Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning

Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional n...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 15; no. 5; pp. 1115 - 1127
Main Authors Chen, Junde, Zhang, Defu, Suzauddola, Md, Nanehkaran, Yaser Ahangari, Sun, Yuandong
Format Journal Article
LanguageEnglish
Published Wiley 01.04.2021
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/ipr2.12090

Cover

Abstract Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional neural networks and modified the network structure to improve the learning capability of plant lesion characteristics. The MobileNet with squeeze‐and‐excitation (SE) block was selected in our approach. Integrating the merits of both, the pre‐trained MobileNet and SE block were fused to form a new network, which we termed the SE‐MobileNet, and was used to identify the plant diseases. In particular, the transfer learning was performed twice to obtain the optimum model. The first phase trained the model for the extended layers while the bottom convolution layers were frozen with the pre‐trained weights on ImageNet; by loading the model trained in the first phase, the second phase retrained the model using the target dataset. The proposed procedure provides a significant increase in efficiency relative to other state‐of‐the‐art methods. It reaches an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and heterogeneous background conditions, the average accuracy realises 99.33% for identifying the rice disease types. The experimental findings show the feasibility and effectiveness of the proposed procedure.
AbstractList Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional neural networks and modified the network structure to improve the learning capability of plant lesion characteristics. The MobileNet with squeeze‐and‐excitation (SE) block was selected in our approach. Integrating the merits of both, the pre‐trained MobileNet and SE block were fused to form a new network, which we termed the SE‐MobileNet, and was used to identify the plant diseases. In particular, the transfer learning was performed twice to obtain the optimum model. The first phase trained the model for the extended layers while the bottom convolution layers were frozen with the pre‐trained weights on ImageNet; by loading the model trained in the first phase, the second phase retrained the model using the target dataset. The proposed procedure provides a significant increase in efficiency relative to other state‐of‐the‐art methods. It reaches an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and heterogeneous background conditions, the average accuracy realises 99.33% for identifying the rice disease types. The experimental findings show the feasibility and effectiveness of the proposed procedure.
Abstract Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional neural networks and modified the network structure to improve the learning capability of plant lesion characteristics. The MobileNet with squeeze‐and‐excitation (SE) block was selected in our approach. Integrating the merits of both, the pre‐trained MobileNet and SE block were fused to form a new network, which we termed the SE‐MobileNet, and was used to identify the plant diseases. In particular, the transfer learning was performed twice to obtain the optimum model. The first phase trained the model for the extended layers while the bottom convolution layers were frozen with the pre‐trained weights on ImageNet; by loading the model trained in the first phase, the second phase retrained the model using the target dataset. The proposed procedure provides a significant increase in efficiency relative to other state‐of‐the‐art methods. It reaches an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and heterogeneous background conditions, the average accuracy realises 99.33% for identifying the rice disease types. The experimental findings show the feasibility and effectiveness of the proposed procedure.
Author Nanehkaran, Yaser Ahangari
Chen, Junde
Suzauddola, Md
Zhang, Defu
Sun, Yuandong
Author_xml – sequence: 1
  givenname: Junde
  surname: Chen
  fullname: Chen, Junde
  organization: Xiamen University
– sequence: 2
  givenname: Defu
  surname: Zhang
  fullname: Zhang, Defu
  email: dfzhang@xmu.edu.cn
  organization: Xiamen University
– sequence: 3
  givenname: Md
  surname: Suzauddola
  fullname: Suzauddola, Md
  organization: Xiamen University
– sequence: 4
  givenname: Yaser Ahangari
  surname: Nanehkaran
  fullname: Nanehkaran, Yaser Ahangari
  organization: Xiamen University
– sequence: 5
  givenname: Yuandong
  surname: Sun
  fullname: Sun, Yuandong
  organization: Spira Inc
BookMark eNp9kMtuFDEQRS0UJJLAhi_wGmlC2d12t5co4jFSeAjB2irb5ZGjjj3YDSGs-AS-kS-hJw1ZIMSmXLLuPVKdE3aUSybGHgs4E9Cbp2lf5ZmQYOAeOxaDEhuj9XB0tyvzgJ20dgmgDIzqmLVtoDynmDzOqWReIt9PmGceUiNsxNMV7qjxLwk58vbpM9E3-vn9B-awTPrq07wWXxeXJnpDM78qgSa-BPh8nTzxuWJukSqfCGtOefeQ3Y84NXr0-z1lH188_3D-anPx9uX2_NnFxvfQwUbpCChHADdGA8o5PzithQtCQe8jGOpIOteNYzBOKfRGajWOApWDEPrQnbLtyg0FL-2-LqfUG1sw2duPUncW65z8RJa01EPoJZmoe9FHo4WKA3VaIghjDqwnK8vX0lqleMcTYA_q7UG9vVW_hOGv8B9Ni4s0_bsi1sr1YvHmP3C7ffderp1fZrqbfw
CitedBy_id crossref_primary_10_1016_j_compag_2023_108408
crossref_primary_10_1007_s11042_023_14980_3
crossref_primary_10_3390_insects15110827
crossref_primary_10_3389_fpls_2023_1227011
crossref_primary_10_3390_agriculture12040452
crossref_primary_10_1016_j_compag_2025_110128
crossref_primary_10_1016_j_horiz_2022_100026
crossref_primary_10_1371_journal_pone_0313946
crossref_primary_10_3390_plants12193383
crossref_primary_10_3934_era_2023142
crossref_primary_10_1007_s00500_023_09103_x
crossref_primary_10_1016_j_ecoinf_2023_102245
crossref_primary_10_1016_j_ecoinf_2023_102320
crossref_primary_10_1016_j_epsr_2024_111181
crossref_primary_10_1007_s42853_024_00241_0
crossref_primary_10_1109_TAFE_2024_3447792
crossref_primary_10_1007_s11277_023_10333_3
crossref_primary_10_1007_s11554_024_01561_2
crossref_primary_10_3390_f13010001
crossref_primary_10_1016_j_compag_2022_107543
crossref_primary_10_1109_ACCESS_2025_3536461
crossref_primary_10_3389_fpls_2024_1505857
crossref_primary_10_1007_s11042_023_17245_1
crossref_primary_10_3390_s22176663
crossref_primary_10_1109_ACCESS_2024_3351805
crossref_primary_10_1016_j_oregeorev_2022_105270
crossref_primary_10_1007_s11042_022_12620_w
crossref_primary_10_1016_j_rineng_2025_103922
crossref_primary_10_1016_j_cogr_2022_07_001
crossref_primary_10_1007_s42979_024_03334_x
crossref_primary_10_3390_app11083331
crossref_primary_10_1109_ACCESS_2022_3154607
crossref_primary_10_1049_ipr2_12855
crossref_primary_10_3390_horticulturae9091034
crossref_primary_10_1002_jsfa_13636
crossref_primary_10_3390_info13060293
crossref_primary_10_1155_2022_2484435
crossref_primary_10_3390_agriculture11050420
crossref_primary_10_1007_s00034_023_02478_0
crossref_primary_10_1016_j_suscom_2022_100695
crossref_primary_10_1038_s41598_023_31942_9
crossref_primary_10_12720_jait_14_5_907_917
crossref_primary_10_32604_cmc_2022_018961
crossref_primary_10_3390_mti7080075
crossref_primary_10_3390_app142310770
crossref_primary_10_1016_j_matpr_2023_02_370
crossref_primary_10_1007_s12652_022_04334_6
crossref_primary_10_3389_fpls_2024_1467811
crossref_primary_10_21015_vtse_v12i2_1869
crossref_primary_10_1109_ACCESS_2024_3430190
crossref_primary_10_1111_ppa_13997
crossref_primary_10_1007_s10462_022_10374_3
crossref_primary_10_1038_s41598_022_23484_3
crossref_primary_10_1080_03235408_2021_2015866
crossref_primary_10_1007_s11042_023_15470_2
crossref_primary_10_32604_cmc_2023_042496
crossref_primary_10_3390_rs13142822
crossref_primary_10_3390_s23156844
crossref_primary_10_1007_s10462_023_10517_0
crossref_primary_10_1109_ACCESS_2023_3284760
crossref_primary_10_1038_s41598_024_72343_w
Cites_doi 10.1109/ACCESS.2018.2844405
10.1016/j.neucom.2017.01.018
10.1109/CVPR.2018.00474
10.1109/Agro-Geoinformatics.2017.8047016
10.1016/j.procs.2018.07.070
10.1109/CVPR.2016.308
10.1007/978-3-319-27863-6_59
10.1109/ICCV.2017.324
10.1016/j.compag.2019.105093
10.1109/CVPR.2017.243
10.1016/j.media.2016.06.013
10.1002/jsfa.10365
10.1109/WACV.2019.00175
10.1109/ICEC.2009.73
10.3389/fpls.2016.01419
10.3390/sym11070939
10.1016/j.biosystemseng.2018.05.013
10.1049/iet-ipr.2017.0822
10.1080/08839514.2017.1315516
10.1155/2017/2917536
10.1109/CVPR.2018.00745
10.1109/CVPR.2018.00907
10.1007/s12524-016-0638-6
10.1016/j.compag.2018.03.032
10.1007/s11263-015-0816-y
10.1109/TKDE.2009.191
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12090
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Agriculture
EISSN 1751-9667
EndPage 1127
ExternalDocumentID oai_doaj_org_article_e6267d42e9f6414f9615f7e362a0199d
10_1049_ipr2_12090
IPR212090
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61672439
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 20720181004
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHJG
AAJGR
AAMMB
ABJCF
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
AEFGJ
AENEX
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IDLOA
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P2P
P62
PHGZM
PHGZT
PTHSS
QWB
RNS
ROL
RUI
S0W
ZL0
AAYXX
CITATION
PQGLB
WIN
ID FETCH-LOGICAL-c4030-56f0a2800b8f905bbc7b661bd1504cf09e3e2bb388d9b55ac9265881a5b0dd4d3
IEDL.DBID 24P
ISSN 1751-9659
IngestDate Wed Aug 27 01:23:02 EDT 2025
Tue Aug 05 12:00:20 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4030-56f0a2800b8f905bbc7b661bd1504cf09e3e2bb388d9b55ac9265881a5b0dd4d3
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12090
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e6267d42e9f6414f9615f7e362a0199d
crossref_primary_10_1049_ipr2_12090
crossref_citationtrail_10_1049_ipr2_12090
wiley_primary_10_1049_ipr2_12090_IPR212090
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2011
2019; 11
2017; 45
2009
2020; 100
2019; 161
2017; 235
2019; 167
2016; 33
2015; 46
2018; 6
2017; 31
2018; 133
2016; 7
2009; 22(10)
2018; 172
2014; 2
2015; 115
2019
2018
2017
2016
2015
2014
2018; 12
2007; 23
Kai S. (e_1_2_6_9_1) 2007; 23
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
Pan S.J. (e_1_2_6_23_1) 2009; 22
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Goodfellow I. (e_1_2_6_19_1) 2014
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Zhang Z.Y. (e_1_2_6_10_1) 2015; 46
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 2
  start-page: 2672
  year: 2014
  end-page: 2680
– year: 2017
  article-title: Automatic image‐based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
– volume: 33
  start-page: 4
  year: 2016
  end-page: 6
  article-title: Medical image analysis–past, present, and future
  publication-title: Med. Image Anal.
– year: 2018
  article-title: Squeeze‐and‐excitation networks
– year: 2011
  article-title: Deep sparse rectifier neural networks
– volume: 6
  start-page: 30370
  year: 2018
  end-page: 30377
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
– year: 2016
  article-title: Rethinking the inception architecture for computer vision
– year: 2015
  article-title: Early detection and classification of paddy diseases with neural networks and fuzzy logic
– volume: 23
  start-page: 155
  issue: 1
  year: 2007
  end-page: 157
  article-title: Corn leaf disease recognition based on suport vector machine method
  publication-title: Trans. Chinese Soc. Agric. Eng.
– year: 2018
  article-title: Learning transferable architectures for scalable image recognition
– year: 2017
  article-title: Densely connected convolutional networks
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
– year: 2017
  article-title: Disease detection on the leaves of the tomato plants by using deep learning
– volume: 12
  start-page: 1038
  year: 2018
  end-page: 1048
  article-title: Semi‐automatic leaf disease detection and classification system for soybean culture
  publication-title: IET Image Proc.
– volume: 235
  start-page: 228
  year: 2017
  end-page: 235
  article-title: Plant identification using deep neural networks via optimization of transfer learning parameters
  publication-title: Neurocomputing
– year: 2017
  article-title: A deep learning‐based approach for banana leaf diseases classification
– volume: 7
  start-page: 1419
  year: 2016
  article-title: Using deep learning for image‐based plant disease detection
  publication-title: Front. Plant Sci.
– year: 2017
  article-title: Focal loss for dense object detection
– year: 2014
– year: 2014
  article-title: Rigid‐motion scattering for image classification
– volume: 46
  start-page: 199
  year: 2015
  end-page: 204
  article-title: Image recognition of maize leaf disease based on ga‐svm
  publication-title: Chem. Eng. Trans.
– volume: 11
  start-page: 939
  year: 2019
  article-title: Solving current limitations of deep learning based approaches for plant disease detection
  publication-title: Symmetry
– year: 2019
  article-title: DAC: Data‐free automatic acceleration of convolutional networks
– volume: 31
  start-page: 299
  year: 2017
  end-page: 315
  article-title: Deep learning for tomato diseases: Classification and symptoms visualization
  publication-title: Appl. Artif. Intell.
– volume: 100
  start-page: 3246
  year: 2020
  end-page: 3256
  article-title: Detection of rice plant diseases based on deep transfer learning
  publication-title: J. Sci. Food Agric.
– year: 2009
  article-title: Application of support vector machine for detecting rice diseases using shape and color texture features
– volume: 45
  start-page: 785
  year: 2017
  end-page: 794
  article-title: Automatic detection of rice disease using near infrared spectra technologies
  publication-title: J. Indian Soc. Remote Sens.
– volume: 133
  start-page: 1040
  year: 2018
  end-page: 1047
  article-title: Tomato crop disease classification using pre‐trained deep learning algorithm
  publication-title: Procedia Comput. Sci.
– year: 2015
  article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks
– year: 2018
  article-title: MobileNetV2: Inverted residuals and linear bottlenecks
– volume: 167
  year: 2019
  article-title: Crop conditional convolutional neural networks for massive multi‐crop plant disease classification over cell phone acquired images taken on real field conditions
  publication-title: Comput. Electron. Agric.
– volume: 172
  start-page: 84
  year: 2018
  end-page: 91
  article-title: Factors influencing the use of deep learning for plant disease recognition
  publication-title: Biosyst. Eng.
– year: 2017
– volume: 22(10)
  start-page: 1345
  year: 2009
  end-page: 1359
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2019
– volume: 161
  start-page: 272
  year: 2019
  end-page: 279
  article-title: A comparative study of fine‐tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
– year: 2015
– ident: e_1_2_6_20_1
– ident: e_1_2_6_14_1
  doi: 10.1109/ACCESS.2018.2844405
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neucom.2017.01.018
– ident: e_1_2_6_18_1
– ident: e_1_2_6_34_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_6_38_1
  doi: 10.1109/Agro-Geoinformatics.2017.8047016
– ident: e_1_2_6_29_1
– volume: 46
  start-page: 199
  year: 2015
  ident: e_1_2_6_10_1
  article-title: Image recognition of maize leaf disease based on ga‐svm
  publication-title: Chem. Eng. Trans.
– ident: e_1_2_6_40_1
  doi: 10.1016/j.procs.2018.07.070
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_6_19_1
– ident: e_1_2_6_31_1
  doi: 10.1109/CVPR.2016.308
– volume: 23
  start-page: 155
  issue: 1
  year: 2007
  ident: e_1_2_6_9_1
  article-title: Corn leaf disease recognition based on suport vector machine method
  publication-title: Trans. Chinese Soc. Agric. Eng.
– ident: e_1_2_6_28_1
– ident: e_1_2_6_13_1
  doi: 10.1007/978-3-319-27863-6_59
– ident: e_1_2_6_27_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_6_36_1
– ident: e_1_2_6_2_1
  doi: 10.1016/j.compag.2019.105093
– ident: e_1_2_6_32_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_6_25_1
– ident: e_1_2_6_4_1
  doi: 10.1016/j.media.2016.06.013
– ident: e_1_2_6_6_1
  doi: 10.1002/jsfa.10365
– ident: e_1_2_6_24_1
  doi: 10.1109/WACV.2019.00175
– ident: e_1_2_6_7_1
  doi: 10.1109/ICEC.2009.73
– ident: e_1_2_6_12_1
  doi: 10.3389/fpls.2016.01419
– ident: e_1_2_6_30_1
– ident: e_1_2_6_41_1
  doi: 10.3390/sym11070939
– ident: e_1_2_6_11_1
  doi: 10.1016/j.biosystemseng.2018.05.013
– ident: e_1_2_6_5_1
  doi: 10.1049/iet-ipr.2017.0822
– ident: e_1_2_6_37_1
  doi: 10.1080/08839514.2017.1315516
– ident: e_1_2_6_16_1
– ident: e_1_2_6_21_1
– ident: e_1_2_6_39_1
  doi: 10.1155/2017/2917536
– ident: e_1_2_6_8_1
– ident: e_1_2_6_15_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_6_33_1
  doi: 10.1109/CVPR.2018.00907
– ident: e_1_2_6_3_1
  doi: 10.1007/s12524-016-0638-6
– ident: e_1_2_6_22_1
  doi: 10.1016/j.compag.2018.03.032
– ident: e_1_2_6_17_1
  doi: 10.1007/s11263-015-0816-y
– ident: e_1_2_6_35_1
– volume: 22
  start-page: 1345
  year: 2009
  ident: e_1_2_6_23_1
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
SSID ssj0059085
Score 2.4626174
Snippet Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep...
Abstract Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1115
SubjectTerms Agriculture
Biology and medical computing
Computer vision and image processing techniques
Optical, image and video signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz34WBXXFwG9KFSzadJtjqu4qLAiouCtJE2yLGh32a0PPPkT_I3-EidpKgqiFy-llIG0M5NvvmmSGYR2KWEKsgoaSdu2EVOWRipOZWQ6PJGAyTH3iWL_Ijm9Yee3_PZLqy-3J6wqD1wp7tAA4-5oRo2wCWszKyAE244B3JXAToR26EsEqZOpCoNdI2_uj0K6JvIJF3VhUiYOh-MJPXAnRsm3UOQr9n9nqD7E9BbRfOCGuFu90xKaMUUTzXUHk1AfwzTRQmCNOMzJ6TKaVmdtbfj5hkcWj-9AXzisveDhPWDGFD8OJZZ46jLXF_P--iYLDVfznIcq3bg_UvBWF6bEvj0OBgFcPgGQ4NKzWzPBocfEYAXd9E6uj0-j0EohyhlM44gnlkgK5FClVhCuVN5REJmVBj7IckuEiQ1VYKVUC8W5zAUFapK2JVdEa6bjVdQoRoVZQ5hLHTOS5xqUzxICwE2sMlKQOAZ6QdIW2qu1mtVf4Npd3GV-vZuJzFkg8xZooZ1P2XFVXeNHqSNnnE8JVxHbPwA_yYKfZH_5SQvte9P-Mk52dnlF_d36f4y4gWap2wDjt_lsokY5eTBbwGBKte2d9QMQi-4V
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12090
https://doaj.org/article/e6267d42e9f6414f9615f7e362a0199d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DX3zxW5wfI6AvCtUsTboGfFFRprAhorC3kjSJDOY2tvqBT_4J_o3-JV7SdCKI4Esp5Urbu97ld0nufgjtU8IUZBU0krZpI6YsjVScysi0eCIhJsfcJ4qdbtK-Z9c93quhk6oWpuwPMZtwc57h47VzcKlKFhIAtWDE_nhCj1zlJyTs86621hE3UHZTxWFH5s19OaQjkk-4qJqTMnH8fe-P4ch37f-JUv0wc7mMFgM-xKelQVdQzQxX0VLAijh44nQNTcsKWxum3PDI4vEAtITDigvuP0KkmOLnvsQST12--mY-3z_kUMPRvOahNzfujBS8R9cU2JPiYBDAxQuED1x4TGsmODBLPKyj-8uLu_N2FAgUopyB80Y8sURSgIQqtYJwpfKWgvFYaUCBLLdEmNhQBbZJtVCcy1xQACRpU3JFtGY63kBzw9HQbCLMpY4ZyXMthAZVQ7gmVhkpSBwDqCBpHR1UesyqL3AkF4PMr3IzkTmdZ17ndbQ3kx2XPTV-lTpz5phJuD7Y_sJo8pAFt8oM5GMtzagRNmFNZgUANNsyMCpLwK5C19GhN-Yfz8mubm6pP9v6j_A2WqBue4vfxLOD5orJk9kFfFKohv8NGz67_wJqkeOL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB734FuszoBeF1TSbbDdHFUt9tIgoeFuSTVIKtS3t-sCTP8Hf6C9xkk0rgghelmWZZXczOzPfJJlvENqnhCnIKmgkbdVGTFkaqTiVkanxRIJPjrlPFJutpHHPLh_4Q9ib42phSn6IyYSbswzvr52BuwnpMuFkjiSzMxjSI1f6CRn7DANg7qjzKbsZO2LXzZv7ekjXST7hYsxOysTx970_4pGn7f8JU32cqS-i-QAQ8Ump0SU0ZXrLaCGARRxMcbSCRmWJrQ1zbrhv8aALw4TDkgvuPIKrGOHnjsQSj1zC-mY-3z9kT8PRvOaBnBs3-wreo2UK7LviYBDAxQv4D1x4UGuGOLSWaK-i-_r53VkjCh0UopyB9UY8sURSwIQqtYJwpfKagoCsNMBAllsiTGyoAuWkWijOZS4oIJK0KrkiWjMdr6HpXr9n1hHmUseM5LkWQrOEgL8mVhkpSBwDqiBpBR2MxzEbf4HrctHN_DI3E5kb88yPeQXtTWQHJanGr1KnTh0TCUeE7S_0h-0s2FVmQO81zagRNmFVZgUgNFszEJYlgFehK-jQK_OP52QXN7fUn238R3gXzTbumtfZ9UXrahPNUbfXxe_o2ULTxfDJbANYKdSO_yW_AGcj5gg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7CBkIuTfMo3fQRQXJpwa1WlrwW5JImWfJcQumW0IuRLCksJLvLrtuGnvoT-hvzSzKS5Q2BUMjFGDPG9oxn9I2k-QZgh1GuMatgiXIdl3DtWKLTXCW2KzKFMTkVIVE872dHA35yKS4XYLephan5IeYTbt4zQrz2Dj4xrs43uefIHE6m7JOv_MSEfdHT5LEWLO59H_wYNJHYt_MWoSDSt5LPhGzoSbn8_HD3owEp8PY_xqlhoOm9hBcRIZK92qSrsGBHa7AS0SKJvjhbh1ldY-vipBsZOzK5Rj2RuOZChjcYK2bk11ARRWY-Y_1j7_7-UyODR3tbRnZucj7W-B59W5HQFoegAKl-YwAhVUC1dkpib4mrDRj0Dr_tHyWxhUJScnTfRGSOKoagUOdOUqF12dU4ImuDOJCXjkqbWqbROrmRWghVSoaQJO8ooakx3KSvoDUaj-xrIEKZlNOyNFIanlEM2NRpqyRNU4QVNG_Dh0aPRfMFvs3FdRHWubksvM6LoPM2bM9lJzWrxpNSX7w55hKeCTtcGE-viuhYhcWMrGs4s9JlvMOdRIjmuhbHZYXoVZo2fAzG_M9ziuOLryycbT5HeAuWLg56xdlx__QNLDO_1yXs6HkLrWr6075DsFLp9_GfvAdj1ub3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+plant+disease+images+via+a+squeeze%E2%80%90and%E2%80%90excitation+MobileNet+model+and+twice+transfer+learning&rft.jtitle=IET+image+processing&rft.au=Chen%2C+Junde&rft.au=Zhang%2C+Defu&rft.au=Suzauddola%2C+Md&rft.au=Nanehkaran%2C+Yaser+Ahangari&rft.date=2021-04-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=5&rft.spage=1115&rft.epage=1127&rft_id=info:doi/10.1049%2Fipr2.12090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_12090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon