Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields

Bacterial endospores are the key safety targets for inactivation within low-acid foods. Herein, we investigated the inactivation of Bacillus subtilis CGMCC 1.1087 spores (107 CFU/mL) in sterile distilled water using moderate electric fields (MEF, 300 V/cm) under various temperatures (<30, 55, 65...

Full description

Saved in:
Bibliographic Details
Published inInnovative food science & emerging technologies Vol. 62; p. 102349
Main Authors Wang, Lang-Hong, Pyatkovskyy, Taras, Yousef, Ahmed, Zeng, Xin-An, Sastry, Sudhir K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text
ISSN1466-8564
1878-5522
DOI10.1016/j.ifset.2020.102349

Cover

Abstract Bacterial endospores are the key safety targets for inactivation within low-acid foods. Herein, we investigated the inactivation of Bacillus subtilis CGMCC 1.1087 spores (107 CFU/mL) in sterile distilled water using moderate electric fields (MEF, 300 V/cm) under various temperatures (<30, 55, 65 and 75 °C). MEF treatment at below 30 °C resulted in 0.6-log reduction of spores, while treatments for 60 min without electric fields showed no inactivation. Inactivation induced by MEF in the same treatment time increased to 1.8-, 2.0- and 2.5-log as temperature increased to 55, 65 and 75 °C. Spores treated with MEF at <30, 55, 65 and 75 °C or mild heat (55, 65 and 75 °C) scarcely lost heat resistance, suggesting that spores did not germinate during MEF or mild heat treatment. The viability of MEF-treated spores did not increase by addition of lysozyme (3 μg/mL) in recovery plates, preincubation for 1 h in a 1:1 mixture of 60 mM Ca2+ and DPA, or lysozyme treatment in hypertonic medium. Confocal laser scanning microscopy photomicrographs showed that exposure to MEF induced a marked increase in the permeability of inner membrane and cortex. These findings suggested that damage of the cortex and inner membrane, rather than spore nutrient germinant receptors or cortex lytic enzymes, are possible reasons contributing to inactivation of B. subtilis spores by MEF. This study indicates that MEF at mild temperatures (55 to 75 °C) have the potential for spore inactivation. Literature in the past few years has shown that moderate electric fields (MEF), typically associated with ohmic heating, have nonthermal effects on bacterial spores, leading to accelerated inactivation. The current work extends the range of temperatures to those well below thermally lethal conditions, and shows that some spore inactivation occurs under MEF, even when temperatures are sublethal. Little or no germination is observed, and spore inner membranes are increasingly compromised over time. The elucidation of such nonthermal effects would be significant to the food industry as it seeks increasingly nonthermal methods for inactivation of spores. •The inactivation of spores was 0.6-log reduction by MEF at 300 V/cm (T < 30 °C).•The reduction level of spores increased to 2.0-log by MEF at 300 V/cm (T = 65 °C).•Spores did not germinate after being exposed to MEF or heat treatment.•MEF did not damage the spore nutrient germinant receptors or cortex lytic enzymes.•MEF induced increased permeability in inner membrane and cortex of spores.
AbstractList Bacterial endospores are the key safety targets for inactivation within low-acid foods. Herein, we investigated the inactivation of Bacillus subtilis CGMCC 1.1087 spores (10⁷ CFU/mL) in sterile distilled water using moderate electric fields (MEF, 300 V/cm) under various temperatures (<30, 55, 65 and 75 °C). MEF treatment at below 30 °C resulted in 0.6-log reduction of spores, while treatments for 60 min without electric fields showed no inactivation. Inactivation induced by MEF in the same treatment time increased to 1.8-, 2.0- and 2.5-log as temperature increased to 55, 65 and 75 °C. Spores treated with MEF at <30, 55, 65 and 75 °C or mild heat (55, 65 and 75 °C) scarcely lost heat resistance, suggesting that spores did not germinate during MEF or mild heat treatment. The viability of MEF-treated spores did not increase by addition of lysozyme (3 μg/mL) in recovery plates, preincubation for 1 h in a 1:1 mixture of 60 mM Ca²⁺ and DPA, or lysozyme treatment in hypertonic medium. Confocal laser scanning microscopy photomicrographs showed that exposure to MEF induced a marked increase in the permeability of inner membrane and cortex. These findings suggested that damage of the cortex and inner membrane, rather than spore nutrient germinant receptors or cortex lytic enzymes, are possible reasons contributing to inactivation of B. subtilis spores by MEF. This study indicates that MEF at mild temperatures (55 to 75 °C) have the potential for spore inactivation.Literature in the past few years has shown that moderate electric fields (MEF), typically associated with ohmic heating, have nonthermal effects on bacterial spores, leading to accelerated inactivation. The current work extends the range of temperatures to those well below thermally lethal conditions, and shows that some spore inactivation occurs under MEF, even when temperatures are sublethal. Little or no germination is observed, and spore inner membranes are increasingly compromised over time. The elucidation of such nonthermal effects would be significant to the food industry as it seeks increasingly nonthermal methods for inactivation of spores.
Bacterial endospores are the key safety targets for inactivation within low-acid foods. Herein, we investigated the inactivation of Bacillus subtilis CGMCC 1.1087 spores (107 CFU/mL) in sterile distilled water using moderate electric fields (MEF, 300 V/cm) under various temperatures (<30, 55, 65 and 75 °C). MEF treatment at below 30 °C resulted in 0.6-log reduction of spores, while treatments for 60 min without electric fields showed no inactivation. Inactivation induced by MEF in the same treatment time increased to 1.8-, 2.0- and 2.5-log as temperature increased to 55, 65 and 75 °C. Spores treated with MEF at <30, 55, 65 and 75 °C or mild heat (55, 65 and 75 °C) scarcely lost heat resistance, suggesting that spores did not germinate during MEF or mild heat treatment. The viability of MEF-treated spores did not increase by addition of lysozyme (3 μg/mL) in recovery plates, preincubation for 1 h in a 1:1 mixture of 60 mM Ca2+ and DPA, or lysozyme treatment in hypertonic medium. Confocal laser scanning microscopy photomicrographs showed that exposure to MEF induced a marked increase in the permeability of inner membrane and cortex. These findings suggested that damage of the cortex and inner membrane, rather than spore nutrient germinant receptors or cortex lytic enzymes, are possible reasons contributing to inactivation of B. subtilis spores by MEF. This study indicates that MEF at mild temperatures (55 to 75 °C) have the potential for spore inactivation. Literature in the past few years has shown that moderate electric fields (MEF), typically associated with ohmic heating, have nonthermal effects on bacterial spores, leading to accelerated inactivation. The current work extends the range of temperatures to those well below thermally lethal conditions, and shows that some spore inactivation occurs under MEF, even when temperatures are sublethal. Little or no germination is observed, and spore inner membranes are increasingly compromised over time. The elucidation of such nonthermal effects would be significant to the food industry as it seeks increasingly nonthermal methods for inactivation of spores. •The inactivation of spores was 0.6-log reduction by MEF at 300 V/cm (T < 30 °C).•The reduction level of spores increased to 2.0-log by MEF at 300 V/cm (T = 65 °C).•Spores did not germinate after being exposed to MEF or heat treatment.•MEF did not damage the spore nutrient germinant receptors or cortex lytic enzymes.•MEF induced increased permeability in inner membrane and cortex of spores.
ArticleNumber 102349
Author Zeng, Xin-An
Pyatkovskyy, Taras
Sastry, Sudhir K.
Wang, Lang-Hong
Yousef, Ahmed
Author_xml – sequence: 1
  givenname: Lang-Hong
  surname: Wang
  fullname: Wang, Lang-Hong
  organization: College of Food Science and Technology, Northwest University, Xi'an 710069, China
– sequence: 2
  givenname: Taras
  surname: Pyatkovskyy
  fullname: Pyatkovskyy, Taras
  organization: Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr, Columbus, OH 43210, USA
– sequence: 3
  givenname: Ahmed
  surname: Yousef
  fullname: Yousef, Ahmed
  organization: Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, USA
– sequence: 4
  givenname: Xin-An
  surname: Zeng
  fullname: Zeng, Xin-An
  organization: School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
– sequence: 5
  givenname: Sudhir K.
  surname: Sastry
  fullname: Sastry, Sudhir K.
  email: sastry.2@osu.edu
  organization: Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr, Columbus, OH 43210, USA
BookMark eNqFkD1PxDAMhiMEEp-_gKUjS48kTdp0YADEl3SIBeYoTV3hU645kvQk_j05ysQAk19bfiz5OSb7ox-BkHNGF4yy-nK1wCFCWnDKdxNeiXaPHDHVqFJKzvdzFnVdKlmLQ3Ic44pS1tBKHJG3Z7DvZsS4LvxQ3BiLzk2xiFOX0GEOGx-gwNHYhFuT0I-56ScLfdF9FmvfQzAJCnBgU0BbDAiuj6fkYDAuwtlPPSFv93evt4_l8uXh6fZ6WVpBeSqH3siatm1DpZJD03WWKVFJQ7loRaPAQF8pzmTVNVK1dWcla8HSioPshcnhhFzMdzfBf0wQk15jtOCcGcFPUXPJBa9o_j2vtvOqDT7GAIO2mL4fSsGg04zqnUq90t8q9U6lnlVmtvrFbgKuTfj8h7qaKcgGtghBR4swZnUYsi3de_yT_wLMmZDa
CitedBy_id crossref_primary_10_1016_j_foodcont_2024_110972
crossref_primary_10_1111_1750_3841_15748
crossref_primary_10_3389_fnut_2022_1012901
crossref_primary_10_1093_jambio_lxae151
crossref_primary_10_1016_j_cofs_2023_101087
crossref_primary_10_1016_j_plrev_2023_01_007
crossref_primary_10_1007_s12393_024_09368_4
crossref_primary_10_1007_s11705_021_2105_3
crossref_primary_10_1016_j_jfoodeng_2024_112387
crossref_primary_10_1109_ACCESS_2022_3193391
crossref_primary_10_4315_JFP_21_447
crossref_primary_10_1016_j_jhazmat_2022_130561
crossref_primary_10_1016_j_ifset_2024_103629
crossref_primary_10_1016_j_ifset_2023_103461
crossref_primary_10_3390_microorganisms12071380
crossref_primary_10_1016_j_jfoodeng_2024_112080
crossref_primary_10_1016_j_tifs_2020_07_008
crossref_primary_10_1111_ijfs_16723
crossref_primary_10_1016_j_ijfoodmicro_2023_110125
crossref_primary_10_1002_smll_202301135
crossref_primary_10_1016_j_foodcont_2024_110439
crossref_primary_10_1016_j_ijfoodmicro_2024_110830
Cites_doi 10.1016/j.idairyj.2016.01.027
10.1016/j.lwt.2013.04.004
10.1128/AEM.02750-06
10.1016/j.foodcont.2016.11.012
10.1016/j.foodcont.2013.10.025
10.1111/ijfs.13903
10.1111/jam.12995
10.4315/0362-028X-61.9.1203
10.1111/j.1745-4549.2008.00321.x
10.1016/j.idairyj.2011.11.003
10.1016/S1466-8564(99)00004-1
10.1111/jam.12982
10.1046/j.1365-2672.2002.01540.x
10.1016/j.ijfoodmicro.2019.01.017
10.1016/j.jfoodeng.2011.07.028
10.1177/1082013208098813
10.1021/acs.jproteome.5b00976
10.4014/jmb.1702.02009
10.1016/j.foodres.2018.09.052
10.1128/AEM.66.9.3735-3742.2000
10.1128/JB.01242-07
10.1016/0924-2244(94)90240-2
10.1007/s10068-018-0422-1
10.1128/AEM.67.6.2833-2836.2001
10.1016/j.ifset.2018.11.009
10.1016/S0168-1605(02)00176-9
10.1111/j.1365-2621.2004.tb17861.x
10.1007/s00217-005-0096-9
10.1007/s00253-018-9559-3
10.1016/j.lwt.2007.11.011
10.1016/j.ijfoodmicro.2017.01.002
10.1016/j.cep.2006.07.010
10.4315/0362-028X.JFP-17-343
10.1126/science.127.3288.26
10.1016/j.foodcont.2013.09.067
10.1016/j.jfoodeng.2019.05.019
10.1002/(SICI)1097-0290(19990205)62:3<368::AID-BIT14>3.0.CO;2-0
10.1016/j.ijfoodmicro.2007.06.013
10.1016/j.fm.2019.01.014
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ifset.2020.102349
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-5522
ExternalDocumentID 10_1016_j_ifset_2020_102349
S1466856420302952
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c402t-fda5609970585f7bbc18435a0249478eaed382153b75896bc519ec032e5d4ac03
IEDL.DBID .~1
ISSN 1466-8564
IngestDate Thu Oct 02 21:40:05 EDT 2025
Wed Oct 29 21:13:14 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Fri Feb 23 02:46:48 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords germinant receptors
inner membrane
Moderate electric fields
Bacillus subtilis spores
Confocal laser scanning microscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-fda5609970585f7bbc18435a0249478eaed382153b75896bc519ec032e5d4ac03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524230466
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524230466
crossref_citationtrail_10_1016_j_ifset_2020_102349
crossref_primary_10_1016_j_ifset_2020_102349
elsevier_sciencedirect_doi_10_1016_j_ifset_2020_102349
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Innovative food science & emerging technologies
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Siemer, Toepfl, Heinz (bb0185) 2014; 39
Kim, Ryang, Lee, Kim, Rhee (bb0065) 2017; 246
Rao, Zhao, Wang, Chen, Hu, Liao (bb0115) 2016; 7
Walter, Knight, Ng, Buckow (bb0205) 2016; 57
Niu, Wang, Zeng, Wen, Brennan, Tang, Wang (bb0095) 2019; 52
Park, Yang, Choi, Kim (bb0105) 2017; 27
Tian, Yu, Wu, Dai (bb0200) 2018; 81
Mok, Pyatkovskyy, Yousef, Sastry (bb0085) 2019; 262
Bermudez-Aguirre, Dunne, Barbosa-Cánovas (bb0005) 2012; 24
Ju, Gao, Yao, Qian (bb0060) 2008; 41
Lv, Zou, Chantapakul, Chen, Muhammad, Zhou, Liu (bb0080) 2019; 103
Zheng, Abhyankar, Ouwerling, Dekker, van Veen, van der Wel, de Koster (bb0215) 2016; 15
Setlow, Korza, Blatt, Fey, Setlow (bb0165) 2016; 120
Hauck-Tiburski, Rosenthal, Iaconnelli, Perrier-Cornet, Gervais (bb0050) 2019; 295
Fan, Hou, Muhammad, Ruiling, Watharkar, Guo, Liu (bb0045) 2019; 116
Nguyen, Mittal (bb0090) 2007; 46
Schottroff, Pyatkovskyy, Reineke, Setlow, Sastry, Jaeger (bb0155) 2019
Cho, Yousef, Sastry (bb0020) 1999; 62
Setlow, Loshon, Genest, Cowan, Setlow, Setlow (bb0170) 2002; 92
Russell (bb0135) 2002; 79
Sampedro, Rivas, Rodrigo, Martinez, Rodrigo (bb0145) 2006; 223
Cregenzán-Alberti, Arroyo, Dorozko, Whyte, Lyng (bb0035) 2017; 73
Sensoy, Sastry (bb0160) 2004; 69
Reina, Jin, Zhang, Yousef (bb0125) 1998; 61
Cho, Pyun, Zhang, Yousef, Sastry (bb0015) 1997
Coleman, Chen, Li, Cowan, Setlow (bb0030) 2007; 189
Somavat, Mohamed, Chung, Yousef, Sastry (bb0190) 2012; 108
Zhang, Wang, Zeng, Han, Brennan (bb0210) 2019; 54
Siemer, Toepfl, Heinz (bb0180) 2014; 39
Rao, Zhao, Wang, Chen, Hu, Setlow, Liao (bb0120) 2019; 82
Shin, Lee, Cho, Pyun, Lee, Chung (bb0175) 2010; 34
Ciarciaglini, Hill, Davies, McClure, Kilsby, Brown, Coote (bb0025) 2000; 66
Janssen, Lund, Anderson (bb0055) 1958; 127
Knorr, Geulen, Grahl, Sitzmann (bb0070) 1994; 5
Ryang, Kim, Lee, Kim, Lee, Hwang, Rhee (bb0140) 2016; 120
Sastry (bb0150) 2008; 14
Somavat, Mohamed, Sastry (bb0195) 2013; 54
Puligundla, Pyun, Mok (bb0110) 2018; 27
Berney, Hammes, Bosshard, Weilenmann, Egli (bb0010) 2007; 73
Evrendilek, Jin, Ruhlman, Qiu, Zhang, Richter (bb0040) 2000; 1
Rowan, MacGregor, Anderson, Cameron, Farish (bb0130) 2001; 67
Oomes, Van Zuijlen, Hehenkamp, Witsenboer, Van der Vossen, Brul (bb0100) 2007; 120
Lv (10.1016/j.ifset.2020.102349_bb0080) 2019; 103
Rowan (10.1016/j.ifset.2020.102349_bb0130) 2001; 67
Kim (10.1016/j.ifset.2020.102349_bb0065) 2017; 246
Reina (10.1016/j.ifset.2020.102349_bb0125) 1998; 61
Sastry (10.1016/j.ifset.2020.102349_bb0150) 2008; 14
Niu (10.1016/j.ifset.2020.102349_bb0095) 2019; 52
Russell (10.1016/j.ifset.2020.102349_bb0135) 2002; 79
Puligundla (10.1016/j.ifset.2020.102349_bb0110) 2018; 27
Bermudez-Aguirre (10.1016/j.ifset.2020.102349_bb0005) 2012; 24
Park (10.1016/j.ifset.2020.102349_bb0105) 2017; 27
Tian (10.1016/j.ifset.2020.102349_bb0200) 2018; 81
Siemer (10.1016/j.ifset.2020.102349_bb0185) 2014; 39
Oomes (10.1016/j.ifset.2020.102349_bb0100) 2007; 120
Ciarciaglini (10.1016/j.ifset.2020.102349_bb0025) 2000; 66
Setlow (10.1016/j.ifset.2020.102349_bb0170) 2002; 92
Ryang (10.1016/j.ifset.2020.102349_bb0140) 2016; 120
Siemer (10.1016/j.ifset.2020.102349_bb0180) 2014; 39
Sensoy (10.1016/j.ifset.2020.102349_bb0160) 2004; 69
Knorr (10.1016/j.ifset.2020.102349_bb0070) 1994; 5
Sampedro (10.1016/j.ifset.2020.102349_bb0145) 2006; 223
Ju (10.1016/j.ifset.2020.102349_bb0060) 2008; 41
Shin (10.1016/j.ifset.2020.102349_bb0175) 2010; 34
Berney (10.1016/j.ifset.2020.102349_bb0010) 2007; 73
Cho (10.1016/j.ifset.2020.102349_bb0015) 1997
Nguyen (10.1016/j.ifset.2020.102349_bb0090) 2007; 46
Somavat (10.1016/j.ifset.2020.102349_bb0190) 2012; 108
Rao (10.1016/j.ifset.2020.102349_bb0120) 2019; 82
Zhang (10.1016/j.ifset.2020.102349_bb0210) 2019; 54
Zheng (10.1016/j.ifset.2020.102349_bb0215) 2016; 15
Coleman (10.1016/j.ifset.2020.102349_bb0030) 2007; 189
Walter (10.1016/j.ifset.2020.102349_bb0205) 2016; 57
Janssen (10.1016/j.ifset.2020.102349_bb0055) 1958; 127
Rao (10.1016/j.ifset.2020.102349_bb0115) 2016; 7
Cho (10.1016/j.ifset.2020.102349_bb0020) 1999; 62
Cregenzán-Alberti (10.1016/j.ifset.2020.102349_bb0035) 2017; 73
Evrendilek (10.1016/j.ifset.2020.102349_bb0040) 2000; 1
Mok (10.1016/j.ifset.2020.102349_bb0085) 2019; 262
Schottroff (10.1016/j.ifset.2020.102349_bb0155) 2019
Fan (10.1016/j.ifset.2020.102349_bb0045) 2019; 116
Hauck-Tiburski (10.1016/j.ifset.2020.102349_bb0050) 2019; 295
Setlow (10.1016/j.ifset.2020.102349_bb0165) 2016; 120
Somavat (10.1016/j.ifset.2020.102349_bb0195) 2013; 54
References_xml – volume: 27
  start-page: 1691
  year: 2018
  end-page: 1696
  ident: bb0110
  article-title: Pulsed electric field (PEF) technology for microbial inactivation in low-alcohol red wine
  publication-title: Food Science and Biotechnology
– volume: 127
  start-page: 26
  year: 1958
  end-page: 27
  ident: bb0055
  article-title: Colorimetric assay for dipicolinic acid in bacterial spores
  publication-title: Science
– volume: 5
  start-page: 71
  year: 1994
  end-page: 75
  ident: bb0070
  article-title: Food application of high electric field pulses
  publication-title: Trends in Food Science & Technology
– volume: 120
  start-page: 85
  year: 2007
  end-page: 94
  ident: bb0100
  article-title: The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products
  publication-title: International Journal of Food Microbiology
– start-page: 107338
  year: 2019
  ident: bb0155
  publication-title: Mechanisms of enhanced bacterial endospore inactivation during sterilization by ohmic heating. Bioelectrochemistry
– volume: 61
  start-page: 1203
  year: 1998
  end-page: 1206
  ident: bb0125
  article-title: Inactivation of Listeria monocytogenes in milk by pulsed electric field
  publication-title: Journal of Food Protection
– volume: 189
  start-page: 8458
  year: 2007
  end-page: 8466
  ident: bb0030
  article-title: How moist heat kills spores of Bacillus subtilis
  publication-title: Journal of Bacteriology
– volume: 92
  start-page: 362
  year: 2002
  end-page: 375
  ident: bb0170
  article-title: Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol
  publication-title: Journal of Applied Microbiology
– volume: 262
  start-page: 121
  year: 2019
  end-page: 130
  ident: bb0085
  article-title: Combined effect of shear stress and moderate electric field on the inactivation of Escherichia coli K12 in apple juice
  publication-title: Journal of Food Engineering
– volume: 14
  start-page: 419
  year: 2008
  end-page: 422
  ident: bb0150
  article-title: Ohmic heating and moderate electric field processing
  publication-title: Food Science and Technology International
– volume: 39
  start-page: 244
  year: 2014
  end-page: 250
  ident: bb0185
  article-title: Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy II. Modeling thermal inactivation of B. subtilis spores during PEF processing in combination with thermal energy
  publication-title: Food Control
– volume: 223
  start-page: 30
  year: 2006
  end-page: 34
  ident: bb0145
  article-title: Effect of temperature and substrate on Pef inactivation of Lactobacillus plantarum in an orange juice–milk beverage
  publication-title: European Food Research and Technology
– volume: 79
  start-page: 27
  year: 2002
  end-page: 34
  ident: bb0135
  article-title: Bacterial membranes: The effects of chill storage and food processing
  publication-title: An overview. International Journal of Food Microbiology
– volume: 46
  start-page: 360
  year: 2007
  end-page: 365
  ident: bb0090
  article-title: Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials
  publication-title: Chemical Engineering and Processing: Process Intensification
– volume: 34
  start-page: 43
  year: 2010
  end-page: 54
  ident: bb0175
  article-title: Germination and subsequent inactivation of Bacillus subtilis spores by pulsed electric field treatment
  publication-title: Journal of Food Processing and Preservation
– volume: 108
  start-page: 69
  year: 2012
  end-page: 76
  ident: bb0190
  article-title: Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating
  publication-title: Journal of Food Engineering
– volume: 82
  start-page: 36
  year: 2019
  end-page: 45
  ident: bb0120
  article-title: Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature
  publication-title: Food Microbiology
– volume: 67
  start-page: 2833
  year: 2001
  end-page: 2836
  ident: bb0130
  article-title: Inactivation of Mycobacterium paratuberculosis by pulsed electric fields
  publication-title: Applied and Environmental Microbiology
– volume: 120
  start-page: 57
  year: 2016
  end-page: 69
  ident: bb0165
  article-title: Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO 2 plus peracetic acid
  publication-title: Journal of Applied Microbiology
– volume: 54
  start-page: 194
  year: 2013
  end-page: 198
  ident: bb0195
  article-title: Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating
  publication-title: LWT- Food Science and Technology
– volume: 66
  start-page: 3735
  year: 2000
  end-page: 3742
  ident: bb0025
  article-title: Germination-induced bioluminescence, a route to determine the inhibitory effect of a combination preservation treatment on bacterial spores
  publication-title: Applied and Environmental Microbiology
– volume: 81
  start-page: 1093
  year: 2018
  end-page: 1107
  ident: bb0200
  article-title: Inactivation of microorganisms in foods by ohmic heating: A review
  publication-title: Journal of Food Protection
– volume: 57
  start-page: 7
  year: 2016
  end-page: 14
  ident: bb0205
  article-title: Kinetic models for pulsed electric field and thermal inactivation of Escherichia coli and Pseudomonas fluorescens in whole milk
  publication-title: International Dairy Journal
– volume: 24
  start-page: 13
  year: 2012
  end-page: 21
  ident: bb0005
  article-title: Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields
  publication-title: International Dairy Journal
– volume: 295
  start-page: 1
  year: 2019
  end-page: 7
  ident: bb0050
  article-title: Inactivation of dried spores of Bacillus subtilis 168 by a treatment combining high temperature and pressure
  publication-title: International Journal of Food Microbiology
– volume: 103
  start-page: 2329
  year: 2019
  end-page: 2338
  ident: bb0080
  article-title: Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores
  publication-title: Applied Microbiology and Biotechnology
– volume: 27
  start-page: 1209
  year: 2017
  end-page: 1215
  ident: bb0105
  article-title: Effective thermal inactivation of the spores of Bacillus cereus biofilms using microwave
  publication-title: Journal of Microbiology and Biotechnology
– volume: 39
  start-page: 163
  year: 2014
  end-page: 171
  ident: bb0180
  article-title: Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy – I. Influence of process- and product parameters
  publication-title: Food Control
– volume: 15
  start-page: 585
  year: 2016
  end-page: 594
  ident: bb0215
  article-title: Bacillus subtilis spore inner membrane proteome
  publication-title: Journal of Proteome Research
– volume: 1
  start-page: 77
  year: 2000
  end-page: 86
  ident: bb0040
  article-title: Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 120
  start-page: 175
  year: 2016
  end-page: 184
  ident: bb0140
  article-title: Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes
  publication-title: Journal of Applied Microbiology
– volume: 73
  start-page: 1490
  year: 2017
  end-page: 1498
  ident: bb0035
  article-title: Thermal characterization of Bacillus subtilis endospores and a comparative study of their resistance to high temperature pulsed electric fields (HTPEF) and thermal-only treatments
  publication-title: Food Control
– volume: 73
  start-page: 3283
  year: 2007
  end-page: 3290
  ident: bb0010
  article-title: Asssessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry
  publication-title: Applied and Environmental Microbiology
– volume: 54
  start-page: 1
  year: 2019
  end-page: 13
  ident: bb0210
  article-title: Non-thermal technologies and its current and future application in the food industry: A review
  publication-title: International Journal of Food Science & Technology
– volume: 246
  start-page: 80
  year: 2017
  end-page: 84
  ident: bb0065
  article-title: Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores
  publication-title: International Journal of Food Microbiology
– volume: 52
  start-page: 25
  year: 2019
  end-page: 33
  ident: bb0095
  article-title: Effect of ethanol adaption on the inactivation of Acetobacter sp. by pulsed electric fields
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 116
  start-page: 1094
  year: 2019
  end-page: 1102
  ident: bb0045
  article-title: Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores
  publication-title: Food Research International
– volume: 62
  start-page: 368
  year: 1999
  end-page: 372
  ident: bb0020
  article-title: Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating
  publication-title: Biotechnology and Bioengineering
– volume: 7
  start-page: 1411
  year: 2016
  ident: bb0115
  article-title: Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2
  publication-title: Frontiers in Microbiology
– volume: 41
  start-page: 2104
  year: 2008
  end-page: 2112
  ident: bb0060
  article-title: Response of Bacillus cereus spores to high hydrostatic pressure and moderate heat
  publication-title: LWT- Food Science and Technology
– volume: 69
  start-page: 7
  year: 2004
  end-page: 13
  ident: bb0160
  article-title: Extraction using moderate electric fields
  publication-title: Journal of Food Science
– year: 1997
  ident: bb0015
  article-title: Effects of pulsed electric fields treatment on germination of Bacillus subtilis spores
  publication-title: 7th International Congress Engineering Food, April 13–17
– volume: 57
  start-page: 7
  year: 2016
  ident: 10.1016/j.ifset.2020.102349_bb0205
  article-title: Kinetic models for pulsed electric field and thermal inactivation of Escherichia coli and Pseudomonas fluorescens in whole milk
  publication-title: International Dairy Journal
  doi: 10.1016/j.idairyj.2016.01.027
– volume: 54
  start-page: 194
  issue: 1
  year: 2013
  ident: 10.1016/j.ifset.2020.102349_bb0195
  article-title: Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating
  publication-title: LWT- Food Science and Technology
  doi: 10.1016/j.lwt.2013.04.004
– volume: 73
  start-page: 3283
  issue: 10
  year: 2007
  ident: 10.1016/j.ifset.2020.102349_bb0010
  article-title: Asssessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.02750-06
– volume: 73
  start-page: 1490
  year: 2017
  ident: 10.1016/j.ifset.2020.102349_bb0035
  article-title: Thermal characterization of Bacillus subtilis endospores and a comparative study of their resistance to high temperature pulsed electric fields (HTPEF) and thermal-only treatments
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.11.012
– volume: 39
  start-page: 163
  year: 2014
  ident: 10.1016/j.ifset.2020.102349_bb0180
  article-title: Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy – I. Influence of process- and product parameters
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.10.025
– start-page: 107338
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0155
  publication-title: Mechanisms of enhanced bacterial endospore inactivation during sterilization by ohmic heating. Bioelectrochemistry
– volume: 54
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0210
  article-title: Non-thermal technologies and its current and future application in the food industry: A review
  publication-title: International Journal of Food Science & Technology
  doi: 10.1111/ijfs.13903
– volume: 7
  start-page: 1411
  year: 2016
  ident: 10.1016/j.ifset.2020.102349_bb0115
  article-title: Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2
  publication-title: Frontiers in Microbiology
– volume: 120
  start-page: 57
  issue: 1
  year: 2016
  ident: 10.1016/j.ifset.2020.102349_bb0165
  article-title: Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO 2 plus peracetic acid
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/jam.12995
– volume: 61
  start-page: 1203
  issue: 9
  year: 1998
  ident: 10.1016/j.ifset.2020.102349_bb0125
  article-title: Inactivation of Listeria monocytogenes in milk by pulsed electric field
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-61.9.1203
– volume: 34
  start-page: 43
  issue: 1
  year: 2010
  ident: 10.1016/j.ifset.2020.102349_bb0175
  article-title: Germination and subsequent inactivation of Bacillus subtilis spores by pulsed electric field treatment
  publication-title: Journal of Food Processing and Preservation
  doi: 10.1111/j.1745-4549.2008.00321.x
– volume: 24
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.ifset.2020.102349_bb0005
  article-title: Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields
  publication-title: International Dairy Journal
  doi: 10.1016/j.idairyj.2011.11.003
– volume: 1
  start-page: 77
  issue: 1
  year: 2000
  ident: 10.1016/j.ifset.2020.102349_bb0040
  article-title: Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/S1466-8564(99)00004-1
– volume: 120
  start-page: 175
  issue: 1
  year: 2016
  ident: 10.1016/j.ifset.2020.102349_bb0140
  article-title: Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/jam.12982
– volume: 92
  start-page: 362
  issue: 2
  year: 2002
  ident: 10.1016/j.ifset.2020.102349_bb0170
  article-title: Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol
  publication-title: Journal of Applied Microbiology
  doi: 10.1046/j.1365-2672.2002.01540.x
– volume: 295
  start-page: 1
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0050
  article-title: Inactivation of dried spores of Bacillus subtilis 168 by a treatment combining high temperature and pressure
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2019.01.017
– volume: 108
  start-page: 69
  issue: 1
  year: 2012
  ident: 10.1016/j.ifset.2020.102349_bb0190
  article-title: Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2011.07.028
– volume: 14
  start-page: 419
  issue: 5
  year: 2008
  ident: 10.1016/j.ifset.2020.102349_bb0150
  article-title: Ohmic heating and moderate electric field processing
  publication-title: Food Science and Technology International
  doi: 10.1177/1082013208098813
– volume: 15
  start-page: 585
  issue: 2
  year: 2016
  ident: 10.1016/j.ifset.2020.102349_bb0215
  article-title: Bacillus subtilis spore inner membrane proteome
  publication-title: Journal of Proteome Research
  doi: 10.1021/acs.jproteome.5b00976
– volume: 27
  start-page: 1209
  issue: 7
  year: 2017
  ident: 10.1016/j.ifset.2020.102349_bb0105
  article-title: Effective thermal inactivation of the spores of Bacillus cereus biofilms using microwave
  publication-title: Journal of Microbiology and Biotechnology
  doi: 10.4014/jmb.1702.02009
– volume: 116
  start-page: 1094
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0045
  article-title: Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2018.09.052
– volume: 66
  start-page: 3735
  issue: 9
  year: 2000
  ident: 10.1016/j.ifset.2020.102349_bb0025
  article-title: Germination-induced bioluminescence, a route to determine the inhibitory effect of a combination preservation treatment on bacterial spores
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.66.9.3735-3742.2000
– volume: 189
  start-page: 8458
  issue: 23
  year: 2007
  ident: 10.1016/j.ifset.2020.102349_bb0030
  article-title: How moist heat kills spores of Bacillus subtilis
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.01242-07
– volume: 5
  start-page: 71
  issue: 3
  year: 1994
  ident: 10.1016/j.ifset.2020.102349_bb0070
  article-title: Food application of high electric field pulses
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/0924-2244(94)90240-2
– volume: 27
  start-page: 1691
  issue: 6
  year: 2018
  ident: 10.1016/j.ifset.2020.102349_bb0110
  article-title: Pulsed electric field (PEF) technology for microbial inactivation in low-alcohol red wine
  publication-title: Food Science and Biotechnology
  doi: 10.1007/s10068-018-0422-1
– volume: 67
  start-page: 2833
  issue: 6
  year: 2001
  ident: 10.1016/j.ifset.2020.102349_bb0130
  article-title: Inactivation of Mycobacterium paratuberculosis by pulsed electric fields
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.67.6.2833-2836.2001
– volume: 52
  start-page: 25
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0095
  article-title: Effect of ethanol adaption on the inactivation of Acetobacter sp. by pulsed electric fields
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2018.11.009
– volume: 79
  start-page: 27
  issue: 1
  year: 2002
  ident: 10.1016/j.ifset.2020.102349_bb0135
  article-title: Bacterial membranes: The effects of chill storage and food processing
  publication-title: An overview. International Journal of Food Microbiology
  doi: 10.1016/S0168-1605(02)00176-9
– volume: 69
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.ifset.2020.102349_bb0160
  article-title: Extraction using moderate electric fields
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.2004.tb17861.x
– volume: 223
  start-page: 30
  issue: 1
  year: 2006
  ident: 10.1016/j.ifset.2020.102349_bb0145
  article-title: Effect of temperature and substrate on Pef inactivation of Lactobacillus plantarum in an orange juice–milk beverage
  publication-title: European Food Research and Technology
  doi: 10.1007/s00217-005-0096-9
– volume: 103
  start-page: 2329
  issue: 5
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0080
  article-title: Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-018-9559-3
– volume: 41
  start-page: 2104
  issue: 10
  year: 2008
  ident: 10.1016/j.ifset.2020.102349_bb0060
  article-title: Response of Bacillus cereus spores to high hydrostatic pressure and moderate heat
  publication-title: LWT- Food Science and Technology
  doi: 10.1016/j.lwt.2007.11.011
– volume: 246
  start-page: 80
  year: 2017
  ident: 10.1016/j.ifset.2020.102349_bb0065
  article-title: Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2017.01.002
– volume: 46
  start-page: 360
  issue: 4
  year: 2007
  ident: 10.1016/j.ifset.2020.102349_bb0090
  article-title: Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials
  publication-title: Chemical Engineering and Processing: Process Intensification
  doi: 10.1016/j.cep.2006.07.010
– volume: 81
  start-page: 1093
  issue: 7
  year: 2018
  ident: 10.1016/j.ifset.2020.102349_bb0200
  article-title: Inactivation of microorganisms in foods by ohmic heating: A review
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X.JFP-17-343
– volume: 127
  start-page: 26
  issue: 3288
  year: 1958
  ident: 10.1016/j.ifset.2020.102349_bb0055
  article-title: Colorimetric assay for dipicolinic acid in bacterial spores
  publication-title: Science
  doi: 10.1126/science.127.3288.26
– volume: 39
  start-page: 244
  year: 2014
  ident: 10.1016/j.ifset.2020.102349_bb0185
  article-title: Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy II. Modeling thermal inactivation of B. subtilis spores during PEF processing in combination with thermal energy
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.09.067
– year: 1997
  ident: 10.1016/j.ifset.2020.102349_bb0015
  article-title: Effects of pulsed electric fields treatment on germination of Bacillus subtilis spores
– volume: 262
  start-page: 121
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0085
  article-title: Combined effect of shear stress and moderate electric field on the inactivation of Escherichia coli K12 in apple juice
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2019.05.019
– volume: 62
  start-page: 368
  issue: 3
  year: 1999
  ident: 10.1016/j.ifset.2020.102349_bb0020
  article-title: Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/(SICI)1097-0290(19990205)62:3<368::AID-BIT14>3.0.CO;2-0
– volume: 120
  start-page: 85
  issue: 1–2
  year: 2007
  ident: 10.1016/j.ifset.2020.102349_bb0100
  article-title: The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2007.06.013
– volume: 82
  start-page: 36
  year: 2019
  ident: 10.1016/j.ifset.2020.102349_bb0120
  article-title: Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2019.01.014
SSID ssj0017034
Score 2.4311965
Snippet Bacterial endospores are the key safety targets for inactivation within low-acid foods. Herein, we investigated the inactivation of Bacillus subtilis CGMCC...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102349
SubjectTerms Bacillus subtilis
Bacillus subtilis spores
Confocal laser scanning microscopy
cortex
endospores
food industry
food science
germinant receptors
germination
heat
heat tolerance
inner membrane
lysozyme
Moderate electric fields
ohmic heating
permeability
temperature
viability
Title Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields
URI https://dx.doi.org/10.1016/j.ifset.2020.102349
https://www.proquest.com/docview/2524230466
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017034
  issn: 1466-8564
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-5522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017034
  issn: 1466-8564
  databaseCode: .~1
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-5522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017034
  issn: 1466-8564
  databaseCode: ACRLP
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1878-5522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017034
  issn: 1466-8564
  databaseCode: AIKHN
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-5522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017034
  issn: 1466-8564
  databaseCode: AKRWK
  dateStart: 20000301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqIzESGia2Ek8QgUqjyIEVGKz7MSRjEqKSDuw8Nu5i5MKEGJgih3ZUXQ-n--Su-8j5EgjgXXfFx7XXHksT5ANkKVeqLlhiRIqUFjgPLqNhmN29cSfWmTQ1MJgWmVt-51Nr6x1fadXS7P3am3vAfZ4lHDwn0FPA8HRDjMWI4vByccizaMPGs1chVHk4egGeajK8bJ5aTChMnAQBgio-fvp9MNOV4fPxRpZrb1GeupebJ20TLFBVr5gCW6S8chgEa8tX-g0p2cqtZPJvKTlXM_sxEIDHG1DbYGFDO4zLHQyWNiM6neKhDgIGkEdLY5NaZXaVm6R8cX542Do1ZwJXgqR4MzLMwU-jBCxD3FAHmudIqELV4gMyOLEKJOFCRzzoYZAQUQ6BQ_OpH4YGJ4xBY1t0i6mhdkhVPnGcC0SP877TPNAxHno69D0tZ8LYXiHBI2sZFoDiiOvxUQ2mWPPshKwRAFLJ-AOOV5MenV4Gn8Pj5pFkN_UQoLF_3viYbNkEjYM_gVRhZnOSxlwdCF90Ifd_z58jyxjz2WM7ZP27G1uDsA3melupXxdsnQ6uL-5w-vl9fD2Exmj5JQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RRvjMRIaJrYSTxCBSqPstBK3Sw7cSSjkiLSDiz8du7ipAKEOrA5iR1F5_P5O-fuO0LONRaw7vjC45orj-UJVgNkqRdqbliihAoUJjj3n6LekN2P-KhFuk0uDIZV1rbf2fTKWtd32rU022_Wtp9hjUcJB_wMehoIDnZ4mfEgRg_s8nMe59EBlWYuxSjysHtDPVQFedm8NBhRGTgOA2TU_Ht7-mWoq93ndoOs17CRXrkv2yQtU2yRtW9kgttk2DeYxWvLVzrJ6bVK7Xg8K2k501M7ttAApG2oLTCTwZ3DwkUGM5tR_UGxIg6yRlBXF8emtIptK3fI8PZm0O15ddEELwVXcOrlmQIQI0TsgyOQx1qnWNGFK6QGZHFilMnCBPb5UIOnICKdAoQzqR8GhmdMQWOXLBWTwuwRqnxjuBaJH-cdpnkg4jz0dWg62s-FMHyfBI2sZFozimNhi7FsQsdeZCVgiQKWTsD75GI-6M0RaizuHjWTIH_ohQSTv3jgWTNlElYM_gZRhZnMShlwxJA-6MPBf19-SlZ6g_6jfLx7ejgkq_jEhY8dkaXp-8wcA1CZ6pNKEb8AU4nklA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Bacillus+subtilis+spore+inactivation+induced+by+moderate+electric+fields&rft.jtitle=Innovative+food+science+%26+emerging+technologies&rft.au=Wang%2C+Lang-Hong&rft.au=Pyatkovskyy%2C+Taras&rft.au=Yousef%2C+Ahmed&rft.au=Zeng%2C+Xin+An&rft.date=2020-06-01&rft.issn=1466-8564&rft.volume=62+p.102349-&rft_id=info:doi/10.1016%2Fj.ifset.2020.102349&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8564&client=summon