A PSO-ANN Intelligent Hybrid Model to Predict the Compressive Strength of Limestone Fillers Roller Compacted Concrete (RCC) to Build Dams
The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limeston...
Saved in:
| Published in | KSCE journal of civil engineering Vol. 25; no. 8; pp. 3008 - 3018 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Seoul
Korean Society of Civil Engineers
01.08.2021
Springer Nature B.V 대한토목학회 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1226-7988 1976-3808 |
| DOI | 10.1007/s12205-021-1531-6 |
Cover
| Abstract | The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R
2
= 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created. |
|---|---|
| AbstractList | The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created. The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R 2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created. The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases through experimental studies conducted vigorously. This study aims at developing a smart system to predict the compressive strength of the limestone fillers RCC that is used to build dams. The prediction is made base on the following parameters: the maximum diameter of the aggregates, the compactness of the granular mixture, the rates of both cement and limestone fillers, water/cement ratio and the RCC age. The cement strength is taken in to consideration using a corrective equation. Two metaheuristic systems are developed: artificial neural networks (ANN), and a hybrid system consisting of an ANN optimized by a particle swarm optimization (PSO) algorithm. An experimental database is built containing 500 vectors taken from RCC formulations given by lab activity reports about 04 dam projects. The best results were achieved through the PSO-ANN hybrid system. This prediction system is validated by an experimental study conducted on 20 RCC formulations, and a comparison was made with the Laboratoire Central des Ponts et Chaussees (LCPC) method. The prediction resulting from the PSO-ANN system is of a good accuracy level with a correlation factor R2 = 0.85 and a low root mean squared error of 1.45. Finally, a user interface based on the model developed is created. KCI Citation Count: 10 |
| Author | Tahlaiti, Mahfoud Sadok, Ahmed Hadj Nacer, Tarek Chakali, Youcef |
| Author_xml | – sequence: 1 givenname: Youcef surname: Chakali fullname: Chakali, Youcef organization: Ecole Nationale Supérieure d’Hydraulique (ENSH), Laboratoire Mobilisation et Valorisation des Ressources en Eau (MVRE) – sequence: 2 givenname: Ahmed Hadj surname: Sadok fullname: Sadok, Ahmed Hadj organization: Ecole Nationale Supérieure d’Hydraulique (ENSH), Laboratoire Mobilisation et Valorisation des Ressources en Eau (MVRE) – sequence: 3 givenname: Mahfoud surname: Tahlaiti fullname: Tahlaiti, Mahfoud email: mahfoud.tahlaiti@icam.fr organization: Institut Catholique d’Arts et Métiers (ICAM) – sequence: 4 givenname: Tarek surname: Nacer fullname: Nacer, Tarek organization: Ecole Nationale Supérieure d’Hydraulique (ENSH), Laboratoire Mobilisation et Valorisation des Ressources en Eau (MVRE) |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002740737$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNpFkUFvEzEQhS1UJErpD-BmiQs9GOzZrNc-hoXSSKGt0nK2NvZs6nZjp7aDxE_gX-M0SMzlvcM3ozd6b8lJiAEJeS_4J8F59zkLAN4yDoKJthFMviKnQneSNYqrk-oBJOu0Um_Iec6PvE4DnWraU_JnTm_vbtj8-pouQsFp8hsMhV79Xifv6I_ocKIl0tuEzttCywPSPm53CXP2v5DelYRhUx5oHOnSbzGXmoxe-mnClOkqHvRlYbAFXXXBJixIP676_uJw-MveT45-Hbb5HXk9DlPG8396Rn5efrvvr9jy5vuiny-ZnXEoDAewAGuHStUXhNTAUbnOaTmgncHQNkp2YNcWxzW0Y6OQd3Y2NjgI7UbtmjNycbwb0mierDdx8C-6ieYpmfnqfmG0mnUCRGU_HNldis_7-p15jPsUajwDWmjJNUhZKThSeZd82GD6TwluDg2ZY0OmNmQODRnZ_AWhY4ST |
| CitedBy_id | crossref_primary_10_1016_j_jer_2023_09_016 crossref_primary_10_1177_01445987231217134 crossref_primary_10_1007_s41939_023_00300_7 crossref_primary_10_1007_s13369_021_06493_8 crossref_primary_10_1016_j_istruc_2024_106098 crossref_primary_10_1080_10298436_2023_2270765 crossref_primary_10_1080_21681015_2023_2243312 crossref_primary_10_1002_eng2_12676 crossref_primary_10_1007_s41062_023_01122_9 crossref_primary_10_1007_s42947_023_00321_y crossref_primary_10_1016_j_engstruct_2024_118061 |
| ContentType | Journal Article |
| Copyright | Korean Society of Civil Engineers 2021 Korean Society of Civil Engineers 2021. |
| Copyright_xml | – notice: Korean Society of Civil Engineers 2021 – notice: Korean Society of Civil Engineers 2021. |
| DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
| DOI | 10.1007/s12205-021-1531-6 |
| DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Korean Citation Index |
| DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1976-3808 |
| EndPage | 3018 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_9847121 10_1007_s12205_021_1531_6 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACDTI ACYCR |
| ID | FETCH-LOGICAL-c402t-ea2c22bde8827816920e8d7d96aec42a538672cbcefb25f38e07c4f3ea19df9d3 |
| IEDL.DBID | BENPR |
| ISSN | 1226-7988 |
| IngestDate | Sun Jan 19 03:36:33 EST 2025 Fri Jul 25 12:12:06 EDT 2025 Fri Feb 21 02:48:30 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Dam Particles swarm optimization Limestone fillers Prediction Roller compacted concrete Compressive strength Artificial neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-ea2c22bde8827816920e8d7d96aec42a538672cbcefb25f38e07c4f3ea19df9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://dx.doi.org/10.1007/s12205-021-1531-6 |
| PQID | 2919609266 |
| PQPubID | 1496355 |
| PageCount | 11 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9847121 proquest_journals_2919609266 springer_journals_10_1007_s12205_021_1531_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20210800 20210801 2021-08 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
| PublicationDecade | 2020 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul |
| PublicationTitle | KSCE journal of civil engineering |
| PublicationTitleAbbrev | KSCE J Civ Eng |
| PublicationYear | 2021 |
| Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
| Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
| References | HanI-JYuanT-FLeeJ-YYoonY-SKimJ-HLearned prediction of compressive strength of GGBFS concrete using hybrid artificial neural network modelsMaterials20191222370810.3390/ma12223708 Caré S, Linder R, Baroghel-Bouny V, de Larrard F, Charonnat Y (2000) Effet des additions minérales sur les propriétés d’usage des bétons Plan d’expérience et analyse statique. Institut Français des Sciences et Techniques des Réseaux, de l’Aménagement et des Transports Ed., Paris, France NF EN 12390-3Essais pour béton durci — Partie 3: résistance à la compression des éprouvettes2012FranceAssociation Française de Normalisation (AFNOR) ŞengüAlamBShabaniRYamanIOThe effects of compaction methods and mix parameters on the properties of roller compacted concrete mixturesConstruction and Building Materials201922811680710.1016/j.conbuildmat.2019.116807 TanZXThambiratnamDPChanTHTGordanMAbdul RazakHDamage detection in steel-concrete composite bridge using vibration characteristics and artificial neural networkStructure and Infrastructure Engineering20191691247126110.1080/15732479.2019.1696378 Patil MB, Naidu MN, Vasan A, Varma MRR (2020) Water distribution system design using multi-objective particle swarm optimisation. Sāanā(1), DOI: https://doi.org/10.1007/s12046-019-1258-y NF EN 12620Granulats pour béton2003FranceAssociation Française de Normalisation (AFNOR) EbdaliMKhorasaniESalehinSA comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertineInnovative Infrastructure Solutions2020539310.1007/s41062-020-00346-3 SiddiqueNHAdeliHComputational intelligence: Synergies of fuzzy logic, neural networks, and evolutionary computing2013Hoboken, NJ, USAJohn Wiley & Sons10.1002/9781118534823 SukontasukkulPChaisakulkietUJamsawangPHorpibulsukSJaturapitakkulCChindaprasirtPCase investigation on application of steel fibers in roller compacted concrete pavement in ThailandCase Studies in Construction Materials201911e0027110.1016/j.cscm.2019.e00271 Michel F, Piérard J, Courard L, Pollet V (2007) Influence of physico-chemical characteristics of limestone fillers on fresh and hardened mortar performances. RILEM Publications S.A.R.L de LarrardFConcrete mixture proportioning: A scientific approach1999London, UKE & FN Spon10.1201/9781482272055 DanAOosterbaanJJametPContribution des réseaux de neurones artificiels (RNA) à la caractérisation des pollutions de sol. Exemples des pollutions en hydrocarbures aromatiques polycycliques (HAP)Comptes Rendus Geoscience20023341395796510.1016/S1631-0713(02)01836-9 DupainRLanchonRSaint-ArromanJGranulat, sols, ciments et betons2004Paris, FranceCasteilla GhaderiAAbbaszadeh ShahriALarssonSAn artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu)Bulletin of Engineering Geology and the Environment20197864579458810.1007/s10064-018-1400-9 AlamMNDasBPantVA comparative study of metaheuristic optimization approaches for directional overcurrent relays coordinationElectric Power Systems Research2015128395210.1016/j.epsr.2015.06.018 Ali JallalMChabaaSZeroualAA novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackersRenewable Energy20191491182119610.1016/j.renene.2019.10.117 YildizelSACalisGTayehBAMechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavementJournal of Materials Research and Technology202096133411335110.1016/j.jmrt.2020.09.070 BornePBenrajebMHaggègeJLes réseaux de neurones présentation et applications2007Paris, FranceEditions TECHNIP GopalakrishnanKParticle swarm optimization in civil infrastructure systems2013Amsterdam, NetherlandsMetaheuristic Applications in Structures and Infrastructures, Elsevier4976 QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfillConstruction and Building Materials201815947347810.1016/j.conbuildmat.2017.11.006 YehI-CExploring concrete slump model using artificial neural networksJournal of Computing in Civil Engineering200620321722110.1061/(ASCE)0887-3801(2006)20:3(217) KitouniSHouariHLightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early ageCerâmica20135935260060810.1590/S0366-69132013000400017 ASTM C1170-91Standard test methods for determining consistency and density of roller-compacted concrete using a vibrating table1998West Conshohocken, PA, USAASTM C1170-91, ASTM International RahmaniESharbatdarMKBeygiMHAThe effect of water-to-cement ratio on the fracture behaviors and ductility of Roller compacted concrete pavement (RCCP)Theoretical and Applied Fracture Mechanics202010910275310.1016/j.tafmec.2020.102753 HammoudiAMoussacebKBelebchoucheCDahmouneFComparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregatesConstruction and Building Materials201920942543610.1016/j.conbuildmat.2019.03.119 ChhornCHongSJLeeSWRelationship between compressive and tensile strengths of roller-compacted concreteJournal of Traffic and Transportation Engineering (English Edition)20185321522310.1016/j.jtte.2017.09.002 BaiJWildSWareJASabirBBUsing neural networks to predict workability of concrete incorporating metakaolin and fly ashAdvances in Engineering Software20033411–1266366910.1016/S0965-9978(03)00102-9 RebouhRBoukhatemBGhriciMTagnit-HamouAA practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structureConstruction and Building Materials201714977878910.1016/j.conbuildmat.2017.05.165 AkkurtSOzdemirSTayfurGAkyolBThe use of GA-ANNs in the modelling of compressive strength of cement mortarCement and Concrete Research200333797397910.1016/S0008-8846(03)00006-1 ACI Committee 209Guide for modelling and calculating shrinkage and creep in hardened concrete2008Farmington Hills, MI, USAAmerican Concrete InstituteACI 209.2R-08 MomeniEJahed ArmaghaniDHajihassaniMMohd AminMFPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075 de LarrardFSedranTLe logiciel BétonlabPro 32009Paris, FranceBulletin des Laboratoires des Ponts et Chaussées CaiHLiaoTRenSLiSHuoRYuanJYangWPredicting the compressive strength of desert sand concrete using ANN: PSO and its application in tunnelAdvances in Civil Engineering20202020111 de LarrardFStructures granulaires et formulation des bétons1999Paris, FranceLaboratoires des Ponts et Chaussées AmlashiATAbdollahiSMGoodarziSGhanizadehARSoft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concreteJournal of Cleaner Production20192301197121610.1016/j.jclepro.2019.05.168 ElsheikhAHSharshirSWAbd ElazizMKabeelAEGuilanWHaiouZModeling of solar energy systems using artificial neural network: A comprehensive reviewSolar Energy201918062263910.1016/j.solener.2019.01.037 GodoiWCCoraiolaGJuniorSRSwinka-FilhoVde GeusKPortellaKFMedeirosBLCunha de AndradeFHönnickeMGExpounding structures of roller compacted concrete dam specimens by means of hard conventional X-ray inspectionHeliyon201954e0146710.1016/j.heliyon.2019.e01467 KennedyJEberhartRCA discrete binary version of the particle swarm algorithmProceedings of the IEEE International Conference on Systems, Man and Cybernetics1997541044108 ACI Committee 207Roller-compacted mass concrete1999Farmington Hills, MI, USAAmerican Concrete InstituteACI 207.5R-99 BoussaidIPerfectionnement de métaheuristiques pour l’optimisation continue2014Créteil, FranceParis-Est Créteil169 Mcculloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics (5):116–133 PerampalamGPoologanathanKGunalanSYeJNagaratnamBOptimum design of cold-formed steel beams: Particle swarm optimisation and numerical analysisce/papers201933–420521010.1002/cepa.1159 ASTM C1435-99Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer1999West Conshohocken, PA, USAASTM C1435-99, ASTM International MalekiAOptimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sectorInternational Journal of Ambient Energy20194255055710.1080/01430750.2018.1562968 BoukhatemBRebouhRZidolAChekiredMTagnit-HamouAAn intelligent hybrid system for predicting the tortuosity of the pore system of fly ash concreteConstruction and Building Materials201920527428410.1016/j.conbuildmat.2019.02.005 NF EN 13286-5Mélanges traités et mélanges non traités aux liants hydrauliques2003FranceAssociation Française de Normalisation (AFNOR) ZhangPGaoZShiYLinYLiJEffect of large broken stone content on properties of roller compacted concrete based on fractal theoryConstruction and Building Materials202026212082110.1016/j.conbuildmat.2020.120821 CalisGYıldızelSAInvestigation of roller compacted concrete: Literature reviewChallenge Journal of Concrete Research Letters20191036310.20528/cjcrl.2019.03.003 ASTM C1176-92Standard practice for making roller-compacted concrete in cylinder molds using a vibrating table1998West Conshohocken, PA, USAASTM C1176-92, ASTM International SankarMRSaxenaSBanikSRIqbalIMNathRBoraLJGajraniKKExperimental study and artificial neural network modeling of machining with minimum quantity cutting fluidMaterials Today: Proceedings20191849214931 BelićMBobićVBadžaMŠolajaNƉurić-JovičićMKostićVSArtificial intelligence for assisting diagnostics and assessment of parkinson’s disease — A reviewClinical Neurology and Neurosurgery201918410544210.1016/j.clineuro.2019.105442 ParkK-BNoguchiTPlawskyJModeling of hydration reactions using neural networks to predict the average properties of cement pasteCement and Concrete Research20053591676168410.1016/j.cemconres.2 |
| References_xml | – reference: RahmaniESharbatdarMKBeygiMHAThe effect of water-to-cement ratio on the fracture behaviors and ductility of Roller compacted concrete pavement (RCCP)Theoretical and Applied Fracture Mechanics202010910275310.1016/j.tafmec.2020.102753 – reference: GodoiWCCoraiolaGJuniorSRSwinka-FilhoVde GeusKPortellaKFMedeirosBLCunha de AndradeFHönnickeMGExpounding structures of roller compacted concrete dam specimens by means of hard conventional X-ray inspectionHeliyon201954e0146710.1016/j.heliyon.2019.e01467 – reference: CyrMLawrencePRingotEEfficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strengthCement and Concrete Research200636226427710.1016/j.cemconres.2005.07.001 – reference: ASTM C1176-92Standard practice for making roller-compacted concrete in cylinder molds using a vibrating table1998West Conshohocken, PA, USAASTM C1176-92, ASTM International – reference: BoussaidIPerfectionnement de métaheuristiques pour l’optimisation continue2014Créteil, FranceParis-Est Créteil169 – reference: PerampalamGPoologanathanKGunalanSYeJNagaratnamBOptimum design of cold-formed steel beams: Particle swarm optimisation and numerical analysisce/papers201933–420521010.1002/cepa.1159 – reference: ACI Committee 207Roller-compacted mass concrete1999Farmington Hills, MI, USAAmerican Concrete InstituteACI 207.5R-99 – reference: RahmaniESharbatdarMKazemHABeygiMHAA comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of roller compacted concrete pavement (RCCP)Construction and Building Materials202025311917710.1016/j.conbuildmat.2020.119177 – reference: ŞengüAlamBShabaniRYamanIOThe effects of compaction methods and mix parameters on the properties of roller compacted concrete mixturesConstruction and Building Materials201922811680710.1016/j.conbuildmat.2019.116807 – reference: YildizelSACalisGTayehBAMechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavementJournal of Materials Research and Technology202096133411335110.1016/j.jmrt.2020.09.070 – reference: ElsheikhAHSharshirSWAbd ElazizMKabeelAEGuilanWHaiouZModeling of solar energy systems using artificial neural network: A comprehensive reviewSolar Energy201918062263910.1016/j.solener.2019.01.037 – reference: ASTM C1170-91Standard test methods for determining consistency and density of roller-compacted concrete using a vibrating table1998West Conshohocken, PA, USAASTM C1170-91, ASTM International – reference: NF EN 13286-5Mélanges traités et mélanges non traités aux liants hydrauliques2003FranceAssociation Française de Normalisation (AFNOR) – reference: EbdaliMKhorasaniESalehinSA comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertineInnovative Infrastructure Solutions2020539310.1007/s41062-020-00346-3 – reference: International Federation for Structural ConcreteModel code 20102010Lausanne, SwitzerlandComité Euro-International du Béton – reference: SankarMRSaxenaSBanikSRIqbalIMNathRBoraLJGajraniKKExperimental study and artificial neural network modeling of machining with minimum quantity cutting fluidMaterials Today: Proceedings20191849214931 – reference: AmlashiATAbdollahiSMGoodarziSGhanizadehARSoft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concreteJournal of Cleaner Production20192301197121610.1016/j.jclepro.2019.05.168 – reference: DidoucheZEzzianeKKadriE-HPredicted of hydration heat and compressive strength of limestone cement mortar with different type of superplasticizerAdvances in Concrete Construction201866659677 – reference: KennedyJEberhartRCA discrete binary version of the particle swarm algorithmProceedings of the IEEE International Conference on Systems, Man and Cybernetics1997541044108 – reference: MalekiAOptimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sectorInternational Journal of Ambient Energy20194255055710.1080/01430750.2018.1562968 – reference: NF EN 12620Granulats pour béton2003FranceAssociation Française de Normalisation (AFNOR) – reference: DanAOosterbaanJJametPContribution des réseaux de neurones artificiels (RNA) à la caractérisation des pollutions de sol. Exemples des pollutions en hydrocarbures aromatiques polycycliques (HAP)Comptes Rendus Geoscience20023341395796510.1016/S1631-0713(02)01836-9 – reference: ChhornCHongSJLeeSWRelationship between compressive and tensile strengths of roller-compacted concreteJournal of Traffic and Transportation Engineering (English Edition)20185321522310.1016/j.jtte.2017.09.002 – reference: AkkurtSOzdemirSTayfurGAkyolBThe use of GA-ANNs in the modelling of compressive strength of cement mortarCement and Concrete Research200333797397910.1016/S0008-8846(03)00006-1 – reference: HanI-JYuanT-FLeeJ-YYoonY-SKimJ-HLearned prediction of compressive strength of GGBFS concrete using hybrid artificial neural network modelsMaterials20191222370810.3390/ma12223708 – reference: BaiJWildSWareJASabirBBUsing neural networks to predict workability of concrete incorporating metakaolin and fly ashAdvances in Engineering Software20033411–1266366910.1016/S0965-9978(03)00102-9 – reference: BelićMBobićVBadžaMŠolajaNƉurić-JovičićMKostićVSArtificial intelligence for assisting diagnostics and assessment of parkinson’s disease — A reviewClinical Neurology and Neurosurgery201918410544210.1016/j.clineuro.2019.105442 – reference: Caré S, Linder R, Baroghel-Bouny V, de Larrard F, Charonnat Y (2000) Effet des additions minérales sur les propriétés d’usage des bétons Plan d’expérience et analyse statique. Institut Français des Sciences et Techniques des Réseaux, de l’Aménagement et des Transports Ed., Paris, France – reference: Ali JallalMChabaaSZeroualAA novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackersRenewable Energy20191491182119610.1016/j.renene.2019.10.117 – reference: GopalakrishnanKParticle swarm optimization in civil infrastructure systems2013Amsterdam, NetherlandsMetaheuristic Applications in Structures and Infrastructures, Elsevier4976 – reference: RebouhRBoukhatemBGhriciMTagnit-HamouAA practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structureConstruction and Building Materials201714977878910.1016/j.conbuildmat.2017.05.165 – reference: SukontasukkulPChaisakulkietUJamsawangPHorpibulsukSJaturapitakkulCChindaprasirtPCase investigation on application of steel fibers in roller compacted concrete pavement in ThailandCase Studies in Construction Materials201911e0027110.1016/j.cscm.2019.e00271 – reference: de LarrardFSedranTLe logiciel BétonlabPro 32009Paris, FranceBulletin des Laboratoires des Ponts et Chaussées – reference: de LarrardFStructures granulaires et formulation des bétons1999Paris, FranceLaboratoires des Ponts et Chaussées – reference: NF EN 12390-3Essais pour béton durci — Partie 3: résistance à la compression des éprouvettes2012FranceAssociation Française de Normalisation (AFNOR) – reference: ParkK-BNoguchiTPlawskyJModeling of hydration reactions using neural networks to predict the average properties of cement pasteCement and Concrete Research20053591676168410.1016/j.cemconres.2004.08.004 – reference: ACI Committee 209Guide for modelling and calculating shrinkage and creep in hardened concrete2008Farmington Hills, MI, USAAmerican Concrete InstituteACI 209.2R-08 – reference: CaiHLiaoTRenSLiSHuoRYuanJYangWPredicting the compressive strength of desert sand concrete using ANN: PSO and its application in tunnelAdvances in Civil Engineering20202020111 – reference: AlamMNDasBPantVA comparative study of metaheuristic optimization approaches for directional overcurrent relays coordinationElectric Power Systems Research2015128395210.1016/j.epsr.2015.06.018 – reference: YehI-CExploring concrete slump model using artificial neural networksJournal of Computing in Civil Engineering200620321722110.1061/(ASCE)0887-3801(2006)20:3(217) – reference: de LarrardFConcrete mixture proportioning: A scientific approach1999London, UKE & FN Spon10.1201/9781482272055 – reference: SiddiqueNHAdeliHComputational intelligence: Synergies of fuzzy logic, neural networks, and evolutionary computing2013Hoboken, NJ, USAJohn Wiley & Sons10.1002/9781118534823 – reference: CalisGYıldızelSAInvestigation of roller compacted concrete: Literature reviewChallenge Journal of Concrete Research Letters20191036310.20528/cjcrl.2019.03.003 – reference: DupainRLanchonRSaint-ArromanJGranulat, sols, ciments et betons2004Paris, FranceCasteilla – reference: ZhangPGaoZShiYLinYLiJEffect of large broken stone content on properties of roller compacted concrete based on fractal theoryConstruction and Building Materials202026212082110.1016/j.conbuildmat.2020.120821 – reference: QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfillConstruction and Building Materials201815947347810.1016/j.conbuildmat.2017.11.006 – reference: ASTM C1435-99Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer1999West Conshohocken, PA, USAASTM C1435-99, ASTM International – reference: KitouniSHouariHLightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early ageCerâmica20135935260060810.1590/S0366-69132013000400017 – reference: ZdiriMBen OuezdouMNejiJTheoretical and experimental study of roller-compacted concrete strengthMagazine of Concrete Research200860746947410.1680/macr.2007.00002 – reference: Patil MB, Naidu MN, Vasan A, Varma MRR (2020) Water distribution system design using multi-objective particle swarm optimisation. Sāanā(1), DOI: https://doi.org/10.1007/s12046-019-1258-y – reference: BornePBenrajebMHaggègeJLes réseaux de neurones présentation et applications2007Paris, FranceEditions TECHNIP – reference: BoukhatemBRebouhRZidolAChekiredMTagnit-HamouAAn intelligent hybrid system for predicting the tortuosity of the pore system of fly ash concreteConstruction and Building Materials201920527428410.1016/j.conbuildmat.2019.02.005 – reference: GhaderiAAbbaszadeh ShahriALarssonSAn artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu)Bulletin of Engineering Geology and the Environment20197864579458810.1007/s10064-018-1400-9 – reference: LiuDLiZLiuJExperimental study on real-time control of roller compacted concrete dam compaction quality using unit compaction energy indicesConstruction and Building Materials20159656757510.1016/j.conbuildmat.2015.08.048 – reference: Michel F, Piérard J, Courard L, Pollet V (2007) Influence of physico-chemical characteristics of limestone fillers on fresh and hardened mortar performances. RILEM Publications S.A.R.L – reference: TanZXThambiratnamDPChanTHTGordanMAbdul RazakHDamage detection in steel-concrete composite bridge using vibration characteristics and artificial neural networkStructure and Infrastructure Engineering20191691247126110.1080/15732479.2019.1696378 – reference: HammoudiAMoussacebKBelebchoucheCDahmouneFComparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregatesConstruction and Building Materials201920942543610.1016/j.conbuildmat.2019.03.119 – reference: Mcculloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics (5):116–133 – reference: MomeniEJahed ArmaghaniDHajihassaniMMohd AminMFPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075 – reference: GauthierPMarchandJConception et réalisation de revêtements en béton compacté au rouleau au Québec2004Québec, CanadaAssociation des Constructeurs de Routes et Grands Travaux du Québec |
| SSID | ssj0000327835 |
| Score | 2.3114488 |
| Snippet | The compressive strength of the roller-compacted concrete (RCC) is an essential indicator of quality when designing dams. RCC is optimized in most cases... |
| SourceID | nrf proquest springer |
| SourceType | Open Website Aggregation Database Publisher |
| StartPage | 3008 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Cement Civil Engineering Compressive strength Concrete Correlation coefficients Dam design Dams Engineering Engineers Fillers Formulations Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Heuristic methods Hybrid systems Industrial Pollution Prevention Limestone Mechanical properties Neural networks Optimization Particle swarm optimization Predictions Roller compacted concrete Structural Engineering Vectors Water-cement ratio 토목공학 |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS_QwEA5-XPQgfuI3g3hQJNCmbbo9rqvLKrKKuuAttOnE90XtQrcK_gT_tTN166p48dRCk1AySeZpZ55nhNjHKEYdxpkk76BkmHiJTF2GMgw9lwV-gJGt1T77ujcIz--iuzGPe9RkuzchyfqknpDdmBMqOaWAdqkv9bSYjVjNixbxQLU_f6x4AReP4NRF6qAl63E10czfRiGfUpTuG778ERKtPU13USyMISK0P2y6JKawWBbzX4QDV8RbG65uLmW734ezT03NCnqvzL8Crm_2CNUQrkoOw1RAIA9449c5ry8IHIou7qt_MHRwwRwQVuSGbk0LHAHrdGNZd2Ap55zuCsKWFcLBdadzyAMfczFtOEmfRqti0D297fTkuKiCtPSpWElMlVUqy5GgddzydaI8bOVxnugUbahSOgB1rGxm0WUqckELvdiGLsDUT3KX5MGamCnopdYFOEtNkD6xHDl6zONWmDKnISJIF8Sp1htij6bWPNj_hkWs-Xo_NA-lIah-ZhL2i8rfENvNzJvx9hkZlfishKd4jKPGGpPHE6llNqYhYxo2ptGbf2q9JeYUL4Q6nW9bzFTlM-4QxKiy3XpJvQNpuceq priority: 102 providerName: Springer Nature |
| Title | A PSO-ANN Intelligent Hybrid Model to Predict the Compressive Strength of Limestone Fillers Roller Compacted Concrete (RCC) to Build Dams |
| URI | https://link.springer.com/article/10.1007/s12205-021-1531-6 https://www.proquest.com/docview/2919609266 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002740737 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | KSCE Journal of Civil Engineering, 2021, 25(8), , pp.3008-3018 |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AFBBN dateStart: 19971201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1976-3808 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: BENPR dateStart: 19971201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1976-3808 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: 8FG dateStart: 19971201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: U2A dateStart: 19971201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthc4IJ6i7FJZiAMIWSTO-4BQWprtAgrVQqXlZDl-7KJlU0gDEj-Bf81MSLbAgZMj2bEijzPz2TPzDcBjGyU2DpOKo3UQPMy8jCtXWR6GnqsCP7CR7tg-y3i5Dl-fRqd7UA65MBRWOejETlGbjaY78uci84kcDe3Jyy9fOVWNIu_qUEJD9aUVzIuOYmwfxoKYsUYwni3K1cnVrYsXUGUJimv0EXdwIusaXJ1dPh2lnXKKWkBF4HPiIakb9xf4_Mdf2pmh4ibc6PEjy38L_Bbs2fo2XP-DVfAO_MzZ6v07npclO74i3GzZ8gclZzEqfvaZtRu2ashH0zJEgIy0QhcQ-90y8lPXZ-052zj2lhJEiK6bFV3O4JYRibdtuheI59ngU43As7Xsycl8_pQmnlGlbfZKXW7vwrpYfJgveV9xgWs8R7bcKqGFqIxF3J2kfpwJz6YmMVmsrA6FQu0YJ0JX2rpKRC5IrZfo0AVW-ZlxmQnuwajGj7oPzGkcYvH85RAFWJOkoaKEhwjxXpCoOJ7AI1xaeaE_SWK4pvZsIy8aiTj-WGZkNIU_gcNh5WX_b23lbidM4NkgjV33joeZhClRmJKEKeMH_5_sAK4JknwX3HcIo7b5Zh8i4GirKeynxdEUxnkxm5XUHn18s5j2ewt71yL_Bdsz1rc |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKewAOqPyJhRYsBBIIWU0cJ9kcKrTddrVLl7AqrdSbcZxxQYVsmw2gPgIvxbMxY5IucODWUyIlsSLPZOabzMw3jD2DOIVEpYVA7yCFyoJMGFeAUCpwRRRGEFvP9pkn4yP15jg-XmE_u14YKqvsbKI31OXc0j_yLZmFRI6G_uT12bmgqVGUXe1GaJh2tEK57SnG2saOfbj4jiHcYnuyi_J-LuVo73A4Fu2UAWExdmoEGGmlLEpArJn2wySTAfTLtMwSA1ZJgxYhSaUtLLhCxi7qQ5Ba5SIwYVa6rIxw3WtsTUUqw-BvbWcvnx1c_uUJIppkQXWUIeIcQeRgXWrV9-9Rm6ugKgk0PKEg3pOqdn-B3X_ys97tjdbZrRav8sFvBbvNVqC6w27-wWJ4l_0Y8Nn7d2KQ53xySfDZ8PEFNYNxGrb2mTdzPqspJ9RwRJycrJAvwP0GnPLi1Unzkc8dn1JDCtGD85HvUVxwIg2H2j9AvNIlnlUIdBvgLw6Gw5e08A5N9ua75sviHju6kr2_z1YrfKkHjDuLtwDGew5RB5RpXxlqsIgRX0apSZIee4pbq0_tJ02M2nQ8mevTWmPcMNEZOWkZ9thGt_O6_ZYXeql5Pfaqk8by8pL3mYSpUZiahKmTh_9f7Am7Pj58O9XTSb7_iN2QpAW-sHCDrTb1V9hEsNMUj1uN4uzDVSvxLwFaED0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSAgOiE_1E0aIA1VlNXEcZ3PcblntQrWsoCv1ZiXOuKDSbJU1lfoT-q87k266FHHhlEixrchje14y894I8QHTDI3OSkneQUmdR7ksfIlS68iXSZxg6lq1z4kZzfTnk_RkWed00WW7dyHJW04DqzTVYf-i8vsr4hvzQyWnF9COjaV5KB5p1kmgBT1T_bufLFHChSQ4jZE6GMnaXF1k81-jkH-pG38Pa_4VHm29zvC5eLaEi9C_te8L8QDrl-LpHyKCr8R1H6bfv8r-ZALjO33NAKMr5mIB1zr7BWEO04ZDMgEI8AEfAm3-6yUCh6Xr0_AD5h6OmA_C6twwbCmCC2DNbmzaDizrXNFdTTgzIHz8Nhjs8sAHXFgbDovzxWsxG346HozkssCCdPTZGCQWyilVVkgwO-vFJlcR9qqsyk2BTquCDkOTKVc69KVKfdLDKHPaJ1jEeeXzKnkj1mp6qXUB3lETpM8tT04fq6ynC-Y3pATvkqwwZkO8p6m1Z-6nZUFrvp7O7VljCbaPbc4-UsUbYrubebvcSgur8phV8RSPsddZY_V4JbvMxrRkTMvGtGbzv1q_E4-nh0N7NJ582RJPFK-JNstvW6yF5jfuEPII5dt2dd0A3FXO0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PSO-ANN+Intelligent+Hybrid+Model+to+Predict+the+Compressive+Strength+of+Limestone+Fillers+Roller+Compacted+Concrete+%28RCC%29+to+Build+Dams&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Youcef+Chakali%28Ecole+Nationale+Sup%C3%A9rieure+d%27Hydraulique&rft.au=Ahmed+Hadj+Sadok%28Ecole+Nationale+Sup%C3%A9rieure+d%27Hydraulique&rft.au=Mahfoud+Tahlaiti%28Institut+Catholique+d%E2%80%99Arts+et+M%C3%A9tiers&rft.au=Tarek+Nacer%28Ecole+Nationale+Sup%C3%A9rieure+d%27Hydraulique&rft.date=2021-08-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=3008&rft.epage=3018&rft_id=info:doi/10.1007%2Fs12205-021-1531-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9847121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |