Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy

Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 257; p. 108458
Main Authors Seo, Minjee, Shin, Minwoo, Noh, Gunwoo, Yoo, Seung-Schik, Yoon, Kyungho
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2024.108458

Cover

Abstract Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies. •Achieved real-time prediction of intracranial pressure map with high accuracy.•Developed network models to effectively process multi-modal information.•Enabled prediction of intracranial pressure maps solely based on MR images.
AbstractList Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time.BACKGROUND AND OBJECTIVETranscranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time.The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder.METHODSThe dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder.Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation.RESULTSEvaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation.The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.CONCLUSIONSThe results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies. •Achieved real-time prediction of intracranial pressure map with high accuracy.•Developed network models to effectively process multi-modal information.•Enabled prediction of intracranial pressure maps solely based on MR images.
Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
ArticleNumber 108458
Author Yoon, Kyungho
Noh, Gunwoo
Yoo, Seung-Schik
Seo, Minjee
Shin, Minwoo
Author_xml – sequence: 1
  givenname: Minjee
  orcidid: 0009-0000-0413-811X
  surname: Seo
  fullname: Seo, Minjee
  organization: Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
– sequence: 2
  givenname: Minwoo
  orcidid: 0000-0002-0093-2866
  surname: Shin
  fullname: Shin, Minwoo
  organization: Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
– sequence: 3
  givenname: Gunwoo
  surname: Noh
  fullname: Noh, Gunwoo
  organization: Korea University, School of Mechanical Engineering, Seoul, 02841, Republic of Korea
– sequence: 4
  givenname: Seung-Schik
  orcidid: 0000-0002-5150-9857
  surname: Yoo
  fullname: Yoo, Seung-Schik
  organization: Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, 02115, MA, USA
– sequence: 5
  givenname: Kyungho
  surname: Yoon
  fullname: Yoon, Kyungho
  email: yoonkh@yonsei.ac.kr
  organization: Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39437458$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1vFCEYgImpsdvqH_BgOHqZFZgZ2DFeTONXUuNFz-QtvKNsGRiBabPxz8s6rQcP6gkCz8PHc0ZOQgxIyFPOtpxx-WK_NdN8tRVMdHVh1_W7B2TDd0o0qpf9CdlUaGiEZOqUnOW8Z4yJvpePyGk7dK2q_Ib8-Lj44popWvA0YLmN6TrTMSaaEHxT3IR0isGVmFz4SuNIXSgJTILgqgEmLrk4Q0eH3lK7_KIqEPI9MkazZLS03pMgxyVYWr5hgvnwmDwcwWd8cjeeky9v33y-eN9cfnr34eL1ZWM6JkqDXIEchAIFRoDglnE-WkQl5bDj42CtEK2qE1735MhACcsHAMsGtEbx9py067lLmOFwC97rObkJ0kFzpo8p9V4fU-pjSr2mrNbz1ZpT_L5gLnpy2aD3ELB-WrecD0q0nRwq-uwOXa4mtL9Pv89cAbECJsWcE47_94BXq4S1zY3DpLNxGAxal9AUbaP7u_7yD914F5wBf42Hf8k_Aft4vAg
Cites_doi 10.1088/1361-6560/aabe37
10.1109/TIP.2022.3193288
10.1109/ACCESS.2021.3097614
10.1088/1741-2560/13/3/031003
10.1117/1.3360308
10.1109/ACCESS.2019.2950985
10.1002/rob.21918
10.1109/TMI.2007.901984
10.1016/S1474-4422(13)70048-6
10.1016/j.drudis.2018.01.039
10.2214/AJR.14.13632
10.1016/j.clinph.2021.12.010
10.1121/1.1421344
10.1038/s41598-019-43775-6
10.3390/mti2030047
10.1109/JBHI.2022.3198650
10.1016/j.inffus.2020.10.015
10.1016/j.ultrasmedbio.2019.05.023
10.1016/j.ultrasmedbio.2020.04.011
10.1088/1361-6560/ab6f51
10.1088/0031-9155/56/1/014
10.1001/jamaneurol.2017.3129
10.1002/ima.22020
10.1038/srep34026
10.1126/science.1127647
10.1038/nn.3620
10.1146/annurev-bioeng-071516-044442
10.1016/j.ultrasmedbio.2019.09.010
10.1016/j.cmpb.2023.107591
10.1016/j.neuroimage.2011.02.058
10.1038/s41598-019-50567-5
10.1109/TPAMI.2018.2798607
10.1121/1.4712021
10.1016/j.brs.2019.07.024
10.2307/1932409
10.1121/1.1646399
10.1371/journal.pone.0224311
10.1038/ncpneuro0530
10.1093/bib/bbab454
10.1186/2050-5736-2-17
10.1016/j.ultras.2022.106724
10.1109/58.911717
10.1109/TBME.2004.831516
10.1038/srep08743
10.1093/ehjdh/ztac033
10.1158/1078-0432.CCR-17-0853
10.1038/s41591-022-01981-2
10.1109/TCI.2016.2644865
10.1016/j.ultras.2017.02.012
10.1109/TUFFC.2010.1738
10.1016/j.ultrasmedbio.2022.01.022
10.1016/j.eswa.2018.08.011
10.1016/j.gie.2019.08.018
10.1109/JSTSP.2020.2987728
10.1038/nrneurol.2010.30
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.cmpb.2024.108458
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10.1016/j.cmpb.2024.108458
39437458
10_1016_j_cmpb_2024_108458
S0169260724004516
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
6I.
AACTN
AAFTH
ABTAH
AFCTW
RIG
AAYXX
CITATION
AFKWA
AJOXV
AMFUW
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c402t-e17a6927a7ac2a21d011fdee766981f9dd22371f9121d6f0a72d19aad09edc713
IEDL.DBID UNPAY
ISSN 0169-2607
1872-7565
IngestDate Tue Aug 19 09:03:18 EDT 2025
Thu Oct 02 09:51:56 EDT 2025
Wed Feb 19 02:15:43 EST 2025
Wed Oct 01 06:41:11 EDT 2025
Sun Apr 06 06:53:07 EDT 2025
Tue Oct 14 19:40:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Swin transformer
Transcranial focused ultrasound
Computer simulation
Convolutional neural network
Real-time monitoring
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-e17a6927a7ac2a21d011fdee766981f9dd22371f9121d6f0a72d19aad09edc713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-0413-811X
0000-0002-5150-9857
0000-0002-0093-2866
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpb.2024.108458
PMID 39437458
PQID 3119723469
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_cmpb_2024_108458
proquest_miscellaneous_3119723469
pubmed_primary_39437458
crossref_primary_10_1016_j_cmpb_2024_108458
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108458
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yoon, Lee, Chen, Lee, Croce, Cammalleri, Foley, Yoo (b3) 2019; 45
Lipsman, Schwartz, Huang, Lee, Sankar, Chapman, Hynynen, Lozano (b5) 2013; 12
Lee, Kim, Jung, Chung, Song, Lee, Yoo (b9) 2016; 6
Zhang, Yang, He, Deng (b41) 2020; 14
Darmani, Bergmann, Butts Pauly, Caskey, de Lecea, Fomenko, Fouragnan, Legon, Murphy, Nandi, Phipps, Pinton, Ramezanpour, Sallet, Yaakub, Yoo, Chen (b10) 2022; 135
Zhao, Gallo, Frosio, Kautz (b68) 2017; 3
Connor, Hynynen (b15) 2004; 51
Mast, Souriau, Liu, Tabei, Nachman, Waag (b59) 2001; 48
Chen, Engkvist, Wang, Olivecrona, Blaschke (b28) 2018; 23
Dice (b67) 1945; 26
Tancik, Srinivasan, Mildenhall, Fridovich-Keil, Raghavan, Singhal, Ramamoorthi, Barron, Ng (b62) 2020
Chen, Wang, He, Huang (b34) 2014
Pichardo, Sin, Hynynen (b55) 2011; 56
Pouliopoulos, Wu, Burgess, Karakatsani, Kamimura, Konofagou (b19) 2020; 46
Shen, Wu, Suk (b26) 2017; 19
Coluccia, Fandino, Schwyzer, O’Gorman, Remonda, Anon, Martin, Werner (b2) 2014; 2
Ghanouni, Pauly, Elias, Henderson, Sheehan, Monteith, Wintermark (b18) 2015; 205
Hoy, Fitzgerald (b13) 2010; 6
Ahmad, Tabassum, Guan, Khan (b48) 2021; 9
Grigorescu, Trasnea, Cocias, Macesanu (b35) 2020; 37
Guo, Xiao, Wu, Zeng, Zhang, Du, Bai, Xie, Zhang, Li, Wang, Cheung, Sharma, Liu, Hu (b37) 2020; 91
Shin, Peng, Kim, Yoo, Yoon (b31) 2023; 237
Lee, Kim, Jung, Song, Chung, Yoo (b21) 2015; 5
Baltrušaitis, Ahuja, Morency (b40) 2018; 41
Zhang, Jiang, Miura, Manning, Langlotz (b43) 2022; Vol. 182
Yoon, Lee, Lee, Xu, Croce, Foley, Yoo (b11) 2019; 14
Leung, Webb, Bitton, Ghanouni, Pauly (b24) 2019; 9
Xu, Lee, Rotenberg, Böhlke, Yoon, Yoo (b4) 2020; 46
Zhang, Lin, Liu, Zhang, Yan, Wei (b27) 2019; 7
Fregni, Pascual-Leone (b12) 2007; 3
Yamada, Saito, Imaoka, Saiko, Yamada, Kondo, Takamaru, Sakamoto, Sese, Kuchiba, Shibata, Hamamoto (b36) 2019; 9
Wang, Yang, Papanastasiou, Tsaftaris, Newby, Gray, Macnaught, MacGillivray (b46) 2021; 67
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (b66) 2021
Hinton, Salakhutdinov (b64) 2006; 313
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b63) 2017
Ronneberger, Fischer, Brox (b65) 2015
Bakator, Radosav (b25) 2018; 2
Acosta, Falcone, Rajpurkar, Topol (b42) 2022; 28
Li, Zhao, Lv, Li (b45) 2021; 2
Andersen, Peimankar, Puthusserypady (b38) 2019; 115
Treeby, Jaros, Rendell, Cox (b61) 2012; 131
Pasquinelli, Hanson, Siebner, Lee, Thielscher (b14) 2019; 12
Naor, Krupa, Shoham (b1) 2016; 13
Gilat (b56) 2017
Kang, Ko, Mersha (b51) 2022; 23
Yoo, Bystritsky, Lee, Zhang, Fischer, Min, McDannold, Pascual-Leone, Jolesz (b7) 2011; 56
Shen, Nguyen, Zhou, Jiang, Dong, Jia (b33) 2020; 65
Moghari, Abolmaesumi (b53) 2007; 26
Kim, Chiu, Park, Yoo (b20) 2012; 22
Wang, Zhang, Lam, Cai, Yang (b29) 2020; 10
Huang, Wen, Song, Li (b23) 2022; 124
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 689–696.
Krishna, Sammartino, Rezai (b6) 2018; 75
Choi, Jang, Yoo, Noh, Yoon (b30) 2022; 26
Deffieux, Konofagou (b54) 2010; 57
Chaudhary, Poirion, Lu, Garmire (b50) 2018; 24
Soto, Weston Hughes, Sanchez, Perez, Ouyang, Ashley (b49) 2022; 3
Tabei, Mast, Waag (b58) 2002; 111
Legon, Sato, Opitz, Mueller, Barbour, Williams, Tyler (b8) 2014; 17
Yoon, Lee, Croce, Cammalleri, Yoo (b16) 2018; 63
Chen, Holm (b60) 2004; 115
Jing, Xie, Xing (b44) 2018
Shin, Seo, Yoo, Yoon (b32) 2024
Tang, He, Liu, Duan (b47) 2022; 31
Wang, Komatsu, Mitsumura, Nakata, Ogawa, Iguchi, Yokoyama (b17) 2017; 77
Burger, Burge, Burge, Burge (b52) 2009
Treeby, Cox (b57) 2010; 15
Brinker, Balchandani, Seifert, Kim, Yoon (b22) 2022; 48
Xu (10.1016/j.cmpb.2024.108458_b4) 2020; 46
Darmani (10.1016/j.cmpb.2024.108458_b10) 2022; 135
Soto (10.1016/j.cmpb.2024.108458_b49) 2022; 3
Chaudhary (10.1016/j.cmpb.2024.108458_b50) 2018; 24
Vaswani (10.1016/j.cmpb.2024.108458_b63) 2017
Chen (10.1016/j.cmpb.2024.108458_b28) 2018; 23
Wang (10.1016/j.cmpb.2024.108458_b29) 2020; 10
Moghari (10.1016/j.cmpb.2024.108458_b53) 2007; 26
Bakator (10.1016/j.cmpb.2024.108458_b25) 2018; 2
Zhang (10.1016/j.cmpb.2024.108458_b43) 2022; Vol. 182
Tabei (10.1016/j.cmpb.2024.108458_b58) 2002; 111
Yoon (10.1016/j.cmpb.2024.108458_b16) 2018; 63
Treeby (10.1016/j.cmpb.2024.108458_b61) 2012; 131
Brinker (10.1016/j.cmpb.2024.108458_b22) 2022; 48
Huang (10.1016/j.cmpb.2024.108458_b23) 2022; 124
Lee (10.1016/j.cmpb.2024.108458_b9) 2016; 6
Kim (10.1016/j.cmpb.2024.108458_b20) 2012; 22
Liu (10.1016/j.cmpb.2024.108458_b66) 2021
Shin (10.1016/j.cmpb.2024.108458_b31) 2023; 237
Yoon (10.1016/j.cmpb.2024.108458_b11) 2019; 14
Tancik (10.1016/j.cmpb.2024.108458_b62) 2020
Andersen (10.1016/j.cmpb.2024.108458_b38) 2019; 115
Legon (10.1016/j.cmpb.2024.108458_b8) 2014; 17
Hinton (10.1016/j.cmpb.2024.108458_b64) 2006; 313
Naor (10.1016/j.cmpb.2024.108458_b1) 2016; 13
Pichardo (10.1016/j.cmpb.2024.108458_b55) 2011; 56
Dice (10.1016/j.cmpb.2024.108458_b67) 1945; 26
Hoy (10.1016/j.cmpb.2024.108458_b13) 2010; 6
Shen (10.1016/j.cmpb.2024.108458_b33) 2020; 65
Shen (10.1016/j.cmpb.2024.108458_b26) 2017; 19
Guo (10.1016/j.cmpb.2024.108458_b37) 2020; 91
Yoo (10.1016/j.cmpb.2024.108458_b7) 2011; 56
Pouliopoulos (10.1016/j.cmpb.2024.108458_b19) 2020; 46
Jing (10.1016/j.cmpb.2024.108458_b44) 2018
Fregni (10.1016/j.cmpb.2024.108458_b12) 2007; 3
Zhang (10.1016/j.cmpb.2024.108458_b41) 2020; 14
Kang (10.1016/j.cmpb.2024.108458_b51) 2022; 23
Baltrušaitis (10.1016/j.cmpb.2024.108458_b40) 2018; 41
Mast (10.1016/j.cmpb.2024.108458_b59) 2001; 48
Coluccia (10.1016/j.cmpb.2024.108458_b2) 2014; 2
Lipsman (10.1016/j.cmpb.2024.108458_b5) 2013; 12
Yoon (10.1016/j.cmpb.2024.108458_b3) 2019; 45
Shin (10.1016/j.cmpb.2024.108458_b32) 2024
Yamada (10.1016/j.cmpb.2024.108458_b36) 2019; 9
Krishna (10.1016/j.cmpb.2024.108458_b6) 2018; 75
Chen (10.1016/j.cmpb.2024.108458_b34) 2014
Zhao (10.1016/j.cmpb.2024.108458_b68) 2017; 3
Pasquinelli (10.1016/j.cmpb.2024.108458_b14) 2019; 12
Lee (10.1016/j.cmpb.2024.108458_b21) 2015; 5
Deffieux (10.1016/j.cmpb.2024.108458_b54) 2010; 57
Gilat (10.1016/j.cmpb.2024.108458_b56) 2017
Connor (10.1016/j.cmpb.2024.108458_b15) 2004; 51
Leung (10.1016/j.cmpb.2024.108458_b24) 2019; 9
Ahmad (10.1016/j.cmpb.2024.108458_b48) 2021; 9
10.1016/j.cmpb.2024.108458_b39
Acosta (10.1016/j.cmpb.2024.108458_b42) 2022; 28
Wang (10.1016/j.cmpb.2024.108458_b46) 2021; 67
Tang (10.1016/j.cmpb.2024.108458_b47) 2022; 31
Chen (10.1016/j.cmpb.2024.108458_b60) 2004; 115
Ronneberger (10.1016/j.cmpb.2024.108458_b65) 2015
Li (10.1016/j.cmpb.2024.108458_b45) 2021; 2
Burger (10.1016/j.cmpb.2024.108458_b52) 2009
Treeby (10.1016/j.cmpb.2024.108458_b57) 2010; 15
Ghanouni (10.1016/j.cmpb.2024.108458_b18) 2015; 205
Zhang (10.1016/j.cmpb.2024.108458_b27) 2019; 7
Grigorescu (10.1016/j.cmpb.2024.108458_b35) 2020; 37
Wang (10.1016/j.cmpb.2024.108458_b17) 2017; 77
Choi (10.1016/j.cmpb.2024.108458_b30) 2022; 26
References_xml – volume: 2
  start-page: 21
  year: 2021
  end-page: 29
  ident: b45
  article-title: Medical image fusion method by deep learning
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 56
  start-page: 1267
  year: 2011
  end-page: 1275
  ident: b7
  article-title: Focused ultrasound modulates region-specific brain activity
  publication-title: NeuroImage
– volume: 46
  start-page: 1986
  year: 2020
  end-page: 1997
  ident: b4
  article-title: Localized disruption of blood albumin-phenytoin binding using transcranial focused ultrasound
  publication-title: Ultrasound Med. Biol.
– volume: 115
  start-page: 1424
  year: 2004
  end-page: 1430
  ident: b60
  article-title: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
  publication-title: J. Acoust. Soc. Am.
– volume: 57
  start-page: 2637
  year: 2010
  end-page: 2653
  ident: b54
  article-title: Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 17
  start-page: 322
  year: 2014
  end-page: 329
  ident: b8
  article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
  publication-title: Nat. Neurosci.
– volume: 26
  start-page: 1708
  year: 2007
  end-page: 1728
  ident: b53
  article-title: Point-based rigid-body registration using an unscented kalman filter
  publication-title: IEEE Trans. Med. Imaging
– volume: 63
  year: 2018
  ident: b16
  article-title: Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer
  publication-title: Phys. Med. Biol.
– volume: 26
  start-page: 5653
  year: 2022
  end-page: 5664
  ident: b30
  article-title: Deep neural network for navigation of a single-element transducer during transcranial focused ultrasound therapy: Proof of concept
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 237
  year: 2023
  ident: b31
  article-title: Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation
  publication-title: Comput. Methods Programs Biomed.
– volume: 48
  start-page: 341
  year: 2001
  end-page: 354
  ident: b59
  article-title: A k-space method for large-scale models of wave propagation in tissue
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 9
  start-page: 100615
  year: 2021
  end-page: 100626
  ident: b48
  article-title: ECG heartbeat classification using multimodal fusion
  publication-title: IEEE Access
– volume: 3
  start-page: 383
  year: 2007
  end-page: 393
  ident: b12
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat. Clin. Pract. Neurol.
– volume: 56
  start-page: 219
  year: 2011
  end-page: 250
  ident: b55
  article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
  publication-title: Phys. Med. Biol.
– volume: 7
  start-page: 162415
  year: 2019
  end-page: 162438
  ident: b27
  article-title: A review on deep learning applications in prognostics and health management
  publication-title: Ieee Access
– volume: 37
  start-page: 362
  year: 2020
  end-page: 386
  ident: b35
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Robot.
– volume: 2
  start-page: 17
  year: 2014
  ident: b2
  article-title: First non-invasive thermal ablation of a brain tumor with MR guided focused ultrasound
  publication-title: J. Ther. Ultrasound
– volume: 75
  start-page: 246
  year: 2018
  end-page: 254
  ident: b6
  article-title: A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment
  publication-title: JAMA Neurol.
– volume: 15
  year: 2010
  ident: b57
  article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields
  publication-title: J. Biomed. Opt.
– volume: 91
  start-page: 41
  year: 2020
  end-page: 51
  ident: b37
  article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
  publication-title: Gastrointest Endosc.
– year: 2009
  ident: b52
  article-title: Principles of digital image processing
– volume: 12
  start-page: 1367
  year: 2019
  end-page: 1380
  ident: b14
  article-title: Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies
  publication-title: Brain Stimul.
– volume: Vol. 182
  start-page: 2
  year: 2022
  end-page: 25
  ident: b43
  article-title: Contrastive learning of medical visual representations from paired images and text
  publication-title: Proceedings of the 7th Machine Learning for Healthcare Conference
– volume: 6
  start-page: 34026
  year: 2016
  ident: b9
  article-title: Transcranial focused ultrasound stimulation of human primary visual cortex
  publication-title: Sci. Rep.
– year: 2021
  ident: b66
  article-title: Swin Transformer: Hierarchical vision transformer using shifted windows
– volume: 5
  start-page: 8743
  year: 2015
  ident: b21
  article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
  publication-title: Sci. Rep.
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: b26
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 77
  start-page: 168
  year: 2017
  end-page: 175
  ident: b17
  article-title: An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull
  publication-title: Ultrasonics
– volume: 31
  start-page: 5134
  year: 2022
  end-page: 5149
  ident: b47
  article-title: MATR: Multimodal medical image fusion via multiscale adaptive transformer
  publication-title: IEEE Trans. Image Process.
– year: 2015
  ident: b65
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 1250
  ident: b28
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
– volume: 131
  start-page: 4324
  year: 2012
  end-page: 4336
  ident: b61
  article-title: Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method
  publication-title: J. Acoust. Soc. Am.
– start-page: 1
  year: 2024
  end-page: 12
  ident: b32
  article-title: TFUSFormer: Physics-guided super-resolution transformer for simulation of transcranial focused ultrasound propagation in brain stimulation
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 2577
  year: 2018
  end-page: 2586
  ident: b44
  article-title: On the automatic generation of medical imaging reports
  publication-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
– volume: 28
  start-page: 1773
  year: 2022
  end-page: 1784
  ident: b42
  article-title: Multimodal biomedical AI
  publication-title: Nature Med.
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: b38
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 14465
  year: 2019
  ident: b36
  article-title: Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy
  publication-title: Sci. Rep.
– volume: 135
  start-page: 51
  year: 2022
  end-page: 73
  ident: b10
  article-title: Non-invasive transcranial ultrasound stimulation for neuromodulation
  publication-title: Clin. Neurophysiol.
– year: 2017
  ident: b63
  article-title: Attention is all you need
– volume: 205
  start-page: 150
  year: 2015
  end-page: 159
  ident: b18
  article-title: Transcranial MRI-guided focused ultrasound: A review of the technologic and neurologic applications
  publication-title: AJR Am. J. Roentgenol.
– reference: J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 689–696.
– year: 2017
  ident: b56
  article-title: MATLAB: An introduction with applications
– volume: 45
  start-page: 2391
  year: 2019
  end-page: 2404
  ident: b3
  article-title: Localized blood-brain barrier opening in ovine model using image-guided transcranial focused ultrasound
  publication-title: Ultrasound Med. Biol.
– year: 2020
  ident: b62
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
– volume: 46
  start-page: 73
  year: 2020
  end-page: 89
  ident: b19
  article-title: A clinical system for non-invasive blood–brain barrier opening using a neuronavigation-guided single-element focused ultrasound transducer
  publication-title: Ultrasound Med. Biol.
– volume: 41
  start-page: 423
  year: 2018
  end-page: 443
  ident: b40
  article-title: Multimodal machine learning: A survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 47
  year: 2018
  ident: b25
  article-title: Deep learning and medical diagnosis: A review of literature
  publication-title: Multimodal Technol. Interact.
– volume: 24
  start-page: 1248
  year: 2018
  end-page: 1259
  ident: b50
  article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res.
– volume: 67
  start-page: 147
  year: 2021
  end-page: 160
  ident: b46
  article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis
  publication-title: Inf. Fusion
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: b67
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 14
  year: 2019
  ident: b11
  article-title: Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model
  publication-title: PLoS One
– volume: 12
  start-page: 462
  year: 2013
  end-page: 468
  ident: b5
  article-title: MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study
  publication-title: Lancet Neurol.
– volume: 10
  year: 2020
  ident: b29
  article-title: A review on application of deep learning algorithms in external beam radiotherapy automated treatment planning
  publication-title: Front. Oncol.
– volume: 65
  start-page: 05TR01
  year: 2020
  ident: b33
  article-title: An introduction to deep learning in medical physics: advantages, potential, and challenges
  publication-title: Phys. Med. Biol.
– start-page: 1552
  year: 2014
  end-page: 1555
  ident: b34
  article-title: A fast deep learning system using GPU
  publication-title: 2014 IEEE International Symposium on Circuits and Systems
– volume: 111
  start-page: 53
  year: 2002
  end-page: 63
  ident: b58
  article-title: A k-space method for coupled first-order acoustic propagation equations
  publication-title: J. Acoust. Soc. Am.
– volume: 124
  year: 2022
  ident: b23
  article-title: Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus
  publication-title: Ultrasonics
– volume: 14
  start-page: 478
  year: 2020
  end-page: 493
  ident: b41
  article-title: Multimodal intelligence: Representation learning, information fusion, and applications
  publication-title: IEEE J. Sel. Topics Signal Process.
– volume: 48
  start-page: 1045
  year: 2022
  end-page: 1057
  ident: b22
  article-title: Feasibility of upper cranial nerve sonication in human application via neuronavigated single-element pulsed focused ultrasound
  publication-title: Ultrasound Med. Biol.
– volume: 3
  start-page: 380
  year: 2022
  end-page: 389
  ident: b49
  article-title: Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy
  publication-title: Eur. Heart J., Digit. Health
– volume: 23
  year: 2022
  ident: b51
  article-title: A roadmap for multi-omics data integration using deep learning
  publication-title: Brief. Bioinform.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b64
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 22
  start-page: 177
  year: 2012
  end-page: 184
  ident: b20
  article-title: Image-guided navigation of single-element focused ultrasound transducer
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 9
  start-page: 7965
  year: 2019
  ident: b24
  article-title: A rapid beam simulation framework for transcranial focused ultrasound
  publication-title: Sci. Rep.
– volume: 6
  start-page: 267
  year: 2010
  end-page: 275
  ident: b13
  article-title: Brain stimulation in psychiatry and its effects on cognition
  publication-title: Nat. Rev. Neurol.
– volume: 3
  start-page: 47
  year: 2017
  end-page: 57
  ident: b68
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans. Comput. Imaging
– volume: 13
  year: 2016
  ident: b1
  article-title: Ultrasonic neuromodulation
  publication-title: J. Neural Eng.
– volume: 51
  start-page: 1693
  year: 2004
  end-page: 1706
  ident: b15
  article-title: Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 63
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b16
  article-title: Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aabe37
– volume: 31
  start-page: 5134
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b47
  article-title: MATR: Multimodal medical image fusion via multiscale adaptive transformer
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3193288
– volume: 9
  start-page: 100615
  year: 2021
  ident: 10.1016/j.cmpb.2024.108458_b48
  article-title: ECG heartbeat classification using multimodal fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097614
– volume: 13
  year: 2016
  ident: 10.1016/j.cmpb.2024.108458_b1
  article-title: Ultrasonic neuromodulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/031003
– volume: 15
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2024.108458_b57
  article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3360308
– year: 2017
  ident: 10.1016/j.cmpb.2024.108458_b56
– volume: 7
  start-page: 162415
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b27
  article-title: A review on deep learning applications in prognostics and health management
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2950985
– volume: 37
  start-page: 362
  issue: 3
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b35
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21918
– volume: Vol. 182
  start-page: 2
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b43
  article-title: Contrastive learning of medical visual representations from paired images and text
– volume: 26
  start-page: 1708
  issue: 12
  year: 2007
  ident: 10.1016/j.cmpb.2024.108458_b53
  article-title: Point-based rigid-body registration using an unscented kalman filter
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.901984
– volume: 12
  start-page: 462
  issue: 5
  year: 2013
  ident: 10.1016/j.cmpb.2024.108458_b5
  article-title: MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70048-6
– volume: 10
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b29
  article-title: A review on application of deep learning algorithms in external beam radiotherapy automated treatment planning
  publication-title: Front. Oncol.
– year: 2009
  ident: 10.1016/j.cmpb.2024.108458_b52
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b28
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.01.039
– year: 2021
  ident: 10.1016/j.cmpb.2024.108458_b66
– volume: 205
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.cmpb.2024.108458_b18
  article-title: Transcranial MRI-guided focused ultrasound: A review of the technologic and neurologic applications
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.14.13632
– volume: 135
  start-page: 51
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b10
  article-title: Non-invasive transcranial ultrasound stimulation for neuromodulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2021.12.010
– start-page: 2577
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b44
  article-title: On the automatic generation of medical imaging reports
– volume: 111
  start-page: 53
  year: 2002
  ident: 10.1016/j.cmpb.2024.108458_b58
  article-title: A k-space method for coupled first-order acoustic propagation equations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1421344
– ident: 10.1016/j.cmpb.2024.108458_b39
– volume: 9
  start-page: 7965
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b24
  article-title: A rapid beam simulation framework for transcranial focused ultrasound
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43775-6
– year: 2015
  ident: 10.1016/j.cmpb.2024.108458_b65
– volume: 2
  start-page: 47
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b25
  article-title: Deep learning and medical diagnosis: A review of literature
  publication-title: Multimodal Technol. Interact.
  doi: 10.3390/mti2030047
– volume: 26
  start-page: 5653
  issue: 11
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b30
  article-title: Deep neural network for navigation of a single-element transducer during transcranial focused ultrasound therapy: Proof of concept
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3198650
– volume: 67
  start-page: 147
  year: 2021
  ident: 10.1016/j.cmpb.2024.108458_b46
  article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.015
– volume: 45
  start-page: 2391
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b3
  article-title: Localized blood-brain barrier opening in ovine model using image-guided transcranial focused ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2019.05.023
– year: 2017
  ident: 10.1016/j.cmpb.2024.108458_b63
– volume: 46
  start-page: 1986
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b4
  article-title: Localized disruption of blood albumin-phenytoin binding using transcranial focused ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2020.04.011
– start-page: 1
  year: 2024
  ident: 10.1016/j.cmpb.2024.108458_b32
  article-title: TFUSFormer: Physics-guided super-resolution transformer for simulation of transcranial focused ultrasound propagation in brain stimulation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 65
  start-page: 05TR01
  issue: 5
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b33
  article-title: An introduction to deep learning in medical physics: advantages, potential, and challenges
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab6f51
– volume: 56
  start-page: 219
  year: 2011
  ident: 10.1016/j.cmpb.2024.108458_b55
  article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/1/014
– volume: 75
  start-page: 246
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b6
  article-title: A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2017.3129
– volume: 22
  start-page: 177
  issue: 3
  year: 2012
  ident: 10.1016/j.cmpb.2024.108458_b20
  article-title: Image-guided navigation of single-element focused ultrasound transducer
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22020
– volume: 6
  start-page: 34026
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpb.2024.108458_b9
  article-title: Transcranial focused ultrasound stimulation of human primary visual cortex
  publication-title: Sci. Rep.
  doi: 10.1038/srep34026
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.cmpb.2024.108458_b64
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 17
  start-page: 322
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2024.108458_b8
  article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3620
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108458_b26
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 46
  start-page: 73
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b19
  article-title: A clinical system for non-invasive blood–brain barrier opening using a neuronavigation-guided single-element focused ultrasound transducer
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2019.09.010
– volume: 237
  year: 2023
  ident: 10.1016/j.cmpb.2024.108458_b31
  article-title: Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2023.107591
– volume: 56
  start-page: 1267
  issue: 3
  year: 2011
  ident: 10.1016/j.cmpb.2024.108458_b7
  article-title: Focused ultrasound modulates region-specific brain activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.058
– volume: 9
  start-page: 14465
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b36
  article-title: Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50567-5
– volume: 41
  start-page: 423
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b40
  article-title: Multimodal machine learning: A survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2798607
– volume: 131
  start-page: 4324
  issue: 6
  year: 2012
  ident: 10.1016/j.cmpb.2024.108458_b61
  article-title: Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4712021
– volume: 12
  start-page: 1367
  issue: 6
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b14
  article-title: Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.07.024
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.cmpb.2024.108458_b67
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 115
  start-page: 1424
  year: 2004
  ident: 10.1016/j.cmpb.2024.108458_b60
  article-title: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1646399
– year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b62
– volume: 14
  issue: 10
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b11
  article-title: Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0224311
– volume: 3
  start-page: 383
  year: 2007
  ident: 10.1016/j.cmpb.2024.108458_b12
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat. Clin. Pract. Neurol.
  doi: 10.1038/ncpneuro0530
– volume: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b51
  article-title: A roadmap for multi-omics data integration using deep learning
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab454
– volume: 2
  start-page: 17
  year: 2014
  ident: 10.1016/j.cmpb.2024.108458_b2
  article-title: First non-invasive thermal ablation of a brain tumor with MR guided focused ultrasound
  publication-title: J. Ther. Ultrasound
  doi: 10.1186/2050-5736-2-17
– volume: 124
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b23
  article-title: Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2022.106724
– volume: 48
  start-page: 341
  issue: 2
  year: 2001
  ident: 10.1016/j.cmpb.2024.108458_b59
  article-title: A k-space method for large-scale models of wave propagation in tissue
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.911717
– start-page: 1552
  year: 2014
  ident: 10.1016/j.cmpb.2024.108458_b34
  article-title: A fast deep learning system using GPU
– volume: 51
  start-page: 1693
  issue: 10
  year: 2004
  ident: 10.1016/j.cmpb.2024.108458_b15
  article-title: Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.831516
– volume: 5
  start-page: 8743
  year: 2015
  ident: 10.1016/j.cmpb.2024.108458_b21
  article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
  publication-title: Sci. Rep.
  doi: 10.1038/srep08743
– volume: 3
  start-page: 380
  issue: 3
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b49
  article-title: Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy
  publication-title: Eur. Heart J., Digit. Health
  doi: 10.1093/ehjdh/ztac033
– volume: 24
  start-page: 1248
  issue: 6
  year: 2018
  ident: 10.1016/j.cmpb.2024.108458_b50
  article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 28
  start-page: 1773
  issue: 9
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b42
  article-title: Multimodal biomedical AI
  publication-title: Nature Med.
  doi: 10.1038/s41591-022-01981-2
– volume: 3
  start-page: 47
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108458_b68
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2644865
– volume: 77
  start-page: 168
  year: 2017
  ident: 10.1016/j.cmpb.2024.108458_b17
  article-title: An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.02.012
– volume: 57
  start-page: 2637
  year: 2010
  ident: 10.1016/j.cmpb.2024.108458_b54
  article-title: Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1738
– volume: 2
  start-page: 21
  year: 2021
  ident: 10.1016/j.cmpb.2024.108458_b45
  article-title: Medical image fusion method by deep learning
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 48
  start-page: 1045
  year: 2022
  ident: 10.1016/j.cmpb.2024.108458_b22
  article-title: Feasibility of upper cranial nerve sonication in human application via neuronavigated single-element pulsed focused ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2022.01.022
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.cmpb.2024.108458_b38
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.011
– volume: 91
  start-page: 41
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b37
  article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
  publication-title: Gastrointest Endosc.
  doi: 10.1016/j.gie.2019.08.018
– volume: 14
  start-page: 478
  issue: 3
  year: 2020
  ident: 10.1016/j.cmpb.2024.108458_b41
  article-title: Multimodal intelligence: Representation learning, information fusion, and applications
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2020.2987728
– volume: 6
  start-page: 267
  issue: 5
  year: 2010
  ident: 10.1016/j.cmpb.2024.108458_b13
  article-title: Brain stimulation in psychiatry and its effects on cognition
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2010.30
SSID ssj0002556
Score 2.4203758
Snippet Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108458
SubjectTerms Computer simulation
Convolutional neural network
Deep learning
Real-time monitoring
Swin transformer
Transcranial focused ultrasound
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehD-32UPq1NWs3NOhbpyW2Zct6LGGlFNqXrdA3cfowZCROaBJKGexv351lZy0r69ibP05YvjudTtLv7hg7seDSUEEhZGGHQtpSi1LnQehMl84GqGyTTOfquri4kZe3-W2PjbpYGIJVtrY_2vTGWrdPBi03B_PxePCV8oigN64IBUnlZimCXSqqYvD552-YB6XYivm9tSDqNnAmYrzcdG5xjZhKgtpJKvv-_OT0p_P5mm2t6jk83MNk8mhCOt9h260nyc9iZ3dZL9R7bPOqPSvfZz-a2FoxnXmkqiPae8HRR-XoJ04EFZXn02ZE09Yen1V8TBu9Dicv1EmOlrIp9MUbjBuP4Yx8SVNbR1LN3GoRPMfv3MGC6jPxGM71cMBuzr98G12IttSCcLiAXIqQKEBuKlAoO0gTj8O-8iGootBlUmnv0Y1QeJHgu6Iagkp9ogH8UAfvcKH7hm3UszocMq6q1EGeAeTBSrBI4_LS27RwISuH1vbZacdjM48ZNUwHNftuSCKGJGKiRPos68RgulhRtG4GDf5fW-XrVk-06cV2HztJGxxmdHYCdUB2myzWZ5OF7rO3UQXWvc-0zFTT-tNaJ_7h1979ZyeP2Cu6i5iaY7axvFuF9-gZLe2HRvV_ARsJDh0
  priority: 102
  providerName: Elsevier
Title Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724004516
https://dx.doi.org/10.1016/j.cmpb.2024.108458
https://www.ncbi.nlm.nih.gov/pubmed/39437458
https://www.proquest.com/docview/3119723469
https://doi.org/10.1016/j.cmpb.2024.108458
UnpaywallVersion publishedVersion
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61iQTiQMs7iEZG4gaOsi97fYwQVQA14kCkcrL8WglINlGzESpI_HbG9m7UUh7tbaX17K5nZmc-2_MAeKGVSV2lGM2ZHtNcl4KWonBUZKI02qlKh2I6JzM2nefvTovTtkyOz4W5dH4f4rDMcq1xHZfmPhwuL8p96LMCcXcP-vPZh8mnWLxbUATmoZNKyREyIkxpM2T-_JC_eaGrKPMO3N7Wa3X-TS0WFzzP8UFsYbQJBQt9wMnX0bbRI_P9t3KO15vUIdxtASiZRI25B3uuvg-3Ttoj9gfwI6Tk0uXK4qg6BolvCEJbgvByQX0verIMhsDvCJJVRT77_WGDPg9VmaCBDf3BSAiNIzELkjTeI3ZDqpXZbpwl-J4ztfFtnUjMAjt_CPPjNx9fT2nboYEaXHc21CVcMZFyxVHkKk0sWovKOscZE2VSCWsRfXC8SPAeq8aKpzYRStmxcNbg-vgR9OpV7Z4A4VVqVJEpVTidK41jTFFanTLjsnKs9QBedhKT61iIQ3YRal-k56f0_JSRnwPIOqHKLsUUjaJESfyTqthRtQAkAov_0j3v9Ebi3-mPXFTtkN0yi23dciYG8Dgq1O7rM5FnPFC_2mnYNab29GbDn0GvOdu6I4ROjR7C_uhnMoT-5O376WzY_kG_APiOGZw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTWLwgMbnugEzEm_gtUmcOH5E06YC617YpL1Z_opU1KbV2mqakPjbuYuTMgQaiLcovlMcn32-s393B_DWGpeGyhRcFHbAhS0VL1UeuMpU6WwwlW2S6YzOiuGF-HSZX27AURcLQ7DKVvdHnd5o6_ZNvx3N_nw87n-hPCJojUtCQVK52XuwJfJUkgd2-P0nzoNybMUE34oTeRs5E0Febjq36CSmgrB2guq-_3l3-t36fAjbq3pubq7NZHJrRzrZgUetKck-xN4-ho1QP4H7o_ay_Cl8a4Jr-XTmkaqOcO8FQyOVoaE44VRVnk2bJU1ne2xWsTGd9DrcvXBSMlSVTaUv1oDcWIxnZEva2zqSauZWi-AZfufKLKhAE4vxXDfP4OLk-PxoyNtaC9yhB7nkIZEGh1MaicIzaeJx3Vc-BFkUqkwq5T3aERIfEmwrqoGRqU-UMX6ggnfo6T6HzXpWh11gskqdyTNj8mCFsUjj8tLbtHAhKwfW9uBdN8Z6HlNq6A5r9lWTRDRJREeJ9CDrxKC7YFFUbxo1_p1c-Zrrl-n0V743naQ1rjO6PDF1wOHWWSzQJgrVgxdxCqx7nymRyYb7_XpO_MOv7f1nJw9ge3g-OtWnH88-78MDaokAm5ewubxahVdoJi3t62YZ_AC4JBFA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddCht7aPfVLaUdGuxtU4m_JOuxlJZSSOnDAu2TOH0YtiVOSBxGtn--J8kO69Z16ZvBOtu6O9_9JN0HIR81mNRVwFnO9YDlupSslIVjMpOl0Q4qHYrpDC_5-Si_uC6u2zI5Phfmzvl9iMMyk5nGdVya-3C4vCifkG1eIO7uke3R5dXxTSzeLRkC89BJpRQIGRGmtBky9z_kX17ob5T5nDxb1jNY_YDx-DfPc7YbWxgtQsFCH3Dy_WjZ6CPz849yjptN6gXZaQEoPY4a85JsufoVeTpsj9hfk18hJZdNphZH1TFIfEER2lKEl2Pme9HTSTAEfkeQTiv61e8PG_R5qMoUDWzoD0ZDaByNWZC08R6xG1JNzXLhLMX3zGHh2zrRmAW2ekNGZ6dfTs5Z26GBGVx3NswlArhMBQgUOaSJRWtRWecE57JMKmktog-BFwne49UARGoTCWAH0lmD6-M90quntXtHqKhSA0UGUDidg8YxpiitTrlxWTnQuk8-dRJTs1iIQ3URat-U56fy_FSRn32SdUJVXYopGkWFkniQqlhTtQAkAov_0n3o9Ebh3-mPXKB2yG6VxbZuOZd98jYq1PrrM5lnIlB_XmvYBlPbf9zwA9Jr5kt3iNCp0e_bf-YWqUIXEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-modal+networks+for+real-time+monitoring+of+intracranial+acoustic+field+during+transcranial+focused+ultrasound+therapy&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Seo%2C+Minjee&rft.au=Shin%2C+Minwoo&rft.au=Noh%2C+Gunwoo&rft.au=Yoo%2C+Seung-Schik&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.volume=257&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108458&rft.externalDocID=S0169260724004516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon