Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning
Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional n...
Saved in:
Published in | IET image processing Vol. 15; no. 5; pp. 1115 - 1127 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9659 1751-9667 |
DOI | 10.1049/ipr2.12090 |
Cover
Abstract | Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional neural networks and modified the network structure to improve the learning capability of plant lesion characteristics. The MobileNet with squeeze‐and‐excitation (SE) block was selected in our approach. Integrating the merits of both, the pre‐trained MobileNet and SE block were fused to form a new network, which we termed the SE‐MobileNet, and was used to identify the plant diseases. In particular, the transfer learning was performed twice to obtain the optimum model. The first phase trained the model for the extended layers while the bottom convolution layers were frozen with the pre‐trained weights on ImageNet; by loading the model trained in the first phase, the second phase retrained the model using the target dataset. The proposed procedure provides a significant increase in efficiency relative to other state‐of‐the‐art methods. It reaches an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and heterogeneous background conditions, the average accuracy realises 99.33% for identifying the rice disease types. The experimental findings show the feasibility and effectiveness of the proposed procedure. |
---|---|
AbstractList | Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional neural networks and modified the network structure to improve the learning capability of plant lesion characteristics. The MobileNet with squeeze‐and‐excitation (SE) block was selected in our approach. Integrating the merits of both, the pre‐trained MobileNet and SE block were fused to form a new network, which we termed the SE‐MobileNet, and was used to identify the plant diseases. In particular, the transfer learning was performed twice to obtain the optimum model. The first phase trained the model for the extended layers while the bottom convolution layers were frozen with the pre‐trained weights on ImageNet; by loading the model trained in the first phase, the second phase retrained the model using the target dataset. The proposed procedure provides a significant increase in efficiency relative to other state‐of‐the‐art methods. It reaches an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and heterogeneous background conditions, the average accuracy realises 99.33% for identifying the rice disease types. The experimental findings show the feasibility and effectiveness of the proposed procedure. Abstract Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep learning have greatly improved the accuracy of image identification. In this study, we investigated the transfer learning of deep convolutional neural networks and modified the network structure to improve the learning capability of plant lesion characteristics. The MobileNet with squeeze‐and‐excitation (SE) block was selected in our approach. Integrating the merits of both, the pre‐trained MobileNet and SE block were fused to form a new network, which we termed the SE‐MobileNet, and was used to identify the plant diseases. In particular, the transfer learning was performed twice to obtain the optimum model. The first phase trained the model for the extended layers while the bottom convolution layers were frozen with the pre‐trained weights on ImageNet; by loading the model trained in the first phase, the second phase retrained the model using the target dataset. The proposed procedure provides a significant increase in efficiency relative to other state‐of‐the‐art methods. It reaches an average accuracy of 99.78% in the public dataset with clear backdrops. Even under multiple classes and heterogeneous background conditions, the average accuracy realises 99.33% for identifying the rice disease types. The experimental findings show the feasibility and effectiveness of the proposed procedure. |
Author | Nanehkaran, Yaser Ahangari Chen, Junde Suzauddola, Md Zhang, Defu Sun, Yuandong |
Author_xml | – sequence: 1 givenname: Junde surname: Chen fullname: Chen, Junde organization: Xiamen University – sequence: 2 givenname: Defu surname: Zhang fullname: Zhang, Defu email: dfzhang@xmu.edu.cn organization: Xiamen University – sequence: 3 givenname: Md surname: Suzauddola fullname: Suzauddola, Md organization: Xiamen University – sequence: 4 givenname: Yaser Ahangari surname: Nanehkaran fullname: Nanehkaran, Yaser Ahangari organization: Xiamen University – sequence: 5 givenname: Yuandong surname: Sun fullname: Sun, Yuandong organization: Spira Inc |
BookMark | eNp9kMtuFDEQRS0UJJLAhi_wGmlC2d12t5co4jFSeAjB2irb5ZGjjj3YDSGs-AS-kS-hJw1ZIMSmXLLuPVKdE3aUSybGHgs4E9Cbp2lf5ZmQYOAeOxaDEhuj9XB0tyvzgJ20dgmgDIzqmLVtoDynmDzOqWReIt9PmGceUiNsxNMV7qjxLwk58vbpM9E3-vn9B-awTPrq07wWXxeXJnpDM78qgSa-BPh8nTzxuWJukSqfCGtOefeQ3Y84NXr0-z1lH188_3D-anPx9uX2_NnFxvfQwUbpCChHADdGA8o5PzithQtCQe8jGOpIOteNYzBOKfRGajWOApWDEPrQnbLtyg0FL-2-LqfUG1sw2duPUncW65z8RJa01EPoJZmoe9FHo4WKA3VaIghjDqwnK8vX0lqleMcTYA_q7UG9vVW_hOGv8B9Ni4s0_bsi1sr1YvHmP3C7ffderp1fZrqbfw |
CitedBy_id | crossref_primary_10_1016_j_compag_2023_108408 crossref_primary_10_1007_s11042_023_14980_3 crossref_primary_10_3390_insects15110827 crossref_primary_10_3389_fpls_2023_1227011 crossref_primary_10_3390_agriculture12040452 crossref_primary_10_1016_j_compag_2025_110128 crossref_primary_10_1016_j_horiz_2022_100026 crossref_primary_10_1371_journal_pone_0313946 crossref_primary_10_3390_plants12193383 crossref_primary_10_3934_era_2023142 crossref_primary_10_1007_s00500_023_09103_x crossref_primary_10_1016_j_ecoinf_2023_102245 crossref_primary_10_1016_j_ecoinf_2023_102320 crossref_primary_10_1016_j_epsr_2024_111181 crossref_primary_10_1007_s42853_024_00241_0 crossref_primary_10_1109_TAFE_2024_3447792 crossref_primary_10_1007_s11277_023_10333_3 crossref_primary_10_1007_s11554_024_01561_2 crossref_primary_10_3390_f13010001 crossref_primary_10_1016_j_compag_2022_107543 crossref_primary_10_1109_ACCESS_2025_3536461 crossref_primary_10_3389_fpls_2024_1505857 crossref_primary_10_1007_s11042_023_17245_1 crossref_primary_10_3390_s22176663 crossref_primary_10_1109_ACCESS_2024_3351805 crossref_primary_10_1016_j_oregeorev_2022_105270 crossref_primary_10_1007_s11042_022_12620_w crossref_primary_10_1016_j_rineng_2025_103922 crossref_primary_10_1016_j_cogr_2022_07_001 crossref_primary_10_1007_s42979_024_03334_x crossref_primary_10_3390_app11083331 crossref_primary_10_1109_ACCESS_2022_3154607 crossref_primary_10_1049_ipr2_12855 crossref_primary_10_3390_horticulturae9091034 crossref_primary_10_1002_jsfa_13636 crossref_primary_10_3390_info13060293 crossref_primary_10_1155_2022_2484435 crossref_primary_10_3390_agriculture11050420 crossref_primary_10_1007_s00034_023_02478_0 crossref_primary_10_1016_j_suscom_2022_100695 crossref_primary_10_1038_s41598_023_31942_9 crossref_primary_10_12720_jait_14_5_907_917 crossref_primary_10_32604_cmc_2022_018961 crossref_primary_10_3390_mti7080075 crossref_primary_10_3390_app142310770 crossref_primary_10_1016_j_matpr_2023_02_370 crossref_primary_10_1007_s12652_022_04334_6 crossref_primary_10_3389_fpls_2024_1467811 crossref_primary_10_21015_vtse_v12i2_1869 crossref_primary_10_1109_ACCESS_2024_3430190 crossref_primary_10_1111_ppa_13997 crossref_primary_10_1007_s10462_022_10374_3 crossref_primary_10_1038_s41598_022_23484_3 crossref_primary_10_1080_03235408_2021_2015866 crossref_primary_10_1007_s11042_023_15470_2 crossref_primary_10_32604_cmc_2023_042496 crossref_primary_10_3390_rs13142822 crossref_primary_10_3390_s23156844 crossref_primary_10_1007_s10462_023_10517_0 crossref_primary_10_1109_ACCESS_2023_3284760 crossref_primary_10_1038_s41598_024_72343_w |
Cites_doi | 10.1109/ACCESS.2018.2844405 10.1016/j.neucom.2017.01.018 10.1109/CVPR.2018.00474 10.1109/Agro-Geoinformatics.2017.8047016 10.1016/j.procs.2018.07.070 10.1109/CVPR.2016.308 10.1007/978-3-319-27863-6_59 10.1109/ICCV.2017.324 10.1016/j.compag.2019.105093 10.1109/CVPR.2017.243 10.1016/j.media.2016.06.013 10.1002/jsfa.10365 10.1109/WACV.2019.00175 10.1109/ICEC.2009.73 10.3389/fpls.2016.01419 10.3390/sym11070939 10.1016/j.biosystemseng.2018.05.013 10.1049/iet-ipr.2017.0822 10.1080/08839514.2017.1315516 10.1155/2017/2917536 10.1109/CVPR.2018.00745 10.1109/CVPR.2018.00907 10.1007/s12524-016-0638-6 10.1016/j.compag.2018.03.032 10.1007/s11263-015-0816-y 10.1109/TKDE.2009.191 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ipr2.12090 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Agriculture |
EISSN | 1751-9667 |
EndPage | 1127 |
ExternalDocumentID | oai_doaj_org_article_e6267d42e9f6414f9615f7e362a0199d 10_1049_ipr2_12090 IPR212090 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61672439 – fundername: Fundamental Research Funds for the Central Universities funderid: 20720181004 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAHJG AAJGR AAMMB ABJCF ABQXS ACCMX ACESK ACGFS ACIWK ACXQS AEFGJ AENEX AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IDLOA IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P2P P62 PHGZM PHGZT PTHSS QWB RNS ROL RUI S0W ZL0 AAYXX CITATION PQGLB WIN |
ID | FETCH-LOGICAL-c4030-56f0a2800b8f905bbc7b661bd1504cf09e3e2bb388d9b55ac9265881a5b0dd4d3 |
IEDL.DBID | 24P |
ISSN | 1751-9659 |
IngestDate | Wed Aug 27 01:23:02 EDT 2025 Tue Aug 05 12:00:20 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4030-56f0a2800b8f905bbc7b661bd1504cf09e3e2bb388d9b55ac9265881a5b0dd4d3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12090 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6267d42e9f6414f9615f7e362a0199d crossref_primary_10_1049_ipr2_12090 crossref_citationtrail_10_1049_ipr2_12090 wiley_primary_10_1049_ipr2_12090_IPR212090 |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2021 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2011 2019; 11 2017; 45 2009 2020; 100 2019; 161 2017; 235 2019; 167 2016; 33 2015; 46 2018; 6 2017; 31 2018; 133 2016; 7 2009; 22(10) 2018; 172 2014; 2 2015; 115 2019 2018 2017 2016 2015 2014 2018; 12 2007; 23 Kai S. (e_1_2_6_9_1) 2007; 23 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 Pan S.J. (e_1_2_6_23_1) 2009; 22 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Goodfellow I. (e_1_2_6_19_1) 2014 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 Zhang Z.Y. (e_1_2_6_10_1) 2015; 46 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 2 start-page: 2672 year: 2014 end-page: 2680 – year: 2017 article-title: Automatic image‐based plant disease severity estimation using deep learning publication-title: Comput. Intell. Neurosci. – volume: 33 start-page: 4 year: 2016 end-page: 6 article-title: Medical image analysis–past, present, and future publication-title: Med. Image Anal. – year: 2018 article-title: Squeeze‐and‐excitation networks – year: 2011 article-title: Deep sparse rectifier neural networks – volume: 6 start-page: 30370 year: 2018 end-page: 30377 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access – year: 2016 article-title: Rethinking the inception architecture for computer vision – year: 2015 article-title: Early detection and classification of paddy diseases with neural networks and fuzzy logic – volume: 23 start-page: 155 issue: 1 year: 2007 end-page: 157 article-title: Corn leaf disease recognition based on suport vector machine method publication-title: Trans. Chinese Soc. Agric. Eng. – year: 2018 article-title: Learning transferable architectures for scalable image recognition – year: 2017 article-title: Densely connected convolutional networks – volume: 115 start-page: 211 year: 2015 end-page: 252 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vision – year: 2017 article-title: Disease detection on the leaves of the tomato plants by using deep learning – volume: 12 start-page: 1038 year: 2018 end-page: 1048 article-title: Semi‐automatic leaf disease detection and classification system for soybean culture publication-title: IET Image Proc. – volume: 235 start-page: 228 year: 2017 end-page: 235 article-title: Plant identification using deep neural networks via optimization of transfer learning parameters publication-title: Neurocomputing – year: 2017 article-title: A deep learning‐based approach for banana leaf diseases classification – volume: 7 start-page: 1419 year: 2016 article-title: Using deep learning for image‐based plant disease detection publication-title: Front. Plant Sci. – year: 2017 article-title: Focal loss for dense object detection – year: 2014 – year: 2014 article-title: Rigid‐motion scattering for image classification – volume: 46 start-page: 199 year: 2015 end-page: 204 article-title: Image recognition of maize leaf disease based on ga‐svm publication-title: Chem. Eng. Trans. – volume: 11 start-page: 939 year: 2019 article-title: Solving current limitations of deep learning based approaches for plant disease detection publication-title: Symmetry – year: 2019 article-title: DAC: Data‐free automatic acceleration of convolutional networks – volume: 31 start-page: 299 year: 2017 end-page: 315 article-title: Deep learning for tomato diseases: Classification and symptoms visualization publication-title: Appl. Artif. Intell. – volume: 100 start-page: 3246 year: 2020 end-page: 3256 article-title: Detection of rice plant diseases based on deep transfer learning publication-title: J. Sci. Food Agric. – year: 2009 article-title: Application of support vector machine for detecting rice diseases using shape and color texture features – volume: 45 start-page: 785 year: 2017 end-page: 794 article-title: Automatic detection of rice disease using near infrared spectra technologies publication-title: J. Indian Soc. Remote Sens. – volume: 133 start-page: 1040 year: 2018 end-page: 1047 article-title: Tomato crop disease classification using pre‐trained deep learning algorithm publication-title: Procedia Comput. Sci. – year: 2015 article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks – year: 2018 article-title: MobileNetV2: Inverted residuals and linear bottlenecks – volume: 167 year: 2019 article-title: Crop conditional convolutional neural networks for massive multi‐crop plant disease classification over cell phone acquired images taken on real field conditions publication-title: Comput. Electron. Agric. – volume: 172 start-page: 84 year: 2018 end-page: 91 article-title: Factors influencing the use of deep learning for plant disease recognition publication-title: Biosyst. Eng. – year: 2017 – volume: 22(10) start-page: 1345 year: 2009 end-page: 1359 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – year: 2019 – volume: 161 start-page: 272 year: 2019 end-page: 279 article-title: A comparative study of fine‐tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. – year: 2015 – ident: e_1_2_6_20_1 – ident: e_1_2_6_14_1 doi: 10.1109/ACCESS.2018.2844405 – ident: e_1_2_6_26_1 doi: 10.1016/j.neucom.2017.01.018 – ident: e_1_2_6_18_1 – ident: e_1_2_6_34_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_6_38_1 doi: 10.1109/Agro-Geoinformatics.2017.8047016 – ident: e_1_2_6_29_1 – volume: 46 start-page: 199 year: 2015 ident: e_1_2_6_10_1 article-title: Image recognition of maize leaf disease based on ga‐svm publication-title: Chem. Eng. Trans. – ident: e_1_2_6_40_1 doi: 10.1016/j.procs.2018.07.070 – start-page: 2672 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: e_1_2_6_19_1 – ident: e_1_2_6_31_1 doi: 10.1109/CVPR.2016.308 – volume: 23 start-page: 155 issue: 1 year: 2007 ident: e_1_2_6_9_1 article-title: Corn leaf disease recognition based on suport vector machine method publication-title: Trans. Chinese Soc. Agric. Eng. – ident: e_1_2_6_28_1 – ident: e_1_2_6_13_1 doi: 10.1007/978-3-319-27863-6_59 – ident: e_1_2_6_27_1 doi: 10.1109/ICCV.2017.324 – ident: e_1_2_6_36_1 – ident: e_1_2_6_2_1 doi: 10.1016/j.compag.2019.105093 – ident: e_1_2_6_32_1 doi: 10.1109/CVPR.2017.243 – ident: e_1_2_6_25_1 – ident: e_1_2_6_4_1 doi: 10.1016/j.media.2016.06.013 – ident: e_1_2_6_6_1 doi: 10.1002/jsfa.10365 – ident: e_1_2_6_24_1 doi: 10.1109/WACV.2019.00175 – ident: e_1_2_6_7_1 doi: 10.1109/ICEC.2009.73 – ident: e_1_2_6_12_1 doi: 10.3389/fpls.2016.01419 – ident: e_1_2_6_30_1 – ident: e_1_2_6_41_1 doi: 10.3390/sym11070939 – ident: e_1_2_6_11_1 doi: 10.1016/j.biosystemseng.2018.05.013 – ident: e_1_2_6_5_1 doi: 10.1049/iet-ipr.2017.0822 – ident: e_1_2_6_37_1 doi: 10.1080/08839514.2017.1315516 – ident: e_1_2_6_16_1 – ident: e_1_2_6_21_1 – ident: e_1_2_6_39_1 doi: 10.1155/2017/2917536 – ident: e_1_2_6_8_1 – ident: e_1_2_6_15_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_6_33_1 doi: 10.1109/CVPR.2018.00907 – ident: e_1_2_6_3_1 doi: 10.1007/s12524-016-0638-6 – ident: e_1_2_6_22_1 doi: 10.1016/j.compag.2018.03.032 – ident: e_1_2_6_17_1 doi: 10.1007/s11263-015-0816-y – ident: e_1_2_6_35_1 – volume: 22 start-page: 1345 year: 2009 ident: e_1_2_6_23_1 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 |
SSID | ssj0059085 |
Score | 2.4626174 |
Snippet | Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in deep... Abstract Crop diseases have a devastating effect on agricultural production, and serious diseases can lead to harvest failure entirely. Recent developments in... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1115 |
SubjectTerms | Agriculture Biology and medical computing Computer vision and image processing techniques Optical, image and video signal processing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz34WBXXFwG9KFSzadJtjqu4qLAiouCtJE2yLGh32a0PPPkT_I3-EidpKgqiFy-llIG0M5NvvmmSGYR2KWEKsgoaSdu2EVOWRipOZWQ6PJGAyTH3iWL_Ijm9Yee3_PZLqy-3J6wqD1wp7tAA4-5oRo2wCWszKyAE244B3JXAToR26EsEqZOpCoNdI2_uj0K6JvIJF3VhUiYOh-MJPXAnRsm3UOQr9n9nqD7E9BbRfOCGuFu90xKaMUUTzXUHk1AfwzTRQmCNOMzJ6TKaVmdtbfj5hkcWj-9AXzisveDhPWDGFD8OJZZ46jLXF_P--iYLDVfznIcq3bg_UvBWF6bEvj0OBgFcPgGQ4NKzWzPBocfEYAXd9E6uj0-j0EohyhlM44gnlkgK5FClVhCuVN5REJmVBj7IckuEiQ1VYKVUC8W5zAUFapK2JVdEa6bjVdQoRoVZQ5hLHTOS5xqUzxICwE2sMlKQOAZ6QdIW2qu1mtVf4Npd3GV-vZuJzFkg8xZooZ1P2XFVXeNHqSNnnE8JVxHbPwA_yYKfZH_5SQvte9P-Mk52dnlF_d36f4y4gWap2wDjt_lsokY5eTBbwGBKte2d9QMQi-4V priority: 102 providerName: Directory of Open Access Journals |
Title | Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12090 https://doaj.org/article/e6267d42e9f6414f9615f7e362a0199d |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DX3zxW5wfI6AvCtUsTboGfFFRprAhorC3kjSJDOY2tvqBT_4J_o3-JV7SdCKI4Esp5Urbu97ld0nufgjtU8IUZBU0krZpI6YsjVScysi0eCIhJsfcJ4qdbtK-Z9c93quhk6oWpuwPMZtwc57h47VzcKlKFhIAtWDE_nhCj1zlJyTs86621hE3UHZTxWFH5s19OaQjkk-4qJqTMnH8fe-P4ch37f-JUv0wc7mMFgM-xKelQVdQzQxX0VLAijh44nQNTcsKWxum3PDI4vEAtITDigvuP0KkmOLnvsQST12--mY-3z_kUMPRvOahNzfujBS8R9cU2JPiYBDAxQuED1x4TGsmODBLPKyj-8uLu_N2FAgUopyB80Y8sURSgIQqtYJwpfKWgvFYaUCBLLdEmNhQBbZJtVCcy1xQACRpU3JFtGY63kBzw9HQbCLMpY4ZyXMthAZVQ7gmVhkpSBwDqCBpHR1UesyqL3AkF4PMr3IzkTmdZ17ndbQ3kx2XPTV-lTpz5phJuD7Y_sJo8pAFt8oM5GMtzagRNmFNZgUANNsyMCpLwK5C19GhN-Yfz8mubm6pP9v6j_A2WqBue4vfxLOD5orJk9kFfFKohv8NGz67_wJqkeOL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB734FuszoBeF1TSbbDdHFUt9tIgoeFuSTVIKtS3t-sCTP8Hf6C9xkk0rgghelmWZZXczOzPfJJlvENqnhCnIKmgkbdVGTFkaqTiVkanxRIJPjrlPFJutpHHPLh_4Q9ib42phSn6IyYSbswzvr52BuwnpMuFkjiSzMxjSI1f6CRn7DANg7qjzKbsZO2LXzZv7ekjXST7hYsxOysTx970_4pGn7f8JU32cqS-i-QAQ8Ump0SU0ZXrLaCGARRxMcbSCRmWJrQ1zbrhv8aALw4TDkgvuPIKrGOHnjsQSj1zC-mY-3z9kT8PRvOaBnBs3-wreo2UK7LviYBDAxQv4D1x4UGuGOLSWaK-i-_r53VkjCh0UopyB9UY8sURSwIQqtYJwpfKagoCsNMBAllsiTGyoAuWkWijOZS4oIJK0KrkiWjMdr6HpXr9n1hHmUseM5LkWQrOEgL8mVhkpSBwDqiBpBR2MxzEbf4HrctHN_DI3E5kb88yPeQXtTWQHJanGr1KnTh0TCUeE7S_0h-0s2FVmQO81zagRNmFVZgUgNFszEJYlgFehK-jQK_OP52QXN7fUn238R3gXzTbumtfZ9UXrahPNUbfXxe_o2ULTxfDJbANYKdSO_yW_AGcj5gg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7CBkIuTfMo3fQRQXJpwa1WlrwW5JImWfJcQumW0IuRLCksJLvLrtuGnvoT-hvzSzKS5Q2BUMjFGDPG9oxn9I2k-QZgh1GuMatgiXIdl3DtWKLTXCW2KzKFMTkVIVE872dHA35yKS4XYLephan5IeYTbt4zQrz2Dj4xrs43uefIHE6m7JOv_MSEfdHT5LEWLO59H_wYNJHYt_MWoSDSt5LPhGzoSbn8_HD3owEp8PY_xqlhoOm9hBcRIZK92qSrsGBHa7AS0SKJvjhbh1ldY-vipBsZOzK5Rj2RuOZChjcYK2bk11ARRWY-Y_1j7_7-UyODR3tbRnZucj7W-B59W5HQFoegAKl-YwAhVUC1dkpib4mrDRj0Dr_tHyWxhUJScnTfRGSOKoagUOdOUqF12dU4ImuDOJCXjkqbWqbROrmRWghVSoaQJO8ooakx3KSvoDUaj-xrIEKZlNOyNFIanlEM2NRpqyRNU4QVNG_Dh0aPRfMFvs3FdRHWubksvM6LoPM2bM9lJzWrxpNSX7w55hKeCTtcGE-viuhYhcWMrGs4s9JlvMOdRIjmuhbHZYXoVZo2fAzG_M9ziuOLryycbT5HeAuWLg56xdlx__QNLDO_1yXs6HkLrWr6075DsFLp9_GfvAdj1ub3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+plant+disease+images+via+a+squeeze%E2%80%90and%E2%80%90excitation+MobileNet+model+and+twice+transfer+learning&rft.jtitle=IET+image+processing&rft.au=Chen%2C+Junde&rft.au=Zhang%2C+Defu&rft.au=Suzauddola%2C+Md&rft.au=Nanehkaran%2C+Yaser+Ahangari&rft.date=2021-04-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=5&rft.spage=1115&rft.epage=1127&rft_id=info:doi/10.1049%2Fipr2.12090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_12090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |