recall and efficiency than other techniques such as exact legendre moments, Region‐based image retrieval, K‐means clustering and Color descriptor wavelet‐based texture descriptor retrieval technique. In terms of optimization, hybrid FAGWO outperformed various optimization techniques (when used alone) like Particle Swarm Optmization, Genetic Algorithm, Grey‐Wolf Optimization and FireFly algorithm. Abstract Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compressed with principal component analysis. The compressed feature set is multiplied with the weight matrix array, which has the same size as the feature vector. Hybrid firefly and grey wolf optimization (FAGWO) is used to prevent the premature convergence of optimization in the firefly algorithm. The retrieval of images in CBIR is carried out in an OpenCV python environment with K‐nearest neighbours and random forest algorithm classifiers. The fitness function for FAGWO is the accuracy of the classifier. The FAGWO algorithm derives the optimum weights from a randomly generated initial population. When these optimized weights are applied, the proposed algorithm shows better precision/recall and efficiency than other techniques such as exact legendre moments, Region‐based image retrieval, K‐means clustering and Color descriptor wavelet‐based texture descriptor retrieval technique. In terms of optimization, hybrid FAGWO outperformed various optimization techniques (when used alone) like Particle Swarm Optmization, Genetic Algorithm, Grey‐Wolf Optimization and FireFly algorithm. |
| Author | Budati, Anil Kumar Kuraparthi, Swaraja Kora, Padmavathi Kala Pampana, Lakshmi Kollati, Meenakshi Tadepalli, Yasasvy |
| Author_xml | – sequence: 1 givenname: Yasasvy orcidid: 0000-0002-7684-5427 surname: Tadepalli fullname: Tadepalli, Yasasvy email: tyasasvy@gmail.com organization: GRIET – sequence: 2 givenname: Meenakshi surname: Kollati fullname: Kollati, Meenakshi organization: GRIET – sequence: 3 givenname: Swaraja surname: Kuraparthi fullname: Kuraparthi, Swaraja organization: GRIET – sequence: 4 givenname: Padmavathi surname: Kora fullname: Kora, Padmavathi organization: GRIET – sequence: 5 givenname: Anil Kumar surname: Budati fullname: Budati, Anil Kumar organization: GRIET – sequence: 6 givenname: Lakshmi surname: Kala Pampana fullname: Kala Pampana, Lakshmi organization: VNR Vignana Jyothi Institute of Engineering and Technology |
| BookMark | eNp9kMFq3DAQhk1JoGmaS57A0FvLpmNZXlvHsrTJQqCX9CzG1shokaWtJHdxT3mEQt8wT1LvupRSSk4axP9_zHyvsjPnHWXZdQE3BXDxvjOJ3RQMOLzILhhfNytWMnb21_wyu4pxBwCFEKIq64us33iXyKWnxx8tRlK5GbCnPFAKhr6hzcdoXJ_f4hijQff0-POOwmAS5YMf5l7M0alcm0DaTqe5DzTlB2917vfJDOY7JuPd6-xco4109fu9zL58-viwuVvdf77dbj7crzoOJawI1lpxXsNa1F3FQKhacVWsodW6KVGJqmXERdVgB9gy3SDTJYGqNCgCYuVltl24yuNO7sN8TpikRyNPHz70EkMynSXJoK2QCeTEGcfZyAxrqlqUTYe1qLqZ9W5hjW6P0wGt_QMsQB6Vy6NyeVI-p98s6X3wX0eKSe78GNx8rCxBFKICxo77wZLqgo9xtnZEnAylgMb-H_z2n8qzWxRL-GAsTc8k5Wb7wJbOL46osfs |
| CitedBy_id | crossref_primary_10_1080_08839514_2024_2318983 crossref_primary_10_1109_ACCESS_2022_3161154 crossref_primary_10_1080_0952813X_2024_2383652 crossref_primary_10_1049_cit2_12151 crossref_primary_10_1155_2021_1048879 crossref_primary_10_1051_e3sconf_202343001013 crossref_primary_10_1051_e3sconf_202343001014 crossref_primary_10_1371_journal_pone_0281636 crossref_primary_10_1049_cit2_12374 |
| Cites_doi | 10.1002/wics.101 10.1109/34.895972 10.1109/NUiConE.2011.6153243 10.1016/j.comcom.2012.03.008 10.1007/978-3-319-13572-4_1 10.1111/coin.12275 10.1109/ICPEICES.2016.7853121 10.1109/MCOM.2005.1509966 10.1016/j.patrec.2007.04.002 10.1016/j.patrec.2019.03.015 10.3166/ts.35.121-136 10.1002/9780470684757 10.1007/978-981-13-9942-8_49 10.1016/j.mcm.2010.11.044 10.1109/ICMLC.2005.1527456 10.1016/j.patrec.2011.03.012 10.1007/978-3-642-04944-6_14 10.1016/j.patcog.2017.05.025 10.1142/S0218001400000581 10.1109/ICDM.2001.989592 10.1080/01431160412331269698 10.1007/s11042-020-09250-5 10.1109/CISP.2015.7407990 10.1016/j.neucom.2014.07.078 10.18280/ts.370207 10.1109/ICCCNT45670.2019.8944775 10.1109/CSO.2009.371 10.5121/ijma.2010.2206 10.1109/ETCS.2010.591 10.1049/cp:20060597 10.1016/j.neucom.2014.02.046 10.1016/j.patcog.2016.03.006 10.1049/iet-ipr.2017.0825 10.1007/978-3-642-39678-6_36 10.1109/2.410146 10.1016/j.comcom.2011.07.009 10.1016/0031-3203(93)90038-X 10.1007/s12517-014-1584-7 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.1049/cit2.12040 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2468-2322 |
| EndPage | 146 |
| ExternalDocumentID | oai_doaj_org_article_20b5a29a4e424a1998a2857938ca795c 10.1049/cit2.12040 10_1049_cit2_12040 CIT212040 |
| Genre | article |
| GroupedDBID | 0R~ 0SF 1OC 24P 6I. AACTN AAEDW AAFTH AAHHS AAHJG AAJGR AALRI AAXUO ABMAC ABQXS ACCFJ ACCMX ACESK ACGFS ACXQS ADBBV ADVLN ADZOD AEEZP AEQDE AEXQZ AFKRA AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ IAO IDLOA ITC K7- M41 M43 NCXOZ O9- OCL OK1 PIMPY RIE RIG ROL RUI SSZ AAMMB AAYWO AAYXX ACVFH ADCNI ADMLS AEFGJ AEUPX AFFHD AFPUW AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION ICD PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c4030-e06fd4470697c5209d7d4d160bff83ad95b2e4958ac0ab2f8a2f3e0d5f0de0e23 |
| IEDL.DBID | 24P |
| ISSN | 2468-2322 2468-6557 |
| IngestDate | Fri Oct 03 12:52:29 EDT 2025 Sun Sep 07 11:05:00 EDT 2025 Sat Jul 26 02:53:49 EDT 2025 Wed Oct 29 21:49:32 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 Wed Jan 22 16:29:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4030-e06fd4470697c5209d7d4d160bff83ad95b2e4958ac0ab2f8a2f3e0d5f0de0e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7684-5427 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12040 |
| PQID | 3091950222 |
| PQPubID | 6852857 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_20b5a29a4e424a1998a2857938ca795c unpaywall_primary_10_1049_cit2_12040 proquest_journals_3091950222 crossref_citationtrail_10_1049_cit2_12040 crossref_primary_10_1049_cit2_12040 wiley_primary_10_1049_cit2_12040_CIT212040 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 20210601 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | CAAI Transactions on Intelligence Technology |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 1993; 26 2014; 139 2011; 1 2011 2010 2000; 22 2020; 80 2009 2020; 37 2006 2011; 32 2011; 54 2020; 36 2005; 43 2020; 79 2005 2004 2005; 26 2012; 35 2015; 8 2019; 123 2016; 56 2015; 151 2007; 28 2018; 2 2017; 71 2012; 1 1995; 28 2000; 14 2001 2005; 5 2005; 4 2019 2016 2015 2013 2018; 12 2010; 3 2010; 2 2009; 1 2010; 4 2018; 35 e_1_2_7_5_1 Hosny K.M. (e_1_2_7_40_1) 2010; 4 Wu Y.F. (e_1_2_7_43_1) 2005 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_47_1 Wu Y. (e_1_2_7_10_1) 2005; 4 e_1_2_7_26_1 e_1_2_7_49_1 Ahmed G.F. (e_1_2_7_21_1) 2011; 1 Belghini N. (e_1_2_7_45_1) 2012; 1 Yang X.‐S. (e_1_2_7_25_1) 2010 Kurmi Y. (e_1_2_7_31_1) 2020; 80 e_1_2_7_50_1 e_1_2_7_23_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Hosny K.M. (e_1_2_7_42_1) 2005 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 Gonzalez R.C. (e_1_2_7_28_1) 2004 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 Balsa J. (e_1_2_7_33_1) 2018; 2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 139 start-page: 189 year: 2014 end-page: 201 article-title: Extended biologically inspired model for object recognition based on oriented Gaussian–Hermite moment publication-title: Neurocomputing – year: 2009 – start-page: 177 year: 2005 – volume: 43 start-page: S11 issue: 9 year: 2005 end-page: S16 article-title: TDCS, OFDM, and MC‐CDMA: TDCS, OFDM, and MC‐CDMA: a brief tutorial publication-title: IEEE Commun. Mag. – start-page: 819 year: 2015 end-page: 823 – volume: 26 start-page: 217 issue: 1 year: 2005 end-page: 222 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Rem. Sens. – volume: 36 start-page: 351 issue: 1 year: 2020 end-page: 367 article-title: Artificial bee colony algorithm for content‐based image retrieval publication-title: Comput. Intell. – volume: 4 start-page: 176 year: 2010 end-page: 180 article-title: New set of rotationally Legendre moment invariants, new set of rotationally Legendre moment invariants publication-title: Int. J. Electr. Electron. Eng. – volume: 123 start-page: 82 year: 2019 end-page: 88 article-title: CNN‐VWII: an efficient approach for large‐scale video retrieval by image queries publication-title: Pattern Recogn. Lett. – volume: 26 start-page: 295 issue: 2 year: 1993 end-page: 306 article-title: Orthogonal moment operators for subpixel edge detection publication-title: Pattern Recogn. – volume: 71 start-page: 158 year: 2017 end-page: 172 article-title: Handcrafted vs. non‐handcrafted features for computer vision classification publication-title: Pattern Recogn. – volume: 8 start-page: 6211 issue: 8 year: 2015 end-page: 6224 article-title: Content‐based image retrieval using PSO and k‐means clustering algorithm publication-title: Arab. J. Geosci. – volume: 37 start-page: 217 issue: 2 year: 2020 end-page: 226 article-title: A Multi‐class SVM Based Content Based Image Retrieval System Using Hybrid Optimization Techniques publication-title: Traitment du Signal – volume: 35 start-page: 121 issue: 2 year: 2018 end-page: 136 article-title: Automatic ranking of image thresholding techniques using consensus of ground truth publication-title: Traitement du Signal – volume: 54 start-page: 1121 issue: 4 year: 2011 end-page: 1127 article-title: Content‐based image retrieval using color and texture fused features publication-title: Math. Comput. Model – start-page: 169 year: 2009 end-page: 178 – volume: 35 start-page: 1838 year: 2012 end-page: 1845 article-title: Depth‐color based 3D image transmission over wireless networks with QoE provisions publication-title: Comput. Commun. – volume: 80 start-page: 1 issue: 2 year: 2020 end-page: 21 article-title: Content‐based image retrieval algorithm for nuclei segmentation in histopathology images publication-title: Multimed. Tool Appl – volume: 12 start-page: 909 issue: 6 year: 2018 end-page: 918 article-title: Curvelet‐based multiscale denoising using non‐local means & guided image filter publication-title: IET Image Process. – year: 2010 – start-page: 1 year: 2015 end-page: 13 – start-page: 589 year: 2006 end-page: 593 – start-page: 519 year: 2019 end-page: 528 – volume: 1 start-page: 886 year: 2009 end-page: 888 – volume: 3 start-page: 11 year: 2010 end-page: 14 – volume: 28 start-page: 1640 issue: 13 year: 2007 end-page: 1650 article-title: Application of a new type of singular points in fingerprint classification publication-title: Pattern Recogn. Lett. – volume: 4 start-page: 588 year: 2005 end-page: 599 article-title: Properties of orthogonal Gaussian‐Hermite moments and their applications publication-title: EURASIP J. Adv. Signal Process. – volume: 1 start-page: 1 year: 2012 end-page: 4 article-title: 3D face recognition using Gaussian Hermite moments publication-title: Int. J. Comput. Appl. Softw. Eng. – volume: 28 start-page: 23 issue: 9 year: 1995 end-page: 32 article-title: Query by image and video content: the QBIC system publication-title: Computer – volume: 22 start-page: 1349 issue: 12 year: 2000 end-page: 1380 article-title: Content‐based image retrieval at the end of the early years publication-title: IEEE Trans. Pattern Anal. Machine Intell. – year: 2004 – volume: 2 start-page: 1163 issue: 18 year: 2018 article-title: Image Transmission: Analog or Digital? publication-title: Multidisciplinary Digital Publishing Institute Proceedings – start-page: 1 year: 2011 end-page: 4 – volume: 35 start-page: 100 issue: 1 year: 2012 end-page: 108 article-title: A two‐hop clustered image transmission scheme for maximizing network lifetime in wireless multimedia sensor networks publication-title: Comput. Commun. – volume: 79 start-page: 29865 issue: 39 year: 2020 end-page: 29900 article-title: A hybrid matrix factorization technique to free the watermarking scheme from false positive and negative problems publication-title: Multimed. Tool Appl. – volume: 32 start-page: 1283 issue: 9 year: 2011 end-page: 1298 article-title: Rotation and translation invariants of Gaussian‐Hermite moments publication-title: Pattern Recogn. Lett. – start-page: 588 year: 2005 end-page: 599 article-title: Properties of orthogonal Gaussian–Hermite moments and their application publication-title: EURASIP J. Appl. Signal Process. – volume: 1 start-page: 247 issue: 4 year: 2011 end-page: 251 article-title: A study on different image retrieval techniques in image processing publication-title: Int. J. Soft Comput. Eng. – volume: 1 start-page: 1 year: 2012 – volume: 14 start-page: 875 issue: 07 year: 2000 end-page: 894 article-title: On geometric and orthogonal moments publication-title: Int. J. Patt. Recogn. Artif. Intell. – start-page: 647 year: 2001 end-page: 648 – volume: 151 start-page: 1099 year: 2015 end-page: 1111 article-title: An integrated approach to region based image retrieval using firefly algorithm and support vector machine publication-title: Neurocomputing – start-page: 1 year: 2016 end-page: 4 – year: 2019 – volume: 2 start-page: 433 issue: 4 year: 2010 end-page: 459 article-title: Principal component analysis publication-title: WIREs Comp. Stat. – volume: 5 start-page: 2996 year: 2005 end-page: 3001 – volume: 56 start-page: 100 year: 2016 end-page: 115 article-title: Differential components of discriminative 2D Gaussian‐Hermite moments for recognition of facial expressions publication-title: Pattern Recogn. – year: 2013 – ident: e_1_2_7_12_1 doi: 10.1002/wics.101 – ident: e_1_2_7_38_1 doi: 10.1109/34.895972 – ident: e_1_2_7_19_1 doi: 10.1109/NUiConE.2011.6153243 – ident: e_1_2_7_37_1 doi: 10.1016/j.comcom.2012.03.008 – ident: e_1_2_7_17_1 doi: 10.1007/978-3-319-13572-4_1 – ident: e_1_2_7_30_1 doi: 10.1111/coin.12275 – volume: 80 start-page: 1 issue: 2 year: 2020 ident: e_1_2_7_31_1 article-title: Content‐based image retrieval algorithm for nuclei segmentation in histopathology images publication-title: Multimed. Tool Appl – ident: e_1_2_7_34_1 doi: 10.1109/ICPEICES.2016.7853121 – ident: e_1_2_7_35_1 doi: 10.1109/MCOM.2005.1509966 – ident: e_1_2_7_44_1 doi: 10.1016/j.patrec.2007.04.002 – volume: 1 start-page: 1 year: 2012 ident: e_1_2_7_45_1 article-title: 3D face recognition using Gaussian Hermite moments publication-title: Int. J. Comput. Appl. Softw. Eng. – ident: e_1_2_7_2_1 doi: 10.1016/j.patrec.2019.03.015 – ident: e_1_2_7_32_1 – ident: e_1_2_7_29_1 doi: 10.3166/ts.35.121-136 – ident: e_1_2_7_9_1 doi: 10.1002/9780470684757 – ident: e_1_2_7_24_1 doi: 10.1007/978-981-13-9942-8_49 – ident: e_1_2_7_20_1 doi: 10.1016/j.mcm.2010.11.044 – ident: e_1_2_7_23_1 doi: 10.1109/ICMLC.2005.1527456 – ident: e_1_2_7_11_1 doi: 10.1016/j.patrec.2011.03.012 – ident: e_1_2_7_15_1 doi: 10.1007/978-3-642-04944-6_14 – ident: e_1_2_7_27_1 doi: 10.1016/j.patcog.2017.05.025 – ident: e_1_2_7_39_1 doi: 10.1142/S0218001400000581 – ident: e_1_2_7_49_1 doi: 10.1109/ICDM.2001.989592 – ident: e_1_2_7_50_1 doi: 10.1080/01431160412331269698 – ident: e_1_2_7_13_1 doi: 10.1007/s11042-020-09250-5 – volume: 4 start-page: 176 year: 2010 ident: e_1_2_7_40_1 article-title: New set of rotationally Legendre moment invariants, new set of rotationally Legendre moment invariants publication-title: Int. J. Electr. Electron. Eng. – ident: e_1_2_7_4_1 doi: 10.1109/CISP.2015.7407990 – ident: e_1_2_7_16_1 doi: 10.1016/j.neucom.2014.07.078 – start-page: 588 year: 2005 ident: e_1_2_7_43_1 article-title: Properties of orthogonal Gaussian–Hermite moments and their application publication-title: EURASIP J. Appl. Signal Process. – ident: e_1_2_7_14_1 doi: 10.18280/ts.370207 – ident: e_1_2_7_48_1 doi: 10.1109/ICCCNT45670.2019.8944775 – ident: e_1_2_7_46_1 doi: 10.1109/CSO.2009.371 – volume: 4 start-page: 588 year: 2005 ident: e_1_2_7_10_1 article-title: Properties of orthogonal Gaussian‐Hermite moments and their applications publication-title: EURASIP J. Adv. Signal Process. – volume-title: Nature‐inspired Metaheuristic Algorithms year: 2010 ident: e_1_2_7_25_1 – ident: e_1_2_7_41_1 doi: 10.5121/ijma.2010.2206 – ident: e_1_2_7_47_1 doi: 10.1109/ETCS.2010.591 – ident: e_1_2_7_5_1 doi: 10.1049/cp:20060597 – ident: e_1_2_7_7_1 doi: 10.1016/j.neucom.2014.02.046 – ident: e_1_2_7_8_1 doi: 10.1016/j.patcog.2016.03.006 – ident: e_1_2_7_3_1 doi: 10.1049/iet-ipr.2017.0825 – volume: 1 start-page: 247 issue: 4 year: 2011 ident: e_1_2_7_21_1 article-title: A study on different image retrieval techniques in image processing publication-title: Int. J. Soft Comput. Eng. – ident: e_1_2_7_26_1 doi: 10.1007/978-3-642-39678-6_36 – ident: e_1_2_7_18_1 doi: 10.1109/2.410146 – ident: e_1_2_7_36_1 doi: 10.1016/j.comcom.2011.07.009 – volume: 2 start-page: 1163 issue: 18 year: 2018 ident: e_1_2_7_33_1 article-title: Image Transmission: Analog or Digital? publication-title: Multidisciplinary Digital Publishing Institute Proceedings – start-page: 177 volume-title: New Set of Rotationally Legendre Moment Invariants year: 2005 ident: e_1_2_7_42_1 – ident: e_1_2_7_6_1 doi: 10.1016/0031-3203(93)90038-X – ident: e_1_2_7_22_1 doi: 10.1007/s12517-014-1584-7 – volume-title: Digital Image Processing Using MATLAB year: 2004 ident: e_1_2_7_28_1 |
| SSID | ssj0001999537 ssib050169717 ssib050729737 ssib052855658 |
| Score | 2.2514048 |
| Snippet | Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database... Abstract Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 135 |
| SubjectTerms | Clustering content‐based retrieval Datasets Efficiency evolutionary computation Facial recognition technology feature extraction Genetic algorithms Heuristic methods image classification image colour analysis Image databases Image retrieval Information retrieval Multimedia Optimization Optimization algorithms Optimization techniques Principal components analysis Queries Support vector machines Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEBYhl_QSWtIS5w9BcmlhE1kr7a6OSUjiFtpTArktsyvJGNbrYK8JvvkRCnlDP0lm5LVxIKSX3oSYg5gZzXwjzQ9jZ7IL3qLbihAqm0ipWEWQIJDrJh6kBNRoQ8XJv_8kvQf161E_boz6opywZXvgJeMwOC80SAPKKamAKsJAZhq1KishNbok6ysysxFMhdcVxD06Tlf9SJW5KAeNPO9KQa8cGx4oNOp_gy53pvUTzJ6hqt7i1eBwbj-z3RYp8svlCb-wLVfvsX7oJlU3i_lf8j-WD4ZoEPg4zMVCpeGUx97ndzCdUHXkYv7So2yXxvHhKBSzcagt92jnfDULa4y3Z_x5VHk-QusxbMsyv7KH25v7617UzkqISoX3NHIi8VapVCQmLSm1xaZW2W4iCu-zGKzRhXQYDGVQCiikRy762AmrvbBOOBl_Y9v1qHb7jGdFnAifOg8phXu6MEI7VUorHeIBbTrs-4p_edk2Eqd5FlUePrSVoV2ZB1532Oma9mnZPuNdqisSw5qCWl6HDVSEvFWE_F-K0GFHKyHm7T2c5DHCIaMpqO2ws7VgPzzKjyDzD0jy65_3MqwO_se5D9knSXky4WXniG0346k7RqDTFCdBp18Bxmv6iw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEA_1-qAvRVHxapWAfVFYm5tNdjcPIra0noKHSAt9W2Y3yVHY2z2ve5R760co-A37Scyku1cLcm8hDOySmcz8ZjJ_GNuHETrjzVbkobKOpIxlhIkHcqPEIQB6idZUnPxjkozP5Pdzdb7FJn0tDKVV9joxKGrTlBQjP4i9YdOK3JPP898RTY2i19V-hAZ2oxXMp9Bi7BHbBuqMNWDbh8eTn7_uoy4eD6k47fuUSn1QXrTwcQSCoh__WKbQwP8B6ny8rOe4usKqeohjgyE6ecp2OgTJv9yx_BnbsvVzNg1dpur29vqG7JLhFzOvKPgizMvywsQpv33Kv-Lykqomb6__jCkLprV81oQiN4614c7rP1etwtr74St-1VSON16rzLpyzRfs7OT49GgcdTMUolL6-xtZkTgjZSoSnZaU8mJSI80oEYVzWYxGqwKsd5IyLAUW4DIEF1thlBPGCgvxSzaom9q-Yjwr4kS41DpMyQ1UhRbKyhIMWI8TlB6y9_355WXXYJzmXFR5eOiWmnYhD2c9ZO_WtPO7thr_pTokNqwpqBV22GgW07y7WTmIQiFolFaCRCoZRMiUVztZialW5ZDt9UzMu_t5md9L05Dtrxm78Vc-BJ5vIMmPvp1CWO1u_uRr9gQoMybEcvbYoF0s7RsPbdribSevfwG5S_lu priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PaxQxFA91e_BkFRVXWgnai8Ks2UySmRzrYrsKFg9dqKfhTf6U4uxsaWcp66kfQfAb9pP4kp1ZGCmLtxBehjD55b3fI-8PIYd8DN6i2UqQKutEiFQkoJDIjZUHzgERrUNy8rdTNZ2Jr-fyfIe87XJheu_3Qn80lw0fjTlC7RHZVRL59oDszk6_H_0IXeNC2hBSAt6NlZRZV4O0t7hndWJx_h6jfLysr2B1C1XV56jRyBzvkUm3vXVsyc_RsilH5tc_lRu37_8pedJyTHq0BsUzsuPq5-Qi1qGqm_u738FyWXo5R1VCr2NHLYQbDRHwF_QEljchr_L-7s80xMk0js4XMQ2OQm2pRw3pq1Uco6e-oreLytMF6p15m9D5gsyOP59NpknbZSExAm944pjyVoiMKZ2ZEBRjMyvsWLHS-zwFq2XJHbpRORgGJfc5cJ86ZqVn1jHH05dkUC9q94rQvEwV85nzkAVHUZaaSScMt9whk5B6SN53p1CYtgR56IRRFfEpXOgwy4v4u4bk3Ub2al1440GpT-EwNxKhWHacwDMo2rtXcFZK4BqEE1xASCoEnktUTLmBTEszJPsdFIr2Bt8UKRIpLYM7PCSHG3hs3cqHiJwtIsXkyxmPo9f_9819Mmiul-4AeU9TvmmB_xfT-f9a priority: 102 providerName: Unpaywall |
| Title | Content‐based image retrieval using Gaussian–Hermite moments and firefly and grey wolf optimization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12040 https://www.proquest.com/docview/3091950222 https://doi.org/10.1049/cit2.12040 https://doaj.org/article/20b5a29a4e424a1998a2857938ca795c |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: ADMLS dateStart: 20200901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: IDLOA dateStart: 20170601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050729737 issn: 2468-6557 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: AKRWK dateStart: 20160101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: BENPR dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: AVUZU dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdd-7C9jI1tLFsXBOvLBt7ks2RbsJe0S5qNJYStge7JyJYUCo5dUoeSl9GPMNg37CfZSXFSAqOwF1mIMxjdv9-ddSdCjiBUVqPbChAqy4DziAcqRiAXxlYBKJRo6YqTR-N4OOVfz8X5Hvm0qYVZ94fYJtycZnh77RRc5etbSBDUIhOLiwY-hIBC-IAchAhknHwDn9xlWBD7CN80E1x5EUIH2PQn5fLj3es7Hsk37t9Bmw-X1aVaXauy3MWv3gENnpDHLXKkvTWrn5I9Uz0jM99dqmpub347f6TpxRwNBF34e7JQiKg71z6jp2p55aolb2_-DN3pl8bQee2L26iqNLVo92y58nOMv1f0ui4trdGazNsyzedkOuifnQyD9u6EoOCot4FhsdWcJyyWSeGOuuhEcx3GLLc2jZSWIgeDwVGqCqZysKkCGxmmhWXaMAPRC7Jf1ZV5SWiaRzGzibEqceGfyCUThhegwSA-ELJD3m32LyvaxuLufosy8z-4uXSrkPm97pC3W9rLdTuNf1IdOzZsKVwLbL9QL2ZZq1EZsFwokIobDly5UkEFqUBzkxYqkaLokMMNE7NWL6-yCOGRFC7I7ZCjLWPv_ZT3nuf3kGQnX87Az179D_Fr8gjc-Rif0Tkk-81iad4gwGnyrpdjHNPBaZcc9D6Pvv3A53F_PPne9UkDHEe_-rg2HU96P_8CmGT9Wg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEBYhOaSX0tKWbpOmgqaHFtxoZcm2DqE0adLdJllK2UBurmxJS8Brb_aHZW95hELfpw-TJ-mMYm8aKHvLzYgB25rRzDej-SFkl7e1M2C2AoDKKhAiFIGOAMi1I6c51yDRCouTz3pR51x8u5AXa-RPUwuDaZWNTvSK2lQ5xsj3QjBsSqJ78ml0FeDUKLxdbUZo6Hq0gtn3Lcbqwo4Tu5iDCzfZ734Bfr_j_Piof9gJ6ikDQS5AwgPLImeEiFmk4hyTQkxshGlHLHMuCbVRMuMW3IhE50xn3CWau9AyIx0zlllsfAAmYAP-UoHzt3Fw1Pv-4y7KA_hLhnHTF1Wovfxyyj-2OcNoyz-W0A8MuIdyN2flSC_muiju42Zv-I6fkMc1YqWfb0XsKVmz5TMy8F2tyunN9S-0g4ZeDkEx0bGfzwXCSzGffkC_6tkEqzRvrn93MOtmaumw8kV1VJeGOtC3rlj4Z_D7F3ReFY5WoMWGdXnoc3L-ILv5gqyXVWlfEppkYcRcbJ2O0e2UmWLSipwbbgGXSNUi75v9S_O6oTnO1ShSf7EuFK7y1O91i7xd0o5u23j8l-oA2bCkwNbbfqEaD9L6JKecZVJzpYUVXGgsUdQ8kaDmklzHSuYtst0wMa31wSS9k94W2V0yduWnfPA8X0GSHnb73D-9Wv3KN2Sz0z87TU-7vZMt8ohjVo6PI22T9el4Zl8DrJpmO7XsUvLzoY_LX5aHNsE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF_0CuqLKCqeVl2wLwrRvclukn2s1fPqn-JDT4ovYZPdPQq55LjmKPfWj1DoN-wncWYvd-VACr6FZQhh599vNjO_ZWwPBsZbTFsRQmUdSRnLyCQI5AaJNwAGLVrTcPLPo2Q0lt9O1EnXm0OzMCt-iM2BG3lGiNfk4G5m_arglESSWZ628GEAaIV32Q4mciF7bGf_9_jP-OaQBeGPCryZQBNGiB5gTVEq9cebF2wlpcDdvwU47y_qmVmem6rahrAhBw0fsYcdeOT7K20_Zndc_YRNAsFU3V5fXFJKsvx0ijGCz8NVWWhHnFrbJ_yrWZzRwOT1xdWIGmBax6dNmG_jprbcY-jz1TI8Ywm-5OdN5XmDAWXaTWo-ZePhl-ODUdRdnxCVEl03ciLxVspUJDotqdvFplbaQSIK77PYWK0KcFgfZaYUpgCfGfCxE1Z5YZ1wED9jvbqp3XPGsyJOhE-dNylVgKrQQjlZggWHEEHpPnu33r-87LjF6YqLKg__uKWmVcjDXvfZ243sbMWo8U-pT6SGjQSxYIeFZj7JO6fKQRTKgDbSSZCGpgUNZAojTlaaVKuyz3bXSsw71zzLY0RIWlGd22d7G8Xe-invg85vEckPDo8hPL34H-E37N6vz8P8x-HR95fsAVC3TDjf2WW9dr5wrxDutMXrzqj_Amf3-jA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PaxQxFA91e_BkFRVXWgnai8Ks2UySmRzrYrsKFg9dqKfhTf6U4uxsaWcp66kfQfAb9pP4kp1ZGCmLtxBehjD55b3fI-8PIYd8DN6i2UqQKutEiFQkoJDIjZUHzgERrUNy8rdTNZ2Jr-fyfIe87XJheu_3Qn80lw0fjTlC7RHZVRL59oDszk6_H_0IXeNC2hBSAt6NlZRZV4O0t7hndWJx_h6jfLysr2B1C1XV56jRyBzvkUm3vXVsyc_RsilH5tc_lRu37_8pedJyTHq0BsUzsuPq5-Qi1qGqm_u738FyWXo5R1VCr2NHLYQbDRHwF_QEljchr_L-7s80xMk0js4XMQ2OQm2pRw3pq1Uco6e-oreLytMF6p15m9D5gsyOP59NpknbZSExAm944pjyVoiMKZ2ZEBRjMyvsWLHS-zwFq2XJHbpRORgGJfc5cJ86ZqVn1jHH05dkUC9q94rQvEwV85nzkAVHUZaaSScMt9whk5B6SN53p1CYtgR56IRRFfEpXOgwy4v4u4bk3Ub2al1440GpT-EwNxKhWHacwDMo2rtXcFZK4BqEE1xASCoEnktUTLmBTEszJPsdFIr2Bt8UKRIpLYM7PCSHG3hs3cqHiJwtIsXkyxmPo9f_9819Mmiul-4AeU9TvmmB_xfT-f9a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content%E2%80%90based+image+retrieval+using+Gaussian%E2%80%93Hermite+moments+and+firefly+and+grey+wolf+optimization&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Tadepalli%2C+Yasasvy&rft.au=Kollati%2C+Meenakshi&rft.au=Kuraparthi%2C+Swaraja&rft.au=Kora%2C+Padmavathi&rft.date=2021-06-01&rft.issn=2468-2322&rft.eissn=2468-2322&rft.volume=6&rft.issue=2&rft.spage=135&rft.epage=146&rft_id=info:doi/10.1049%2Fcit2.12040&rft.externalDBID=10.1049%252Fcit2.12040&rft.externalDocID=CIT212040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |