Using transfer learning for automated microbleed segmentation

Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroimaging Vol. 1; p. 940849
Main Authors Dadar, Mahsa, Zhernovaia, Maryna, Mahmoud, Sawsan, Camicioli, Richard, Maranzano, Josefina, Duchesne, Simon
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.08.2022
Subjects
Online AccessGet full text
ISSN2813-1193
2813-1193
DOI10.3389/fnimg.2022.940849

Cover

Abstract Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts. We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2 MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network. The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively. The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.
AbstractList Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts. We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2 MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network. The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively. The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.
Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.IntroductionCerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.MethodsWe first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.ResultsThe proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.DiscussionThe proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.
Author Mahmoud, Sawsan
Duchesne, Simon
Dadar, Mahsa
Camicioli, Richard
Maranzano, Josefina
Zhernovaia, Maryna
AuthorAffiliation 4 CERVO Brain Research Center , Quebec City, QC , Canada
1 Department of Psychiatry, Faculty of Medicine, McGill University , Montreal, QC , Canada
2 Department of Anatomy, Université du Québec à Trois-Rivières , Trois-Rivières, QC , Canada
3 Department of Medicine, Division of Neurology, University of Alberta , Edmonton, AB , Canada
5 Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval , Quebec City, QC , Canada
AuthorAffiliation_xml – name: 2 Department of Anatomy, Université du Québec à Trois-Rivières , Trois-Rivières, QC , Canada
– name: 5 Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval , Quebec City, QC , Canada
– name: 1 Department of Psychiatry, Faculty of Medicine, McGill University , Montreal, QC , Canada
– name: 4 CERVO Brain Research Center , Quebec City, QC , Canada
– name: 3 Department of Medicine, Division of Neurology, University of Alberta , Edmonton, AB , Canada
Author_xml – sequence: 1
  givenname: Mahsa
  surname: Dadar
  fullname: Dadar, Mahsa
– sequence: 2
  givenname: Maryna
  surname: Zhernovaia
  fullname: Zhernovaia, Maryna
– sequence: 3
  givenname: Sawsan
  surname: Mahmoud
  fullname: Mahmoud, Sawsan
– sequence: 4
  givenname: Richard
  surname: Camicioli
  fullname: Camicioli, Richard
– sequence: 5
  givenname: Josefina
  surname: Maranzano
  fullname: Maranzano, Josefina
– sequence: 6
  givenname: Simon
  surname: Duchesne
  fullname: Duchesne, Simon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37555147$$D View this record in MEDLINE/PubMed
BookMark eNqNkDtPwzAUhS0EoqX0B7CgjiwtfiVxBoQQ4iUhsdDZst2bYpTYxU5A_HtcUp4DYvKVfc65x98e2nbeAUIHBM8YE-Vx5WyznFFM6azkWPByCw2pIGxKSMm2v80DNI7xEWNMRZGEeBcNWJFlGeHFEJ3Mo3XLSRuUixWESQ0quPVN5cNEda1vVAuLSWNN8LqGNEZYNuBa1Vrv9tFOpeoI4805QvPLi_vz6-nt3dXN-dnt1HBM22kFBTCV4wIKXSqtyoURQhCd5wuiBeQ803lFc64VE5RlDDTXWWa4NsZUmJZshGif27mVen1RdS1XwTYqvEqC5RqHfMch1zhkjyOZTnvTqtMNLEwqHdSX0Ssrf744-yCX_jlFcpxTQlPC0SYh-KcOYisbGw3UtXLguyip4KkvFmwtPfy-7HPLB-kkIL0ggYwxQPWvHxS_PMb24FNfW__hfAPHZabq
CitedBy_id crossref_primary_10_3389_frdem_2024_1380015
crossref_primary_10_1097_YCO_0000000000000920
Cites_doi 10.1109/CVPR.2015.7298594
10.1212/WNL.0b013e3181c34a7d
10.1371/journal.pone.0066610
10.1101/832345
10.1093/brain/awl387
10.1145/3065386
10.1101/2020.07.07.191809
10.1038/s41597-020-0557-9
10.1016/j.nicl.2018.08.002
10.1109/TMI.2016.2528129
10.1016/j.neuroimage.2011.09.012
10.1016/j.neuroimage.2017.06.009
10.1038/s41592-020-01008-z
10.1109/ICCWAMTIP.2017.8301456
10.48550/arXiv.1409.1556
10.1007/s11042-017-4383-9
10.1109/TMI.2017.2693978
10.1007/s00138-019-01029-5
10.1002/alz.12298
10.1016/j.nicl.2018.08.019
10.1016/S1474-4422(09)70013-4
10.48550/arXiv.2107.09559
10.1212/01.wnl.0000307750.41970.d9
10.48550/arXiv.2108.02482
10.1093/brain/awh253
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2018.03.025
10.1016/j.compmedimag.2015.10.001
10.1016/j.neuroimage.2012.01.021
10.3174/ajnr.A4248
10.1007/s11042-017-4554-8
10.1109/CVPR.2016.90
10.1136/jnnp.2007.121913
10.1016/j.neuroimage.2020.116928
10.1007/s11263-015-0816-y
10.1101/747998
10.1016/j.neuroimage.2020.116690
10.1016/j.nicl.2013.01.012
10.1016/j.neuroimage.2011.09.061
10.1002/jmri.26197
10.1159/000331466
10.2307/1932409
10.14283/jpad.2019.41
10.1016/j.mri.2011.02.028
10.1101/2021.11.23.469690
10.1101/2021.06.28.21259503
10.1109/ACCESS.2017.2736558
10.1007/s11042-018-6862-z
10.1016/j.nicl.2016.07.002
10.1017/cjn.2019.27
10.1109/42.668698
10.48550/arXiv.2108.01389
10.1212/WNL.52.5.991
10.1016/S1474-4422(13)70124-8
ContentType Journal Article
Copyright Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne.
Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne
Copyright_xml – notice: Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne.
– notice: Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.3389/fnimg.2022.940849
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2813-1193
ExternalDocumentID 10.3389/fnimg.2022.940849
PMC10406212
37555147
10_3389_fnimg_2022_940849
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
PGMZT
RPM
NPM
7X8
5PM
ABDBF
ADTOC
UNPAY
ID FETCH-LOGICAL-c402t-fe7e3a607e7b9aba9dc8881b66d1b8e645b6f264ba382353eb4b55c4bcccf0293
ISSN 2813-1193
IngestDate Wed Aug 20 00:18:02 EDT 2025
Thu Aug 21 18:41:56 EDT 2025
Wed Oct 01 14:27:08 EDT 2025
Thu Jan 02 22:52:07 EST 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 02:23:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microbleeds
transfer learning
magnetic resonance imaging
cerebrovascular disease
deep neural networks
Language English
License Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-fe7e3a607e7b9aba9dc8881b66d1b8e645b6f264ba382353eb4b55c4bcccf0293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Neuroimaging Analysis and Protocols, a section of the journal Frontiers in Neuroimaging
Edited by: Qingyu Zhao, Stanford University, United States
Reviewed by: Jiahong Ouyang, Stanford University, United States; Mengwei Ren, New York University, United States
OpenAccessLink http://dx.doi.org/10.3389/fnimg.2022.940849
PMID 37555147
PQID 2848230832
PQPubID 23479
ParticipantIDs unpaywall_primary_10_3389_fnimg_2022_940849
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406212
proquest_miscellaneous_2848230832
pubmed_primary_37555147
crossref_primary_10_3389_fnimg_2022_940849
crossref_citationtrail_10_3389_fnimg_2022_940849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-26
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neuroimaging
PublicationTitleAlternate Front Neuroimaging
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Billot (B4) 2021
Vernooij (B51) 2008; 70
Krizhevsky (B29) 2017; 60
Zhang (B56); 77
Rosenberg (B41) 2020; 7
Hong (B27) 2020; 79
Chertkow (B5) 2019; 46
Dadar (B9) 2020; 217
Roob (B40) 1999; 52
Dadar (B14); 36
Dadar (B15); 42
Avants (B1) 2008; 12
Van Den Heuvel (B50) 2016; 12
Dadar (B10) 2018; 174
Fischl (B21) 2012; 62
Shoamanesh (B45) 2011; 32
Fazlollahi (B20) 2015; 46
Long (B33) 2015
Girones Sanguesa (B22) 2021
Werring (B54) 2004; 127
Dadar (B13) 2020; 27
Lu (B34) 2017
Kuijf (B31) 2012; 59
Dadar (B12); 157
Duchesne (B18) 2019; 49
Wardlaw (B53) 2013; 12
Sveinbjornsdottir (B48) 2008; 79
Manera (B35) 2020; 7
Hong (B26) 2019; 30
Bian (B3) 2013; 2
Dadar (B8) 2020; 85
Gregoire (B24) 2009; 73
Mateos-Pérez (B37) 2018; 20
Sled (B47) 1998; 17
Morrison (B38) 2018; 20
Pieruccini-Faria (B39) 2021; 17
Eskildsen (B19) 2012; 59
Dice (B16) 1945; 26
Kuijf (B32) 2013; 8
He (B25) 2016
Kuijf (B30) 2021
Zhang (B55); 77
Greenberg (B23) 2009; 8
Russakovsky (B43) 2015
Barnes (B2) 2011; 29
Szegedy (B49) 2015
Maranzano (B36) 2020; 213
Simonyan (B46) 2014
Dou (B17) 2016; 35
Isensee (B28) 2021; 18
Dadar (B11)
Cordonnier (B6) 2007; 130
Shams (B44) 2015; 36
Dadar (B7); 9
Wang (B52) 2017; 5
Roy (B42) 2015
References_xml – year: 2015
  ident: B49
  article-title: “Going deeper with convolutions,”
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2015.7298594
– volume: 73
  start-page: 1759
  year: 2009
  ident: B24
  article-title: The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181c34a7d
– volume: 8
  start-page: e66610
  year: 2013
  ident: B32
  article-title: Semi-automated detection of cerebral microbleeds on 3.0 T MR images
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0066610
– volume: 27
  start-page: 208
  year: 2020
  ident: B13
  article-title: Conversion of diffusely abnormal white matter to focal lesions is linked to progression in secondary progressive multiple sclerosis. Mult. Scler
  publication-title: J
  doi: 10.1101/832345
– volume-title: Medical Imaging 2015: Image Processing
  year: 2015
  ident: B42
  article-title: “Cerebral microbleed segmentation from susceptibility weighted images,”
– volume: 130
  start-page: 1988
  year: 2007
  ident: B6
  article-title: Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting
  publication-title: Brain
  doi: 10.1093/brain/awl387
– volume: 60
  start-page: 84
  year: 2017
  ident: B29
  article-title: Imagenet classification with deep convolutional neural networks. Commun
  publication-title: ACM
  doi: 10.1145/3065386
– volume: 42
  start-page: 2734
  ident: B15
  article-title: Beware of white matter hyperintensities causing systematic errors in FreeSurfer gray matter segmentations!
  publication-title: Hum. Brain Mapp.
  doi: 10.1101/2020.07.07.191809
– volume: 7
  start-page: 1
  year: 2020
  ident: B35
  article-title: CerebrA, registration and manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0557-9
– volume: 20
  start-page: 498
  year: 2018
  ident: B38
  article-title: A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: evaluating vascular injury and data labelling for machine learning
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2018.08.002
– volume: 35
  start-page: 1182
  year: 2016
  ident: B17
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 59
  start-page: 2362
  year: 2012
  ident: B19
  article-title: BEaST: brain extraction based on nonlocal segmentation technique
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.012
– volume: 157
  start-page: 233
  ident: B12
  article-title: Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.009
– volume: 18
  start-page: 203
  year: 2021
  ident: B28
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat
  publication-title: Methods
  doi: 10.1038/s41592-020-01008-z
– volume-title: 2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)
  year: 2017
  ident: B34
  article-title: “Detection of cerebral microbleeding based on deep convolutional neural network,”
  doi: 10.1109/ICCWAMTIP.2017.8301456
– year: 2014
  ident: B46
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: ArXiv
  doi: 10.48550/arXiv.1409.1556
– volume: 77
  start-page: 21825
  ident: B55
  article-title: Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimed
  publication-title: Tools Appl
  doi: 10.1007/s11042-017-4383-9
– volume: 36
  start-page: 1758
  ident: B14
  article-title: Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimer's disease
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2693978
– volume: 30
  start-page: 1123
  year: 2019
  ident: B26
  article-title: Detecting cerebral microbleeds with transfer learning
  publication-title: Mach. Vis. Appl
  doi: 10.1007/s00138-019-01029-5
– volume: 17
  start-page: 1317
  year: 2021
  ident: B39
  article-title: Gait variability across neurodegenerative and cognitive disorders: results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study
  publication-title: Alzheimers Dement
  doi: 10.1002/alz.12298
– volume: 20
  start-page: 506
  year: 2018
  ident: B37
  article-title: Structural neuroimaging as clinical predictor: a review of machine learning applications
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2018.08.019
– volume: 8
  start-page: 165
  year: 2009
  ident: B23
  article-title: Cerebral microbleeds: a guide to detection and interpretation
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70013-4
– year: 2021
  ident: B4
  article-title: Synthseg: Domain randomisation for segmentation of brain mri scans of any contrast and resolution
  publication-title: ArXiv Prepr.
  doi: 10.48550/arXiv.2107.09559
– volume: 70
  start-page: 1208
  year: 2008
  ident: B51
  article-title: Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000307750.41970.d9
– year: 2021
  ident: B22
  article-title: MixMicrobleed: multi-stage detection and segmentation of cerebral microbleeds
  publication-title: ArXiv.
  doi: 10.48550/arXiv.2108.02482
– volume: 127
  start-page: 2265
  year: 2004
  ident: B54
  article-title: Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI
  publication-title: Brain
  doi: 10.1093/brain/awh253
– volume: 12
  start-page: 26
  year: 2008
  ident: B1
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med
  publication-title: Image Anal
  doi: 10.1016/j.media.2007.06.004
– volume: 174
  start-page: 191
  year: 2018
  ident: B10
  article-title: A comparison of publicly available linear MRI stereotaxic registration techniques
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.025
– volume: 46
  start-page: 269
  year: 2015
  ident: B20
  article-title: Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging
  publication-title: Comput. Med. Imaging Graph
  doi: 10.1016/j.compmedimag.2015.10.001
– volume: 62
  start-page: 774
  year: 2012
  ident: B21
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– start-page: 3431
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: B33
  article-title: “Fully convolutional networks for semantic segmentation,”
– volume: 36
  start-page: 1089
  year: 2015
  ident: B44
  article-title: SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. Am. J
  publication-title: Neuroradiol
  doi: 10.3174/ajnr.A4248
– volume: 77
  start-page: 10521
  ident: B56
  article-title: Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed
  publication-title: Multimed. Tools Appl
  doi: 10.1007/s11042-017-4554-8
– volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B25
  article-title: “Deep residual learning for image recognition,”
  doi: 10.1109/CVPR.2016.90
– volume: 79
  start-page: 1002
  year: 2008
  ident: B48
  article-title: Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.121913
– volume: 217
  start-page: 116928
  year: 2020
  ident: B9
  article-title: Reliability assessment of tissue classification algorithms for multi-center and multi-scanner data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116928
– year: 2015
  ident: B43
  article-title: “ImageNet large scale visual recognition challenge,”
  publication-title: IJCV
  doi: 10.1007/s11263-015-0816-y
– volume: 85
  start-page: 1881
  year: 2020
  ident: B8
  article-title: BISON: Brain tissue segmentation pipeline using T1-weighted magnetic resonance images and a random forest classifier
  publication-title: Magn. Reson. Med
  doi: 10.1101/747998
– volume: 213
  start-page: 116690
  year: 2020
  ident: B36
  article-title: Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116690
– volume: 2
  start-page: 282
  year: 2013
  ident: B3
  article-title: Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2013.01.012
– volume: 59
  start-page: 2266
  year: 2012
  ident: B31
  article-title: Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.061
– volume: 49
  start-page: 456
  year: 2019
  ident: B18
  article-title: The Canadian Dementia Imaging Protocol: Harmonizing National Cohorts
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26197
– volume: 32
  start-page: 528
  year: 2011
  ident: B45
  article-title: Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc
  publication-title: Dis
  doi: 10.1159/000331466
– volume: 26
  start-page: 297
  year: 1945
  ident: B16
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 7
  start-page: 29
  year: 2020
  ident: B41
  article-title: Multidomain interventions to prevent cognitive impairment, Alzheimer's disease, and dementia: from FINGER to world-wide FINGERS
  publication-title: J. Prev. Alzheimers Dis
  doi: 10.14283/jpad.2019.41
– volume: 29
  start-page: 844
  year: 2011
  ident: B2
  article-title: Semiautomated detection of cerebral microbleeds in magnetic resonance images
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2011.02.028
– ident: B11
  article-title: White matter hyperintensity distribution differences in aging and neurodegenerative disease cohorts
  publication-title: bioRxiv [Preprint].
  doi: 10.1101/2021.11.23.469690
– volume: 9
  start-page: 238
  ident: B7
  article-title: Multi-sequence average templates for aging and neurodegenerative disease populations
  publication-title: Sci. Data
  doi: 10.1101/2021.06.28.21259503
– volume: 5
  start-page: 16576
  year: 2017
  ident: B52
  article-title: Cerebral micro-bleed detection based on the convolution neural network with rank based average pooling
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2736558
– volume: 79
  start-page: 15151
  year: 2020
  ident: B27
  article-title: Classification of cerebral microbleeds based on fully-optimized convolutional neural network. Multimed
  publication-title: Tools Appl
  doi: 10.1007/s11042-018-6862-z
– volume: 12
  start-page: 241
  year: 2016
  ident: B50
  article-title: Automated detection of cerebral microbleeds in patients with traumatic brain injury
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2016.07.002
– volume: 46
  start-page: 499
  year: 2019
  ident: B5
  article-title: The comprehensive assessment of neurodegeneration and dementia: Canadian Cohort Study
  publication-title: Can. J. Neurol. Sci
  doi: 10.1017/cjn.2019.27
– volume: 17
  start-page: 87
  year: 1998
  ident: B47
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans
  publication-title: Med. Imaging
  doi: 10.1109/42.668698
– year: 2021
  ident: B30
  article-title: MixMicrobleedNet: segmentation of cerebral microbleeds using nnU-Net
  publication-title: ArXiv
  doi: 10.48550/arXiv.2108.01389
– volume: 52
  start-page: 991
  year: 1999
  ident: B40
  article-title: MRI evidence of past cerebral microbleeds in a healthy elderly population
  publication-title: Neurology
  doi: 10.1212/WNL.52.5.991
– volume: 12
  start-page: 822
  year: 2013
  ident: B53
  article-title: STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70124-8
SSID ssj0002874080
Score 2.2112434
Snippet Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 940849
SubjectTerms Neuroimaging
Title Using transfer learning for automated microbleed segmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/37555147
https://www.proquest.com/docview/2848230832
https://pubmed.ncbi.nlm.nih.gov/PMC10406212
https://www.frontiersin.org/articles/10.3389/fnimg.2022.940849/pdf
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2813-1193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874080
  issn: 2813-1193
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2813-1193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874080
  issn: 2813-1193
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2813-1193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874080
  issn: 2813-1193
  databaseCode: RPM
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0IIhAS-IbzpgChLigSldPhwneUTTqgmt46WVKl4i23W2osbp2kTT-PXcxfkqnWDwEkWOa1t31_N9HyEf2dxPI-Uym0kQ32gYR7bgmAXiU5q6KhBhionC43N2OqVfZ8Gsa3dUZZcUYih_3ppX8j9YhTHAK2bJ_gNm20VhAN4Bv_AEDMPzTjg2_v6ikj3VuukAUUdGlkUO0ijIkxnG3IklXFOHG3WR1clGui-WjrCMATbFRvNHVeJykVXtizpD9txEYo_55abl5N8B4dhU1QTcjvn6RrffYGKWl7XV-boX-nPM4UCL3KRl9_L6G9sDqK0OIIB1LMqLXN92XdPjcKhuGWt4bI9HxtSJTJnS39k3qMtY_TTVi-xiiPsNu7nbpbLPvyWj6dlZMjmZTT6trmzsIobe9rqlyn3ywAsZ83rWmx-VITGE9dDs1h7SOLpx46OdbbdFlR39YzeM9lGpV_zmmi-XPRll8pQ8qZUL64uhlGfkntLPycNxHT7xghiCsRqCsRqCsYBgrJZgrI5grD7BvCTT0cnk-NSu-2fYkjpeYacqVD5nTqhCEXPB47mMIlBTGJu7IlKMBoKlIBALjs7gwFeCiiCQVEgpUwfkwFdkT-davSGW8GOWSup7KYuoYq5wfRE7Eq4ExZQjwgFxGlAlsi4ujz1OlgkomQjdpIJugtBNDHQH5HP7k5WprPKnyR8a-CfA_9CpxbXKy00C4hX6iuFiGpDXBh_tcn4YoEIAp4u2MNVOwNrq21_04rKqse7C5cZArBuQwxapfz_m_h2O-ZY87v5K78hesS7VexBsC3FQGYQOKpr9BVVfqJg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+transfer+learning+for+automated+microbleed+segmentation&rft.jtitle=Frontiers+in+neuroimaging&rft.au=Dadar%2C+Mahsa&rft.au=Zhernovaia%2C+Maryna&rft.au=Mahmoud%2C+Sawsan&rft.au=Camicioli%2C+Richard&rft.date=2022-08-26&rft.issn=2813-1193&rft.eissn=2813-1193&rft.volume=1&rft.spage=940849&rft_id=info:doi/10.3389%2Ffnimg.2022.940849&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2813-1193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2813-1193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2813-1193&client=summon