Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy
Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 257; p. 108458 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Ireland
Elsevier B.V
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2024.108458 |
Cover
| Abstract | Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time.
The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder.
Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation.
The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
•Achieved real-time prediction of intracranial pressure map with high accuracy.•Developed network models to effectively process multi-modal information.•Enabled prediction of intracranial pressure maps solely based on MR images. |
|---|---|
| AbstractList | Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time.BACKGROUND AND OBJECTIVETranscranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time.The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder.METHODSThe dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder.Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation.RESULTSEvaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation.The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.CONCLUSIONSThe results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies. Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies. •Achieved real-time prediction of intracranial pressure map with high accuracy.•Developed network models to effectively process multi-modal information.•Enabled prediction of intracranial pressure maps solely based on MR images. Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies. |
| ArticleNumber | 108458 |
| Author | Yoon, Kyungho Noh, Gunwoo Yoo, Seung-Schik Seo, Minjee Shin, Minwoo |
| Author_xml | – sequence: 1 givenname: Minjee orcidid: 0009-0000-0413-811X surname: Seo fullname: Seo, Minjee organization: Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea – sequence: 2 givenname: Minwoo orcidid: 0000-0002-0093-2866 surname: Shin fullname: Shin, Minwoo organization: Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea – sequence: 3 givenname: Gunwoo surname: Noh fullname: Noh, Gunwoo organization: Korea University, School of Mechanical Engineering, Seoul, 02841, Republic of Korea – sequence: 4 givenname: Seung-Schik orcidid: 0000-0002-5150-9857 surname: Yoo fullname: Yoo, Seung-Schik organization: Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, 02115, MA, USA – sequence: 5 givenname: Kyungho surname: Yoon fullname: Yoon, Kyungho email: yoonkh@yonsei.ac.kr organization: Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39437458$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE1vFCEYgImpsdvqH_BgOHqZFZgZ2DFeTONXUuNFz-QtvKNsGRiBabPxz8s6rQcP6gkCz8PHc0ZOQgxIyFPOtpxx-WK_NdN8tRVMdHVh1_W7B2TDd0o0qpf9CdlUaGiEZOqUnOW8Z4yJvpePyGk7dK2q_Ib8-Lj44popWvA0YLmN6TrTMSaaEHxT3IR0isGVmFz4SuNIXSgJTILgqgEmLrk4Q0eH3lK7_KIqEPI9MkazZLS03pMgxyVYWr5hgvnwmDwcwWd8cjeeky9v33y-eN9cfnr34eL1ZWM6JkqDXIEchAIFRoDglnE-WkQl5bDj42CtEK2qE1735MhACcsHAMsGtEbx9py067lLmOFwC97rObkJ0kFzpo8p9V4fU-pjSr2mrNbz1ZpT_L5gLnpy2aD3ELB-WrecD0q0nRwq-uwOXa4mtL9Pv89cAbECJsWcE47_94BXq4S1zY3DpLNxGAxal9AUbaP7u_7yD914F5wBf42Hf8k_Aft4vAg |
| Cites_doi | 10.1088/1361-6560/aabe37 10.1109/TIP.2022.3193288 10.1109/ACCESS.2021.3097614 10.1088/1741-2560/13/3/031003 10.1117/1.3360308 10.1109/ACCESS.2019.2950985 10.1002/rob.21918 10.1109/TMI.2007.901984 10.1016/S1474-4422(13)70048-6 10.1016/j.drudis.2018.01.039 10.2214/AJR.14.13632 10.1016/j.clinph.2021.12.010 10.1121/1.1421344 10.1038/s41598-019-43775-6 10.3390/mti2030047 10.1109/JBHI.2022.3198650 10.1016/j.inffus.2020.10.015 10.1016/j.ultrasmedbio.2019.05.023 10.1016/j.ultrasmedbio.2020.04.011 10.1088/1361-6560/ab6f51 10.1088/0031-9155/56/1/014 10.1001/jamaneurol.2017.3129 10.1002/ima.22020 10.1038/srep34026 10.1126/science.1127647 10.1038/nn.3620 10.1146/annurev-bioeng-071516-044442 10.1016/j.ultrasmedbio.2019.09.010 10.1016/j.cmpb.2023.107591 10.1016/j.neuroimage.2011.02.058 10.1038/s41598-019-50567-5 10.1109/TPAMI.2018.2798607 10.1121/1.4712021 10.1016/j.brs.2019.07.024 10.2307/1932409 10.1121/1.1646399 10.1371/journal.pone.0224311 10.1038/ncpneuro0530 10.1093/bib/bbab454 10.1186/2050-5736-2-17 10.1016/j.ultras.2022.106724 10.1109/58.911717 10.1109/TBME.2004.831516 10.1038/srep08743 10.1093/ehjdh/ztac033 10.1158/1078-0432.CCR-17-0853 10.1038/s41591-022-01981-2 10.1109/TCI.2016.2644865 10.1016/j.ultras.2017.02.012 10.1109/TUFFC.2010.1738 10.1016/j.ultrasmedbio.2022.01.022 10.1016/j.eswa.2018.08.011 10.1016/j.gie.2019.08.018 10.1109/JSTSP.2020.2987728 10.1038/nrneurol.2010.30 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.cmpb.2024.108458 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | 10.1016/j.cmpb.2024.108458 39437458 10_1016_j_cmpb_2024_108458 S0169260724004516 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD 6I. AACTN AAFTH ABTAH AFCTW RIG AAYXX CITATION AFKWA AJOXV AMFUW NPM 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c402t-e17a6927a7ac2a21d011fdee766981f9dd22371f9121d6f0a72d19aad09edc713 |
| IEDL.DBID | UNPAY |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Tue Aug 19 09:03:18 EDT 2025 Thu Oct 02 09:51:56 EDT 2025 Wed Feb 19 02:15:43 EST 2025 Wed Oct 01 06:41:11 EDT 2025 Sun Apr 06 06:53:07 EDT 2025 Tue Oct 14 19:40:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Swin transformer Transcranial focused ultrasound Computer simulation Convolutional neural network Real-time monitoring |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-e17a6927a7ac2a21d011fdee766981f9dd22371f9121d6f0a72d19aad09edc713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0000-0413-811X 0000-0002-5150-9857 0000-0002-0093-2866 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpb.2024.108458 |
| PMID | 39437458 |
| PQID | 3119723469 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cmpb_2024_108458 proquest_miscellaneous_3119723469 pubmed_primary_39437458 crossref_primary_10_1016_j_cmpb_2024_108458 elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108458 elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108458 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yoon, Lee, Chen, Lee, Croce, Cammalleri, Foley, Yoo (b3) 2019; 45 Lipsman, Schwartz, Huang, Lee, Sankar, Chapman, Hynynen, Lozano (b5) 2013; 12 Lee, Kim, Jung, Chung, Song, Lee, Yoo (b9) 2016; 6 Zhang, Yang, He, Deng (b41) 2020; 14 Darmani, Bergmann, Butts Pauly, Caskey, de Lecea, Fomenko, Fouragnan, Legon, Murphy, Nandi, Phipps, Pinton, Ramezanpour, Sallet, Yaakub, Yoo, Chen (b10) 2022; 135 Zhao, Gallo, Frosio, Kautz (b68) 2017; 3 Connor, Hynynen (b15) 2004; 51 Mast, Souriau, Liu, Tabei, Nachman, Waag (b59) 2001; 48 Chen, Engkvist, Wang, Olivecrona, Blaschke (b28) 2018; 23 Dice (b67) 1945; 26 Tancik, Srinivasan, Mildenhall, Fridovich-Keil, Raghavan, Singhal, Ramamoorthi, Barron, Ng (b62) 2020 Chen, Wang, He, Huang (b34) 2014 Pichardo, Sin, Hynynen (b55) 2011; 56 Pouliopoulos, Wu, Burgess, Karakatsani, Kamimura, Konofagou (b19) 2020; 46 Shen, Wu, Suk (b26) 2017; 19 Coluccia, Fandino, Schwyzer, O’Gorman, Remonda, Anon, Martin, Werner (b2) 2014; 2 Ghanouni, Pauly, Elias, Henderson, Sheehan, Monteith, Wintermark (b18) 2015; 205 Hoy, Fitzgerald (b13) 2010; 6 Ahmad, Tabassum, Guan, Khan (b48) 2021; 9 Grigorescu, Trasnea, Cocias, Macesanu (b35) 2020; 37 Guo, Xiao, Wu, Zeng, Zhang, Du, Bai, Xie, Zhang, Li, Wang, Cheung, Sharma, Liu, Hu (b37) 2020; 91 Shin, Peng, Kim, Yoo, Yoon (b31) 2023; 237 Lee, Kim, Jung, Song, Chung, Yoo (b21) 2015; 5 Baltrušaitis, Ahuja, Morency (b40) 2018; 41 Zhang, Jiang, Miura, Manning, Langlotz (b43) 2022; Vol. 182 Yoon, Lee, Lee, Xu, Croce, Foley, Yoo (b11) 2019; 14 Leung, Webb, Bitton, Ghanouni, Pauly (b24) 2019; 9 Xu, Lee, Rotenberg, Böhlke, Yoon, Yoo (b4) 2020; 46 Zhang, Lin, Liu, Zhang, Yan, Wei (b27) 2019; 7 Fregni, Pascual-Leone (b12) 2007; 3 Yamada, Saito, Imaoka, Saiko, Yamada, Kondo, Takamaru, Sakamoto, Sese, Kuchiba, Shibata, Hamamoto (b36) 2019; 9 Wang, Yang, Papanastasiou, Tsaftaris, Newby, Gray, Macnaught, MacGillivray (b46) 2021; 67 Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (b66) 2021 Hinton, Salakhutdinov (b64) 2006; 313 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b63) 2017 Ronneberger, Fischer, Brox (b65) 2015 Bakator, Radosav (b25) 2018; 2 Acosta, Falcone, Rajpurkar, Topol (b42) 2022; 28 Li, Zhao, Lv, Li (b45) 2021; 2 Andersen, Peimankar, Puthusserypady (b38) 2019; 115 Treeby, Jaros, Rendell, Cox (b61) 2012; 131 Pasquinelli, Hanson, Siebner, Lee, Thielscher (b14) 2019; 12 Naor, Krupa, Shoham (b1) 2016; 13 Gilat (b56) 2017 Kang, Ko, Mersha (b51) 2022; 23 Yoo, Bystritsky, Lee, Zhang, Fischer, Min, McDannold, Pascual-Leone, Jolesz (b7) 2011; 56 Shen, Nguyen, Zhou, Jiang, Dong, Jia (b33) 2020; 65 Moghari, Abolmaesumi (b53) 2007; 26 Kim, Chiu, Park, Yoo (b20) 2012; 22 Wang, Zhang, Lam, Cai, Yang (b29) 2020; 10 Huang, Wen, Song, Li (b23) 2022; 124 J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 689–696. Krishna, Sammartino, Rezai (b6) 2018; 75 Choi, Jang, Yoo, Noh, Yoon (b30) 2022; 26 Deffieux, Konofagou (b54) 2010; 57 Chaudhary, Poirion, Lu, Garmire (b50) 2018; 24 Soto, Weston Hughes, Sanchez, Perez, Ouyang, Ashley (b49) 2022; 3 Tabei, Mast, Waag (b58) 2002; 111 Legon, Sato, Opitz, Mueller, Barbour, Williams, Tyler (b8) 2014; 17 Yoon, Lee, Croce, Cammalleri, Yoo (b16) 2018; 63 Chen, Holm (b60) 2004; 115 Jing, Xie, Xing (b44) 2018 Shin, Seo, Yoo, Yoon (b32) 2024 Tang, He, Liu, Duan (b47) 2022; 31 Wang, Komatsu, Mitsumura, Nakata, Ogawa, Iguchi, Yokoyama (b17) 2017; 77 Burger, Burge, Burge, Burge (b52) 2009 Treeby, Cox (b57) 2010; 15 Brinker, Balchandani, Seifert, Kim, Yoon (b22) 2022; 48 Xu (10.1016/j.cmpb.2024.108458_b4) 2020; 46 Darmani (10.1016/j.cmpb.2024.108458_b10) 2022; 135 Soto (10.1016/j.cmpb.2024.108458_b49) 2022; 3 Chaudhary (10.1016/j.cmpb.2024.108458_b50) 2018; 24 Vaswani (10.1016/j.cmpb.2024.108458_b63) 2017 Chen (10.1016/j.cmpb.2024.108458_b28) 2018; 23 Wang (10.1016/j.cmpb.2024.108458_b29) 2020; 10 Moghari (10.1016/j.cmpb.2024.108458_b53) 2007; 26 Bakator (10.1016/j.cmpb.2024.108458_b25) 2018; 2 Zhang (10.1016/j.cmpb.2024.108458_b43) 2022; Vol. 182 Tabei (10.1016/j.cmpb.2024.108458_b58) 2002; 111 Yoon (10.1016/j.cmpb.2024.108458_b16) 2018; 63 Treeby (10.1016/j.cmpb.2024.108458_b61) 2012; 131 Brinker (10.1016/j.cmpb.2024.108458_b22) 2022; 48 Huang (10.1016/j.cmpb.2024.108458_b23) 2022; 124 Lee (10.1016/j.cmpb.2024.108458_b9) 2016; 6 Kim (10.1016/j.cmpb.2024.108458_b20) 2012; 22 Liu (10.1016/j.cmpb.2024.108458_b66) 2021 Shin (10.1016/j.cmpb.2024.108458_b31) 2023; 237 Yoon (10.1016/j.cmpb.2024.108458_b11) 2019; 14 Tancik (10.1016/j.cmpb.2024.108458_b62) 2020 Andersen (10.1016/j.cmpb.2024.108458_b38) 2019; 115 Legon (10.1016/j.cmpb.2024.108458_b8) 2014; 17 Hinton (10.1016/j.cmpb.2024.108458_b64) 2006; 313 Naor (10.1016/j.cmpb.2024.108458_b1) 2016; 13 Pichardo (10.1016/j.cmpb.2024.108458_b55) 2011; 56 Dice (10.1016/j.cmpb.2024.108458_b67) 1945; 26 Hoy (10.1016/j.cmpb.2024.108458_b13) 2010; 6 Shen (10.1016/j.cmpb.2024.108458_b33) 2020; 65 Shen (10.1016/j.cmpb.2024.108458_b26) 2017; 19 Guo (10.1016/j.cmpb.2024.108458_b37) 2020; 91 Yoo (10.1016/j.cmpb.2024.108458_b7) 2011; 56 Pouliopoulos (10.1016/j.cmpb.2024.108458_b19) 2020; 46 Jing (10.1016/j.cmpb.2024.108458_b44) 2018 Fregni (10.1016/j.cmpb.2024.108458_b12) 2007; 3 Zhang (10.1016/j.cmpb.2024.108458_b41) 2020; 14 Kang (10.1016/j.cmpb.2024.108458_b51) 2022; 23 Baltrušaitis (10.1016/j.cmpb.2024.108458_b40) 2018; 41 Mast (10.1016/j.cmpb.2024.108458_b59) 2001; 48 Coluccia (10.1016/j.cmpb.2024.108458_b2) 2014; 2 Lipsman (10.1016/j.cmpb.2024.108458_b5) 2013; 12 Yoon (10.1016/j.cmpb.2024.108458_b3) 2019; 45 Shin (10.1016/j.cmpb.2024.108458_b32) 2024 Yamada (10.1016/j.cmpb.2024.108458_b36) 2019; 9 Krishna (10.1016/j.cmpb.2024.108458_b6) 2018; 75 Chen (10.1016/j.cmpb.2024.108458_b34) 2014 Zhao (10.1016/j.cmpb.2024.108458_b68) 2017; 3 Pasquinelli (10.1016/j.cmpb.2024.108458_b14) 2019; 12 Lee (10.1016/j.cmpb.2024.108458_b21) 2015; 5 Deffieux (10.1016/j.cmpb.2024.108458_b54) 2010; 57 Gilat (10.1016/j.cmpb.2024.108458_b56) 2017 Connor (10.1016/j.cmpb.2024.108458_b15) 2004; 51 Leung (10.1016/j.cmpb.2024.108458_b24) 2019; 9 Ahmad (10.1016/j.cmpb.2024.108458_b48) 2021; 9 10.1016/j.cmpb.2024.108458_b39 Acosta (10.1016/j.cmpb.2024.108458_b42) 2022; 28 Wang (10.1016/j.cmpb.2024.108458_b46) 2021; 67 Tang (10.1016/j.cmpb.2024.108458_b47) 2022; 31 Chen (10.1016/j.cmpb.2024.108458_b60) 2004; 115 Ronneberger (10.1016/j.cmpb.2024.108458_b65) 2015 Li (10.1016/j.cmpb.2024.108458_b45) 2021; 2 Burger (10.1016/j.cmpb.2024.108458_b52) 2009 Treeby (10.1016/j.cmpb.2024.108458_b57) 2010; 15 Ghanouni (10.1016/j.cmpb.2024.108458_b18) 2015; 205 Zhang (10.1016/j.cmpb.2024.108458_b27) 2019; 7 Grigorescu (10.1016/j.cmpb.2024.108458_b35) 2020; 37 Wang (10.1016/j.cmpb.2024.108458_b17) 2017; 77 Choi (10.1016/j.cmpb.2024.108458_b30) 2022; 26 |
| References_xml | – volume: 2 start-page: 21 year: 2021 end-page: 29 ident: b45 article-title: Medical image fusion method by deep learning publication-title: Int. J. Cogn. Comput. Eng. – volume: 56 start-page: 1267 year: 2011 end-page: 1275 ident: b7 article-title: Focused ultrasound modulates region-specific brain activity publication-title: NeuroImage – volume: 46 start-page: 1986 year: 2020 end-page: 1997 ident: b4 article-title: Localized disruption of blood albumin-phenytoin binding using transcranial focused ultrasound publication-title: Ultrasound Med. Biol. – volume: 115 start-page: 1424 year: 2004 end-page: 1430 ident: b60 article-title: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency publication-title: J. Acoust. Soc. Am. – volume: 57 start-page: 2637 year: 2010 end-page: 2653 ident: b54 article-title: Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 17 start-page: 322 year: 2014 end-page: 329 ident: b8 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat. Neurosci. – volume: 26 start-page: 1708 year: 2007 end-page: 1728 ident: b53 article-title: Point-based rigid-body registration using an unscented kalman filter publication-title: IEEE Trans. Med. Imaging – volume: 63 year: 2018 ident: b16 article-title: Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer publication-title: Phys. Med. Biol. – volume: 26 start-page: 5653 year: 2022 end-page: 5664 ident: b30 article-title: Deep neural network for navigation of a single-element transducer during transcranial focused ultrasound therapy: Proof of concept publication-title: IEEE J. Biomed. Health Inform. – volume: 237 year: 2023 ident: b31 article-title: Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation publication-title: Comput. Methods Programs Biomed. – volume: 48 start-page: 341 year: 2001 end-page: 354 ident: b59 article-title: A k-space method for large-scale models of wave propagation in tissue publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 9 start-page: 100615 year: 2021 end-page: 100626 ident: b48 article-title: ECG heartbeat classification using multimodal fusion publication-title: IEEE Access – volume: 3 start-page: 383 year: 2007 end-page: 393 ident: b12 article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS publication-title: Nat. Clin. Pract. Neurol. – volume: 56 start-page: 219 year: 2011 end-page: 250 ident: b55 article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls publication-title: Phys. Med. Biol. – volume: 7 start-page: 162415 year: 2019 end-page: 162438 ident: b27 article-title: A review on deep learning applications in prognostics and health management publication-title: Ieee Access – volume: 37 start-page: 362 year: 2020 end-page: 386 ident: b35 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Robot. – volume: 2 start-page: 17 year: 2014 ident: b2 article-title: First non-invasive thermal ablation of a brain tumor with MR guided focused ultrasound publication-title: J. Ther. Ultrasound – volume: 75 start-page: 246 year: 2018 end-page: 254 ident: b6 article-title: A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment publication-title: JAMA Neurol. – volume: 15 year: 2010 ident: b57 article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields publication-title: J. Biomed. Opt. – volume: 91 start-page: 41 year: 2020 end-page: 51 ident: b37 article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) publication-title: Gastrointest Endosc. – year: 2009 ident: b52 article-title: Principles of digital image processing – volume: 12 start-page: 1367 year: 2019 end-page: 1380 ident: b14 article-title: Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies publication-title: Brain Stimul. – volume: Vol. 182 start-page: 2 year: 2022 end-page: 25 ident: b43 article-title: Contrastive learning of medical visual representations from paired images and text publication-title: Proceedings of the 7th Machine Learning for Healthcare Conference – volume: 6 start-page: 34026 year: 2016 ident: b9 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Sci. Rep. – year: 2021 ident: b66 article-title: Swin Transformer: Hierarchical vision transformer using shifted windows – volume: 5 start-page: 8743 year: 2015 ident: b21 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Sci. Rep. – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: b26 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – volume: 77 start-page: 168 year: 2017 end-page: 175 ident: b17 article-title: An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull publication-title: Ultrasonics – volume: 31 start-page: 5134 year: 2022 end-page: 5149 ident: b47 article-title: MATR: Multimodal medical image fusion via multiscale adaptive transformer publication-title: IEEE Trans. Image Process. – year: 2015 ident: b65 article-title: U-Net: Convolutional networks for biomedical image segmentation – volume: 23 start-page: 1241 year: 2018 end-page: 1250 ident: b28 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today – volume: 131 start-page: 4324 year: 2012 end-page: 4336 ident: b61 article-title: Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method publication-title: J. Acoust. Soc. Am. – start-page: 1 year: 2024 end-page: 12 ident: b32 article-title: TFUSFormer: Physics-guided super-resolution transformer for simulation of transcranial focused ultrasound propagation in brain stimulation publication-title: IEEE J. Biomed. Health Inform. – start-page: 2577 year: 2018 end-page: 2586 ident: b44 article-title: On the automatic generation of medical imaging reports publication-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) – volume: 28 start-page: 1773 year: 2022 end-page: 1784 ident: b42 article-title: Multimodal biomedical AI publication-title: Nature Med. – volume: 115 start-page: 465 year: 2019 end-page: 473 ident: b38 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Syst. Appl. – volume: 9 start-page: 14465 year: 2019 ident: b36 article-title: Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy publication-title: Sci. Rep. – volume: 135 start-page: 51 year: 2022 end-page: 73 ident: b10 article-title: Non-invasive transcranial ultrasound stimulation for neuromodulation publication-title: Clin. Neurophysiol. – year: 2017 ident: b63 article-title: Attention is all you need – volume: 205 start-page: 150 year: 2015 end-page: 159 ident: b18 article-title: Transcranial MRI-guided focused ultrasound: A review of the technologic and neurologic applications publication-title: AJR Am. J. Roentgenol. – reference: J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 689–696. – year: 2017 ident: b56 article-title: MATLAB: An introduction with applications – volume: 45 start-page: 2391 year: 2019 end-page: 2404 ident: b3 article-title: Localized blood-brain barrier opening in ovine model using image-guided transcranial focused ultrasound publication-title: Ultrasound Med. Biol. – year: 2020 ident: b62 article-title: Fourier features let networks learn high frequency functions in low dimensional domains – volume: 46 start-page: 73 year: 2020 end-page: 89 ident: b19 article-title: A clinical system for non-invasive blood–brain barrier opening using a neuronavigation-guided single-element focused ultrasound transducer publication-title: Ultrasound Med. Biol. – volume: 41 start-page: 423 year: 2018 end-page: 443 ident: b40 article-title: Multimodal machine learning: A survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 47 year: 2018 ident: b25 article-title: Deep learning and medical diagnosis: A review of literature publication-title: Multimodal Technol. Interact. – volume: 24 start-page: 1248 year: 2018 end-page: 1259 ident: b50 article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res. – volume: 67 start-page: 147 year: 2021 end-page: 160 ident: b46 article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis publication-title: Inf. Fusion – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: b67 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 14 year: 2019 ident: b11 article-title: Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model publication-title: PLoS One – volume: 12 start-page: 462 year: 2013 end-page: 468 ident: b5 article-title: MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study publication-title: Lancet Neurol. – volume: 10 year: 2020 ident: b29 article-title: A review on application of deep learning algorithms in external beam radiotherapy automated treatment planning publication-title: Front. Oncol. – volume: 65 start-page: 05TR01 year: 2020 ident: b33 article-title: An introduction to deep learning in medical physics: advantages, potential, and challenges publication-title: Phys. Med. Biol. – start-page: 1552 year: 2014 end-page: 1555 ident: b34 article-title: A fast deep learning system using GPU publication-title: 2014 IEEE International Symposium on Circuits and Systems – volume: 111 start-page: 53 year: 2002 end-page: 63 ident: b58 article-title: A k-space method for coupled first-order acoustic propagation equations publication-title: J. Acoust. Soc. Am. – volume: 124 year: 2022 ident: b23 article-title: Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus publication-title: Ultrasonics – volume: 14 start-page: 478 year: 2020 end-page: 493 ident: b41 article-title: Multimodal intelligence: Representation learning, information fusion, and applications publication-title: IEEE J. Sel. Topics Signal Process. – volume: 48 start-page: 1045 year: 2022 end-page: 1057 ident: b22 article-title: Feasibility of upper cranial nerve sonication in human application via neuronavigated single-element pulsed focused ultrasound publication-title: Ultrasound Med. Biol. – volume: 3 start-page: 380 year: 2022 end-page: 389 ident: b49 article-title: Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy publication-title: Eur. Heart J., Digit. Health – volume: 23 year: 2022 ident: b51 article-title: A roadmap for multi-omics data integration using deep learning publication-title: Brief. Bioinform. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b64 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 22 start-page: 177 year: 2012 end-page: 184 ident: b20 article-title: Image-guided navigation of single-element focused ultrasound transducer publication-title: Int. J. Imaging Syst. Technol. – volume: 9 start-page: 7965 year: 2019 ident: b24 article-title: A rapid beam simulation framework for transcranial focused ultrasound publication-title: Sci. Rep. – volume: 6 start-page: 267 year: 2010 end-page: 275 ident: b13 article-title: Brain stimulation in psychiatry and its effects on cognition publication-title: Nat. Rev. Neurol. – volume: 3 start-page: 47 year: 2017 end-page: 57 ident: b68 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans. Comput. Imaging – volume: 13 year: 2016 ident: b1 article-title: Ultrasonic neuromodulation publication-title: J. Neural Eng. – volume: 51 start-page: 1693 year: 2004 end-page: 1706 ident: b15 article-title: Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery publication-title: IEEE Trans. Biomed. Eng. – volume: 63 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b16 article-title: Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aabe37 – volume: 31 start-page: 5134 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b47 article-title: MATR: Multimodal medical image fusion via multiscale adaptive transformer publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3193288 – volume: 9 start-page: 100615 year: 2021 ident: 10.1016/j.cmpb.2024.108458_b48 article-title: ECG heartbeat classification using multimodal fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3097614 – volume: 13 year: 2016 ident: 10.1016/j.cmpb.2024.108458_b1 article-title: Ultrasonic neuromodulation publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/3/031003 – volume: 15 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2024.108458_b57 article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields publication-title: J. Biomed. Opt. doi: 10.1117/1.3360308 – year: 2017 ident: 10.1016/j.cmpb.2024.108458_b56 – volume: 7 start-page: 162415 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b27 article-title: A review on deep learning applications in prognostics and health management publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2950985 – volume: 37 start-page: 362 issue: 3 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b35 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Robot. doi: 10.1002/rob.21918 – volume: Vol. 182 start-page: 2 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b43 article-title: Contrastive learning of medical visual representations from paired images and text – volume: 26 start-page: 1708 issue: 12 year: 2007 ident: 10.1016/j.cmpb.2024.108458_b53 article-title: Point-based rigid-body registration using an unscented kalman filter publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.901984 – volume: 12 start-page: 462 issue: 5 year: 2013 ident: 10.1016/j.cmpb.2024.108458_b5 article-title: MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70048-6 – volume: 10 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b29 article-title: A review on application of deep learning algorithms in external beam radiotherapy automated treatment planning publication-title: Front. Oncol. – year: 2009 ident: 10.1016/j.cmpb.2024.108458_b52 – volume: 23 start-page: 1241 issue: 6 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b28 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.01.039 – year: 2021 ident: 10.1016/j.cmpb.2024.108458_b66 – volume: 205 start-page: 150 issue: 1 year: 2015 ident: 10.1016/j.cmpb.2024.108458_b18 article-title: Transcranial MRI-guided focused ultrasound: A review of the technologic and neurologic applications publication-title: AJR Am. J. Roentgenol. doi: 10.2214/AJR.14.13632 – volume: 135 start-page: 51 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b10 article-title: Non-invasive transcranial ultrasound stimulation for neuromodulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2021.12.010 – start-page: 2577 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b44 article-title: On the automatic generation of medical imaging reports – volume: 111 start-page: 53 year: 2002 ident: 10.1016/j.cmpb.2024.108458_b58 article-title: A k-space method for coupled first-order acoustic propagation equations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1421344 – ident: 10.1016/j.cmpb.2024.108458_b39 – volume: 9 start-page: 7965 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b24 article-title: A rapid beam simulation framework for transcranial focused ultrasound publication-title: Sci. Rep. doi: 10.1038/s41598-019-43775-6 – year: 2015 ident: 10.1016/j.cmpb.2024.108458_b65 – volume: 2 start-page: 47 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b25 article-title: Deep learning and medical diagnosis: A review of literature publication-title: Multimodal Technol. Interact. doi: 10.3390/mti2030047 – volume: 26 start-page: 5653 issue: 11 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b30 article-title: Deep neural network for navigation of a single-element transducer during transcranial focused ultrasound therapy: Proof of concept publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3198650 – volume: 67 start-page: 147 year: 2021 ident: 10.1016/j.cmpb.2024.108458_b46 article-title: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.015 – volume: 45 start-page: 2391 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b3 article-title: Localized blood-brain barrier opening in ovine model using image-guided transcranial focused ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2019.05.023 – year: 2017 ident: 10.1016/j.cmpb.2024.108458_b63 – volume: 46 start-page: 1986 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b4 article-title: Localized disruption of blood albumin-phenytoin binding using transcranial focused ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2020.04.011 – start-page: 1 year: 2024 ident: 10.1016/j.cmpb.2024.108458_b32 article-title: TFUSFormer: Physics-guided super-resolution transformer for simulation of transcranial focused ultrasound propagation in brain stimulation publication-title: IEEE J. Biomed. Health Inform. – volume: 65 start-page: 05TR01 issue: 5 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b33 article-title: An introduction to deep learning in medical physics: advantages, potential, and challenges publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab6f51 – volume: 56 start-page: 219 year: 2011 ident: 10.1016/j.cmpb.2024.108458_b55 article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/1/014 – volume: 75 start-page: 246 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b6 article-title: A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2017.3129 – volume: 22 start-page: 177 issue: 3 year: 2012 ident: 10.1016/j.cmpb.2024.108458_b20 article-title: Image-guided navigation of single-element focused ultrasound transducer publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22020 – volume: 6 start-page: 34026 issue: 1 year: 2016 ident: 10.1016/j.cmpb.2024.108458_b9 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Sci. Rep. doi: 10.1038/srep34026 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.cmpb.2024.108458_b64 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 17 start-page: 322 issue: 2 year: 2014 ident: 10.1016/j.cmpb.2024.108458_b8 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat. Neurosci. doi: 10.1038/nn.3620 – volume: 19 start-page: 221 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2024.108458_b26 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 46 start-page: 73 issue: 1 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b19 article-title: A clinical system for non-invasive blood–brain barrier opening using a neuronavigation-guided single-element focused ultrasound transducer publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2019.09.010 – volume: 237 year: 2023 ident: 10.1016/j.cmpb.2024.108458_b31 article-title: Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2023.107591 – volume: 56 start-page: 1267 issue: 3 year: 2011 ident: 10.1016/j.cmpb.2024.108458_b7 article-title: Focused ultrasound modulates region-specific brain activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.058 – volume: 9 start-page: 14465 issue: 1 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b36 article-title: Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy publication-title: Sci. Rep. doi: 10.1038/s41598-019-50567-5 – volume: 41 start-page: 423 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b40 article-title: Multimodal machine learning: A survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2798607 – volume: 131 start-page: 4324 issue: 6 year: 2012 ident: 10.1016/j.cmpb.2024.108458_b61 article-title: Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4712021 – volume: 12 start-page: 1367 issue: 6 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b14 article-title: Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.07.024 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 10.1016/j.cmpb.2024.108458_b67 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 115 start-page: 1424 year: 2004 ident: 10.1016/j.cmpb.2024.108458_b60 article-title: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1646399 – year: 2020 ident: 10.1016/j.cmpb.2024.108458_b62 – volume: 14 issue: 10 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b11 article-title: Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model publication-title: PLoS One doi: 10.1371/journal.pone.0224311 – volume: 3 start-page: 383 year: 2007 ident: 10.1016/j.cmpb.2024.108458_b12 article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS publication-title: Nat. Clin. Pract. Neurol. doi: 10.1038/ncpneuro0530 – volume: 23 issue: 1 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b51 article-title: A roadmap for multi-omics data integration using deep learning publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab454 – volume: 2 start-page: 17 year: 2014 ident: 10.1016/j.cmpb.2024.108458_b2 article-title: First non-invasive thermal ablation of a brain tumor with MR guided focused ultrasound publication-title: J. Ther. Ultrasound doi: 10.1186/2050-5736-2-17 – volume: 124 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b23 article-title: Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus publication-title: Ultrasonics doi: 10.1016/j.ultras.2022.106724 – volume: 48 start-page: 341 issue: 2 year: 2001 ident: 10.1016/j.cmpb.2024.108458_b59 article-title: A k-space method for large-scale models of wave propagation in tissue publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.911717 – start-page: 1552 year: 2014 ident: 10.1016/j.cmpb.2024.108458_b34 article-title: A fast deep learning system using GPU – volume: 51 start-page: 1693 issue: 10 year: 2004 ident: 10.1016/j.cmpb.2024.108458_b15 article-title: Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.831516 – volume: 5 start-page: 8743 year: 2015 ident: 10.1016/j.cmpb.2024.108458_b21 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Sci. Rep. doi: 10.1038/srep08743 – volume: 3 start-page: 380 issue: 3 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b49 article-title: Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy publication-title: Eur. Heart J., Digit. Health doi: 10.1093/ehjdh/ztac033 – volume: 24 start-page: 1248 issue: 6 year: 2018 ident: 10.1016/j.cmpb.2024.108458_b50 article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0853 – volume: 28 start-page: 1773 issue: 9 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b42 article-title: Multimodal biomedical AI publication-title: Nature Med. doi: 10.1038/s41591-022-01981-2 – volume: 3 start-page: 47 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2024.108458_b68 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2016.2644865 – volume: 77 start-page: 168 year: 2017 ident: 10.1016/j.cmpb.2024.108458_b17 article-title: An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.02.012 – volume: 57 start-page: 2637 year: 2010 ident: 10.1016/j.cmpb.2024.108458_b54 article-title: Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1738 – volume: 2 start-page: 21 year: 2021 ident: 10.1016/j.cmpb.2024.108458_b45 article-title: Medical image fusion method by deep learning publication-title: Int. J. Cogn. Comput. Eng. – volume: 48 start-page: 1045 year: 2022 ident: 10.1016/j.cmpb.2024.108458_b22 article-title: Feasibility of upper cranial nerve sonication in human application via neuronavigated single-element pulsed focused ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2022.01.022 – volume: 115 start-page: 465 year: 2019 ident: 10.1016/j.cmpb.2024.108458_b38 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.011 – volume: 91 start-page: 41 issue: 1 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b37 article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) publication-title: Gastrointest Endosc. doi: 10.1016/j.gie.2019.08.018 – volume: 14 start-page: 478 issue: 3 year: 2020 ident: 10.1016/j.cmpb.2024.108458_b41 article-title: Multimodal intelligence: Representation learning, information fusion, and applications publication-title: IEEE J. Sel. Topics Signal Process. doi: 10.1109/JSTSP.2020.2987728 – volume: 6 start-page: 267 issue: 5 year: 2010 ident: 10.1016/j.cmpb.2024.108458_b13 article-title: Brain stimulation in psychiatry and its effects on cognition publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.30 |
| SSID | ssj0002556 |
| Score | 2.4203758 |
| Snippet | Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 108458 |
| SubjectTerms | Computer simulation Convolutional neural network Deep learning Real-time monitoring Swin transformer Transcranial focused ultrasound |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehD-32UPq1NWs3NOhbpyW2Zct6LGGlFNqXrdA3cfowZCROaBJKGexv351lZy0r69ibP05YvjudTtLv7hg7seDSUEEhZGGHQtpSi1LnQehMl84GqGyTTOfquri4kZe3-W2PjbpYGIJVtrY_2vTGWrdPBi03B_PxePCV8oigN64IBUnlZimCXSqqYvD552-YB6XYivm9tSDqNnAmYrzcdG5xjZhKgtpJKvv-_OT0p_P5mm2t6jk83MNk8mhCOt9h260nyc9iZ3dZL9R7bPOqPSvfZz-a2FoxnXmkqiPae8HRR-XoJ04EFZXn02ZE09Yen1V8TBu9Dicv1EmOlrIp9MUbjBuP4Yx8SVNbR1LN3GoRPMfv3MGC6jPxGM71cMBuzr98G12IttSCcLiAXIqQKEBuKlAoO0gTj8O-8iGootBlUmnv0Y1QeJHgu6Iagkp9ogH8UAfvcKH7hm3UszocMq6q1EGeAeTBSrBI4_LS27RwISuH1vbZacdjM48ZNUwHNftuSCKGJGKiRPos68RgulhRtG4GDf5fW-XrVk-06cV2HztJGxxmdHYCdUB2myzWZ5OF7rO3UQXWvc-0zFTT-tNaJ_7h1979ZyeP2Cu6i5iaY7axvFuF9-gZLe2HRvV_ARsJDh0 priority: 102 providerName: Elsevier |
| Title | Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724004516 https://dx.doi.org/10.1016/j.cmpb.2024.108458 https://www.ncbi.nlm.nih.gov/pubmed/39437458 https://www.proquest.com/docview/3119723469 https://doi.org/10.1016/j.cmpb.2024.108458 |
| UnpaywallVersion | publishedVersion |
| Volume | 257 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61iQTiQMs7iEZG4gaOsi97fYwQVQA14kCkcrL8WglINlGzESpI_HbG9m7UUh7tbaX17K5nZmc-2_MAeKGVSV2lGM2ZHtNcl4KWonBUZKI02qlKh2I6JzM2nefvTovTtkyOz4W5dH4f4rDMcq1xHZfmPhwuL8p96LMCcXcP-vPZh8mnWLxbUATmoZNKyREyIkxpM2T-_JC_eaGrKPMO3N7Wa3X-TS0WFzzP8UFsYbQJBQt9wMnX0bbRI_P9t3KO15vUIdxtASiZRI25B3uuvg-3Ttoj9gfwI6Tk0uXK4qg6BolvCEJbgvByQX0verIMhsDvCJJVRT77_WGDPg9VmaCBDf3BSAiNIzELkjTeI3ZDqpXZbpwl-J4ztfFtnUjMAjt_CPPjNx9fT2nboYEaXHc21CVcMZFyxVHkKk0sWovKOscZE2VSCWsRfXC8SPAeq8aKpzYRStmxcNbg-vgR9OpV7Z4A4VVqVJEpVTidK41jTFFanTLjsnKs9QBedhKT61iIQ3YRal-k56f0_JSRnwPIOqHKLsUUjaJESfyTqthRtQAkAov_0j3v9Ebi3-mPXFTtkN0yi23dciYG8Dgq1O7rM5FnPFC_2mnYNab29GbDn0GvOdu6I4ROjR7C_uhnMoT-5O376WzY_kG_APiOGZw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTWLwgMbnugEzEm_gtUmcOH5E06YC617YpL1Z_opU1KbV2mqakPjbuYuTMgQaiLcovlMcn32-s393B_DWGpeGyhRcFHbAhS0VL1UeuMpU6WwwlW2S6YzOiuGF-HSZX27AURcLQ7DKVvdHnd5o6_ZNvx3N_nw87n-hPCJojUtCQVK52XuwJfJUkgd2-P0nzoNybMUE34oTeRs5E0Febjq36CSmgrB2guq-_3l3-t36fAjbq3pubq7NZHJrRzrZgUetKck-xN4-ho1QP4H7o_ay_Cl8a4Jr-XTmkaqOcO8FQyOVoaE44VRVnk2bJU1ne2xWsTGd9DrcvXBSMlSVTaUv1oDcWIxnZEva2zqSauZWi-AZfufKLKhAE4vxXDfP4OLk-PxoyNtaC9yhB7nkIZEGh1MaicIzaeJx3Vc-BFkUqkwq5T3aERIfEmwrqoGRqU-UMX6ggnfo6T6HzXpWh11gskqdyTNj8mCFsUjj8tLbtHAhKwfW9uBdN8Z6HlNq6A5r9lWTRDRJREeJ9CDrxKC7YFFUbxo1_p1c-Zrrl-n0V743naQ1rjO6PDF1wOHWWSzQJgrVgxdxCqx7nymRyYb7_XpO_MOv7f1nJw9ge3g-OtWnH88-78MDaokAm5ewubxahVdoJi3t62YZ_AC4JBFA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddCht7aPfVLaUdGuxtU4m_JOuxlJZSSOnDAu2TOH0YtiVOSBxGtn--J8kO69Z16ZvBOtu6O9_9JN0HIR81mNRVwFnO9YDlupSslIVjMpOl0Q4qHYrpDC_5-Si_uC6u2zI5Phfmzvl9iMMyk5nGdVya-3C4vCifkG1eIO7uke3R5dXxTSzeLRkC89BJpRQIGRGmtBky9z_kX17ob5T5nDxb1jNY_YDx-DfPc7YbWxgtQsFCH3Dy_WjZ6CPz849yjptN6gXZaQEoPY4a85JsufoVeTpsj9hfk18hJZdNphZH1TFIfEER2lKEl2Pme9HTSTAEfkeQTiv61e8PG_R5qMoUDWzoD0ZDaByNWZC08R6xG1JNzXLhLMX3zGHh2zrRmAW2ekNGZ6dfTs5Z26GBGVx3NswlArhMBQgUOaSJRWtRWecE57JMKmktog-BFwne49UARGoTCWAH0lmD6-M90quntXtHqKhSA0UGUDidg8YxpiitTrlxWTnQuk8-dRJTs1iIQ3URat-U56fy_FSRn32SdUJVXYopGkWFkniQqlhTtQAkAov_0n3o9Ebh3-mPXKB2yG6VxbZuOZd98jYq1PrrM5lnIlB_XmvYBlPbf9zwA9Jr5kt3iNCp0e_bf-YWqUIXEA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-modal+networks+for+real-time+monitoring+of+intracranial+acoustic+field+during+transcranial+focused+ultrasound+therapy&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Seo%2C+Minjee&rft.au=Shin%2C+Minwoo&rft.au=Noh%2C+Gunwoo&rft.au=Yoo%2C+Seung-Schik&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.volume=257&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108458&rft.externalDocID=S0169260724004516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |