A PSO-ANN Intelligent Hybrid Model to Predict the Compressive Strength of Limestone Fillers Roller Compacted Concrete (RCC) to Build Dams

The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limeston...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 25; no. 8; pp. 3008 - 3018
Main Authors Chakali, Youcef, Sadok, Ahmed Hadj, Tahlaiti, Mahfoud, Nacer, Tarek
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.08.2021
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-021-1531-6

Cover

Abstract The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R 2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created.
AbstractList The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created.
The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R 2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created.
The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created. KCI Citation Count: 10
Author Tahlaiti, Mahfoud
Sadok, Ahmed Hadj
Nacer, Tarek
Chakali, Youcef
Author_xml – sequence: 1
  givenname: Youcef
  surname: Chakali
  fullname: Chakali, Youcef
  organization: Ecole Nationale Supérieure d’Hydraulique (ENSH), Laboratoire Mobilisation et Valorisation des Ressources en Eau (MVRE)
– sequence: 2
  givenname: Ahmed Hadj
  surname: Sadok
  fullname: Sadok, Ahmed Hadj
  organization: Ecole Nationale Supérieure d’Hydraulique (ENSH), Laboratoire Mobilisation et Valorisation des Ressources en Eau (MVRE)
– sequence: 3
  givenname: Mahfoud
  surname: Tahlaiti
  fullname: Tahlaiti, Mahfoud
  email: mahfoud.tahlaiti@icam.fr
  organization: Institut Catholique d’Arts et Métiers (ICAM)
– sequence: 4
  givenname: Tarek
  surname: Nacer
  fullname: Nacer, Tarek
  organization: Ecole Nationale Supérieure d’Hydraulique (ENSH), Laboratoire Mobilisation et Valorisation des Ressources en Eau (MVRE)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002740737$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkUFvEzEQhS1UJErpD-BmiQs9GOzZrNc-hoXSSKGt0nK2NvZs6nZjp7aDxE_gX-M0SMzlvcM3ozd6b8lJiAEJeS_4J8F59zkLAN4yDoKJthFMviKnQneSNYqrk-oBJOu0Um_Iec6PvE4DnWraU_JnTm_vbtj8-pouQsFp8hsMhV79Xifv6I_ocKIl0tuEzttCywPSPm53CXP2v5DelYRhUx5oHOnSbzGXmoxe-mnClOkqHvRlYbAFXXXBJixIP676_uJw-MveT45-Hbb5HXk9DlPG8396Rn5efrvvr9jy5vuiny-ZnXEoDAewAGuHStUXhNTAUbnOaTmgncHQNkp2YNcWxzW0Y6OQd3Y2NjgI7UbtmjNycbwb0mierDdx8C-6ieYpmfnqfmG0mnUCRGU_HNldis_7-p15jPsUajwDWmjJNUhZKThSeZd82GD6TwluDg2ZY0OmNmQODRnZ_AWhY4ST
CitedBy_id crossref_primary_10_1016_j_jer_2023_09_016
crossref_primary_10_1177_01445987231217134
crossref_primary_10_1007_s41939_023_00300_7
crossref_primary_10_1007_s13369_021_06493_8
crossref_primary_10_1016_j_istruc_2024_106098
crossref_primary_10_1080_10298436_2023_2270765
crossref_primary_10_1080_21681015_2023_2243312
crossref_primary_10_1002_eng2_12676
crossref_primary_10_1007_s41062_023_01122_9
crossref_primary_10_1007_s42947_023_00321_y
crossref_primary_10_1016_j_engstruct_2024_118061
ContentType Journal Article
Copyright Korean Society of Civil Engineers 2021
Korean Society of Civil Engineers 2021.
Copyright_xml – notice: Korean Society of Civil Engineers 2021
– notice: Korean Society of Civil Engineers 2021.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s12205-021-1531-6
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 3018
ExternalDocumentID oai_kci_go_kr_ARTI_9847121
10_1007_s12205_021_1531_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACDTI
ACYCR
ID FETCH-LOGICAL-c402t-ea2c22bde8827816920e8d7d96aec42a538672cbcefb25f38e07c4f3ea19df9d3
IEDL.DBID BENPR
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:33 EST 2025
Fri Jul 25 12:12:06 EDT 2025
Fri Feb 21 02:48:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Dam
Particles swarm optimization
Limestone fillers
Prediction
Roller compacted concrete
Compressive strength
Artificial neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-ea2c22bde8827816920e8d7d96aec42a538672cbcefb25f38e07c4f3ea19df9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1007/s12205-021-1531-6
PQID 2919609266
PQPubID 1496355
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9847121
proquest_journals_2919609266
springer_journals_10_1007_s12205_021_1531_6
PublicationCentury 2000
PublicationDate 20210800
20210801
2021-08
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2021
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References HanI-JYuanT-FLeeJ-YYoonY-SKimJ-HLearned prediction of compressive strength of GGBFS concrete using hybrid artificial neural network modelsMaterials20191222370810.3390/ma12223708
Caré S, Linder R, Baroghel-Bouny V, de Larrard F, Charonnat Y (2000) Effet des additions minérales sur les propriétés d’usage des bétons Plan d’expérience et analyse statique. Institut Français des Sciences et Techniques des Réseaux, de l’Aménagement et des Transports Ed., Paris, France
NF EN 12390-3Essais pour béton durci — Partie 3: résistance à la compression des éprouvettes2012FranceAssociation Française de Normalisation (AFNOR)
ŞengüAlamBShabaniRYamanIOThe effects of compaction methods and mix parameters on the properties of roller compacted concrete mixturesConstruction and Building Materials201922811680710.1016/j.conbuildmat.2019.116807
TanZXThambiratnamDPChanTHTGordanMAbdul RazakHDamage detection in steel-concrete composite bridge using vibration characteristics and artificial neural networkStructure and Infrastructure Engineering20191691247126110.1080/15732479.2019.1696378
Patil MB, Naidu MN, Vasan A, Varma MRR (2020) Water distribution system design using multi-objective particle swarm optimisation. Sāanā(1), DOI: https://doi.org/10.1007/s12046-019-1258-y
NF EN 12620Granulats pour béton2003FranceAssociation Française de Normalisation (AFNOR)
EbdaliMKhorasaniESalehinSA comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertineInnovative Infrastructure Solutions2020539310.1007/s41062-020-00346-3
SiddiqueNHAdeliHComputational intelligence: Synergies of fuzzy logic, neural networks, and evolutionary computing2013Hoboken, NJ, USAJohn Wiley & Sons10.1002/9781118534823
SukontasukkulPChaisakulkietUJamsawangPHorpibulsukSJaturapitakkulCChindaprasirtPCase investigation on application of steel fibers in roller compacted concrete pavement in ThailandCase Studies in Construction Materials201911e0027110.1016/j.cscm.2019.e00271
Michel F, Piérard J, Courard L, Pollet V (2007) Influence of physico-chemical characteristics of limestone fillers on fresh and hardened mortar performances. RILEM Publications S.A.R.L
de LarrardFConcrete mixture proportioning: A scientific approach1999London, UKE & FN Spon10.1201/9781482272055
DanAOosterbaanJJametPContribution des réseaux de neurones artificiels (RNA) à la caractérisation des pollutions de sol. Exemples des pollutions en hydrocarbures aromatiques polycycliques (HAP)Comptes Rendus Geoscience20023341395796510.1016/S1631-0713(02)01836-9
DupainRLanchonRSaint-ArromanJGranulat, sols, ciments et betons2004Paris, FranceCasteilla
GhaderiAAbbaszadeh ShahriALarssonSAn artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu)Bulletin of Engineering Geology and the Environment20197864579458810.1007/s10064-018-1400-9
AlamMNDasBPantVA comparative study of metaheuristic optimization approaches for directional overcurrent relays coordinationElectric Power Systems Research2015128395210.1016/j.epsr.2015.06.018
Ali JallalMChabaaSZeroualAA novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackersRenewable Energy20191491182119610.1016/j.renene.2019.10.117
YildizelSACalisGTayehBAMechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavementJournal of Materials Research and Technology202096133411335110.1016/j.jmrt.2020.09.070
BornePBenrajebMHaggègeJLes réseaux de neurones présentation et applications2007Paris, FranceEditions TECHNIP
GopalakrishnanKParticle swarm optimization in civil infrastructure systems2013Amsterdam, NetherlandsMetaheuristic Applications in Structures and Infrastructures, Elsevier4976
QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfillConstruction and Building Materials201815947347810.1016/j.conbuildmat.2017.11.006
YehI-CExploring concrete slump model using artificial neural networksJournal of Computing in Civil Engineering200620321722110.1061/(ASCE)0887-3801(2006)20:3(217)
KitouniSHouariHLightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early ageCerâmica20135935260060810.1590/S0366-69132013000400017
ASTM C1170-91Standard test methods for determining consistency and density of roller-compacted concrete using a vibrating table1998West Conshohocken, PA, USAASTM C1170-91, ASTM International
RahmaniESharbatdarMKBeygiMHAThe effect of water-to-cement ratio on the fracture behaviors and ductility of Roller compacted concrete pavement (RCCP)Theoretical and Applied Fracture Mechanics202010910275310.1016/j.tafmec.2020.102753
HammoudiAMoussacebKBelebchoucheCDahmouneFComparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregatesConstruction and Building Materials201920942543610.1016/j.conbuildmat.2019.03.119
ChhornCHongSJLeeSWRelationship between compressive and tensile strengths of roller-compacted concreteJournal of Traffic and Transportation Engineering (English Edition)20185321522310.1016/j.jtte.2017.09.002
BaiJWildSWareJASabirBBUsing neural networks to predict workability of concrete incorporating metakaolin and fly ashAdvances in Engineering Software20033411–1266366910.1016/S0965-9978(03)00102-9
RebouhRBoukhatemBGhriciMTagnit-HamouAA practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structureConstruction and Building Materials201714977878910.1016/j.conbuildmat.2017.05.165
AkkurtSOzdemirSTayfurGAkyolBThe use of GA-ANNs in the modelling of compressive strength of cement mortarCement and Concrete Research200333797397910.1016/S0008-8846(03)00006-1
ACI Committee 209Guide for modelling and calculating shrinkage and creep in hardened concrete2008Farmington Hills, MI, USAAmerican Concrete InstituteACI 209.2R-08
MomeniEJahed ArmaghaniDHajihassaniMMohd AminMFPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075
de LarrardFSedranTLe logiciel BétonlabPro 32009Paris, FranceBulletin des Laboratoires des Ponts et Chaussées
CaiHLiaoTRenSLiSHuoRYuanJYangWPredicting the compressive strength of desert sand concrete using ANN: PSO and its application in tunnelAdvances in Civil Engineering20202020111
de LarrardFStructures granulaires et formulation des bétons1999Paris, FranceLaboratoires des Ponts et Chaussées
AmlashiATAbdollahiSMGoodarziSGhanizadehARSoft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concreteJournal of Cleaner Production20192301197121610.1016/j.jclepro.2019.05.168
ElsheikhAHSharshirSWAbd ElazizMKabeelAEGuilanWHaiouZModeling of solar energy systems using artificial neural network: A comprehensive reviewSolar Energy201918062263910.1016/j.solener.2019.01.037
GodoiWCCoraiolaGJuniorSRSwinka-FilhoVde GeusKPortellaKFMedeirosBLCunha de AndradeFHönnickeMGExpounding structures of roller compacted concrete dam specimens by means of hard conventional X-ray inspectionHeliyon201954e0146710.1016/j.heliyon.2019.e01467
KennedyJEberhartRCA discrete binary version of the particle swarm algorithmProceedings of the IEEE International Conference on Systems, Man and Cybernetics1997541044108
ACI Committee 207Roller-compacted mass concrete1999Farmington Hills, MI, USAAmerican Concrete InstituteACI 207.5R-99
BoussaidIPerfectionnement de métaheuristiques pour l’optimisation continue2014Créteil, FranceParis-Est Créteil169
Mcculloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics (5):116–133
PerampalamGPoologanathanKGunalanSYeJNagaratnamBOptimum design of cold-formed steel beams: Particle swarm optimisation and numerical analysisce/papers201933–420521010.1002/cepa.1159
ASTM C1435-99Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer1999West Conshohocken, PA, USAASTM C1435-99, ASTM International
MalekiAOptimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sectorInternational Journal of Ambient Energy20194255055710.1080/01430750.2018.1562968
BoukhatemBRebouhRZidolAChekiredMTagnit-HamouAAn intelligent hybrid system for predicting the tortuosity of the pore system of fly ash concreteConstruction and Building Materials201920527428410.1016/j.conbuildmat.2019.02.005
NF EN 13286-5Mélanges traités et mélanges non traités aux liants hydrauliques2003FranceAssociation Française de Normalisation (AFNOR)
ZhangPGaoZShiYLinYLiJEffect of large broken stone content on properties of roller compacted concrete based on fractal theoryConstruction and Building Materials202026212082110.1016/j.conbuildmat.2020.120821
CalisGYıldızelSAInvestigation of roller compacted concrete: Literature reviewChallenge Journal of Concrete Research Letters20191036310.20528/cjcrl.2019.03.003
ASTM C1176-92Standard practice for making roller-compacted concrete in cylinder molds using a vibrating table1998West Conshohocken, PA, USAASTM C1176-92, ASTM International
SankarMRSaxenaSBanikSRIqbalIMNathRBoraLJGajraniKKExperimental study and artificial neural network modeling of machining with minimum quantity cutting fluidMaterials Today: Proceedings20191849214931
BelićMBobićVBadžaMŠolajaNƉurić-JovičićMKostićVSArtificial intelligence for assisting diagnostics and assessment of parkinson’s disease — A reviewClinical Neurology and Neurosurgery201918410544210.1016/j.clineuro.2019.105442
ParkK-BNoguchiTPlawskyJModeling of hydration reactions using neural networks to predict the average properties of cement pasteCement and Concrete Research20053591676168410.1016/j.cemconres.2
References_xml – reference: RahmaniESharbatdarMKBeygiMHAThe effect of water-to-cement ratio on the fracture behaviors and ductility of Roller compacted concrete pavement (RCCP)Theoretical and Applied Fracture Mechanics202010910275310.1016/j.tafmec.2020.102753
– reference: GodoiWCCoraiolaGJuniorSRSwinka-FilhoVde GeusKPortellaKFMedeirosBLCunha de AndradeFHönnickeMGExpounding structures of roller compacted concrete dam specimens by means of hard conventional X-ray inspectionHeliyon201954e0146710.1016/j.heliyon.2019.e01467
– reference: CyrMLawrencePRingotEEfficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strengthCement and Concrete Research200636226427710.1016/j.cemconres.2005.07.001
– reference: ASTM C1176-92Standard practice for making roller-compacted concrete in cylinder molds using a vibrating table1998West Conshohocken, PA, USAASTM C1176-92, ASTM International
– reference: BoussaidIPerfectionnement de métaheuristiques pour l’optimisation continue2014Créteil, FranceParis-Est Créteil169
– reference: PerampalamGPoologanathanKGunalanSYeJNagaratnamBOptimum design of cold-formed steel beams: Particle swarm optimisation and numerical analysisce/papers201933–420521010.1002/cepa.1159
– reference: ACI Committee 207Roller-compacted mass concrete1999Farmington Hills, MI, USAAmerican Concrete InstituteACI 207.5R-99
– reference: RahmaniESharbatdarMKazemHABeygiMHAA comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of roller compacted concrete pavement (RCCP)Construction and Building Materials202025311917710.1016/j.conbuildmat.2020.119177
– reference: ŞengüAlamBShabaniRYamanIOThe effects of compaction methods and mix parameters on the properties of roller compacted concrete mixturesConstruction and Building Materials201922811680710.1016/j.conbuildmat.2019.116807
– reference: YildizelSACalisGTayehBAMechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavementJournal of Materials Research and Technology202096133411335110.1016/j.jmrt.2020.09.070
– reference: ElsheikhAHSharshirSWAbd ElazizMKabeelAEGuilanWHaiouZModeling of solar energy systems using artificial neural network: A comprehensive reviewSolar Energy201918062263910.1016/j.solener.2019.01.037
– reference: ASTM C1170-91Standard test methods for determining consistency and density of roller-compacted concrete using a vibrating table1998West Conshohocken, PA, USAASTM C1170-91, ASTM International
– reference: NF EN 13286-5Mélanges traités et mélanges non traités aux liants hydrauliques2003FranceAssociation Française de Normalisation (AFNOR)
– reference: EbdaliMKhorasaniESalehinSA comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertineInnovative Infrastructure Solutions2020539310.1007/s41062-020-00346-3
– reference: International Federation for Structural ConcreteModel code 20102010Lausanne, SwitzerlandComité Euro-International du Béton
– reference: SankarMRSaxenaSBanikSRIqbalIMNathRBoraLJGajraniKKExperimental study and artificial neural network modeling of machining with minimum quantity cutting fluidMaterials Today: Proceedings20191849214931
– reference: AmlashiATAbdollahiSMGoodarziSGhanizadehARSoft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concreteJournal of Cleaner Production20192301197121610.1016/j.jclepro.2019.05.168
– reference: DidoucheZEzzianeKKadriE-HPredicted of hydration heat and compressive strength of limestone cement mortar with different type of superplasticizerAdvances in Concrete Construction201866659677
– reference: KennedyJEberhartRCA discrete binary version of the particle swarm algorithmProceedings of the IEEE International Conference on Systems, Man and Cybernetics1997541044108
– reference: MalekiAOptimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sectorInternational Journal of Ambient Energy20194255055710.1080/01430750.2018.1562968
– reference: NF EN 12620Granulats pour béton2003FranceAssociation Française de Normalisation (AFNOR)
– reference: DanAOosterbaanJJametPContribution des réseaux de neurones artificiels (RNA) à la caractérisation des pollutions de sol. Exemples des pollutions en hydrocarbures aromatiques polycycliques (HAP)Comptes Rendus Geoscience20023341395796510.1016/S1631-0713(02)01836-9
– reference: ChhornCHongSJLeeSWRelationship between compressive and tensile strengths of roller-compacted concreteJournal of Traffic and Transportation Engineering (English Edition)20185321522310.1016/j.jtte.2017.09.002
– reference: AkkurtSOzdemirSTayfurGAkyolBThe use of GA-ANNs in the modelling of compressive strength of cement mortarCement and Concrete Research200333797397910.1016/S0008-8846(03)00006-1
– reference: HanI-JYuanT-FLeeJ-YYoonY-SKimJ-HLearned prediction of compressive strength of GGBFS concrete using hybrid artificial neural network modelsMaterials20191222370810.3390/ma12223708
– reference: BaiJWildSWareJASabirBBUsing neural networks to predict workability of concrete incorporating metakaolin and fly ashAdvances in Engineering Software20033411–1266366910.1016/S0965-9978(03)00102-9
– reference: BelićMBobićVBadžaMŠolajaNƉurić-JovičićMKostićVSArtificial intelligence for assisting diagnostics and assessment of parkinson’s disease — A reviewClinical Neurology and Neurosurgery201918410544210.1016/j.clineuro.2019.105442
– reference: Caré S, Linder R, Baroghel-Bouny V, de Larrard F, Charonnat Y (2000) Effet des additions minérales sur les propriétés d’usage des bétons Plan d’expérience et analyse statique. Institut Français des Sciences et Techniques des Réseaux, de l’Aménagement et des Transports Ed., Paris, France
– reference: Ali JallalMChabaaSZeroualAA novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackersRenewable Energy20191491182119610.1016/j.renene.2019.10.117
– reference: GopalakrishnanKParticle swarm optimization in civil infrastructure systems2013Amsterdam, NetherlandsMetaheuristic Applications in Structures and Infrastructures, Elsevier4976
– reference: RebouhRBoukhatemBGhriciMTagnit-HamouAA practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structureConstruction and Building Materials201714977878910.1016/j.conbuildmat.2017.05.165
– reference: SukontasukkulPChaisakulkietUJamsawangPHorpibulsukSJaturapitakkulCChindaprasirtPCase investigation on application of steel fibers in roller compacted concrete pavement in ThailandCase Studies in Construction Materials201911e0027110.1016/j.cscm.2019.e00271
– reference: de LarrardFSedranTLe logiciel BétonlabPro 32009Paris, FranceBulletin des Laboratoires des Ponts et Chaussées
– reference: de LarrardFStructures granulaires et formulation des bétons1999Paris, FranceLaboratoires des Ponts et Chaussées
– reference: NF EN 12390-3Essais pour béton durci — Partie 3: résistance à la compression des éprouvettes2012FranceAssociation Française de Normalisation (AFNOR)
– reference: ParkK-BNoguchiTPlawskyJModeling of hydration reactions using neural networks to predict the average properties of cement pasteCement and Concrete Research20053591676168410.1016/j.cemconres.2004.08.004
– reference: ACI Committee 209Guide for modelling and calculating shrinkage and creep in hardened concrete2008Farmington Hills, MI, USAAmerican Concrete InstituteACI 209.2R-08
– reference: CaiHLiaoTRenSLiSHuoRYuanJYangWPredicting the compressive strength of desert sand concrete using ANN: PSO and its application in tunnelAdvances in Civil Engineering20202020111
– reference: AlamMNDasBPantVA comparative study of metaheuristic optimization approaches for directional overcurrent relays coordinationElectric Power Systems Research2015128395210.1016/j.epsr.2015.06.018
– reference: YehI-CExploring concrete slump model using artificial neural networksJournal of Computing in Civil Engineering200620321722110.1061/(ASCE)0887-3801(2006)20:3(217)
– reference: de LarrardFConcrete mixture proportioning: A scientific approach1999London, UKE & FN Spon10.1201/9781482272055
– reference: SiddiqueNHAdeliHComputational intelligence: Synergies of fuzzy logic, neural networks, and evolutionary computing2013Hoboken, NJ, USAJohn Wiley & Sons10.1002/9781118534823
– reference: CalisGYıldızelSAInvestigation of roller compacted concrete: Literature reviewChallenge Journal of Concrete Research Letters20191036310.20528/cjcrl.2019.03.003
– reference: DupainRLanchonRSaint-ArromanJGranulat, sols, ciments et betons2004Paris, FranceCasteilla
– reference: ZhangPGaoZShiYLinYLiJEffect of large broken stone content on properties of roller compacted concrete based on fractal theoryConstruction and Building Materials202026212082110.1016/j.conbuildmat.2020.120821
– reference: QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfillConstruction and Building Materials201815947347810.1016/j.conbuildmat.2017.11.006
– reference: ASTM C1435-99Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer1999West Conshohocken, PA, USAASTM C1435-99, ASTM International
– reference: KitouniSHouariHLightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early ageCerâmica20135935260060810.1590/S0366-69132013000400017
– reference: ZdiriMBen OuezdouMNejiJTheoretical and experimental study of roller-compacted concrete strengthMagazine of Concrete Research200860746947410.1680/macr.2007.00002
– reference: Patil MB, Naidu MN, Vasan A, Varma MRR (2020) Water distribution system design using multi-objective particle swarm optimisation. Sāanā(1), DOI: https://doi.org/10.1007/s12046-019-1258-y
– reference: BornePBenrajebMHaggègeJLes réseaux de neurones présentation et applications2007Paris, FranceEditions TECHNIP
– reference: BoukhatemBRebouhRZidolAChekiredMTagnit-HamouAAn intelligent hybrid system for predicting the tortuosity of the pore system of fly ash concreteConstruction and Building Materials201920527428410.1016/j.conbuildmat.2019.02.005
– reference: GhaderiAAbbaszadeh ShahriALarssonSAn artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu)Bulletin of Engineering Geology and the Environment20197864579458810.1007/s10064-018-1400-9
– reference: LiuDLiZLiuJExperimental study on real-time control of roller compacted concrete dam compaction quality using unit compaction energy indicesConstruction and Building Materials20159656757510.1016/j.conbuildmat.2015.08.048
– reference: Michel F, Piérard J, Courard L, Pollet V (2007) Influence of physico-chemical characteristics of limestone fillers on fresh and hardened mortar performances. RILEM Publications S.A.R.L
– reference: TanZXThambiratnamDPChanTHTGordanMAbdul RazakHDamage detection in steel-concrete composite bridge using vibration characteristics and artificial neural networkStructure and Infrastructure Engineering20191691247126110.1080/15732479.2019.1696378
– reference: HammoudiAMoussacebKBelebchoucheCDahmouneFComparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregatesConstruction and Building Materials201920942543610.1016/j.conbuildmat.2019.03.119
– reference: Mcculloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics (5):116–133
– reference: MomeniEJahed ArmaghaniDHajihassaniMMohd AminMFPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075
– reference: GauthierPMarchandJConception et réalisation de revêtements en béton compacté au rouleau au Québec2004Québec, CanadaAssociation des Constructeurs de Routes et Grands Travaux du Québec
SSID ssj0000327835
Score 2.3114488
Snippet The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 3008
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Cement
Civil Engineering
Compressive strength
Concrete
Correlation coefficients
Dam design
Dams
Engineering
Engineers
Fillers
Formulations
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Heuristic methods
Hybrid systems
Industrial Pollution Prevention
Limestone
Mechanical properties
Neural networks
Optimization
Particle swarm optimization
Predictions
Roller compacted concrete
Structural Engineering
Vectors
Water-cement ratio
토목공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS_QwEA5-XPQgfuI3g3hQJNCmbbo9rqvLKrKKuuAttOnE90XtQrcK_gT_tTN166p48dRCk1AySeZpZ55nhNjHKEYdxpkk76BkmHiJTF2GMgw9lwV-gJGt1T77ujcIz--iuzGPe9RkuzchyfqknpDdmBMqOaWAdqkv9bSYjVjNixbxQLU_f6x4AReP4NRF6qAl63E10czfRiGfUpTuG778ERKtPU13USyMISK0P2y6JKawWBbzX4QDV8RbG65uLmW734ezT03NCnqvzL8Crm_2CNUQrkoOw1RAIA9449c5ry8IHIou7qt_MHRwwRwQVuSGbk0LHAHrdGNZd2Ap55zuCsKWFcLBdadzyAMfczFtOEmfRqti0D297fTkuKiCtPSpWElMlVUqy5GgddzydaI8bOVxnugUbahSOgB1rGxm0WUqckELvdiGLsDUT3KX5MGamCnopdYFOEtNkD6xHDl6zONWmDKnISJIF8Sp1htij6bWPNj_hkWs-Xo_NA-lIah-ZhL2i8rfENvNzJvx9hkZlfishKd4jKPGGpPHE6llNqYhYxo2ptGbf2q9JeYUL4Q6nW9bzFTlM-4QxKiy3XpJvQNpuceq
  priority: 102
  providerName: Springer Nature
Title A PSO-ANN Intelligent Hybrid Model to Predict the Compressive Strength of Limestone Fillers Roller Compacted Concrete (RCC) to Build Dams
URI https://link.springer.com/article/10.1007/s12205-021-1531-6
https://www.proquest.com/docview/2919609266
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002740737
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2021, 25(8), , pp.3008-3018
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AFBBN
  dateStart: 19971201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1976-3808
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: BENPR
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: 8FG
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: U2A
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthc4IJ6i7FJZiAMIWSTO-4BQWprtAgrVQqXlZDl-7KJlU0gDEj-Bf81MSLbAgZMj2bEijzPz2TPzDcBjGyU2DpOKo3UQPMy8jCtXWR6GnqsCP7CR7tg-y3i5Dl-fRqd7UA65MBRWOejETlGbjaY78uci84kcDe3Jyy9fOVWNIu_qUEJD9aUVzIuOYmwfxoKYsUYwni3K1cnVrYsXUGUJimv0EXdwIusaXJ1dPh2lnXKKWkBF4HPiIakb9xf4_Mdf2pmh4ibc6PEjy38L_Bbs2fo2XP-DVfAO_MzZ6v07npclO74i3GzZ8gclZzEqfvaZtRu2ashH0zJEgIy0QhcQ-90y8lPXZ-052zj2lhJEiK6bFV3O4JYRibdtuheI59ngU43As7Xsycl8_pQmnlGlbfZKXW7vwrpYfJgveV9xgWs8R7bcKqGFqIxF3J2kfpwJz6YmMVmsrA6FQu0YJ0JX2rpKRC5IrZfo0AVW-ZlxmQnuwajGj7oPzGkcYvH85RAFWJOkoaKEhwjxXpCoOJ7AI1xaeaE_SWK4pvZsIy8aiTj-WGZkNIU_gcNh5WX_b23lbidM4NkgjV33joeZhClRmJKEKeMH_5_sAK4JknwX3HcIo7b5Zh8i4GirKeynxdEUxnkxm5XUHn18s5j2ewt71yL_Bdsz1rc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKewAOqPyJhRYsBBIIWU0cJ9kcKrTddrVLl7AqrdSbcZxxQYVsmw2gPgIvxbMxY5IucODWUyIlsSLPZOabzMw3jD2DOIVEpYVA7yCFyoJMGFeAUCpwRRRGEFvP9pkn4yP15jg-XmE_u14YKqvsbKI31OXc0j_yLZmFRI6G_uT12bmgqVGUXe1GaJh2tEK57SnG2saOfbj4jiHcYnuyi_J-LuVo73A4Fu2UAWExdmoEGGmlLEpArJn2wySTAfTLtMwSA1ZJgxYhSaUtLLhCxi7qQ5Ba5SIwYVa6rIxw3WtsTUUqw-BvbWcvnx1c_uUJIppkQXWUIeIcQeRgXWrV9-9Rm6ugKgk0PKEg3pOqdn-B3X_ys97tjdbZrRav8sFvBbvNVqC6w27-wWJ4l_0Y8Nn7d2KQ53xySfDZ8PEFNYNxGrb2mTdzPqspJ9RwRJycrJAvwP0GnPLi1Unzkc8dn1JDCtGD85HvUVxwIg2H2j9AvNIlnlUIdBvgLw6Gw5e08A5N9ua75sviHju6kr2_z1YrfKkHjDuLtwDGew5RB5RpXxlqsIgRX0apSZIee4pbq0_tJ02M2nQ8mevTWmPcMNEZOWkZ9thGt_O6_ZYXeql5Pfaqk8by8pL3mYSpUZiahKmTh_9f7Am7Pj58O9XTSb7_iN2QpAW-sHCDrTb1V9hEsNMUj1uN4uzDVSvxLwFaED0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSAgOiE_1E0aIA1VlNXEcZ3PcblntQrWsoCv1ZiXOuKDSbJU1lfoT-q87k266FHHhlEixrchje14y894I8QHTDI3OSkneQUmdR7ksfIlS68iXSZxg6lq1z4kZzfTnk_RkWed00WW7dyHJW04DqzTVYf-i8vsr4hvzQyWnF9COjaV5KB5p1kmgBT1T_bufLFHChSQ4jZE6GMnaXF1k81-jkH-pG38Pa_4VHm29zvC5eLaEi9C_te8L8QDrl-LpHyKCr8R1H6bfv8r-ZALjO33NAKMr5mIB1zr7BWEO04ZDMgEI8AEfAm3-6yUCh6Xr0_AD5h6OmA_C6twwbCmCC2DNbmzaDizrXNFdTTgzIHz8Nhjs8sAHXFgbDovzxWsxG346HozkssCCdPTZGCQWyilVVkgwO-vFJlcR9qqsyk2BTquCDkOTKVc69KVKfdLDKHPaJ1jEeeXzKnkj1mp6qXUB3lETpM8tT04fq6ynC-Y3pATvkqwwZkO8p6m1Z-6nZUFrvp7O7VljCbaPbc4-UsUbYrubebvcSgur8phV8RSPsddZY_V4JbvMxrRkTMvGtGbzv1q_E4-nh0N7NJ582RJPFK-JNstvW6yF5jfuEPII5dt2dd0A3FXO0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PSO-ANN+Intelligent+Hybrid+Model+to+Predict+the+Compressive+Strength+of+Limestone+Fillers+Roller+Compacted+Concrete+%28RCC%29+to+Build+Dams&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Youcef+Chakali%28Ecole+Nationale+Sup%C3%A9rieure+d%27Hydraulique&rft.au=Ahmed+Hadj+Sadok%28Ecole+Nationale+Sup%C3%A9rieure+d%27Hydraulique&rft.au=Mahfoud+Tahlaiti%28Institut+Catholique+d%E2%80%99Arts+et+M%C3%A9tiers&rft.au=Tarek+Nacer%28Ecole+Nationale+Sup%C3%A9rieure+d%27Hydraulique&rft.date=2021-08-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=3008&rft.epage=3018&rft_id=info:doi/10.1007%2Fs12205-021-1531-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9847121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon