Content‐based image retrieval using Gaussian–Hermite moments and firefly and grey wolf optimization

Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compres...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology Vol. 6; no. 2; pp. 135 - 146
Main Authors Tadepalli, Yasasvy, Kollati, Meenakshi, Kuraparthi, Swaraja, Kora, Padmavathi, Budati, Anil Kumar, Kala Pampana, Lakshmi
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.06.2021
Wiley
Subjects
Online AccessGet full text
ISSN2468-2322
2468-6557
2468-2322
DOI10.1049/cit2.12040

Cover

Abstract Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compressed with principal component analysis. The compressed feature set is multiplied with the weight matrix array, which has the same size as the feature vector. Hybrid firefly and grey wolf optimization (FAGWO) is used to prevent the premature convergence of optimization in the firefly algorithm. The retrieval of images in CBIR is carried out in an OpenCV python environment with K‐nearest neighbours and random forest algorithm classifiers. The fitness function for FAGWO is the accuracy of the classifier. The FAGWO algorithm derives the optimum weights from a randomly generated initial population. When these optimized weights are applied, the proposed algorithm shows better precision/recall and efficiency than other techniques such as exact legendre moments, Region‐based image retrieval, K‐means clustering ​and Color descriptor wavelet‐based texture descriptor retrieval technique. In terms of optimization, hybrid FAGWO outperformed various optimization techniques (when used alone) like Particle Swarm Optmization, Genetic Algorithm, Grey‐Wolf Optimization and FireFly algorithm.
AbstractList Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compressed with principal component analysis. The compressed feature set is multiplied with the weight matrix array, which has the same size as the feature vector. Hybrid firefly and grey wolf optimization (FAGWO) is used to prevent the premature convergence of optimization in the firefly algorithm. The retrieval of images in CBIR is carried out in an OpenCV python environment with K‐nearest neighbours and random forest algorithm classifiers. The fitness function for FAGWO is the accuracy of the classifier. The FAGWO algorithm derives the optimum weights from a randomly generated initial population. When these optimized weights are applied, the proposed algorithm shows better precision/recall and efficiency than other techniques such as exact legendre moments, Region‐based image retrieval, K‐means clustering ​and Color descriptor wavelet‐based texture descriptor retrieval technique. In terms of optimization, hybrid FAGWO outperformed various optimization techniques (when used alone) like Particle Swarm Optmization, Genetic Algorithm, Grey‐Wolf Optimization and FireFly algorithm.
Abstract Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database repositories. The proposed content‐based image retrieval (CBIR) uses Gaussian–Hermite moments as the low‐level features. Later these features are compressed with principal component analysis. The compressed feature set is multiplied with the weight matrix array, which has the same size as the feature vector. Hybrid firefly and grey wolf optimization (FAGWO) is used to prevent the premature convergence of optimization in the firefly algorithm. The retrieval of images in CBIR is carried out in an OpenCV python environment with K‐nearest neighbours and random forest algorithm classifiers. The fitness function for FAGWO is the accuracy of the classifier. The FAGWO algorithm derives the optimum weights from a randomly generated initial population. When these optimized weights are applied, the proposed algorithm shows better precision/recall and efficiency than other techniques such as exact legendre moments, Region‐based image retrieval, K‐means clustering ​and Color descriptor wavelet‐based texture descriptor retrieval technique. In terms of optimization, hybrid FAGWO outperformed various optimization techniques (when used alone) like Particle Swarm Optmization, Genetic Algorithm, Grey‐Wolf Optimization and FireFly algorithm.
Author Budati, Anil Kumar
Kuraparthi, Swaraja
Kora, Padmavathi
Kala Pampana, Lakshmi
Kollati, Meenakshi
Tadepalli, Yasasvy
Author_xml – sequence: 1
  givenname: Yasasvy
  orcidid: 0000-0002-7684-5427
  surname: Tadepalli
  fullname: Tadepalli, Yasasvy
  email: tyasasvy@gmail.com
  organization: GRIET
– sequence: 2
  givenname: Meenakshi
  surname: Kollati
  fullname: Kollati, Meenakshi
  organization: GRIET
– sequence: 3
  givenname: Swaraja
  surname: Kuraparthi
  fullname: Kuraparthi, Swaraja
  organization: GRIET
– sequence: 4
  givenname: Padmavathi
  surname: Kora
  fullname: Kora, Padmavathi
  organization: GRIET
– sequence: 5
  givenname: Anil Kumar
  surname: Budati
  fullname: Budati, Anil Kumar
  organization: GRIET
– sequence: 6
  givenname: Lakshmi
  surname: Kala Pampana
  fullname: Kala Pampana, Lakshmi
  organization: VNR Vignana Jyothi Institute of Engineering and Technology
BookMark eNp9kMFq3DAQhk1JoGmaS57A0FvLpmNZXlvHsrTJQqCX9CzG1shokaWtJHdxT3mEQt8wT1LvupRSSk4axP9_zHyvsjPnHWXZdQE3BXDxvjOJ3RQMOLzILhhfNytWMnb21_wyu4pxBwCFEKIq64us33iXyKWnxx8tRlK5GbCnPFAKhr6hzcdoXJ_f4hijQff0-POOwmAS5YMf5l7M0alcm0DaTqe5DzTlB2917vfJDOY7JuPd6-xco4109fu9zL58-viwuVvdf77dbj7crzoOJawI1lpxXsNa1F3FQKhacVWsodW6KVGJqmXERdVgB9gy3SDTJYGqNCgCYuVltl24yuNO7sN8TpikRyNPHz70EkMynSXJoK2QCeTEGcfZyAxrqlqUTYe1qLqZ9W5hjW6P0wGt_QMsQB6Vy6NyeVI-p98s6X3wX0eKSe78GNx8rCxBFKICxo77wZLqgo9xtnZEnAylgMb-H_z2n8qzWxRL-GAsTc8k5Wb7wJbOL46osfs
CitedBy_id crossref_primary_10_1080_08839514_2024_2318983
crossref_primary_10_1109_ACCESS_2022_3161154
crossref_primary_10_1080_0952813X_2024_2383652
crossref_primary_10_1049_cit2_12151
crossref_primary_10_1155_2021_1048879
crossref_primary_10_1051_e3sconf_202343001013
crossref_primary_10_1051_e3sconf_202343001014
crossref_primary_10_1371_journal_pone_0281636
crossref_primary_10_1049_cit2_12374
Cites_doi 10.1002/wics.101
10.1109/34.895972
10.1109/NUiConE.2011.6153243
10.1016/j.comcom.2012.03.008
10.1007/978-3-319-13572-4_1
10.1111/coin.12275
10.1109/ICPEICES.2016.7853121
10.1109/MCOM.2005.1509966
10.1016/j.patrec.2007.04.002
10.1016/j.patrec.2019.03.015
10.3166/ts.35.121-136
10.1002/9780470684757
10.1007/978-981-13-9942-8_49
10.1016/j.mcm.2010.11.044
10.1109/ICMLC.2005.1527456
10.1016/j.patrec.2011.03.012
10.1007/978-3-642-04944-6_14
10.1016/j.patcog.2017.05.025
10.1142/S0218001400000581
10.1109/ICDM.2001.989592
10.1080/01431160412331269698
10.1007/s11042-020-09250-5
10.1109/CISP.2015.7407990
10.1016/j.neucom.2014.07.078
10.18280/ts.370207
10.1109/ICCCNT45670.2019.8944775
10.1109/CSO.2009.371
10.5121/ijma.2010.2206
10.1109/ETCS.2010.591
10.1049/cp:20060597
10.1016/j.neucom.2014.02.046
10.1016/j.patcog.2016.03.006
10.1049/iet-ipr.2017.0825
10.1007/978-3-642-39678-6_36
10.1109/2.410146
10.1016/j.comcom.2011.07.009
10.1016/0031-3203(93)90038-X
10.1007/s12517-014-1584-7
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1049/cit2.12040
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 146
ExternalDocumentID oai_doaj_org_article_20b5a29a4e424a1998a2857938ca795c
10.1049/cit2.12040
10_1049_cit2_12040
CIT212040
Genre article
GroupedDBID 0R~
0SF
1OC
24P
6I.
AACTN
AAEDW
AAFTH
AAHHS
AAHJG
AAJGR
AALRI
AAXUO
ABMAC
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACXQS
ADBBV
ADVLN
ADZOD
AEEZP
AEQDE
AEXQZ
AFKRA
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M41
M43
NCXOZ
O9-
OCL
OK1
PIMPY
RIE
RIG
ROL
RUI
SSZ
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEFGJ
AEUPX
AFFHD
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c4030-e06fd4470697c5209d7d4d160bff83ad95b2e4958ac0ab2f8a2f3e0d5f0de0e23
IEDL.DBID 24P
ISSN 2468-2322
2468-6557
IngestDate Fri Oct 03 12:52:29 EDT 2025
Sun Sep 07 11:05:00 EDT 2025
Sat Jul 26 02:53:49 EDT 2025
Wed Oct 29 21:49:32 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
Wed Jan 22 16:29:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4030-e06fd4470697c5209d7d4d160bff83ad95b2e4958ac0ab2f8a2f3e0d5f0de0e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7684-5427
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12040
PQID 3091950222
PQPubID 6852857
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_20b5a29a4e424a1998a2857938ca795c
unpaywall_primary_10_1049_cit2_12040
proquest_journals_3091950222
crossref_citationtrail_10_1049_cit2_12040
crossref_primary_10_1049_cit2_12040
wiley_primary_10_1049_cit2_12040_CIT212040
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1993; 26
2014; 139
2011; 1
2011
2010
2000; 22
2020; 80
2009
2020; 37
2006
2011; 32
2011; 54
2020; 36
2005; 43
2020; 79
2005
2004
2005; 26
2012; 35
2015; 8
2019; 123
2016; 56
2015; 151
2007; 28
2018; 2
2017; 71
2012; 1
1995; 28
2000; 14
2001
2005; 5
2005; 4
2019
2016
2015
2013
2018; 12
2010; 3
2010; 2
2009; 1
2010; 4
2018; 35
e_1_2_7_5_1
Hosny K.M. (e_1_2_7_40_1) 2010; 4
Wu Y.F. (e_1_2_7_43_1) 2005
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_47_1
Wu Y. (e_1_2_7_10_1) 2005; 4
e_1_2_7_26_1
e_1_2_7_49_1
Ahmed G.F. (e_1_2_7_21_1) 2011; 1
Belghini N. (e_1_2_7_45_1) 2012; 1
Yang X.‐S. (e_1_2_7_25_1) 2010
Kurmi Y. (e_1_2_7_31_1) 2020; 80
e_1_2_7_50_1
e_1_2_7_23_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Hosny K.M. (e_1_2_7_42_1) 2005
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
Gonzalez R.C. (e_1_2_7_28_1) 2004
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
Balsa J. (e_1_2_7_33_1) 2018; 2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 139
  start-page: 189
  year: 2014
  end-page: 201
  article-title: Extended biologically inspired model for object recognition based on oriented Gaussian–Hermite moment
  publication-title: Neurocomputing
– year: 2009
– start-page: 177
  year: 2005
– volume: 43
  start-page: S11
  issue: 9
  year: 2005
  end-page: S16
  article-title: TDCS, OFDM, and MC‐CDMA: TDCS, OFDM, and MC‐CDMA: a brief tutorial
  publication-title: IEEE Commun. Mag.
– start-page: 819
  year: 2015
  end-page: 823
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  end-page: 222
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Rem. Sens.
– volume: 36
  start-page: 351
  issue: 1
  year: 2020
  end-page: 367
  article-title: Artificial bee colony algorithm for content‐based image retrieval
  publication-title: Comput. Intell.
– volume: 4
  start-page: 176
  year: 2010
  end-page: 180
  article-title: New set of rotationally Legendre moment invariants, new set of rotationally Legendre moment invariants
  publication-title: Int. J. Electr. Electron. Eng.
– volume: 123
  start-page: 82
  year: 2019
  end-page: 88
  article-title: CNN‐VWII: an efficient approach for large‐scale video retrieval by image queries
  publication-title: Pattern Recogn. Lett.
– volume: 26
  start-page: 295
  issue: 2
  year: 1993
  end-page: 306
  article-title: Orthogonal moment operators for subpixel edge detection
  publication-title: Pattern Recogn.
– volume: 71
  start-page: 158
  year: 2017
  end-page: 172
  article-title: Handcrafted vs. non‐handcrafted features for computer vision classification
  publication-title: Pattern Recogn.
– volume: 8
  start-page: 6211
  issue: 8
  year: 2015
  end-page: 6224
  article-title: Content‐based image retrieval using PSO and k‐means clustering algorithm
  publication-title: Arab. J. Geosci.
– volume: 37
  start-page: 217
  issue: 2
  year: 2020
  end-page: 226
  article-title: A Multi‐class SVM Based Content Based Image Retrieval System Using Hybrid Optimization Techniques
  publication-title: Traitment du Signal
– volume: 35
  start-page: 121
  issue: 2
  year: 2018
  end-page: 136
  article-title: Automatic ranking of image thresholding techniques using consensus of ground truth
  publication-title: Traitement du Signal
– volume: 54
  start-page: 1121
  issue: 4
  year: 2011
  end-page: 1127
  article-title: Content‐based image retrieval using color and texture fused features
  publication-title: Math. Comput. Model
– start-page: 169
  year: 2009
  end-page: 178
– volume: 35
  start-page: 1838
  year: 2012
  end-page: 1845
  article-title: Depth‐color based 3D image transmission over wireless networks with QoE provisions
  publication-title: Comput. Commun.
– volume: 80
  start-page: 1
  issue: 2
  year: 2020
  end-page: 21
  article-title: Content‐based image retrieval algorithm for nuclei segmentation in histopathology images
  publication-title: Multimed. Tool Appl
– volume: 12
  start-page: 909
  issue: 6
  year: 2018
  end-page: 918
  article-title: Curvelet‐based multiscale denoising using non‐local means & guided image filter
  publication-title: IET Image Process.
– year: 2010
– start-page: 1
  year: 2015
  end-page: 13
– start-page: 589
  year: 2006
  end-page: 593
– start-page: 519
  year: 2019
  end-page: 528
– volume: 1
  start-page: 886
  year: 2009
  end-page: 888
– volume: 3
  start-page: 11
  year: 2010
  end-page: 14
– volume: 28
  start-page: 1640
  issue: 13
  year: 2007
  end-page: 1650
  article-title: Application of a new type of singular points in fingerprint classification
  publication-title: Pattern Recogn. Lett.
– volume: 4
  start-page: 588
  year: 2005
  end-page: 599
  article-title: Properties of orthogonal Gaussian‐Hermite moments and their applications
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 1
  start-page: 1
  year: 2012
  end-page: 4
  article-title: 3D face recognition using Gaussian Hermite moments
  publication-title: Int. J. Comput. Appl. Softw. Eng.
– volume: 28
  start-page: 23
  issue: 9
  year: 1995
  end-page: 32
  article-title: Query by image and video content: the QBIC system
  publication-title: Computer
– volume: 22
  start-page: 1349
  issue: 12
  year: 2000
  end-page: 1380
  article-title: Content‐based image retrieval at the end of the early years
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– year: 2004
– volume: 2
  start-page: 1163
  issue: 18
  year: 2018
  article-title: Image Transmission: Analog or Digital?
  publication-title: Multidisciplinary Digital Publishing Institute Proceedings
– start-page: 1
  year: 2011
  end-page: 4
– volume: 35
  start-page: 100
  issue: 1
  year: 2012
  end-page: 108
  article-title: A two‐hop clustered image transmission scheme for maximizing network lifetime in wireless multimedia sensor networks
  publication-title: Comput. Commun.
– volume: 79
  start-page: 29865
  issue: 39
  year: 2020
  end-page: 29900
  article-title: A hybrid matrix factorization technique to free the watermarking scheme from false positive and negative problems
  publication-title: Multimed. Tool Appl.
– volume: 32
  start-page: 1283
  issue: 9
  year: 2011
  end-page: 1298
  article-title: Rotation and translation invariants of Gaussian‐Hermite moments
  publication-title: Pattern Recogn. Lett.
– start-page: 588
  year: 2005
  end-page: 599
  article-title: Properties of orthogonal Gaussian–Hermite moments and their application
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 1
  start-page: 247
  issue: 4
  year: 2011
  end-page: 251
  article-title: A study on different image retrieval techniques in image processing
  publication-title: Int. J. Soft Comput. Eng.
– volume: 1
  start-page: 1
  year: 2012
– volume: 14
  start-page: 875
  issue: 07
  year: 2000
  end-page: 894
  article-title: On geometric and orthogonal moments
  publication-title: Int. J. Patt. Recogn. Artif. Intell.
– start-page: 647
  year: 2001
  end-page: 648
– volume: 151
  start-page: 1099
  year: 2015
  end-page: 1111
  article-title: An integrated approach to region based image retrieval using firefly algorithm and support vector machine
  publication-title: Neurocomputing
– start-page: 1
  year: 2016
  end-page: 4
– year: 2019
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  end-page: 459
  article-title: Principal component analysis
  publication-title: WIREs Comp. Stat.
– volume: 5
  start-page: 2996
  year: 2005
  end-page: 3001
– volume: 56
  start-page: 100
  year: 2016
  end-page: 115
  article-title: Differential components of discriminative 2D Gaussian‐Hermite moments for recognition of facial expressions
  publication-title: Pattern Recogn.
– year: 2013
– ident: e_1_2_7_12_1
  doi: 10.1002/wics.101
– ident: e_1_2_7_38_1
  doi: 10.1109/34.895972
– ident: e_1_2_7_19_1
  doi: 10.1109/NUiConE.2011.6153243
– ident: e_1_2_7_37_1
  doi: 10.1016/j.comcom.2012.03.008
– ident: e_1_2_7_17_1
  doi: 10.1007/978-3-319-13572-4_1
– ident: e_1_2_7_30_1
  doi: 10.1111/coin.12275
– volume: 80
  start-page: 1
  issue: 2
  year: 2020
  ident: e_1_2_7_31_1
  article-title: Content‐based image retrieval algorithm for nuclei segmentation in histopathology images
  publication-title: Multimed. Tool Appl
– ident: e_1_2_7_34_1
  doi: 10.1109/ICPEICES.2016.7853121
– ident: e_1_2_7_35_1
  doi: 10.1109/MCOM.2005.1509966
– ident: e_1_2_7_44_1
  doi: 10.1016/j.patrec.2007.04.002
– volume: 1
  start-page: 1
  year: 2012
  ident: e_1_2_7_45_1
  article-title: 3D face recognition using Gaussian Hermite moments
  publication-title: Int. J. Comput. Appl. Softw. Eng.
– ident: e_1_2_7_2_1
  doi: 10.1016/j.patrec.2019.03.015
– ident: e_1_2_7_32_1
– ident: e_1_2_7_29_1
  doi: 10.3166/ts.35.121-136
– ident: e_1_2_7_9_1
  doi: 10.1002/9780470684757
– ident: e_1_2_7_24_1
  doi: 10.1007/978-981-13-9942-8_49
– ident: e_1_2_7_20_1
  doi: 10.1016/j.mcm.2010.11.044
– ident: e_1_2_7_23_1
  doi: 10.1109/ICMLC.2005.1527456
– ident: e_1_2_7_11_1
  doi: 10.1016/j.patrec.2011.03.012
– ident: e_1_2_7_15_1
  doi: 10.1007/978-3-642-04944-6_14
– ident: e_1_2_7_27_1
  doi: 10.1016/j.patcog.2017.05.025
– ident: e_1_2_7_39_1
  doi: 10.1142/S0218001400000581
– ident: e_1_2_7_49_1
  doi: 10.1109/ICDM.2001.989592
– ident: e_1_2_7_50_1
  doi: 10.1080/01431160412331269698
– ident: e_1_2_7_13_1
  doi: 10.1007/s11042-020-09250-5
– volume: 4
  start-page: 176
  year: 2010
  ident: e_1_2_7_40_1
  article-title: New set of rotationally Legendre moment invariants, new set of rotationally Legendre moment invariants
  publication-title: Int. J. Electr. Electron. Eng.
– ident: e_1_2_7_4_1
  doi: 10.1109/CISP.2015.7407990
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neucom.2014.07.078
– start-page: 588
  year: 2005
  ident: e_1_2_7_43_1
  article-title: Properties of orthogonal Gaussian–Hermite moments and their application
  publication-title: EURASIP J. Appl. Signal Process.
– ident: e_1_2_7_14_1
  doi: 10.18280/ts.370207
– ident: e_1_2_7_48_1
  doi: 10.1109/ICCCNT45670.2019.8944775
– ident: e_1_2_7_46_1
  doi: 10.1109/CSO.2009.371
– volume: 4
  start-page: 588
  year: 2005
  ident: e_1_2_7_10_1
  article-title: Properties of orthogonal Gaussian‐Hermite moments and their applications
  publication-title: EURASIP J. Adv. Signal Process.
– volume-title: Nature‐inspired Metaheuristic Algorithms
  year: 2010
  ident: e_1_2_7_25_1
– ident: e_1_2_7_41_1
  doi: 10.5121/ijma.2010.2206
– ident: e_1_2_7_47_1
  doi: 10.1109/ETCS.2010.591
– ident: e_1_2_7_5_1
  doi: 10.1049/cp:20060597
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neucom.2014.02.046
– ident: e_1_2_7_8_1
  doi: 10.1016/j.patcog.2016.03.006
– ident: e_1_2_7_3_1
  doi: 10.1049/iet-ipr.2017.0825
– volume: 1
  start-page: 247
  issue: 4
  year: 2011
  ident: e_1_2_7_21_1
  article-title: A study on different image retrieval techniques in image processing
  publication-title: Int. J. Soft Comput. Eng.
– ident: e_1_2_7_26_1
  doi: 10.1007/978-3-642-39678-6_36
– ident: e_1_2_7_18_1
  doi: 10.1109/2.410146
– ident: e_1_2_7_36_1
  doi: 10.1016/j.comcom.2011.07.009
– volume: 2
  start-page: 1163
  issue: 18
  year: 2018
  ident: e_1_2_7_33_1
  article-title: Image Transmission: Analog or Digital?
  publication-title: Multidisciplinary Digital Publishing Institute Proceedings
– start-page: 177
  volume-title: New Set of Rotationally Legendre Moment Invariants
  year: 2005
  ident: e_1_2_7_42_1
– ident: e_1_2_7_6_1
  doi: 10.1016/0031-3203(93)90038-X
– ident: e_1_2_7_22_1
  doi: 10.1007/s12517-014-1584-7
– volume-title: Digital Image Processing Using MATLAB
  year: 2004
  ident: e_1_2_7_28_1
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.2514048
Snippet Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database...
Abstract Rapid growth in the transfer of multimedia information over the Internet requires algorithms to retrieve a queried image from large image database...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Clustering
content‐based retrieval
Datasets
Efficiency
evolutionary computation
Facial recognition technology
feature extraction
Genetic algorithms
Heuristic methods
image classification
image colour analysis
Image databases
Image retrieval
Information retrieval
Multimedia
Optimization
Optimization algorithms
Optimization techniques
Principal components analysis
Queries
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEBYhl_QSWtIS5w9BcmlhE1kr7a6OSUjiFtpTArktsyvJGNbrYK8JvvkRCnlDP0lm5LVxIKSX3oSYg5gZzXwjzQ9jZ7IL3qLbihAqm0ipWEWQIJDrJh6kBNRoQ8XJv_8kvQf161E_boz6opywZXvgJeMwOC80SAPKKamAKsJAZhq1KishNbok6ysysxFMhdcVxD06Tlf9SJW5KAeNPO9KQa8cGx4oNOp_gy53pvUTzJ6hqt7i1eBwbj-z3RYp8svlCb-wLVfvsX7oJlU3i_lf8j-WD4ZoEPg4zMVCpeGUx97ndzCdUHXkYv7So2yXxvHhKBSzcagt92jnfDULa4y3Z_x5VHk-QusxbMsyv7KH25v7617UzkqISoX3NHIi8VapVCQmLSm1xaZW2W4iCu-zGKzRhXQYDGVQCiikRy762AmrvbBOOBl_Y9v1qHb7jGdFnAifOg8phXu6MEI7VUorHeIBbTrs-4p_edk2Eqd5FlUePrSVoV2ZB1532Oma9mnZPuNdqisSw5qCWl6HDVSEvFWE_F-K0GFHKyHm7T2c5DHCIaMpqO2ws7VgPzzKjyDzD0jy65_3MqwO_se5D9knSXky4WXniG0346k7RqDTFCdBp18Bxmv6iw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEA_1-qAvRVHxapWAfVFYm5tNdjcPIra0noKHSAt9W2Y3yVHY2z2ve5R760co-A37Scyku1cLcm8hDOySmcz8ZjJ_GNuHETrjzVbkobKOpIxlhIkHcqPEIQB6idZUnPxjkozP5Pdzdb7FJn0tDKVV9joxKGrTlBQjP4i9YdOK3JPP898RTY2i19V-hAZ2oxXMp9Bi7BHbBuqMNWDbh8eTn7_uoy4eD6k47fuUSn1QXrTwcQSCoh__WKbQwP8B6ny8rOe4usKqeohjgyE6ecp2OgTJv9yx_BnbsvVzNg1dpur29vqG7JLhFzOvKPgizMvywsQpv33Kv-Lykqomb6__jCkLprV81oQiN4614c7rP1etwtr74St-1VSON16rzLpyzRfs7OT49GgcdTMUolL6-xtZkTgjZSoSnZaU8mJSI80oEYVzWYxGqwKsd5IyLAUW4DIEF1thlBPGCgvxSzaom9q-Yjwr4kS41DpMyQ1UhRbKyhIMWI8TlB6y9_355WXXYJzmXFR5eOiWmnYhD2c9ZO_WtPO7thr_pTokNqwpqBV22GgW07y7WTmIQiFolFaCRCoZRMiUVztZialW5ZDt9UzMu_t5md9L05Dtrxm78Vc-BJ5vIMmPvp1CWO1u_uRr9gQoMybEcvbYoF0s7RsPbdribSevfwG5S_lu
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PaxQxFA91e_BkFRVXWgnai8Ks2UySmRzrYrsKFg9dqKfhTf6U4uxsaWcp66kfQfAb9pP4kp1ZGCmLtxBehjD55b3fI-8PIYd8DN6i2UqQKutEiFQkoJDIjZUHzgERrUNy8rdTNZ2Jr-fyfIe87XJheu_3Qn80lw0fjTlC7RHZVRL59oDszk6_H_0IXeNC2hBSAt6NlZRZV4O0t7hndWJx_h6jfLysr2B1C1XV56jRyBzvkUm3vXVsyc_RsilH5tc_lRu37_8pedJyTHq0BsUzsuPq5-Qi1qGqm_u738FyWXo5R1VCr2NHLYQbDRHwF_QEljchr_L-7s80xMk0js4XMQ2OQm2pRw3pq1Uco6e-oreLytMF6p15m9D5gsyOP59NpknbZSExAm944pjyVoiMKZ2ZEBRjMyvsWLHS-zwFq2XJHbpRORgGJfc5cJ86ZqVn1jHH05dkUC9q94rQvEwV85nzkAVHUZaaSScMt9whk5B6SN53p1CYtgR56IRRFfEpXOgwy4v4u4bk3Ub2al1440GpT-EwNxKhWHacwDMo2rtXcFZK4BqEE1xASCoEnktUTLmBTEszJPsdFIr2Bt8UKRIpLYM7PCSHG3hs3cqHiJwtIsXkyxmPo9f_9819Mmiul-4AeU9TvmmB_xfT-f9a
  priority: 102
  providerName: Unpaywall
Title Content‐based image retrieval using Gaussian–Hermite moments and firefly and grey wolf optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12040
https://www.proquest.com/docview/3091950222
https://doi.org/10.1049/cit2.12040
https://doaj.org/article/20b5a29a4e424a1998a2857938ca795c
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: ADMLS
  dateStart: 20200901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: IDLOA
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050729737
  issn: 2468-6557
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AKRWK
  dateStart: 20160101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AVUZU
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdd-7C9jI1tLFsXBOvLBt7ks2RbsJe0S5qNJYStge7JyJYUCo5dUoeSl9GPMNg37CfZSXFSAqOwF1mIMxjdv9-ddSdCjiBUVqPbChAqy4DziAcqRiAXxlYBKJRo6YqTR-N4OOVfz8X5Hvm0qYVZ94fYJtycZnh77RRc5etbSBDUIhOLiwY-hIBC-IAchAhknHwDn9xlWBD7CN80E1x5EUIH2PQn5fLj3es7Hsk37t9Bmw-X1aVaXauy3MWv3gENnpDHLXKkvTWrn5I9Uz0jM99dqmpub347f6TpxRwNBF34e7JQiKg71z6jp2p55aolb2_-DN3pl8bQee2L26iqNLVo92y58nOMv1f0ui4trdGazNsyzedkOuifnQyD9u6EoOCot4FhsdWcJyyWSeGOuuhEcx3GLLc2jZSWIgeDwVGqCqZysKkCGxmmhWXaMAPRC7Jf1ZV5SWiaRzGzibEqceGfyCUThhegwSA-ELJD3m32LyvaxuLufosy8z-4uXSrkPm97pC3W9rLdTuNf1IdOzZsKVwLbL9QL2ZZq1EZsFwokIobDly5UkEFqUBzkxYqkaLokMMNE7NWL6-yCOGRFC7I7ZCjLWPv_ZT3nuf3kGQnX87Az179D_Fr8gjc-Rif0Tkk-81iad4gwGnyrpdjHNPBaZcc9D6Pvv3A53F_PPne9UkDHEe_-rg2HU96P_8CmGT9Wg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEBYhOaSX0tKWbpOmgqaHFtxoZcm2DqE0adLdJllK2UBurmxJS8Brb_aHZW95hELfpw-TJ-mMYm8aKHvLzYgB25rRzDej-SFkl7e1M2C2AoDKKhAiFIGOAMi1I6c51yDRCouTz3pR51x8u5AXa-RPUwuDaZWNTvSK2lQ5xsj3QjBsSqJ78ml0FeDUKLxdbUZo6Hq0gtn3Lcbqwo4Tu5iDCzfZ734Bfr_j_Piof9gJ6ikDQS5AwgPLImeEiFmk4hyTQkxshGlHLHMuCbVRMuMW3IhE50xn3CWau9AyIx0zlllsfAAmYAP-UoHzt3Fw1Pv-4y7KA_hLhnHTF1Wovfxyyj-2OcNoyz-W0A8MuIdyN2flSC_muiju42Zv-I6fkMc1YqWfb0XsKVmz5TMy8F2tyunN9S-0g4ZeDkEx0bGfzwXCSzGffkC_6tkEqzRvrn93MOtmaumw8kV1VJeGOtC3rlj4Z_D7F3ReFY5WoMWGdXnoc3L-ILv5gqyXVWlfEppkYcRcbJ2O0e2UmWLSipwbbgGXSNUi75v9S_O6oTnO1ShSf7EuFK7y1O91i7xd0o5u23j8l-oA2bCkwNbbfqEaD9L6JKecZVJzpYUVXGgsUdQ8kaDmklzHSuYtst0wMa31wSS9k94W2V0yduWnfPA8X0GSHnb73D-9Wv3KN2Sz0z87TU-7vZMt8ohjVo6PI22T9el4Zl8DrJpmO7XsUvLzoY_LX5aHNsE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF_0CuqLKCqeVl2wLwrRvclukn2s1fPqn-JDT4ovYZPdPQq55LjmKPfWj1DoN-wncWYvd-VACr6FZQhh599vNjO_ZWwPBsZbTFsRQmUdSRnLyCQI5AaJNwAGLVrTcPLPo2Q0lt9O1EnXm0OzMCt-iM2BG3lGiNfk4G5m_arglESSWZ628GEAaIV32Q4mciF7bGf_9_jP-OaQBeGPCryZQBNGiB5gTVEq9cebF2wlpcDdvwU47y_qmVmem6rahrAhBw0fsYcdeOT7K20_Zndc_YRNAsFU3V5fXFJKsvx0ijGCz8NVWWhHnFrbJ_yrWZzRwOT1xdWIGmBax6dNmG_jprbcY-jz1TI8Ywm-5OdN5XmDAWXaTWo-ZePhl-ODUdRdnxCVEl03ciLxVspUJDotqdvFplbaQSIK77PYWK0KcFgfZaYUpgCfGfCxE1Z5YZ1wED9jvbqp3XPGsyJOhE-dNylVgKrQQjlZggWHEEHpPnu33r-87LjF6YqLKg__uKWmVcjDXvfZ243sbMWo8U-pT6SGjQSxYIeFZj7JO6fKQRTKgDbSSZCGpgUNZAojTlaaVKuyz3bXSsw71zzLY0RIWlGd22d7G8Xe-invg85vEckPDo8hPL34H-E37N6vz8P8x-HR95fsAVC3TDjf2WW9dr5wrxDutMXrzqj_Amf3-jA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PaxQxFA91e_BkFRVXWgnai8Ks2UySmRzrYrsKFg9dqKfhTf6U4uxsaWcp66kfQfAb9pP4kp1ZGCmLtxBehjD55b3fI-8PIYd8DN6i2UqQKutEiFQkoJDIjZUHzgERrUNy8rdTNZ2Jr-fyfIe87XJheu_3Qn80lw0fjTlC7RHZVRL59oDszk6_H_0IXeNC2hBSAt6NlZRZV4O0t7hndWJx_h6jfLysr2B1C1XV56jRyBzvkUm3vXVsyc_RsilH5tc_lRu37_8pedJyTHq0BsUzsuPq5-Qi1qGqm_u738FyWXo5R1VCr2NHLYQbDRHwF_QEljchr_L-7s80xMk0js4XMQ2OQm2pRw3pq1Uco6e-oreLytMF6p15m9D5gsyOP59NpknbZSExAm944pjyVoiMKZ2ZEBRjMyvsWLHS-zwFq2XJHbpRORgGJfc5cJ86ZqVn1jHH05dkUC9q94rQvEwV85nzkAVHUZaaSScMt9whk5B6SN53p1CYtgR56IRRFfEpXOgwy4v4u4bk3Ub2al1440GpT-EwNxKhWHacwDMo2rtXcFZK4BqEE1xASCoEnktUTLmBTEszJPsdFIr2Bt8UKRIpLYM7PCSHG3hs3cqHiJwtIsXkyxmPo9f_9819Mmiul-4AeU9TvmmB_xfT-f9a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content%E2%80%90based+image+retrieval+using+Gaussian%E2%80%93Hermite+moments+and+firefly+and+grey+wolf+optimization&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Tadepalli%2C+Yasasvy&rft.au=Kollati%2C+Meenakshi&rft.au=Kuraparthi%2C+Swaraja&rft.au=Kora%2C+Padmavathi&rft.date=2021-06-01&rft.issn=2468-2322&rft.eissn=2468-2322&rft.volume=6&rft.issue=2&rft.spage=135&rft.epage=146&rft_id=info:doi/10.1049%2Fcit2.12040&rft.externalDBID=10.1049%252Fcit2.12040&rft.externalDocID=CIT212040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon