On the computational complexity of the empirical mode decomposition algorithm

It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transf...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 400; pp. 159 - 167
Main Authors Wang, Yung-Hung, Yeh, Chien-Hung, Young, Hsu-Wen Vincent, Hu, Kun, Lo, Men-Tzung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2014
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2014.01.020

Cover

Abstract It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transform. Numerical examples are presented to verify that EMD/EEMD is, in fact, a computationally efficient method. •The order of the computational complexity of the EMD is equivalent to FFT.•Optimized program is proposed to speed up the computation of EMD up to 1000 times.•Fast HHT with optimized EMD/EEMD algorithm can operate in real-time.
AbstractList It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transform. Numerical examples are presented to verify that EMD/EEMD is, in fact, a computationally efficient method. •The order of the computational complexity of the EMD is equivalent to FFT.•Optimized program is proposed to speed up the computation of EMD up to 1000 times.•Fast HHT with optimized EMD/EEMD algorithm can operate in real-time.
It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transform. Numerical examples are presented to verify that EMD/EEMD is, in fact, a computationally efficient method.
Author Hu, Kun
Wang, Yung-Hung
Yeh, Chien-Hung
Lo, Men-Tzung
Young, Hsu-Wen Vincent
Author_xml – sequence: 1
  givenname: Yung-Hung
  surname: Wang
  fullname: Wang, Yung-Hung
  organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC
– sequence: 2
  givenname: Chien-Hung
  surname: Yeh
  fullname: Yeh, Chien-Hung
  organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC
– sequence: 3
  givenname: Hsu-Wen Vincent
  surname: Young
  fullname: Young, Hsu-Wen Vincent
  organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC
– sequence: 4
  givenname: Kun
  surname: Hu
  fullname: Hu, Kun
  organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
– sequence: 5
  givenname: Men-Tzung
  surname: Lo
  fullname: Lo, Men-Tzung
  email: mzlo@ncu.edu.tw
  organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC
BookMark eNqFkD1PwzAQhi1UJErhF7BkZEnw2XE-BgZU8SUVdYHZspwzdZXEwXYR_fckLRMDTKfT-z6n03NOZr3rkZAroBlQKG622bDZB5UxCnlGIaOMnpA5VCVPGUA9I3PKyyrNeQln5DyELaUUSs7m5GXdJ3GDiXbdsIsqWter9rC1-GXjPnHmkGM3WG_1mHWuwaTBqeKCnYBEte_O27jpLsipUW3Ay5-5IG8P96_Lp3S1fnxe3q1SnVMWUyxqQwXnVZErwUoDpikqZarCmFojEzWDWkDZjO-yEoUqoOICBcNaCYTK8AW5Pt4dvPvYYYiys0Fj26oe3S5IEBwozStWjlV-rGrvQvBo5OBtp_xeApWTPLmVB3lykicpyFHeSNW_KG2PdqJXtv2HvT2yOBr4tOhl0BZ7jY31qKNsnP2T_wbQ2o6M
CitedBy_id crossref_primary_10_3389_fenvs_2022_833374
crossref_primary_10_1016_j_asoc_2022_109726
crossref_primary_10_1016_j_oceaneng_2024_119550
crossref_primary_10_1007_s10772_016_9392_y
crossref_primary_10_1016_j_soildyn_2023_108037
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_3390_s150716372
crossref_primary_10_1007_s10577_023_09738_4
crossref_primary_10_1016_j_measurement_2020_108696
crossref_primary_10_1016_j_sigpro_2016_02_011
crossref_primary_10_1016_j_csi_2024_103897
crossref_primary_10_1016_j_bspc_2021_102808
crossref_primary_10_1021_acs_iecr_9b06351
crossref_primary_10_7555_JBR_33_20190009
crossref_primary_10_1016_j_bspc_2015_05_006
crossref_primary_10_1016_j_jneumeth_2015_10_009
crossref_primary_10_1109_ACCESS_2018_2812890
crossref_primary_10_1016_j_sigpro_2016_09_015
crossref_primary_10_1016_j_cie_2024_110288
crossref_primary_10_3390_s18071996
crossref_primary_10_1016_j_measurement_2022_111502
crossref_primary_10_1038_s41598_017_07627_5
crossref_primary_10_1109_TCSVT_2018_2855098
crossref_primary_10_1016_j_aej_2021_01_055
crossref_primary_10_1016_j_bspc_2022_103992
crossref_primary_10_1049_iet_gtd_2017_0862
crossref_primary_10_1016_j_apenergy_2016_12_134
crossref_primary_10_1109_TMI_2014_2364079
crossref_primary_10_1109_TGRS_2016_2598065
crossref_primary_10_3390_s21134286
crossref_primary_10_1088_1741_2552_ac7f5e
crossref_primary_10_1016_j_sigpro_2014_10_038
crossref_primary_10_1177_14759217241246985
crossref_primary_10_3390_s22020689
crossref_primary_10_54021_seesv5n2_698
crossref_primary_10_1016_j_bspc_2018_12_015
crossref_primary_10_1016_j_dsp_2021_103375
crossref_primary_10_1080_23248378_2020_1795942
crossref_primary_10_1016_j_measurement_2020_108679
crossref_primary_10_3390_e21070680
crossref_primary_10_3847_1538_4357_acd756
crossref_primary_10_1109_ACCESS_2018_2877150
crossref_primary_10_1016_j_epsr_2016_01_012
crossref_primary_10_1016_j_ijepes_2023_109465
crossref_primary_10_1029_2023EA003302
crossref_primary_10_1016_j_measurement_2019_04_046
crossref_primary_10_3847_1538_4357_ac8165
crossref_primary_10_1016_j_promfg_2018_10_029
crossref_primary_10_1049_iet_spr_2016_0147
crossref_primary_10_1007_s10772_017_9468_3
crossref_primary_10_1109_ACCESS_2019_2892622
crossref_primary_10_1093_mnras_stad384
crossref_primary_10_1109_ACCESS_2018_2847634
crossref_primary_10_5194_asr_13_121_2016
crossref_primary_10_3390_en11020321
crossref_primary_10_1109_TIE_2015_2506619
crossref_primary_10_1016_j_microrel_2017_03_032
crossref_primary_10_3389_fpsyt_2022_851908
crossref_primary_10_3390_rs9090881
crossref_primary_10_1109_JSEN_2016_2519679
crossref_primary_10_1007_s11356_019_07402_1
crossref_primary_10_1155_2020_6687733
crossref_primary_10_1109_TNNLS_2023_3335355
crossref_primary_10_3390_en10091422
crossref_primary_10_1109_ACCESS_2021_3107502
crossref_primary_10_1109_TBME_2020_2974095
crossref_primary_10_3390_s24227193
crossref_primary_10_3390_jpm12111768
crossref_primary_10_1016_j_sna_2017_11_013
crossref_primary_10_1109_TCSS_2019_2915615
crossref_primary_10_1049_stg2_12060
crossref_primary_10_21595_jve_2016_17194
crossref_primary_10_1134_S1054661817020018
crossref_primary_10_1109_TPWRS_2017_2694705
crossref_primary_10_3390_sym9110283
crossref_primary_10_1016_j_dsp_2015_12_003
crossref_primary_10_1016_j_ijmecsci_2022_107929
crossref_primary_10_1155_2016_9278581
crossref_primary_10_1016_j_bspc_2021_103413
crossref_primary_10_2174_1876973X01609010065
crossref_primary_10_3390_en12224283
crossref_primary_10_1016_j_asoc_2022_108560
crossref_primary_10_1016_j_sigpro_2023_109194
crossref_primary_10_3389_fnhum_2017_00261
crossref_primary_10_1109_TMI_2015_2419711
crossref_primary_10_7717_peerj_1086
crossref_primary_10_1088_0004_637X_815_1_74
crossref_primary_10_1016_j_renene_2015_06_004
crossref_primary_10_1088_1361_6501_aa9ef0
crossref_primary_10_1016_j_egypro_2016_10_045
crossref_primary_10_1063_5_0079424
crossref_primary_10_1080_04353676_2020_1786943
crossref_primary_10_1109_TNSRE_2022_3147072
crossref_primary_10_1016_j_physa_2016_02_012
crossref_primary_10_1088_1361_6501_adb5b0
crossref_primary_10_1016_j_physa_2024_129708
crossref_primary_10_1016_j_bbe_2020_11_002
crossref_primary_10_1016_j_ymssp_2024_111727
crossref_primary_10_1038_s41598_024_78845_x
crossref_primary_10_1007_s40998_018_0055_7
crossref_primary_10_1007_s11517_015_1389_1
crossref_primary_10_1016_j_enconman_2016_02_022
crossref_primary_10_1016_j_ymssp_2020_107193
crossref_primary_10_3390_en11123301
crossref_primary_10_1016_j_atmosres_2017_10_009
crossref_primary_10_3390_en9080640
crossref_primary_10_3390_e24050681
crossref_primary_10_1155_2023_8853345
crossref_primary_10_1109_TGRS_2016_2635078
crossref_primary_10_1016_j_jclepro_2023_139234
crossref_primary_10_1016_j_renene_2021_07_126
crossref_primary_10_1109_TIE_2017_2650873
crossref_primary_10_1016_j_isatra_2016_10_014
crossref_primary_10_1016_j_dsp_2021_103292
crossref_primary_10_1186_s12938_016_0233_7
crossref_primary_10_1109_ACCESS_2020_3003254
crossref_primary_10_1016_j_eneco_2020_104952
crossref_primary_10_1109_TIM_2024_3450102
crossref_primary_10_1109_JSEN_2020_3041737
crossref_primary_10_1007_s00603_015_0755_5
crossref_primary_10_1016_j_oceaneng_2018_01_019
crossref_primary_10_1016_j_quaint_2015_01_051
crossref_primary_10_1088_1741_2552_ab33e4
crossref_primary_10_3390_s22010153
crossref_primary_10_1007_s10489_023_04549_w
crossref_primary_10_1088_0957_0233_27_9_095103
crossref_primary_10_1038_s41598_018_27567_y
crossref_primary_10_3390_land11060862
crossref_primary_10_1007_s12206_021_0204_1
crossref_primary_10_3390_w10060730
crossref_primary_10_1016_j_measurement_2023_112716
crossref_primary_10_1038_s41467_024_46012_5
crossref_primary_10_1109_TGRS_2017_2723431
crossref_primary_10_1109_TIM_2016_2579360
crossref_primary_10_1016_j_seta_2022_102807
crossref_primary_10_1016_j_enconman_2017_04_012
crossref_primary_10_1002_joc_4809
crossref_primary_10_1002_joc_7082
crossref_primary_10_1016_j_apenergy_2015_08_014
crossref_primary_10_1016_j_physa_2017_04_009
crossref_primary_10_1029_2021EF002124
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_3390_en10122001
crossref_primary_10_1038_s41598_023_47048_1
crossref_primary_10_7554_eLife_31307
crossref_primary_10_1063_5_0070140
crossref_primary_10_1016_j_phycom_2022_101831
crossref_primary_10_1142_S0218213016500056
crossref_primary_10_1016_j_dsp_2018_05_009
crossref_primary_10_1049_iet_spr_2016_0450
crossref_primary_10_5194_asr_14_35_2017
crossref_primary_10_1016_j_enconman_2014_09_060
crossref_primary_10_1016_j_bspc_2023_104701
crossref_primary_10_1016_j_ymssp_2016_09_031
crossref_primary_10_1109_TIM_2021_3051996
crossref_primary_10_1016_j_jneumeth_2016_02_015
crossref_primary_10_1109_JSEN_2021_3067770
crossref_primary_10_1109_TPWRD_2018_2827843
crossref_primary_10_1007_s11276_015_0996_y
crossref_primary_10_3390_su14010148
crossref_primary_10_1016_j_measurement_2018_10_085
crossref_primary_10_1016_j_jvolgeores_2020_106976
crossref_primary_10_1016_j_apacoust_2021_108151
crossref_primary_10_3390_en12020254
crossref_primary_10_1002_2017JC013230
crossref_primary_10_1063_5_0009771
crossref_primary_10_3390_e23091130
crossref_primary_10_1080_01431161_2019_1667549
crossref_primary_10_1016_j_physa_2016_06_112
crossref_primary_10_1016_j_ymssp_2016_01_003
crossref_primary_10_1016_j_jappgeo_2014_08_004
crossref_primary_10_3390_s23062927
crossref_primary_10_1142_S179353691550003X
crossref_primary_10_1166_jmihi_2021_3870
crossref_primary_10_3389_fpsyt_2022_1070198
crossref_primary_10_1109_TIM_2020_3041099
crossref_primary_10_3390_s21051825
crossref_primary_10_3389_fncom_2022_1010770
crossref_primary_10_1016_j_eswa_2023_122891
crossref_primary_10_1007_s00180_015_0603_9
crossref_primary_10_1016_j_ymssp_2022_108909
crossref_primary_10_1016_j_isatra_2018_12_020
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1093_tse_tdac064
crossref_primary_10_1016_j_egypro_2019_01_079
crossref_primary_10_3390_en16145312
crossref_primary_10_1016_j_compbiomed_2019_103379
crossref_primary_10_1016_j_measurement_2022_112344
crossref_primary_10_1016_j_apenergy_2018_09_118
crossref_primary_10_1007_s00034_021_01753_2
crossref_primary_10_1088_2515_7620_ace760
crossref_primary_10_1016_j_enconman_2017_11_067
crossref_primary_10_1111_1365_2478_12530
crossref_primary_10_1155_2020_7605683
crossref_primary_10_1109_TIE_2023_3288174
crossref_primary_10_23919_CSMS_2024_0019
crossref_primary_10_1016_j_apm_2016_08_001
crossref_primary_10_1088_1742_6596_842_1_012002
crossref_primary_10_1109_ACCESS_2019_2904201
crossref_primary_10_1016_j_measurement_2018_12_009
crossref_primary_10_1016_j_compag_2017_12_013
crossref_primary_10_1016_j_gaitpost_2018_06_104
crossref_primary_10_3390_en12020277
crossref_primary_10_1109_JSEN_2020_2976519
crossref_primary_10_1109_TPWRD_2022_3157708
crossref_primary_10_1002_ese3_1561
crossref_primary_10_3390_coatings12091337
crossref_primary_10_1016_j_ymssp_2016_05_009
crossref_primary_10_1109_ACCESS_2022_3218417
crossref_primary_10_1016_j_clinph_2020_05_035
crossref_primary_10_1016_j_eswa_2016_04_026
crossref_primary_10_1016_j_ymssp_2020_106750
crossref_primary_10_1016_j_bspc_2022_104218
crossref_primary_10_1016_j_patrec_2022_11_026
crossref_primary_10_21595_jve_2016_17338
crossref_primary_10_1109_JIOT_2020_3005688
crossref_primary_10_3847_1538_4357_abacbd
crossref_primary_10_1007_s00170_019_03597_2
crossref_primary_10_21595_vp_2019_20869
crossref_primary_10_3847_1538_4357_ab48e4
crossref_primary_10_3390_jpm12101608
crossref_primary_10_1016_j_jmsy_2020_05_004
crossref_primary_10_1007_s42835_019_00118_9
crossref_primary_10_1049_iet_smt_2017_0232
crossref_primary_10_1007_s00348_019_2775_5
crossref_primary_10_1016_j_apacoust_2022_108641
crossref_primary_10_1007_s00704_016_1822_x
crossref_primary_10_1016_j_jclepro_2020_121442
crossref_primary_10_3390_app142310866
crossref_primary_10_3390_app8091447
crossref_primary_10_1177_0271678X241249276
crossref_primary_10_1007_s40430_025_05452_w
crossref_primary_10_1080_00051144_2020_1811571
crossref_primary_10_1016_j_energy_2016_11_035
crossref_primary_10_3390_rs11101253
crossref_primary_10_3389_fsysb_2022_1021897
crossref_primary_10_1016_j_optlaseng_2023_107832
crossref_primary_10_1016_j_future_2019_11_025
crossref_primary_10_1016_j_ymssp_2021_108052
crossref_primary_10_1016_j_isatra_2018_11_044
crossref_primary_10_1088_1361_6501_ab3fe2
crossref_primary_10_1109_TBME_2019_2921198
crossref_primary_10_1186_s12938_020_0754_y
crossref_primary_10_1049_iet_smt_2017_0284
crossref_primary_10_1007_s00170_018_1768_5
crossref_primary_10_1155_2020_7247195
crossref_primary_10_3390_electronics9071157
crossref_primary_10_1038_s41598_021_85235_0
crossref_primary_10_1109_TNSRE_2016_2521612
crossref_primary_10_1038_s41598_020_57853_7
crossref_primary_10_1109_TIM_2021_3115586
crossref_primary_10_1007_s10772_016_9381_1
crossref_primary_10_1007_s00034_023_02319_0
crossref_primary_10_1007_s11760_022_02226_y
crossref_primary_10_1186_s12898_019_0272_6
crossref_primary_10_1109_LSP_2022_3166069
crossref_primary_10_1016_j_bspc_2016_06_017
crossref_primary_10_3390_e18070242
crossref_primary_10_1007_s00382_016_3085_8
crossref_primary_10_1016_j_resourpol_2024_105372
crossref_primary_10_1177_1550147718772531
crossref_primary_10_1063_1_5074152
crossref_primary_10_1016_j_physa_2021_126295
crossref_primary_10_1109_LSP_2019_2925316
crossref_primary_10_1016_j_aca_2021_338386
crossref_primary_10_1016_j_neurobiolaging_2018_06_007
crossref_primary_10_1016_j_apm_2023_05_042
crossref_primary_10_21595_jve_2017_18115
crossref_primary_10_1103_PhysRevE_93_062226
crossref_primary_10_1109_TIA_2022_3213629
crossref_primary_10_1007_s00170_018_2735_x
crossref_primary_10_1016_j_isatra_2020_08_015
crossref_primary_10_1016_j_dsp_2022_103659
crossref_primary_10_1109_TBME_2017_2668763
crossref_primary_10_1038_s41598_024_59851_5
crossref_primary_10_5194_npg_25_19_2018
crossref_primary_10_1029_2022JF006715
crossref_primary_10_1016_j_seta_2022_102535
crossref_primary_10_1016_j_jclepro_2020_124023
crossref_primary_10_1016_j_measurement_2020_108644
crossref_primary_10_1038_s41598_018_21013_9
crossref_primary_10_1007_s13246_021_01055_6
crossref_primary_10_1109_JBHI_2018_2821675
crossref_primary_10_1016_j_physa_2020_125685
crossref_primary_10_3389_fnhum_2022_880304
crossref_primary_10_1016_j_enconman_2015_04_057
crossref_primary_10_1007_s40430_024_05039_x
crossref_primary_10_3390_app14177451
crossref_primary_10_3390_en8076585
Cites_doi 10.1109/TITB.2010.2072963
10.1098/rspa.1998.0193
10.1109/TIE.2010.2060454
10.1016/j.resuscitation.2013.07.004
10.1109/MCSE.2011.20
10.1109/TSP.2011.2106779
10.1103/PhysRevE.79.061924
10.1142/S1793536909000047
10.1016/j.physa.2007.11.052
10.1155/2008/785243
10.1109/ICASSP.2011.5946813
10.1371/journal.pcbi.1002601
10.1109/LSP.2003.821662
10.1142/S1793536909000187
10.1016/j.ymssp.2010.03.003
10.1371/journal.pone.0012493
10.1142/S1793536910000604
10.1016/j.physa.2008.04.023
10.1109/AERO.2004.1367979
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
H8D
L7M
DOI 10.1016/j.physa.2014.01.020
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 167
ExternalDocumentID 10_1016_j_physa_2014_01_020
S0378437114000247
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAFFL
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XJT
XOL
YYP
ZY4
~HD
7TB
7U5
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c402t-e69f0533864a527f1fd68af86ff9ce259219517d37127e5a61835e52e9a5e18f3
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Sun Sep 28 10:52:00 EDT 2025
Wed Oct 01 04:01:48 EDT 2025
Thu Apr 24 23:01:17 EDT 2025
Fri Feb 23 02:23:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DIV
COMP
Space
ADD
IMFs
BFV
MUL
EEMD
Time
MEMD
EMD
Complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-e69f0533864a527f1fd68af86ff9ce259219517d37127e5a61835e52e9a5e18f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1531004827
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1531004827
crossref_primary_10_1016_j_physa_2014_01_020
crossref_citationtrail_10_1016_j_physa_2014_01_020
elsevier_sciencedirect_doi_10_1016_j_physa_2014_01_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lo, Lin, Hsieh, Ko, Liu, Lin, Chang, Wang, Young, Chiang, Lin, Chen, Ma (br000030) 2013; 84
Wu, Huang (br000095) 2010; 2
Lo, Hu, Liu, Peng, Novak (br000035) 2008
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (br000005) 1998; 454
Lee, Shyu, Lee, Huang, Chiu (br000075) 2011; 58
Zhang (br000045) 2010; 24
Flandrin, Rilling, Goncalves (br000090) 2004; 11
Hu (br000025) 2008; 387
Lo, Novak, Peng, Liu, Hu (br000040) 2009; 79
Wu, Norden, Chen (br000050) 2009; 1
Chen, Li, Xiong, Bao, Li (br000065) 2010; 14
Mandic (br000015) 2011; 59
G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado (I), 2003.
Curtis, Gerald (br000080) 1989
Chen, Wang, Ouyang, Li (br000060) 2011; 13
L.H. Thomas, Elliptic problems in linear difference equations over a network, in: Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949.
Hu, Lo, Peng, Liu, Novak (br000110) 2012; 8
Wu, Huang (br000010) 2009; 1
Bashan (br000020) 2008; 387
Wu, Chen, Horng, Lin, Huang, Cheng, Cheng (br000055) 2010; 5
S. Kizhner, T.P. Flatley, N.E. Huang, K. Blank, E. Conwell, On the Hilbert–Huang transform data processing system development, in: Aerospace Conference, 2004. Proceedings. 2004 IEEE, 2004.
T.C. Chen, Y.Y. Chen, T.C. Ma, L.G. Chen, Design and implementation of cubic spline interpolation for spike sorting microsystems, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2011, pp. 1641–1644.
Lo (10.1016/j.physa.2014.01.020_br000030) 2013; 84
Zhang (10.1016/j.physa.2014.01.020_br000045) 2010; 24
Huang (10.1016/j.physa.2014.01.020_br000005) 1998; 454
Lo (10.1016/j.physa.2014.01.020_br000035) 2008
Curtis (10.1016/j.physa.2014.01.020_br000080) 1989
10.1016/j.physa.2014.01.020_br000100
Hu (10.1016/j.physa.2014.01.020_br000025) 2008; 387
10.1016/j.physa.2014.01.020_br000105
Mandic (10.1016/j.physa.2014.01.020_br000015) 2011; 59
Wu (10.1016/j.physa.2014.01.020_br000095) 2010; 2
Wu (10.1016/j.physa.2014.01.020_br000050) 2009; 1
Wu (10.1016/j.physa.2014.01.020_br000055) 2010; 5
Chen (10.1016/j.physa.2014.01.020_br000065) 2010; 14
Lee (10.1016/j.physa.2014.01.020_br000075) 2011; 58
Flandrin (10.1016/j.physa.2014.01.020_br000090) 2004; 11
Bashan (10.1016/j.physa.2014.01.020_br000020) 2008; 387
Hu (10.1016/j.physa.2014.01.020_br000110) 2012; 8
Wu (10.1016/j.physa.2014.01.020_br000010) 2009; 1
Chen (10.1016/j.physa.2014.01.020_br000060) 2011; 13
10.1016/j.physa.2014.01.020_br000070
Lo (10.1016/j.physa.2014.01.020_br000040) 2009; 79
10.1016/j.physa.2014.01.020_br000085
References_xml – volume: 5
  start-page: e12493
  year: 2010
  ident: br000055
  article-title: A novel preprocessing method using Hilbert Huang transform for MALDI-TOF and SELDI-TOF mass spectrometry data
  publication-title: PLoS One
– volume: 8
  start-page: e1002601
  year: 2012
  ident: br000110
  article-title: A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales
  publication-title: PLoS Comput. Biol.
– volume: 1
  start-page: 339
  year: 2009
  end-page: 372
  ident: br000050
  article-title: The multi-dimensional ensemble empirical mode decomposition method
  publication-title: Adv. Adapt. Data Anal.
– reference: L.H. Thomas, Elliptic problems in linear difference equations over a network, in: Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949.
– start-page: 785243
  year: 2008
  ident: br000035
  article-title: Multimodal pressure–flow analysis: application of Hilbert–Huang transform in cerebral blood flow regulation
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 11
  start-page: 112
  year: 2004
  end-page: 114
  ident: br000090
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
– reference: S. Kizhner, T.P. Flatley, N.E. Huang, K. Blank, E. Conwell, On the Hilbert–Huang transform data processing system development, in: Aerospace Conference, 2004. Proceedings. 2004 IEEE, 2004.
– volume: 59
  start-page: 2421
  year: 2011
  end-page: 2426
  ident: br000015
  article-title: Filter bank property of multivariate empirical mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 84
  start-page: 1505
  year: 2013
  end-page: 1511
  ident: br000030
  article-title: A new method to estimate the amplitude spectrum analysis of ventricular fibrillation during cardiopulmonary resuscitation
  publication-title: Resuscitation
– reference: G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado (I), 2003.
– volume: 387
  start-page: 2279
  year: 2008
  end-page: 2292
  ident: br000025
  article-title: Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: nonlinear assessment of cerebral autoregulation
  publication-title: Physica A
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: br000010
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 13
  start-page: 42
  year: 2011
  end-page: 51
  ident: br000060
  article-title: Massively parallel neural signal processing on a many-core platform
  publication-title: Comput. Sci. Eng.
– volume: 79
  start-page: 1
  year: 2009
  end-page: 11
  ident: br000040
  article-title: Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert–Huang and Fourier transforms
  publication-title: Phys. Rev. E
– volume: 24
  start-page: 2104
  year: 2010
  end-page: 2123
  ident: br000045
  article-title: Performance enhancement of ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: br000005
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 14
  start-page: 1417
  year: 2010
  end-page: 1427
  ident: br000065
  article-title: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 387
  start-page: 5080
  year: 2008
  end-page: 5090
  ident: br000020
  article-title: Comparison of detrending methods for fluctuation analysis
  publication-title: Physica A
– reference: T.C. Chen, Y.Y. Chen, T.C. Ma, L.G. Chen, Design and implementation of cubic spline interpolation for spike sorting microsystems, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2011, pp. 1641–1644.
– volume: 58
  start-page: 2473
  year: 2011
  end-page: 2481
  ident: br000075
  article-title: Hardware implementation of EMD using DSP and FPGA for online signal processing
  publication-title: IEEE Trans. Ind. Electron.
– year: 1989
  ident: br000080
  article-title: Applied Numerical Analysis
– volume: 2
  start-page: 397
  year: 2010
  end-page: 414
  ident: br000095
  article-title: On the filtering properties of the empirical mode decomposition
  publication-title: Adv. Adapt. Data Anal.
– volume: 14
  start-page: 1417
  year: 2010
  ident: 10.1016/j.physa.2014.01.020_br000065
  article-title: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2072963
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.physa.2014.01.020_br000005
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– year: 1989
  ident: 10.1016/j.physa.2014.01.020_br000080
– volume: 58
  start-page: 2473
  year: 2011
  ident: 10.1016/j.physa.2014.01.020_br000075
  article-title: Hardware implementation of EMD using DSP and FPGA for online signal processing
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2060454
– volume: 84
  start-page: 1505
  issue: 11
  year: 2013
  ident: 10.1016/j.physa.2014.01.020_br000030
  article-title: A new method to estimate the amplitude spectrum analysis of ventricular fibrillation during cardiopulmonary resuscitation
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2013.07.004
– volume: 13
  start-page: 42
  issue: 6
  year: 2011
  ident: 10.1016/j.physa.2014.01.020_br000060
  article-title: Massively parallel neural signal processing on a many-core platform
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.20
– volume: 59
  start-page: 2421
  year: 2011
  ident: 10.1016/j.physa.2014.01.020_br000015
  article-title: Filter bank property of multivariate empirical mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2106779
– ident: 10.1016/j.physa.2014.01.020_br000085
– volume: 79
  start-page: 1
  issue: 6
  year: 2009
  ident: 10.1016/j.physa.2014.01.020_br000040
  article-title: Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert–Huang and Fourier transforms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.061924
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.physa.2014.01.020_br000010
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 387
  start-page: 2279
  issue: 10
  year: 2008
  ident: 10.1016/j.physa.2014.01.020_br000025
  article-title: Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: nonlinear assessment of cerebral autoregulation
  publication-title: Physica A
  doi: 10.1016/j.physa.2007.11.052
– start-page: 785243
  year: 2008
  ident: 10.1016/j.physa.2014.01.020_br000035
  article-title: Multimodal pressure–flow analysis: application of Hilbert–Huang transform in cerebral blood flow regulation
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2008/785243
– ident: 10.1016/j.physa.2014.01.020_br000100
– ident: 10.1016/j.physa.2014.01.020_br000070
  doi: 10.1109/ICASSP.2011.5946813
– volume: 8
  start-page: e1002601
  year: 2012
  ident: 10.1016/j.physa.2014.01.020_br000110
  article-title: A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002601
– volume: 11
  start-page: 112
  year: 2004
  ident: 10.1016/j.physa.2014.01.020_br000090
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.821662
– volume: 1
  start-page: 339
  year: 2009
  ident: 10.1016/j.physa.2014.01.020_br000050
  article-title: The multi-dimensional ensemble empirical mode decomposition method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000187
– volume: 24
  start-page: 2104
  issue: 7
  year: 2010
  ident: 10.1016/j.physa.2014.01.020_br000045
  article-title: Performance enhancement of ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.03.003
– volume: 5
  start-page: e12493
  year: 2010
  ident: 10.1016/j.physa.2014.01.020_br000055
  article-title: A novel preprocessing method using Hilbert Huang transform for MALDI-TOF and SELDI-TOF mass spectrometry data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012493
– volume: 2
  start-page: 397
  issue: 4
  year: 2010
  ident: 10.1016/j.physa.2014.01.020_br000095
  article-title: On the filtering properties of the empirical mode decomposition
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000604
– volume: 387
  start-page: 5080
  issue: 21
  year: 2008
  ident: 10.1016/j.physa.2014.01.020_br000020
  article-title: Comparison of detrending methods for fluctuation analysis
  publication-title: Physica A
  doi: 10.1016/j.physa.2008.04.023
– ident: 10.1016/j.physa.2014.01.020_br000105
  doi: 10.1109/AERO.2004.1367979
SSID ssj0001732
Score 2.573705
Snippet It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms Complexity
Computation
Computational efficiency
Decomposition
EEMD
EMD
Empirical analysis
Equivalence
Fourier transforms
Space
Statistical mechanics
Time
Title On the computational complexity of the empirical mode decomposition algorithm
URI https://dx.doi.org/10.1016/j.physa.2014.01.020
https://www.proquest.com/docview/1531004827
Volume 400
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQERIL4inKS0FiJLRO_MpYVaACAgao1M1yXRuKSlrRdGDht3PnJCCQYGB0YkfJxf7uzr77jpATCyoqo0bExrVHMbOpjw0Y9rGVNjOeqmEqMd_55lb0-uxqwAdLpFvnwmBYZYX9JaYHtK6utCpptmbjceu-nUrFUgkGPS5rhhnljEmsYnD2_hXmQWVaniSAt4S9a-ahEOOFuwdIPkRZyd3Z_k07_cDpoHwu1slaZTVGnfLFNsiSyzfJSojetPMtcnOXR2DIRTaUaKi290IL6S6Lt2jqw333MhsHSpAIC-BEI4ddqqityEwep6_j4ullm_Qvzh-6vbiqkxBb8P6K2InMY0qtEszwRHrqR0IZr4T3mXXg3wAqcSpH8PWJdNwIWMbc8cRlhjuqfLpDGvk0d7skUoxbplLjmPDMymzoxDB1UhkBWADqtEmSWj7aViTiWMtioutosWcdhKpRqLpNNQi1SU4_B81KDo2_u4ta8PrbVNCA8n8PPK5_k4ZFgicfJnfTxVwDrCMznkrk3n8fvk9WsYUHSZQfkEbxunCHYI8Uw6Mw4Y7Icufyunf7AUOF4Bg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QY_Ri_Iz4OROPTtjWtd3REAkq4EFIuDVd1yoGBoFx8OLf7mu3aTSRg8etr8v21v7ee-3r7yF0JcFERZ4grlCNxMUy0K4Ax96VVEZCeywOqDnv3O2R9gA_DMNhBTXLszAmrbLA_hzTLVoXd-qFNuuz0aj-3AgowwEFh95Ma0zX0DoOfWoisJuP7zwPjwb5VgKES0a8pB6ySV5m-cCwD3k4J-9s_GWefgG1tT6tHbRduI3Obf5mu6ii0j20YdM35WIfdZ9SBzw5R9oaDcX6nr0yfJfZuzPVtl1NZiPLCeKYCjhOooxIkbbliPHLdD7KXicHaNC66zfbblEowZUQ_mWuIpE2Z2oZwQI0oD2dECY0I1pHUkGAA7AUejSBr_epCgWBeRyq0FeRCJXHdHCIquk0VUfIYTiUmAVCYaKxpFGsSBwoygQBMAB7WkN-qR8uCxZxU8xizMt0sTdulcqNUnnD46DUGrr-6jTLSTRWi5NS8fzHWOAA86s7Xpa_icMsMVsfIlXT5YIDrhtqPObT4_8-_AJttvvdDu_c9x5P0JZpySkgT1E1my_VGTgnWXxuB98njMbhqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+computational+complexity+of+the+empirical+mode+decomposition+algorithm&rft.jtitle=Physica+A&rft.au=Wang%2C+Yung-Hung&rft.au=Yeh%2C+Chien-Hung&rft.au=Young%2C+Hsu-Wen+Vincent&rft.au=Hu%2C+Kun&rft.date=2014-04-15&rft.issn=0378-4371&rft.volume=400&rft.spage=159&rft.epage=167&rft_id=info:doi/10.1016%2Fj.physa.2014.01.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2014_01_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon