On the computational complexity of the empirical mode decomposition algorithm
It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transf...
        Saved in:
      
    
          | Published in | Physica A Vol. 400; pp. 159 - 167 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        15.04.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-4371 1873-2119  | 
| DOI | 10.1016/j.physa.2014.01.020 | 
Cover
| Abstract | It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transform. Numerical examples are presented to verify that EMD/EEMD is, in fact, a computationally efficient method.
•The order of the computational complexity of the EMD is equivalent to FFT.•Optimized program is proposed to speed up the computation of EMD up to 1000 times.•Fast HHT with optimized EMD/EEMD algorithm can operate in real-time. | 
    
|---|---|
| AbstractList | It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transform. Numerical examples are presented to verify that EMD/EEMD is, in fact, a computationally efficient method.
•The order of the computational complexity of the EMD is equivalent to FFT.•Optimized program is proposed to speed up the computation of EMD up to 1000 times.•Fast HHT with optimized EMD/EEMD algorithm can operate in real-time. It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we will prove that the time complexity of the EMD/EEMD, which has never been analyzed before, is actually equivalent to that of the Fourier Transform. Numerical examples are presented to verify that EMD/EEMD is, in fact, a computationally efficient method.  | 
    
| Author | Hu, Kun Wang, Yung-Hung Yeh, Chien-Hung Lo, Men-Tzung Young, Hsu-Wen Vincent  | 
    
| Author_xml | – sequence: 1 givenname: Yung-Hung surname: Wang fullname: Wang, Yung-Hung organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC – sequence: 2 givenname: Chien-Hung surname: Yeh fullname: Yeh, Chien-Hung organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC – sequence: 3 givenname: Hsu-Wen Vincent surname: Young fullname: Young, Hsu-Wen Vincent organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC – sequence: 4 givenname: Kun surname: Hu fullname: Hu, Kun organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States – sequence: 5 givenname: Men-Tzung surname: Lo fullname: Lo, Men-Tzung email: mzlo@ncu.edu.tw organization: Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC  | 
    
| BookMark | eNqFkD1PwzAQhi1UJErhF7BkZEnw2XE-BgZU8SUVdYHZspwzdZXEwXYR_fckLRMDTKfT-z6n03NOZr3rkZAroBlQKG622bDZB5UxCnlGIaOMnpA5VCVPGUA9I3PKyyrNeQln5DyELaUUSs7m5GXdJ3GDiXbdsIsqWter9rC1-GXjPnHmkGM3WG_1mHWuwaTBqeKCnYBEte_O27jpLsipUW3Ay5-5IG8P96_Lp3S1fnxe3q1SnVMWUyxqQwXnVZErwUoDpikqZarCmFojEzWDWkDZjO-yEoUqoOICBcNaCYTK8AW5Pt4dvPvYYYiys0Fj26oe3S5IEBwozStWjlV-rGrvQvBo5OBtp_xeApWTPLmVB3lykicpyFHeSNW_KG2PdqJXtv2HvT2yOBr4tOhl0BZ7jY31qKNsnP2T_wbQ2o6M | 
    
| CitedBy_id | crossref_primary_10_3389_fenvs_2022_833374 crossref_primary_10_1016_j_asoc_2022_109726 crossref_primary_10_1016_j_oceaneng_2024_119550 crossref_primary_10_1007_s10772_016_9392_y crossref_primary_10_1016_j_soildyn_2023_108037 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_3390_s150716372 crossref_primary_10_1007_s10577_023_09738_4 crossref_primary_10_1016_j_measurement_2020_108696 crossref_primary_10_1016_j_sigpro_2016_02_011 crossref_primary_10_1016_j_csi_2024_103897 crossref_primary_10_1016_j_bspc_2021_102808 crossref_primary_10_1021_acs_iecr_9b06351 crossref_primary_10_7555_JBR_33_20190009 crossref_primary_10_1016_j_bspc_2015_05_006 crossref_primary_10_1016_j_jneumeth_2015_10_009 crossref_primary_10_1109_ACCESS_2018_2812890 crossref_primary_10_1016_j_sigpro_2016_09_015 crossref_primary_10_1016_j_cie_2024_110288 crossref_primary_10_3390_s18071996 crossref_primary_10_1016_j_measurement_2022_111502 crossref_primary_10_1038_s41598_017_07627_5 crossref_primary_10_1109_TCSVT_2018_2855098 crossref_primary_10_1016_j_aej_2021_01_055 crossref_primary_10_1016_j_bspc_2022_103992 crossref_primary_10_1049_iet_gtd_2017_0862 crossref_primary_10_1016_j_apenergy_2016_12_134 crossref_primary_10_1109_TMI_2014_2364079 crossref_primary_10_1109_TGRS_2016_2598065 crossref_primary_10_3390_s21134286 crossref_primary_10_1088_1741_2552_ac7f5e crossref_primary_10_1016_j_sigpro_2014_10_038 crossref_primary_10_1177_14759217241246985 crossref_primary_10_3390_s22020689 crossref_primary_10_54021_seesv5n2_698 crossref_primary_10_1016_j_bspc_2018_12_015 crossref_primary_10_1016_j_dsp_2021_103375 crossref_primary_10_1080_23248378_2020_1795942 crossref_primary_10_1016_j_measurement_2020_108679 crossref_primary_10_3390_e21070680 crossref_primary_10_3847_1538_4357_acd756 crossref_primary_10_1109_ACCESS_2018_2877150 crossref_primary_10_1016_j_epsr_2016_01_012 crossref_primary_10_1016_j_ijepes_2023_109465 crossref_primary_10_1029_2023EA003302 crossref_primary_10_1016_j_measurement_2019_04_046 crossref_primary_10_3847_1538_4357_ac8165 crossref_primary_10_1016_j_promfg_2018_10_029 crossref_primary_10_1049_iet_spr_2016_0147 crossref_primary_10_1007_s10772_017_9468_3 crossref_primary_10_1109_ACCESS_2019_2892622 crossref_primary_10_1093_mnras_stad384 crossref_primary_10_1109_ACCESS_2018_2847634 crossref_primary_10_5194_asr_13_121_2016 crossref_primary_10_3390_en11020321 crossref_primary_10_1109_TIE_2015_2506619 crossref_primary_10_1016_j_microrel_2017_03_032 crossref_primary_10_3389_fpsyt_2022_851908 crossref_primary_10_3390_rs9090881 crossref_primary_10_1109_JSEN_2016_2519679 crossref_primary_10_1007_s11356_019_07402_1 crossref_primary_10_1155_2020_6687733 crossref_primary_10_1109_TNNLS_2023_3335355 crossref_primary_10_3390_en10091422 crossref_primary_10_1109_ACCESS_2021_3107502 crossref_primary_10_1109_TBME_2020_2974095 crossref_primary_10_3390_s24227193 crossref_primary_10_3390_jpm12111768 crossref_primary_10_1016_j_sna_2017_11_013 crossref_primary_10_1109_TCSS_2019_2915615 crossref_primary_10_1049_stg2_12060 crossref_primary_10_21595_jve_2016_17194 crossref_primary_10_1134_S1054661817020018 crossref_primary_10_1109_TPWRS_2017_2694705 crossref_primary_10_3390_sym9110283 crossref_primary_10_1016_j_dsp_2015_12_003 crossref_primary_10_1016_j_ijmecsci_2022_107929 crossref_primary_10_1155_2016_9278581 crossref_primary_10_1016_j_bspc_2021_103413 crossref_primary_10_2174_1876973X01609010065 crossref_primary_10_3390_en12224283 crossref_primary_10_1016_j_asoc_2022_108560 crossref_primary_10_1016_j_sigpro_2023_109194 crossref_primary_10_3389_fnhum_2017_00261 crossref_primary_10_1109_TMI_2015_2419711 crossref_primary_10_7717_peerj_1086 crossref_primary_10_1088_0004_637X_815_1_74 crossref_primary_10_1016_j_renene_2015_06_004 crossref_primary_10_1088_1361_6501_aa9ef0 crossref_primary_10_1016_j_egypro_2016_10_045 crossref_primary_10_1063_5_0079424 crossref_primary_10_1080_04353676_2020_1786943 crossref_primary_10_1109_TNSRE_2022_3147072 crossref_primary_10_1016_j_physa_2016_02_012 crossref_primary_10_1088_1361_6501_adb5b0 crossref_primary_10_1016_j_physa_2024_129708 crossref_primary_10_1016_j_bbe_2020_11_002 crossref_primary_10_1016_j_ymssp_2024_111727 crossref_primary_10_1038_s41598_024_78845_x crossref_primary_10_1007_s40998_018_0055_7 crossref_primary_10_1007_s11517_015_1389_1 crossref_primary_10_1016_j_enconman_2016_02_022 crossref_primary_10_1016_j_ymssp_2020_107193 crossref_primary_10_3390_en11123301 crossref_primary_10_1016_j_atmosres_2017_10_009 crossref_primary_10_3390_en9080640 crossref_primary_10_3390_e24050681 crossref_primary_10_1155_2023_8853345 crossref_primary_10_1109_TGRS_2016_2635078 crossref_primary_10_1016_j_jclepro_2023_139234 crossref_primary_10_1016_j_renene_2021_07_126 crossref_primary_10_1109_TIE_2017_2650873 crossref_primary_10_1016_j_isatra_2016_10_014 crossref_primary_10_1016_j_dsp_2021_103292 crossref_primary_10_1186_s12938_016_0233_7 crossref_primary_10_1109_ACCESS_2020_3003254 crossref_primary_10_1016_j_eneco_2020_104952 crossref_primary_10_1109_TIM_2024_3450102 crossref_primary_10_1109_JSEN_2020_3041737 crossref_primary_10_1007_s00603_015_0755_5 crossref_primary_10_1016_j_oceaneng_2018_01_019 crossref_primary_10_1016_j_quaint_2015_01_051 crossref_primary_10_1088_1741_2552_ab33e4 crossref_primary_10_3390_s22010153 crossref_primary_10_1007_s10489_023_04549_w crossref_primary_10_1088_0957_0233_27_9_095103 crossref_primary_10_1038_s41598_018_27567_y crossref_primary_10_3390_land11060862 crossref_primary_10_1007_s12206_021_0204_1 crossref_primary_10_3390_w10060730 crossref_primary_10_1016_j_measurement_2023_112716 crossref_primary_10_1038_s41467_024_46012_5 crossref_primary_10_1109_TGRS_2017_2723431 crossref_primary_10_1109_TIM_2016_2579360 crossref_primary_10_1016_j_seta_2022_102807 crossref_primary_10_1016_j_enconman_2017_04_012 crossref_primary_10_1002_joc_4809 crossref_primary_10_1002_joc_7082 crossref_primary_10_1016_j_apenergy_2015_08_014 crossref_primary_10_1016_j_physa_2017_04_009 crossref_primary_10_1029_2021EF002124 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_3390_en10122001 crossref_primary_10_1038_s41598_023_47048_1 crossref_primary_10_7554_eLife_31307 crossref_primary_10_1063_5_0070140 crossref_primary_10_1016_j_phycom_2022_101831 crossref_primary_10_1142_S0218213016500056 crossref_primary_10_1016_j_dsp_2018_05_009 crossref_primary_10_1049_iet_spr_2016_0450 crossref_primary_10_5194_asr_14_35_2017 crossref_primary_10_1016_j_enconman_2014_09_060 crossref_primary_10_1016_j_bspc_2023_104701 crossref_primary_10_1016_j_ymssp_2016_09_031 crossref_primary_10_1109_TIM_2021_3051996 crossref_primary_10_1016_j_jneumeth_2016_02_015 crossref_primary_10_1109_JSEN_2021_3067770 crossref_primary_10_1109_TPWRD_2018_2827843 crossref_primary_10_1007_s11276_015_0996_y crossref_primary_10_3390_su14010148 crossref_primary_10_1016_j_measurement_2018_10_085 crossref_primary_10_1016_j_jvolgeores_2020_106976 crossref_primary_10_1016_j_apacoust_2021_108151 crossref_primary_10_3390_en12020254 crossref_primary_10_1002_2017JC013230 crossref_primary_10_1063_5_0009771 crossref_primary_10_3390_e23091130 crossref_primary_10_1080_01431161_2019_1667549 crossref_primary_10_1016_j_physa_2016_06_112 crossref_primary_10_1016_j_ymssp_2016_01_003 crossref_primary_10_1016_j_jappgeo_2014_08_004 crossref_primary_10_3390_s23062927 crossref_primary_10_1142_S179353691550003X crossref_primary_10_1166_jmihi_2021_3870 crossref_primary_10_3389_fpsyt_2022_1070198 crossref_primary_10_1109_TIM_2020_3041099 crossref_primary_10_3390_s21051825 crossref_primary_10_3389_fncom_2022_1010770 crossref_primary_10_1016_j_eswa_2023_122891 crossref_primary_10_1007_s00180_015_0603_9 crossref_primary_10_1016_j_ymssp_2022_108909 crossref_primary_10_1016_j_isatra_2018_12_020 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1093_tse_tdac064 crossref_primary_10_1016_j_egypro_2019_01_079 crossref_primary_10_3390_en16145312 crossref_primary_10_1016_j_compbiomed_2019_103379 crossref_primary_10_1016_j_measurement_2022_112344 crossref_primary_10_1016_j_apenergy_2018_09_118 crossref_primary_10_1007_s00034_021_01753_2 crossref_primary_10_1088_2515_7620_ace760 crossref_primary_10_1016_j_enconman_2017_11_067 crossref_primary_10_1111_1365_2478_12530 crossref_primary_10_1155_2020_7605683 crossref_primary_10_1109_TIE_2023_3288174 crossref_primary_10_23919_CSMS_2024_0019 crossref_primary_10_1016_j_apm_2016_08_001 crossref_primary_10_1088_1742_6596_842_1_012002 crossref_primary_10_1109_ACCESS_2019_2904201 crossref_primary_10_1016_j_measurement_2018_12_009 crossref_primary_10_1016_j_compag_2017_12_013 crossref_primary_10_1016_j_gaitpost_2018_06_104 crossref_primary_10_3390_en12020277 crossref_primary_10_1109_JSEN_2020_2976519 crossref_primary_10_1109_TPWRD_2022_3157708 crossref_primary_10_1002_ese3_1561 crossref_primary_10_3390_coatings12091337 crossref_primary_10_1016_j_ymssp_2016_05_009 crossref_primary_10_1109_ACCESS_2022_3218417 crossref_primary_10_1016_j_clinph_2020_05_035 crossref_primary_10_1016_j_eswa_2016_04_026 crossref_primary_10_1016_j_ymssp_2020_106750 crossref_primary_10_1016_j_bspc_2022_104218 crossref_primary_10_1016_j_patrec_2022_11_026 crossref_primary_10_21595_jve_2016_17338 crossref_primary_10_1109_JIOT_2020_3005688 crossref_primary_10_3847_1538_4357_abacbd crossref_primary_10_1007_s00170_019_03597_2 crossref_primary_10_21595_vp_2019_20869 crossref_primary_10_3847_1538_4357_ab48e4 crossref_primary_10_3390_jpm12101608 crossref_primary_10_1016_j_jmsy_2020_05_004 crossref_primary_10_1007_s42835_019_00118_9 crossref_primary_10_1049_iet_smt_2017_0232 crossref_primary_10_1007_s00348_019_2775_5 crossref_primary_10_1016_j_apacoust_2022_108641 crossref_primary_10_1007_s00704_016_1822_x crossref_primary_10_1016_j_jclepro_2020_121442 crossref_primary_10_3390_app142310866 crossref_primary_10_3390_app8091447 crossref_primary_10_1177_0271678X241249276 crossref_primary_10_1007_s40430_025_05452_w crossref_primary_10_1080_00051144_2020_1811571 crossref_primary_10_1016_j_energy_2016_11_035 crossref_primary_10_3390_rs11101253 crossref_primary_10_3389_fsysb_2022_1021897 crossref_primary_10_1016_j_optlaseng_2023_107832 crossref_primary_10_1016_j_future_2019_11_025 crossref_primary_10_1016_j_ymssp_2021_108052 crossref_primary_10_1016_j_isatra_2018_11_044 crossref_primary_10_1088_1361_6501_ab3fe2 crossref_primary_10_1109_TBME_2019_2921198 crossref_primary_10_1186_s12938_020_0754_y crossref_primary_10_1049_iet_smt_2017_0284 crossref_primary_10_1007_s00170_018_1768_5 crossref_primary_10_1155_2020_7247195 crossref_primary_10_3390_electronics9071157 crossref_primary_10_1038_s41598_021_85235_0 crossref_primary_10_1109_TNSRE_2016_2521612 crossref_primary_10_1038_s41598_020_57853_7 crossref_primary_10_1109_TIM_2021_3115586 crossref_primary_10_1007_s10772_016_9381_1 crossref_primary_10_1007_s00034_023_02319_0 crossref_primary_10_1007_s11760_022_02226_y crossref_primary_10_1186_s12898_019_0272_6 crossref_primary_10_1109_LSP_2022_3166069 crossref_primary_10_1016_j_bspc_2016_06_017 crossref_primary_10_3390_e18070242 crossref_primary_10_1007_s00382_016_3085_8 crossref_primary_10_1016_j_resourpol_2024_105372 crossref_primary_10_1177_1550147718772531 crossref_primary_10_1063_1_5074152 crossref_primary_10_1016_j_physa_2021_126295 crossref_primary_10_1109_LSP_2019_2925316 crossref_primary_10_1016_j_aca_2021_338386 crossref_primary_10_1016_j_neurobiolaging_2018_06_007 crossref_primary_10_1016_j_apm_2023_05_042 crossref_primary_10_21595_jve_2017_18115 crossref_primary_10_1103_PhysRevE_93_062226 crossref_primary_10_1109_TIA_2022_3213629 crossref_primary_10_1007_s00170_018_2735_x crossref_primary_10_1016_j_isatra_2020_08_015 crossref_primary_10_1016_j_dsp_2022_103659 crossref_primary_10_1109_TBME_2017_2668763 crossref_primary_10_1038_s41598_024_59851_5 crossref_primary_10_5194_npg_25_19_2018 crossref_primary_10_1029_2022JF006715 crossref_primary_10_1016_j_seta_2022_102535 crossref_primary_10_1016_j_jclepro_2020_124023 crossref_primary_10_1016_j_measurement_2020_108644 crossref_primary_10_1038_s41598_018_21013_9 crossref_primary_10_1007_s13246_021_01055_6 crossref_primary_10_1109_JBHI_2018_2821675 crossref_primary_10_1016_j_physa_2020_125685 crossref_primary_10_3389_fnhum_2022_880304 crossref_primary_10_1016_j_enconman_2015_04_057 crossref_primary_10_1007_s40430_024_05039_x crossref_primary_10_3390_app14177451 crossref_primary_10_3390_en8076585  | 
    
| Cites_doi | 10.1109/TITB.2010.2072963 10.1098/rspa.1998.0193 10.1109/TIE.2010.2060454 10.1016/j.resuscitation.2013.07.004 10.1109/MCSE.2011.20 10.1109/TSP.2011.2106779 10.1103/PhysRevE.79.061924 10.1142/S1793536909000047 10.1016/j.physa.2007.11.052 10.1155/2008/785243 10.1109/ICASSP.2011.5946813 10.1371/journal.pcbi.1002601 10.1109/LSP.2003.821662 10.1142/S1793536909000187 10.1016/j.ymssp.2010.03.003 10.1371/journal.pone.0012493 10.1142/S1793536910000604 10.1016/j.physa.2008.04.023 10.1109/AERO.2004.1367979  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2014 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7TB 7U5 8FD FR3 H8D L7M  | 
    
| DOI | 10.1016/j.physa.2014.01.020 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Aerospace Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1873-2119 | 
    
| EndPage | 167 | 
    
| ExternalDocumentID | 10_1016_j_physa_2014_01_020 S0378437114000247  | 
    
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXUO ABAOU ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 6TJ AAFFL AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ACLOT ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AGQPQ AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNTGB BPUDD BULVW BZJEE CITATION EFKBS EJD FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG VOH WUQ XJT XOL YYP ZY4 ~HD 7TB 7U5 8FD FR3 H8D L7M  | 
    
| ID | FETCH-LOGICAL-c402t-e69f0533864a527f1fd68af86ff9ce259219517d37127e5a61835e52e9a5e18f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-4371 | 
    
| IngestDate | Sun Sep 28 10:52:00 EDT 2025 Wed Oct 01 04:01:48 EDT 2025 Thu Apr 24 23:01:17 EDT 2025 Fri Feb 23 02:23:26 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | DIV COMP Space ADD IMFs BFV MUL EEMD Time MEMD EMD Complexity  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c402t-e69f0533864a527f1fd68af86ff9ce259219517d37127e5a61835e52e9a5e18f3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1531004827 | 
    
| PQPubID | 23500 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_1531004827 crossref_primary_10_1016_j_physa_2014_01_020 crossref_citationtrail_10_1016_j_physa_2014_01_020 elsevier_sciencedirect_doi_10_1016_j_physa_2014_01_020  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-04-15 | 
    
| PublicationDateYYYYMMDD | 2014-04-15 | 
    
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Physica A | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Lo, Lin, Hsieh, Ko, Liu, Lin, Chang, Wang, Young, Chiang, Lin, Chen, Ma (br000030) 2013; 84 Wu, Huang (br000095) 2010; 2 Lo, Hu, Liu, Peng, Novak (br000035) 2008 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (br000005) 1998; 454 Lee, Shyu, Lee, Huang, Chiu (br000075) 2011; 58 Zhang (br000045) 2010; 24 Flandrin, Rilling, Goncalves (br000090) 2004; 11 Hu (br000025) 2008; 387 Lo, Novak, Peng, Liu, Hu (br000040) 2009; 79 Wu, Norden, Chen (br000050) 2009; 1 Chen, Li, Xiong, Bao, Li (br000065) 2010; 14 Mandic (br000015) 2011; 59 G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado (I), 2003. Curtis, Gerald (br000080) 1989 Chen, Wang, Ouyang, Li (br000060) 2011; 13 L.H. Thomas, Elliptic problems in linear difference equations over a network, in: Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949. Hu, Lo, Peng, Liu, Novak (br000110) 2012; 8 Wu, Huang (br000010) 2009; 1 Bashan (br000020) 2008; 387 Wu, Chen, Horng, Lin, Huang, Cheng, Cheng (br000055) 2010; 5 S. Kizhner, T.P. Flatley, N.E. Huang, K. Blank, E. Conwell, On the Hilbert–Huang transform data processing system development, in: Aerospace Conference, 2004. Proceedings. 2004 IEEE, 2004. T.C. Chen, Y.Y. Chen, T.C. Ma, L.G. Chen, Design and implementation of cubic spline interpolation for spike sorting microsystems, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2011, pp. 1641–1644. Lo (10.1016/j.physa.2014.01.020_br000030) 2013; 84 Zhang (10.1016/j.physa.2014.01.020_br000045) 2010; 24 Huang (10.1016/j.physa.2014.01.020_br000005) 1998; 454 Lo (10.1016/j.physa.2014.01.020_br000035) 2008 Curtis (10.1016/j.physa.2014.01.020_br000080) 1989 10.1016/j.physa.2014.01.020_br000100 Hu (10.1016/j.physa.2014.01.020_br000025) 2008; 387 10.1016/j.physa.2014.01.020_br000105 Mandic (10.1016/j.physa.2014.01.020_br000015) 2011; 59 Wu (10.1016/j.physa.2014.01.020_br000095) 2010; 2 Wu (10.1016/j.physa.2014.01.020_br000050) 2009; 1 Wu (10.1016/j.physa.2014.01.020_br000055) 2010; 5 Chen (10.1016/j.physa.2014.01.020_br000065) 2010; 14 Lee (10.1016/j.physa.2014.01.020_br000075) 2011; 58 Flandrin (10.1016/j.physa.2014.01.020_br000090) 2004; 11 Bashan (10.1016/j.physa.2014.01.020_br000020) 2008; 387 Hu (10.1016/j.physa.2014.01.020_br000110) 2012; 8 Wu (10.1016/j.physa.2014.01.020_br000010) 2009; 1 Chen (10.1016/j.physa.2014.01.020_br000060) 2011; 13 10.1016/j.physa.2014.01.020_br000070 Lo (10.1016/j.physa.2014.01.020_br000040) 2009; 79 10.1016/j.physa.2014.01.020_br000085  | 
    
| References_xml | – volume: 5 start-page: e12493 year: 2010 ident: br000055 article-title: A novel preprocessing method using Hilbert Huang transform for MALDI-TOF and SELDI-TOF mass spectrometry data publication-title: PLoS One – volume: 8 start-page: e1002601 year: 2012 ident: br000110 article-title: A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales publication-title: PLoS Comput. Biol. – volume: 1 start-page: 339 year: 2009 end-page: 372 ident: br000050 article-title: The multi-dimensional ensemble empirical mode decomposition method publication-title: Adv. Adapt. Data Anal. – reference: L.H. Thomas, Elliptic problems in linear difference equations over a network, in: Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949. – start-page: 785243 year: 2008 ident: br000035 article-title: Multimodal pressure–flow analysis: application of Hilbert–Huang transform in cerebral blood flow regulation publication-title: EURASIP J. Adv. Signal Process. – volume: 11 start-page: 112 year: 2004 end-page: 114 ident: br000090 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Process. Lett. – reference: S. Kizhner, T.P. Flatley, N.E. Huang, K. Blank, E. Conwell, On the Hilbert–Huang transform data processing system development, in: Aerospace Conference, 2004. Proceedings. 2004 IEEE, 2004. – volume: 59 start-page: 2421 year: 2011 end-page: 2426 ident: br000015 article-title: Filter bank property of multivariate empirical mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 84 start-page: 1505 year: 2013 end-page: 1511 ident: br000030 article-title: A new method to estimate the amplitude spectrum analysis of ventricular fibrillation during cardiopulmonary resuscitation publication-title: Resuscitation – reference: G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado (I), 2003. – volume: 387 start-page: 2279 year: 2008 end-page: 2292 ident: br000025 article-title: Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: nonlinear assessment of cerebral autoregulation publication-title: Physica A – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: br000010 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 13 start-page: 42 year: 2011 end-page: 51 ident: br000060 article-title: Massively parallel neural signal processing on a many-core platform publication-title: Comput. Sci. Eng. – volume: 79 start-page: 1 year: 2009 end-page: 11 ident: br000040 article-title: Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert–Huang and Fourier transforms publication-title: Phys. Rev. E – volume: 24 start-page: 2104 year: 2010 end-page: 2123 ident: br000045 article-title: Performance enhancement of ensemble empirical mode decomposition publication-title: Mech. Syst. Signal Process. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: br000005 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 14 start-page: 1417 year: 2010 end-page: 1427 ident: br000065 article-title: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 387 start-page: 5080 year: 2008 end-page: 5090 ident: br000020 article-title: Comparison of detrending methods for fluctuation analysis publication-title: Physica A – reference: T.C. Chen, Y.Y. Chen, T.C. Ma, L.G. Chen, Design and implementation of cubic spline interpolation for spike sorting microsystems, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2011, pp. 1641–1644. – volume: 58 start-page: 2473 year: 2011 end-page: 2481 ident: br000075 article-title: Hardware implementation of EMD using DSP and FPGA for online signal processing publication-title: IEEE Trans. Ind. Electron. – year: 1989 ident: br000080 article-title: Applied Numerical Analysis – volume: 2 start-page: 397 year: 2010 end-page: 414 ident: br000095 article-title: On the filtering properties of the empirical mode decomposition publication-title: Adv. Adapt. Data Anal. – volume: 14 start-page: 1417 year: 2010 ident: 10.1016/j.physa.2014.01.020_br000065 article-title: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2072963 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.physa.2014.01.020_br000005 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – year: 1989 ident: 10.1016/j.physa.2014.01.020_br000080 – volume: 58 start-page: 2473 year: 2011 ident: 10.1016/j.physa.2014.01.020_br000075 article-title: Hardware implementation of EMD using DSP and FPGA for online signal processing publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2060454 – volume: 84 start-page: 1505 issue: 11 year: 2013 ident: 10.1016/j.physa.2014.01.020_br000030 article-title: A new method to estimate the amplitude spectrum analysis of ventricular fibrillation during cardiopulmonary resuscitation publication-title: Resuscitation doi: 10.1016/j.resuscitation.2013.07.004 – volume: 13 start-page: 42 issue: 6 year: 2011 ident: 10.1016/j.physa.2014.01.020_br000060 article-title: Massively parallel neural signal processing on a many-core platform publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.20 – volume: 59 start-page: 2421 year: 2011 ident: 10.1016/j.physa.2014.01.020_br000015 article-title: Filter bank property of multivariate empirical mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2106779 – ident: 10.1016/j.physa.2014.01.020_br000085 – volume: 79 start-page: 1 issue: 6 year: 2009 ident: 10.1016/j.physa.2014.01.020_br000040 article-title: Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert–Huang and Fourier transforms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.061924 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.physa.2014.01.020_br000010 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 387 start-page: 2279 issue: 10 year: 2008 ident: 10.1016/j.physa.2014.01.020_br000025 article-title: Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: nonlinear assessment of cerebral autoregulation publication-title: Physica A doi: 10.1016/j.physa.2007.11.052 – start-page: 785243 year: 2008 ident: 10.1016/j.physa.2014.01.020_br000035 article-title: Multimodal pressure–flow analysis: application of Hilbert–Huang transform in cerebral blood flow regulation publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2008/785243 – ident: 10.1016/j.physa.2014.01.020_br000100 – ident: 10.1016/j.physa.2014.01.020_br000070 doi: 10.1109/ICASSP.2011.5946813 – volume: 8 start-page: e1002601 year: 2012 ident: 10.1016/j.physa.2014.01.020_br000110 article-title: A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002601 – volume: 11 start-page: 112 year: 2004 ident: 10.1016/j.physa.2014.01.020_br000090 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2003.821662 – volume: 1 start-page: 339 year: 2009 ident: 10.1016/j.physa.2014.01.020_br000050 article-title: The multi-dimensional ensemble empirical mode decomposition method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000187 – volume: 24 start-page: 2104 issue: 7 year: 2010 ident: 10.1016/j.physa.2014.01.020_br000045 article-title: Performance enhancement of ensemble empirical mode decomposition publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.03.003 – volume: 5 start-page: e12493 year: 2010 ident: 10.1016/j.physa.2014.01.020_br000055 article-title: A novel preprocessing method using Hilbert Huang transform for MALDI-TOF and SELDI-TOF mass spectrometry data publication-title: PLoS One doi: 10.1371/journal.pone.0012493 – volume: 2 start-page: 397 issue: 4 year: 2010 ident: 10.1016/j.physa.2014.01.020_br000095 article-title: On the filtering properties of the empirical mode decomposition publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000604 – volume: 387 start-page: 5080 issue: 21 year: 2008 ident: 10.1016/j.physa.2014.01.020_br000020 article-title: Comparison of detrending methods for fluctuation analysis publication-title: Physica A doi: 10.1016/j.physa.2008.04.023 – ident: 10.1016/j.physa.2014.01.020_br000105 doi: 10.1109/AERO.2004.1367979  | 
    
| SSID | ssj0001732 | 
    
| Score | 2.573705 | 
    
| Snippet | It has been claimed that the empirical mode decomposition (EMD) and its improved version the ensemble EMD (EEMD) are computation intensive. In this study we... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 159 | 
    
| SubjectTerms | Complexity Computation Computational efficiency Decomposition EEMD EMD Empirical analysis Equivalence Fourier transforms Space Statistical mechanics Time  | 
    
| Title | On the computational complexity of the empirical mode decomposition algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.physa.2014.01.020 https://www.proquest.com/docview/1531004827  | 
    
| Volume | 400 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQERIL4inKS0FiJLRO_MpYVaACAgao1M1yXRuKSlrRdGDht3PnJCCQYGB0YkfJxf7uzr77jpATCyoqo0bExrVHMbOpjw0Y9rGVNjOeqmEqMd_55lb0-uxqwAdLpFvnwmBYZYX9JaYHtK6utCpptmbjceu-nUrFUgkGPS5rhhnljEmsYnD2_hXmQWVaniSAt4S9a-ahEOOFuwdIPkRZyd3Z_k07_cDpoHwu1slaZTVGnfLFNsiSyzfJSojetPMtcnOXR2DIRTaUaKi290IL6S6Lt2jqw333MhsHSpAIC-BEI4ddqqityEwep6_j4ullm_Qvzh-6vbiqkxBb8P6K2InMY0qtEszwRHrqR0IZr4T3mXXg3wAqcSpH8PWJdNwIWMbc8cRlhjuqfLpDGvk0d7skUoxbplLjmPDMymzoxDB1UhkBWADqtEmSWj7aViTiWMtioutosWcdhKpRqLpNNQi1SU4_B81KDo2_u4ta8PrbVNCA8n8PPK5_k4ZFgicfJnfTxVwDrCMznkrk3n8fvk9WsYUHSZQfkEbxunCHYI8Uw6Mw4Y7Icufyunf7AUOF4Bg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QY_Ri_Iz4OROPTtjWtd3REAkq4EFIuDVd1yoGBoFx8OLf7mu3aTSRg8etr8v21v7ee-3r7yF0JcFERZ4grlCNxMUy0K4Ax96VVEZCeywOqDnv3O2R9gA_DMNhBTXLszAmrbLA_hzTLVoXd-qFNuuz0aj-3AgowwEFh95Ma0zX0DoOfWoisJuP7zwPjwb5VgKES0a8pB6ySV5m-cCwD3k4J-9s_GWefgG1tT6tHbRduI3Obf5mu6ii0j20YdM35WIfdZ9SBzw5R9oaDcX6nr0yfJfZuzPVtl1NZiPLCeKYCjhOooxIkbbliPHLdD7KXicHaNC66zfbblEowZUQ_mWuIpE2Z2oZwQI0oD2dECY0I1pHUkGAA7AUejSBr_epCgWBeRyq0FeRCJXHdHCIquk0VUfIYTiUmAVCYaKxpFGsSBwoygQBMAB7WkN-qR8uCxZxU8xizMt0sTdulcqNUnnD46DUGrr-6jTLSTRWi5NS8fzHWOAA86s7Xpa_icMsMVsfIlXT5YIDrhtqPObT4_8-_AJttvvdDu_c9x5P0JZpySkgT1E1my_VGTgnWXxuB98njMbhqA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+computational+complexity+of+the+empirical+mode+decomposition+algorithm&rft.jtitle=Physica+A&rft.au=Wang%2C+Yung-Hung&rft.au=Yeh%2C+Chien-Hung&rft.au=Young%2C+Hsu-Wen+Vincent&rft.au=Hu%2C+Kun&rft.date=2014-04-15&rft.issn=0378-4371&rft.volume=400&rft.spage=159&rft.epage=167&rft_id=info:doi/10.1016%2Fj.physa.2014.01.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2014_01_020 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |