Using transfer learning for automated microbleed segmentation
Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented...
Saved in:
Published in | Frontiers in neuroimaging Vol. 1; p. 940849 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2813-1193 2813-1193 |
DOI | 10.3389/fnimg.2022.940849 |
Cover
Abstract | Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.
We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2
MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.
The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.
The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity. |
---|---|
AbstractList | Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.
We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2
MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.
The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.
The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity. Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.IntroductionCerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.MethodsWe first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.ResultsThe proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.DiscussionThe proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity. |
Author | Mahmoud, Sawsan Duchesne, Simon Dadar, Mahsa Camicioli, Richard Maranzano, Josefina Zhernovaia, Maryna |
AuthorAffiliation | 4 CERVO Brain Research Center , Quebec City, QC , Canada 1 Department of Psychiatry, Faculty of Medicine, McGill University , Montreal, QC , Canada 2 Department of Anatomy, Université du Québec à Trois-Rivières , Trois-Rivières, QC , Canada 3 Department of Medicine, Division of Neurology, University of Alberta , Edmonton, AB , Canada 5 Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval , Quebec City, QC , Canada |
AuthorAffiliation_xml | – name: 2 Department of Anatomy, Université du Québec à Trois-Rivières , Trois-Rivières, QC , Canada – name: 5 Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval , Quebec City, QC , Canada – name: 1 Department of Psychiatry, Faculty of Medicine, McGill University , Montreal, QC , Canada – name: 4 CERVO Brain Research Center , Quebec City, QC , Canada – name: 3 Department of Medicine, Division of Neurology, University of Alberta , Edmonton, AB , Canada |
Author_xml | – sequence: 1 givenname: Mahsa surname: Dadar fullname: Dadar, Mahsa – sequence: 2 givenname: Maryna surname: Zhernovaia fullname: Zhernovaia, Maryna – sequence: 3 givenname: Sawsan surname: Mahmoud fullname: Mahmoud, Sawsan – sequence: 4 givenname: Richard surname: Camicioli fullname: Camicioli, Richard – sequence: 5 givenname: Josefina surname: Maranzano fullname: Maranzano, Josefina – sequence: 6 givenname: Simon surname: Duchesne fullname: Duchesne, Simon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37555147$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkDtPwzAUhS0EoqX0B7CgjiwtfiVxBoQQ4iUhsdDZst2bYpTYxU5A_HtcUp4DYvKVfc65x98e2nbeAUIHBM8YE-Vx5WyznFFM6azkWPByCw2pIGxKSMm2v80DNI7xEWNMRZGEeBcNWJFlGeHFEJ3Mo3XLSRuUixWESQ0quPVN5cNEda1vVAuLSWNN8LqGNEZYNuBa1Vrv9tFOpeoI4805QvPLi_vz6-nt3dXN-dnt1HBM22kFBTCV4wIKXSqtyoURQhCd5wuiBeQ803lFc64VE5RlDDTXWWa4NsZUmJZshGif27mVen1RdS1XwTYqvEqC5RqHfMch1zhkjyOZTnvTqtMNLEwqHdSX0Ssrf744-yCX_jlFcpxTQlPC0SYh-KcOYisbGw3UtXLguyip4KkvFmwtPfy-7HPLB-kkIL0ggYwxQPWvHxS_PMb24FNfW__hfAPHZabq |
CitedBy_id | crossref_primary_10_3389_frdem_2024_1380015 crossref_primary_10_1097_YCO_0000000000000920 |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1212/WNL.0b013e3181c34a7d 10.1371/journal.pone.0066610 10.1101/832345 10.1093/brain/awl387 10.1145/3065386 10.1101/2020.07.07.191809 10.1038/s41597-020-0557-9 10.1016/j.nicl.2018.08.002 10.1109/TMI.2016.2528129 10.1016/j.neuroimage.2011.09.012 10.1016/j.neuroimage.2017.06.009 10.1038/s41592-020-01008-z 10.1109/ICCWAMTIP.2017.8301456 10.48550/arXiv.1409.1556 10.1007/s11042-017-4383-9 10.1109/TMI.2017.2693978 10.1007/s00138-019-01029-5 10.1002/alz.12298 10.1016/j.nicl.2018.08.019 10.1016/S1474-4422(09)70013-4 10.48550/arXiv.2107.09559 10.1212/01.wnl.0000307750.41970.d9 10.48550/arXiv.2108.02482 10.1093/brain/awh253 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2018.03.025 10.1016/j.compmedimag.2015.10.001 10.1016/j.neuroimage.2012.01.021 10.3174/ajnr.A4248 10.1007/s11042-017-4554-8 10.1109/CVPR.2016.90 10.1136/jnnp.2007.121913 10.1016/j.neuroimage.2020.116928 10.1007/s11263-015-0816-y 10.1101/747998 10.1016/j.neuroimage.2020.116690 10.1016/j.nicl.2013.01.012 10.1016/j.neuroimage.2011.09.061 10.1002/jmri.26197 10.1159/000331466 10.2307/1932409 10.14283/jpad.2019.41 10.1016/j.mri.2011.02.028 10.1101/2021.11.23.469690 10.1101/2021.06.28.21259503 10.1109/ACCESS.2017.2736558 10.1007/s11042-018-6862-z 10.1016/j.nicl.2016.07.002 10.1017/cjn.2019.27 10.1109/42.668698 10.48550/arXiv.2108.01389 10.1212/WNL.52.5.991 10.1016/S1474-4422(13)70124-8 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne |
Copyright_xml | – notice: Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. – notice: Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne |
DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.3389/fnimg.2022.940849 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2813-1193 |
ExternalDocumentID | 10.3389/fnimg.2022.940849 PMC10406212 37555147 10_3389_fnimg_2022_940849 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 9T4 AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E PGMZT RPM NPM 7X8 5PM ABDBF ADTOC UNPAY |
ID | FETCH-LOGICAL-c402t-fe7e3a607e7b9aba9dc8881b66d1b8e645b6f264ba382353eb4b55c4bcccf0293 |
ISSN | 2813-1193 |
IngestDate | Wed Aug 20 00:18:02 EDT 2025 Thu Aug 21 18:41:56 EDT 2025 Wed Oct 01 14:27:08 EDT 2025 Thu Jan 02 22:52:07 EST 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 02:23:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | microbleeds transfer learning magnetic resonance imaging cerebrovascular disease deep neural networks |
Language | English |
License | Copyright © 2022 Dadar, Zhernovaia, Mahmoud, Camicioli, Maranzano and Duchesne. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c402t-fe7e3a607e7b9aba9dc8881b66d1b8e645b6f264ba382353eb4b55c4bcccf0293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Neuroimaging Analysis and Protocols, a section of the journal Frontiers in Neuroimaging Edited by: Qingyu Zhao, Stanford University, United States Reviewed by: Jiahong Ouyang, Stanford University, United States; Mengwei Ren, New York University, United States |
OpenAccessLink | http://dx.doi.org/10.3389/fnimg.2022.940849 |
PMID | 37555147 |
PQID | 2848230832 |
PQPubID | 23479 |
ParticipantIDs | unpaywall_primary_10_3389_fnimg_2022_940849 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406212 proquest_miscellaneous_2848230832 pubmed_primary_37555147 crossref_primary_10_3389_fnimg_2022_940849 crossref_citationtrail_10_3389_fnimg_2022_940849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-26 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in neuroimaging |
PublicationTitleAlternate | Front Neuroimaging |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Billot (B4) 2021 Vernooij (B51) 2008; 70 Krizhevsky (B29) 2017; 60 Zhang (B56); 77 Rosenberg (B41) 2020; 7 Hong (B27) 2020; 79 Chertkow (B5) 2019; 46 Dadar (B9) 2020; 217 Roob (B40) 1999; 52 Dadar (B14); 36 Dadar (B15); 42 Avants (B1) 2008; 12 Van Den Heuvel (B50) 2016; 12 Dadar (B10) 2018; 174 Fischl (B21) 2012; 62 Shoamanesh (B45) 2011; 32 Fazlollahi (B20) 2015; 46 Long (B33) 2015 Girones Sanguesa (B22) 2021 Werring (B54) 2004; 127 Dadar (B13) 2020; 27 Lu (B34) 2017 Kuijf (B31) 2012; 59 Dadar (B12); 157 Duchesne (B18) 2019; 49 Wardlaw (B53) 2013; 12 Sveinbjornsdottir (B48) 2008; 79 Manera (B35) 2020; 7 Hong (B26) 2019; 30 Bian (B3) 2013; 2 Dadar (B8) 2020; 85 Gregoire (B24) 2009; 73 Mateos-Pérez (B37) 2018; 20 Sled (B47) 1998; 17 Morrison (B38) 2018; 20 Pieruccini-Faria (B39) 2021; 17 Eskildsen (B19) 2012; 59 Dice (B16) 1945; 26 Kuijf (B32) 2013; 8 He (B25) 2016 Kuijf (B30) 2021 Zhang (B55); 77 Greenberg (B23) 2009; 8 Russakovsky (B43) 2015 Barnes (B2) 2011; 29 Szegedy (B49) 2015 Maranzano (B36) 2020; 213 Simonyan (B46) 2014 Dou (B17) 2016; 35 Isensee (B28) 2021; 18 Dadar (B11) Cordonnier (B6) 2007; 130 Shams (B44) 2015; 36 Dadar (B7); 9 Wang (B52) 2017; 5 Roy (B42) 2015 |
References_xml | – year: 2015 ident: B49 article-title: “Going deeper with convolutions,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2015.7298594 – volume: 73 start-page: 1759 year: 2009 ident: B24 article-title: The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds publication-title: Neurology doi: 10.1212/WNL.0b013e3181c34a7d – volume: 8 start-page: e66610 year: 2013 ident: B32 article-title: Semi-automated detection of cerebral microbleeds on 3.0 T MR images publication-title: PLOS ONE doi: 10.1371/journal.pone.0066610 – volume: 27 start-page: 208 year: 2020 ident: B13 article-title: Conversion of diffusely abnormal white matter to focal lesions is linked to progression in secondary progressive multiple sclerosis. Mult. Scler publication-title: J doi: 10.1101/832345 – volume-title: Medical Imaging 2015: Image Processing year: 2015 ident: B42 article-title: “Cerebral microbleed segmentation from susceptibility weighted images,” – volume: 130 start-page: 1988 year: 2007 ident: B6 article-title: Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting publication-title: Brain doi: 10.1093/brain/awl387 – volume: 60 start-page: 84 year: 2017 ident: B29 article-title: Imagenet classification with deep convolutional neural networks. Commun publication-title: ACM doi: 10.1145/3065386 – volume: 42 start-page: 2734 ident: B15 article-title: Beware of white matter hyperintensities causing systematic errors in FreeSurfer gray matter segmentations! publication-title: Hum. Brain Mapp. doi: 10.1101/2020.07.07.191809 – volume: 7 start-page: 1 year: 2020 ident: B35 article-title: CerebrA, registration and manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template publication-title: Sci. Data doi: 10.1038/s41597-020-0557-9 – volume: 20 start-page: 498 year: 2018 ident: B38 article-title: A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: evaluating vascular injury and data labelling for machine learning publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2018.08.002 – volume: 35 start-page: 1182 year: 2016 ident: B17 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528129 – volume: 59 start-page: 2362 year: 2012 ident: B19 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.012 – volume: 157 start-page: 233 ident: B12 article-title: Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.009 – volume: 18 start-page: 203 year: 2021 ident: B28 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat publication-title: Methods doi: 10.1038/s41592-020-01008-z – volume-title: 2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) year: 2017 ident: B34 article-title: “Detection of cerebral microbleeding based on deep convolutional neural network,” doi: 10.1109/ICCWAMTIP.2017.8301456 – year: 2014 ident: B46 article-title: Very deep convolutional networks for large-scale image recognition publication-title: ArXiv doi: 10.48550/arXiv.1409.1556 – volume: 77 start-page: 21825 ident: B55 article-title: Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimed publication-title: Tools Appl doi: 10.1007/s11042-017-4383-9 – volume: 36 start-page: 1758 ident: B14 article-title: Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimer's disease publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2693978 – volume: 30 start-page: 1123 year: 2019 ident: B26 article-title: Detecting cerebral microbleeds with transfer learning publication-title: Mach. Vis. Appl doi: 10.1007/s00138-019-01029-5 – volume: 17 start-page: 1317 year: 2021 ident: B39 article-title: Gait variability across neurodegenerative and cognitive disorders: results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study publication-title: Alzheimers Dement doi: 10.1002/alz.12298 – volume: 20 start-page: 506 year: 2018 ident: B37 article-title: Structural neuroimaging as clinical predictor: a review of machine learning applications publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2018.08.019 – volume: 8 start-page: 165 year: 2009 ident: B23 article-title: Cerebral microbleeds: a guide to detection and interpretation publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70013-4 – year: 2021 ident: B4 article-title: Synthseg: Domain randomisation for segmentation of brain mri scans of any contrast and resolution publication-title: ArXiv Prepr. doi: 10.48550/arXiv.2107.09559 – volume: 70 start-page: 1208 year: 2008 ident: B51 article-title: Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study publication-title: Neurology doi: 10.1212/01.wnl.0000307750.41970.d9 – year: 2021 ident: B22 article-title: MixMicrobleed: multi-stage detection and segmentation of cerebral microbleeds publication-title: ArXiv. doi: 10.48550/arXiv.2108.02482 – volume: 127 start-page: 2265 year: 2004 ident: B54 article-title: Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI publication-title: Brain doi: 10.1093/brain/awh253 – volume: 12 start-page: 26 year: 2008 ident: B1 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med publication-title: Image Anal doi: 10.1016/j.media.2007.06.004 – volume: 174 start-page: 191 year: 2018 ident: B10 article-title: A comparison of publicly available linear MRI stereotaxic registration techniques publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.03.025 – volume: 46 start-page: 269 year: 2015 ident: B20 article-title: Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging publication-title: Comput. Med. Imaging Graph doi: 10.1016/j.compmedimag.2015.10.001 – volume: 62 start-page: 774 year: 2012 ident: B21 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – start-page: 3431 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: B33 article-title: “Fully convolutional networks for semantic segmentation,” – volume: 36 start-page: 1089 year: 2015 ident: B44 article-title: SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. Am. J publication-title: Neuroradiol doi: 10.3174/ajnr.A4248 – volume: 77 start-page: 10521 ident: B56 article-title: Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed publication-title: Multimed. Tools Appl doi: 10.1007/s11042-017-4554-8 – volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: B25 article-title: “Deep residual learning for image recognition,” doi: 10.1109/CVPR.2016.90 – volume: 79 start-page: 1002 year: 2008 ident: B48 article-title: Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.121913 – volume: 217 start-page: 116928 year: 2020 ident: B9 article-title: Reliability assessment of tissue classification algorithms for multi-center and multi-scanner data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116928 – year: 2015 ident: B43 article-title: “ImageNet large scale visual recognition challenge,” publication-title: IJCV doi: 10.1007/s11263-015-0816-y – volume: 85 start-page: 1881 year: 2020 ident: B8 article-title: BISON: Brain tissue segmentation pipeline using T1-weighted magnetic resonance images and a random forest classifier publication-title: Magn. Reson. Med doi: 10.1101/747998 – volume: 213 start-page: 116690 year: 2020 ident: B36 article-title: Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116690 – volume: 2 start-page: 282 year: 2013 ident: B3 article-title: Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2013.01.012 – volume: 59 start-page: 2266 year: 2012 ident: B31 article-title: Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.061 – volume: 49 start-page: 456 year: 2019 ident: B18 article-title: The Canadian Dementia Imaging Protocol: Harmonizing National Cohorts publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26197 – volume: 32 start-page: 528 year: 2011 ident: B45 article-title: Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc publication-title: Dis doi: 10.1159/000331466 – volume: 26 start-page: 297 year: 1945 ident: B16 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 7 start-page: 29 year: 2020 ident: B41 article-title: Multidomain interventions to prevent cognitive impairment, Alzheimer's disease, and dementia: from FINGER to world-wide FINGERS publication-title: J. Prev. Alzheimers Dis doi: 10.14283/jpad.2019.41 – volume: 29 start-page: 844 year: 2011 ident: B2 article-title: Semiautomated detection of cerebral microbleeds in magnetic resonance images publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2011.02.028 – ident: B11 article-title: White matter hyperintensity distribution differences in aging and neurodegenerative disease cohorts publication-title: bioRxiv [Preprint]. doi: 10.1101/2021.11.23.469690 – volume: 9 start-page: 238 ident: B7 article-title: Multi-sequence average templates for aging and neurodegenerative disease populations publication-title: Sci. Data doi: 10.1101/2021.06.28.21259503 – volume: 5 start-page: 16576 year: 2017 ident: B52 article-title: Cerebral micro-bleed detection based on the convolution neural network with rank based average pooling publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2736558 – volume: 79 start-page: 15151 year: 2020 ident: B27 article-title: Classification of cerebral microbleeds based on fully-optimized convolutional neural network. Multimed publication-title: Tools Appl doi: 10.1007/s11042-018-6862-z – volume: 12 start-page: 241 year: 2016 ident: B50 article-title: Automated detection of cerebral microbleeds in patients with traumatic brain injury publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2016.07.002 – volume: 46 start-page: 499 year: 2019 ident: B5 article-title: The comprehensive assessment of neurodegeneration and dementia: Canadian Cohort Study publication-title: Can. J. Neurol. Sci doi: 10.1017/cjn.2019.27 – volume: 17 start-page: 87 year: 1998 ident: B47 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans publication-title: Med. Imaging doi: 10.1109/42.668698 – year: 2021 ident: B30 article-title: MixMicrobleedNet: segmentation of cerebral microbleeds using nnU-Net publication-title: ArXiv doi: 10.48550/arXiv.2108.01389 – volume: 52 start-page: 991 year: 1999 ident: B40 article-title: MRI evidence of past cerebral microbleeds in a healthy elderly population publication-title: Neurology doi: 10.1212/WNL.52.5.991 – volume: 12 start-page: 822 year: 2013 ident: B53 article-title: STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70124-8 |
SSID | ssj0002874080 |
Score | 2.2112434 |
Snippet | Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 940849 |
SubjectTerms | Neuroimaging |
Title | Using transfer learning for automated microbleed segmentation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37555147 https://www.proquest.com/docview/2848230832 https://pubmed.ncbi.nlm.nih.gov/PMC10406212 https://www.frontiersin.org/articles/10.3389/fnimg.2022.940849/pdf |
UnpaywallVersion | publishedVersion |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2813-1193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874080 issn: 2813-1193 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2813-1193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874080 issn: 2813-1193 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2813-1193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874080 issn: 2813-1193 databaseCode: RPM dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0IIhAS-IbzpgChLigSldPhwneUTTqgmt46WVKl4i23W2osbp2kTT-PXcxfkqnWDwEkWOa1t31_N9HyEf2dxPI-Uym0kQ32gYR7bgmAXiU5q6KhBhionC43N2OqVfZ8Gsa3dUZZcUYih_3ppX8j9YhTHAK2bJ_gNm20VhAN4Bv_AEDMPzTjg2_v6ikj3VuukAUUdGlkUO0ijIkxnG3IklXFOHG3WR1clGui-WjrCMATbFRvNHVeJykVXtizpD9txEYo_55abl5N8B4dhU1QTcjvn6RrffYGKWl7XV-boX-nPM4UCL3KRl9_L6G9sDqK0OIIB1LMqLXN92XdPjcKhuGWt4bI9HxtSJTJnS39k3qMtY_TTVi-xiiPsNu7nbpbLPvyWj6dlZMjmZTT6trmzsIobe9rqlyn3ywAsZ83rWmx-VITGE9dDs1h7SOLpx46OdbbdFlR39YzeM9lGpV_zmmi-XPRll8pQ8qZUL64uhlGfkntLPycNxHT7xghiCsRqCsRqCsYBgrJZgrI5grD7BvCTT0cnk-NSu-2fYkjpeYacqVD5nTqhCEXPB47mMIlBTGJu7IlKMBoKlIBALjs7gwFeCiiCQVEgpUwfkwFdkT-davSGW8GOWSup7KYuoYq5wfRE7Eq4ExZQjwgFxGlAlsi4ujz1OlgkomQjdpIJugtBNDHQH5HP7k5WprPKnyR8a-CfA_9CpxbXKy00C4hX6iuFiGpDXBh_tcn4YoEIAp4u2MNVOwNrq21_04rKqse7C5cZArBuQwxapfz_m_h2O-ZY87v5K78hesS7VexBsC3FQGYQOKpr9BVVfqJg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+transfer+learning+for+automated+microbleed+segmentation&rft.jtitle=Frontiers+in+neuroimaging&rft.au=Dadar%2C+Mahsa&rft.au=Zhernovaia%2C+Maryna&rft.au=Mahmoud%2C+Sawsan&rft.au=Camicioli%2C+Richard&rft.date=2022-08-26&rft.issn=2813-1193&rft.eissn=2813-1193&rft.volume=1&rft.spage=940849&rft_id=info:doi/10.3389%2Ffnimg.2022.940849&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2813-1193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2813-1193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2813-1193&client=summon |