A numerical method for suspensions of articulated bodies in viscous flows
An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers...
Saved in:
| Published in | Journal of computational physics Vol. 464; p. 111365 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Elsevier Inc
01.09.2022
Elsevier Science Ltd Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 1090-2716 |
| DOI | 10.1016/j.jcp.2022.111365 |
Cover
| Abstract | An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. In this work we consider hybrid articulated bodies, i.e. constituted of both linear chains, such as filaments, and closed-loop chains, such as membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size, therefore allowing to study large suspensions with quasilinear computational cost. Additionally, constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, has negligible computational cost and preserves the accuracy of the time-integration scheme. The versatility of our method allows to study a plethora of articulated systems within a unified framework. We showcase its robustness and scalability by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code, where the user can prescribe a set of constraints through a single input file to study a wide spectrum of applications involving suspensions of articulated bodies.
•A new method for simulating suspensions of articulated bodies.•Formulated as a single linear system, solved iteratively in a highly scalable fashion.•Naturally combines with fast methods for computing hydrodynamic interactions.•Effectiveness demonstrated through large simulations of bacteria.•Code freely available on GitHub to explore new systems involving articulated bodies. |
|---|---|
| AbstractList | An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. In this work we consider hybrid articulated bodies, i.e. constituted of both linear chains, such as filaments, and closed-loop chains, such as membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size, therefore allowing to study large suspensions with quasilinear computational cost. Additionally, constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, has negligible computational cost and preserves the accuracy of the time-integration scheme. The versatility of our method allows to study a plethora of articulated systems within a unified framework. We showcase its robustness and scalability by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code, where the user can prescribe a set of constraints through a single input file to study a wide spectrum of applications involving suspensions of articulated bodies. An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. In this work we consider hybrid articulated bodies, i.e. constituted of both linear chains, such as filaments, and closed-loop chains, such as membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size, therefore allowing to study large suspensions with quasilinear computational cost. Additionally, constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, has negligible computational cost and preserves the accuracy of the time-integration scheme. The versatility of our method allows to study a plethora of articulated systems within a unified framework. We showcase its robustness and scalability by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code, where the user can prescribe a set of constraints through a single input file to study a wide spectrum of applications involving suspensions of articulated bodies. •A new method for simulating suspensions of articulated bodies.•Formulated as a single linear system, solved iteratively in a highly scalable fashion.•Naturally combines with fast methods for computing hydrodynamic interactions.•Effectiveness demonstrated through large simulations of bacteria.•Code freely available on GitHub to explore new systems involving articulated bodies. An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size. Constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, is negligible in terms of computational cost and preserves the accuracy of the time-integration scheme. We showcase the robustness and scalability of our method by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code. |
| ArticleNumber | 111365 |
| Author | Delmotte, Blaise Balboa Usabiaga, Florencio |
| Author_xml | – sequence: 1 givenname: Florencio orcidid: 0000-0003-0130-3532 surname: Balboa Usabiaga fullname: Balboa Usabiaga, Florencio organization: BCAM - Basque Center for Applied Mathematics, Mazarredo 14, Bilbao, E48009, Basque Country, Spain – sequence: 2 givenname: Blaise orcidid: 0000-0002-9609-1175 surname: Delmotte fullname: Delmotte, Blaise email: blaise.delmotte@ladhyx.polytechnique.fr organization: LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France |
| BackLink | https://hal.science/hal-03389641$$DView record in HAL |
| BookMark | eNqNkE1r3DAQQEVJoZukP6A3QU89eDsjW7JNT0tom8BCLrkLWR9Exiu5krwh_75eXCj0EHoaEO-JmXdNrkIMlpBPCHsEFF_H_ajnPQPG9ohYC_6O7BB6qFiL4orsABhWfd_jB3Kd8wgAHW-6HXk40LCcbPJaTfRky3M01MVE85JnG7KPIdPoqErF62VSxRo6RONtpj7Qs886Lpm6Kb7kW_LeqSnbj3_mDXn68f3p7r46Pv58uDscK90AK5XpXA1ONFoIAUPLgXHNemXB9b12htXWDabjXAFrBDQdchQd1xyHQbXM1DeEbd8uYVavL2qa5Jz8SaVXiSAvLeQo1xby0kJuLVbpyyY9q794VF7eH47y8gZ13fWiwTOu7OeNnVP8tdhc5BiXFNaTJBM9Y21bI6xUu1E6xZyTdVL7osraqyTlpzd3wX_M_9n_2-bYNezZ2ySz9jZoa3yyukgT_Rv2b-02pIw |
| CitedBy_id | crossref_primary_10_1063_5_0136833 crossref_primary_10_1016_j_jcp_2024_113081 |
| Cites_doi | 10.1103/PhysRevLett.123.178004 10.1016/j.jcp.2012.09.021 10.2140/camcos.2016.11.217 10.1017/S0022112079001051 10.1128/jb.127.3.1039-1046.1976 10.1103/PhysRevLett.121.138002 10.1016/j.jcp.2008.01.048 10.1017/S002211207100048X 10.1103/PhysRevLett.93.098103 10.1063/1.4978242 10.1063/1.1670977 10.1017/jfm.2013.402 10.1017/S0962492902000077 10.1017/jfm.2019.640 10.1080/0269249X.1992.9705214 10.1103/PhysRevFluids.3.104102 10.1017/jfm.2019.714 10.1016/S0021-9991(02)00021-9 10.1016/1047-8477(92)90063-G 10.1088/0034-4885/72/9/096601 10.1039/D0SM02184A 10.1016/j.jcp.2015.01.026 10.1017/CBO9780511624124 10.1137/16M1106778 10.1016/j.jcp.2015.11.042 10.1080/09670260701428864 10.1017/S0022112099004152 10.1063/1.4932062 10.1016/0021-9991(87)90140-9 10.1146/annurev-fluid-122109-160736 10.1140/epje/i2015-15139-7 10.1016/j.jtbi.2018.11.016 10.1063/1.4939581 10.1017/S0022112001006735 10.1103/PhysRevFluids.2.113101 10.1128/JB.182.10.2793-2801.2000 10.1038/245380a0 10.1529/biophysj.105.069401 10.1103/PhysRevE.74.021907 10.1016/j.jcp.2020.109846 10.1038/s42005-022-00820-7 10.1103/PhysRevLett.99.058102 10.1039/D1SM01594J 10.1038/338514a0 10.1016/j.jcp.2018.08.041 10.1021/acs.nanolett.5b01981 10.1122/1.551116 10.1146/annurev-fluid-120710-101156 10.1186/s40736-018-0036-9 10.1073/pnas.1405698111 10.1103/PhysRevLett.100.178103 10.1038/nature08906 10.1103/PhysRevE.94.022414 10.1017/S0022112001005912 10.1017/S0022112079002482 10.1017/S0022112003005184 10.1016/j.jcp.2016.10.026 10.1002/smll.201901197 10.1016/S0301-9322(01)00014-3 10.3897/rio.2.e7869 10.1039/D0SM00571A 10.1119/1.10903 10.1039/D1SM00554E 10.1103/PhysRevLett.101.038102 10.1063/1.2803837 10.1063/1.456430 10.1017/S0022112002001544 10.1017/jfm.2020.1048 10.1038/nature04090 10.1063/1.473067 10.1038/s41592-019-0686-2 10.1017/jfm.2012.101 10.1098/rsif.2017.0834 10.1016/j.jcp.2007.06.029 10.1063/1.464607 10.1073/pnas.2009930118 10.1016/j.jcp.2018.08.021 10.1103/PhysRevE.103.023109 10.1063/1.2778937 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. Copyright Elsevier Science Ltd. Sep 1, 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Sep 1, 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.jcp.2022.111365 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics Computer Science |
| EISSN | 1090-2716 |
| ExternalDocumentID | oai:bird.bcamath.org:20.500.11824/1523 oai:HAL:hal-03389641v1 10_1016_j_jcp_2022_111365 S0021999122004272 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSH SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EFLBG EJD FGOYB G-2 HLZ HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c402t-d8f30f64c6660b75025c29ae0f99cfd23efbd855a0246048151685c51bba72d3 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9991 1090-2716 |
| IngestDate | Sun Oct 26 04:09:40 EDT 2025 Tue Oct 14 20:36:10 EDT 2025 Fri Jul 25 07:00:08 EDT 2025 Wed Oct 01 02:37:00 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Sun Apr 06 06:53:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Articulated bodies Constraints Active matter Suspensions Fluid-structure interactions Stokes flow |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-d8f30f64c6660b75025c29ae0f99cfd23efbd855a0246048151685c51bba72d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9609-1175 0000-0003-0130-3532 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11824/1523 |
| PQID | 2692277310 |
| PQPubID | 2047462 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jcp_2022_111365 hal_primary_oai_HAL_hal_03389641v1 proquest_journals_2692277310 crossref_citationtrail_10_1016_j_jcp_2022_111365 crossref_primary_10_1016_j_jcp_2022_111365 elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111365 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
| References | Blake (br0530) 1971; 46 Wang, Brady (br0260) 2016; 306 Swan, Wang (br0210) 2016; 28 Brosseau, Usabiaga, Lushi, Wu, Ristroph, Ward, Shelley, Zhang (br0550) 2021; 17 Schoeller, Townsend, Westwood, Keaveny (br0180) 2021; 424 Pozrikidis (br0190) 1992 Scagliarini, Pagonabarraga (br0820) 2022 Nielsen, Kiørboe (br0740) 2021; 118 Berke, Turner, Berg, Lauga (br0890) 2008; 101 Ross, Klingenberg (br0160) 1997; 106 Liao, Xing, Zhang, Sun (br0090) 2019; 15 Schoeller, Keaveny (br0370) 2018; 15 Lushi, Wioland, Goldstein (br0810) 2014; 111 Gordon (br0060) 2016; 2 Gauger, Stark (br0620) 2006; 74 Higdon (br0420) 1979; 94 Silmore, Strano, Swan (br0560) 2021; 17 Maeda, Imae, Shioi, Oosawa (br0850) 1976; 127 Saintillan, Shelley (br0880) 2007; 99 Schmid, Switzer, Klingenberg (br0360) 2000; 44 Featherstone (br0460) 1987; vol. 22 Liang, Gimbutas, Greengard, Huang, Jiang (br0510) 2013; 234 Guasto, Rusconi, Stocker (br0730) 2012; 44 Saintillan, Shelley (br0790) 2008; 100 Lindström, Uesaka (br0350) 2007; 19 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (br0650) 2020; 17 Balboa Usabiaga, Kallemov, Delmotte, Bhalla, Griffith, Donev (br0220) 2016; 11 Ichiki (br0640) 2002; 452 Turner, Ryu, Berg (br0750) 2000; 182 Lauga, DiLuzio, Whitesides, Stone (br0860) 2006; 90 Butler, Shaqfeh (br0590) 2002; 468 Trachtenberg, Hammel (br0030) 1992; 109 Doi, Chen (br0410) 1989; 90 McMullen, Holmes-Cerfon, Sciortino, Grosberg, Brujic (br0150) 2018; 121 Kim, Karrila (br0430) 1991 Guazzelli, Hinch (br0600) 2011; 43 Walker, Wheeler, Ishimoto, Gaffney (br0400) 2019; 462 Greengard, Rokhlin (br0230) 1987; 73 Müller (br0040) 1782 Zhang, Chinappi, Biferale (br0760) 2021; 103 Lushi (br0800) 2016; 94 Shum, Yeomans (br0390) 2017; 2 Lomholt, Maxey (br0320) 2003; 184 Westwood, Delmotte, Keaveny (br0450) Jun. 2021 Higdon (br0700) 1979; 90 Smith (br0770) 2009; 465 Lauga, Powers (br0720) 2009; 72 Yan, Blackwell (br0250) 2020 Spagnolie, Lauga (br0900) 2012; 700 Bonnard, Chyba, Rouot, Takagi (br0120) 2018; 10 Dombrowski, Cisneros, Chatkaew, Goldstein, Kessler (br0870) 2004; 93 Marchetti, Raspa, Lindner, Du Roure, Bergougnoux, Guazzelli, Duprat (br0570) 2018; 3 Bao, Rachh, Keaveny, Greengard, Donev (br0470) 2018; 374 Yan, Shelley (br0520) 2018; 375 Tornberg, Greengard (br0240) 2008; 227 Becker, Koehler, Stone (br0110) 2003; 490 Shum, Gaffney, Smith (br0380) 2010; 466 Childs, Brugger, Whitlock, Meredith, Ahern, Pugmire, Biagas, Miller, Harrison, Weber, Krishnan, Fogal, Sanderson, Garth, Bethel, Camp, Rübel, Durant, Favre, Navrátil (br0840) 2012 Swan, Brady (br0500) 2007; 19 Qi, Westphal, Gompper, Winkler (br0830) 2022; 5 Mousavi, Gompper, Winkler (br0910) 2020; 16 Goldstein, Poole, Safko (br0330) 2001 Delong, Balboa Usabiaga, Donev (br0440) 2015; 143 Kapinga, Gordon (br0050) 1992; 7 Berg, Anderson (br0010) 1973; 245 Dreyfus, Baudry, Roper, Fermigier, Stone, Bibette (br0070) 2005; 437 Rotne, Prager (br0480) 1969; 50 Delmotte, Climent, Plouraboué (br0170) 2015; 286 Lighthill (br0710) 1975 Morse (br0920) 2004; 128 Yamamoto, Matsuoka (br0340) 1993; 98 Żuk, Słowicka, Ekiel-Jeżewska, Stone (br0630) 2021; 914 Sierou, Brady (br0280) 2001; 448 Nazockdast, Rahimian, Zorin, Shelley (br0610) 2017; 329 Bettiol, Bonnard, Rouot (br0130) 2018; 56 Montenegro-Johnson, Michelin, Lauga (br0200) 2015; 38 Sacanna, Irvine, Chaikin, Pine (br0140) 2010; 464 Bringley, Peskin (br0680) 2008; 227 Maxey, Patel (br0310) 2001; 27 Herzhaft, Guazzelli (br0580) 1999; 384 br0690 Brosseau, Balboa Usabiaga, Lushi, Wu, Ristroph, Zhang, Ward, Shelley (br0540) 2019; 123 Jahn, Schmid (br0670) 2007; 42 Voglis, Lagaris (br0660) 2004 Block, Blair, Berg (br0020) 1989; 338 Purcell (br0100) 1977; 45 Wajnryb, Mizerski, Zuk, Szymczak (br0490) 2013; 731 Ishimoto (br0780) 2019; 880 Jang, Gutman, Stucki, Seitz, Wendel-García, Newton, Pokki, Ergeneman, Pané, Or (br0080) 2015; 15 Peskin (br0300) 2002; 11 Fiore, Swan (br0290) 2019; 878 Fiore, Usabiaga, Donev, Swan (br0270) 2017; 146 Doi (10.1016/j.jcp.2022.111365_br0410) 1989; 90 Ross (10.1016/j.jcp.2022.111365_br0160) 1997; 106 Sierou (10.1016/j.jcp.2022.111365_br0280) 2001; 448 Lauga (10.1016/j.jcp.2022.111365_br0860) 2006; 90 Brosseau (10.1016/j.jcp.2022.111365_br0540) 2019; 123 Lushi (10.1016/j.jcp.2022.111365_br0800) 2016; 94 Maeda (10.1016/j.jcp.2022.111365_br0850) 1976; 127 Yan (10.1016/j.jcp.2022.111365_br0520) 2018; 375 Montenegro-Johnson (10.1016/j.jcp.2022.111365_br0200) 2015; 38 Balboa Usabiaga (10.1016/j.jcp.2022.111365_br0220) 2016; 11 Maxey (10.1016/j.jcp.2022.111365_br0310) 2001; 27 Shum (10.1016/j.jcp.2022.111365_br0380) 2010; 466 Dombrowski (10.1016/j.jcp.2022.111365_br0870) 2004; 93 Pozrikidis (10.1016/j.jcp.2022.111365_br0190) 1992 Fiore (10.1016/j.jcp.2022.111365_br0270) 2017; 146 Blake (10.1016/j.jcp.2022.111365_br0530) 1971; 46 Lighthill (10.1016/j.jcp.2022.111365_br0710) 1975 Voglis (10.1016/j.jcp.2022.111365_br0660) 2004 Jang (10.1016/j.jcp.2022.111365_br0080) 2015; 15 Becker (10.1016/j.jcp.2022.111365_br0110) 2003; 490 Zhang (10.1016/j.jcp.2022.111365_br0760) 2021; 103 Walker (10.1016/j.jcp.2022.111365_br0400) 2019; 462 Lauga (10.1016/j.jcp.2022.111365_br0720) 2009; 72 Peskin (10.1016/j.jcp.2022.111365_br0300) 2002; 11 Bonnard (10.1016/j.jcp.2022.111365_br0120) 2018; 10 Bringley (10.1016/j.jcp.2022.111365_br0680) 2008; 227 Müller (10.1016/j.jcp.2022.111365_br0040) 1782 Guasto (10.1016/j.jcp.2022.111365_br0730) 2012; 44 Delong (10.1016/j.jcp.2022.111365_br0440) 2015; 143 Gauger (10.1016/j.jcp.2022.111365_br0620) 2006; 74 Ichiki (10.1016/j.jcp.2022.111365_br0640) 2002; 452 Smith (10.1016/j.jcp.2022.111365_br0770) 2009; 465 Delmotte (10.1016/j.jcp.2022.111365_br0170) 2015; 286 Schoeller (10.1016/j.jcp.2022.111365_br0370) 2018; 15 Westwood (10.1016/j.jcp.2022.111365_br0450) Gordon (10.1016/j.jcp.2022.111365_br0060) 2016; 2 Liao (10.1016/j.jcp.2022.111365_br0090) 2019; 15 Block (10.1016/j.jcp.2022.111365_br0020) 1989; 338 Wajnryb (10.1016/j.jcp.2022.111365_br0490) 2013; 731 Bao (10.1016/j.jcp.2022.111365_br0470) 2018; 374 Featherstone (10.1016/j.jcp.2022.111365_br0460) 1987; vol. 22 Virtanen (10.1016/j.jcp.2022.111365_br0650) 2020; 17 Turner (10.1016/j.jcp.2022.111365_br0750) 2000; 182 Bettiol (10.1016/j.jcp.2022.111365_br0130) 2018; 56 Greengard (10.1016/j.jcp.2022.111365_br0230) 1987; 73 Spagnolie (10.1016/j.jcp.2022.111365_br0900) 2012; 700 Kapinga (10.1016/j.jcp.2022.111365_br0050) 1992; 7 Schoeller (10.1016/j.jcp.2022.111365_br0180) 2021; 424 Lindström (10.1016/j.jcp.2022.111365_br0350) 2007; 19 Purcell (10.1016/j.jcp.2022.111365_br0100) 1977; 45 Jahn (10.1016/j.jcp.2022.111365_br0670) 2007; 42 Yamamoto (10.1016/j.jcp.2022.111365_br0340) 1993; 98 Berke (10.1016/j.jcp.2022.111365_br0890) 2008; 101 Brosseau (10.1016/j.jcp.2022.111365_br0550) 2021; 17 Trachtenberg (10.1016/j.jcp.2022.111365_br0030) 1992; 109 Wang (10.1016/j.jcp.2022.111365_br0260) 2016; 306 Higdon (10.1016/j.jcp.2022.111365_br0700) 1979; 90 McMullen (10.1016/j.jcp.2022.111365_br0150) 2018; 121 Qi (10.1016/j.jcp.2022.111365_br0830) 2022; 5 Guazzelli (10.1016/j.jcp.2022.111365_br0600) 2011; 43 Saintillan (10.1016/j.jcp.2022.111365_br0790) 2008; 100 Sacanna (10.1016/j.jcp.2022.111365_br0140) 2010; 464 Herzhaft (10.1016/j.jcp.2022.111365_br0580) 1999; 384 Dreyfus (10.1016/j.jcp.2022.111365_br0070) 2005; 437 Goldstein (10.1016/j.jcp.2022.111365_br0330) 2001 Silmore (10.1016/j.jcp.2022.111365_br0560) 2021; 17 Ishimoto (10.1016/j.jcp.2022.111365_br0780) 2019; 880 Rotne (10.1016/j.jcp.2022.111365_br0480) 1969; 50 Nielsen (10.1016/j.jcp.2022.111365_br0740) 2021; 118 Swan (10.1016/j.jcp.2022.111365_br0500) 2007; 19 Lomholt (10.1016/j.jcp.2022.111365_br0320) 2003; 184 Childs (10.1016/j.jcp.2022.111365_br0840) 2012 Morse (10.1016/j.jcp.2022.111365_br0920) 2004; 128 Kim (10.1016/j.jcp.2022.111365_br0430) 1991 Butler (10.1016/j.jcp.2022.111365_br0590) 2002; 468 Shum (10.1016/j.jcp.2022.111365_br0390) 2017; 2 Swan (10.1016/j.jcp.2022.111365_br0210) 2016; 28 Higdon (10.1016/j.jcp.2022.111365_br0420) 1979; 94 Nazockdast (10.1016/j.jcp.2022.111365_br0610) 2017; 329 Mousavi (10.1016/j.jcp.2022.111365_br0910) 2020; 16 Liang (10.1016/j.jcp.2022.111365_br0510) 2013; 234 Schmid (10.1016/j.jcp.2022.111365_br0360) 2000; 44 Lushi (10.1016/j.jcp.2022.111365_br0810) 2014; 111 Fiore (10.1016/j.jcp.2022.111365_br0290) 2019; 878 Saintillan (10.1016/j.jcp.2022.111365_br0880) 2007; 99 Scagliarini (10.1016/j.jcp.2022.111365_br0820) 2022 Marchetti (10.1016/j.jcp.2022.111365_br0570) 2018; 3 Żuk (10.1016/j.jcp.2022.111365_br0630) 2021; 914 Berg (10.1016/j.jcp.2022.111365_br0010) 1973; 245 Tornberg (10.1016/j.jcp.2022.111365_br0240) 2008; 227 Yan (10.1016/j.jcp.2022.111365_br0250) |
| References_xml | – volume: 182 start-page: 2793 year: 2000 end-page: 2801 ident: br0750 article-title: Real-time imaging of fluorescent flagellar filaments publication-title: J. Bacteriol. – volume: 15 year: 2019 ident: br0090 article-title: Magnetically driven undulatory microswimmers integrating multiple rigid segments publication-title: Small – volume: 10 start-page: 1 year: 2018 end-page: 27 ident: br0120 article-title: Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot publication-title: Pac. J. Math. Ind. – volume: 90 start-page: 5271 year: 1989 end-page: 5279 ident: br0410 article-title: Simulation of aggregating colloids in shear flow publication-title: J. Chem. Phys. – volume: 99 year: 2007 ident: br0880 article-title: Orientational order and instabilities in suspensions of self-locomoting rods publication-title: Phys. Rev. Lett. – volume: 466 start-page: 1725 year: 2010 end-page: 1748 ident: br0380 article-title: Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – year: 1991 ident: br0430 article-title: Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann Series in Chemical Engineering – volume: 44 start-page: 373 year: 2012 end-page: 400 ident: br0730 article-title: Fluid mechanics of planktonic microorganisms publication-title: Annu. Rev. Fluid Mech. – volume: 127 start-page: 1039 year: 1976 end-page: 1046 ident: br0850 article-title: Effect of temperature on motility and chemotaxis of escherichia coli publication-title: J. Bacteriol. – volume: 45 start-page: 3 year: 1977 end-page: 11 ident: br0100 article-title: Life at low Reynolds number publication-title: Am. J. Phys. – volume: 227 start-page: 1613 year: 2008 end-page: 1619 ident: br0240 article-title: A fast multipole method for the three-dimensional Stokes equations publication-title: J. Comput. Phys. – volume: 73 start-page: 325 year: 1987 end-page: 348 ident: br0230 article-title: A fast algorithm for particle simulations publication-title: J. Comput. Phys. – volume: 103 year: 2021 ident: br0760 article-title: Base flow decomposition for complex moving objects in linear hydrodynamics: application to helix-shaped flagellated microswimmers publication-title: Phys. Rev. E – volume: 437 start-page: 862 year: 2005 end-page: 865 ident: br0070 article-title: Microscopic artificial swimmers publication-title: Nature – volume: 490 start-page: 15 year: 2003 ident: br0110 article-title: On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer publication-title: J. Fluid Mech. – volume: 286 start-page: 14 year: 2015 end-page: 37 ident: br0170 article-title: A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number publication-title: J. Comput. Phys. – volume: 375 start-page: 263 year: 2018 end-page: 270 ident: br0520 article-title: Universal image system for non-periodic and periodic Stokes flows above a no-slip wall publication-title: J. Comput. Phys. – volume: 146 year: 2017 ident: br0270 article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations publication-title: J. Chem. Phys. – volume: 465 start-page: 3605 year: 2009 end-page: 3626 ident: br0770 article-title: A boundary element regularized stokeslet method applied to cilia- and flagella-driven flow publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – ident: br0690 – volume: 7 start-page: 215 year: 1992 end-page: 220 ident: br0050 article-title: Cell attachment in the motile colonial diatom bacillaria paxillifer publication-title: Diatom Res. – volume: 384 start-page: 133 year: 1999 end-page: 158 ident: br0580 article-title: Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres publication-title: J. Fluid Mech. – volume: 106 start-page: 2949 year: 1997 end-page: 2960 ident: br0160 article-title: Dynamic simulation of flexible fibers composed of linked rigid bodies publication-title: J. Chem. Phys. – volume: 17 start-page: 6597 year: 2021 end-page: 6602 ident: br0550 article-title: Metallic microswimmers driven up the wall by gravity publication-title: Soft Matter – volume: 3 year: 2018 ident: br0570 article-title: Deformation of a flexible fiber settling in a quiescent viscous fluid publication-title: Phys. Rev. Fluids – start-page: 357 year: 2012 end-page: 372 ident: br0840 article-title: Visit: an end-user tool for visualizing and analyzing very large data publication-title: High Performance Visualization–Enabling Extreme-Scale Scientific Insight – volume: 72 year: 2009 ident: br0720 article-title: The hydrodynamics of swimming microorganisms publication-title: Rep. Prog. Phys. – volume: 11 start-page: 217 year: 2016 end-page: 296 ident: br0220 article-title: Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach publication-title: Commun. Appl. Math. Comput. Sci. – volume: 329 start-page: 173 year: 2017 end-page: 209 ident: br0610 article-title: A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics publication-title: J. Comput. Phys. – volume: 462 start-page: 311 year: 2019 end-page: 320 ident: br0400 article-title: Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study publication-title: J. Theor. Biol. – volume: 121 year: 2018 ident: br0150 article-title: Freely jointed polymers made of droplets publication-title: Phys. Rev. Lett. – volume: 19 start-page: 113306 year: 2007 ident: br0500 article-title: Simulation of hydrodynamically interacting particles near a no-slip boundary publication-title: Phys. Fluids – volume: 94 year: 2016 ident: br0800 article-title: Stability and dynamics of anisotropically tumbling chemotactic swimmers publication-title: Phys. Rev. E – volume: 123 year: 2019 ident: br0540 article-title: Relating rheotaxis and hydrodynamic actuation using asymmetric gold-platinum phoretic rods publication-title: Phys. Rev. Lett. – volume: 15 year: 2018 ident: br0370 article-title: From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions publication-title: J. R. Soc. Interface – volume: 914 year: 2021 ident: br0630 article-title: Universal features of the shape of elastic fibres in shear flow publication-title: J. Fluid Mech. – year: 2020 ident: br0250 article-title: Kernel aggregated fast multipole method: efficient summation of Laplace and Stokes kernel functions – volume: 42 start-page: 295 year: 2007 end-page: 312 ident: br0670 article-title: Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species publication-title: Eur. J. Phycol. – volume: 93 year: 2004 ident: br0870 article-title: Self-concentration and large-scale coherence in bacterial dynamics publication-title: Phys. Rev. Lett. – volume: 374 start-page: 1094 year: 2018 end-page: 1119 ident: br0470 article-title: A fluctuating boundary integral method for brownian suspensions publication-title: J. Comput. Phys. – year: 2022 ident: br0820 article-title: Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers publication-title: Soft Matter – volume: 464 start-page: 575 year: 2010 end-page: 578 ident: br0140 article-title: Lock and key colloids publication-title: Nature – volume: 50 start-page: 4831 year: 1969 ident: br0480 article-title: Variational treatment of hydrodynamic interaction in polymers publication-title: J. Chem. Phys. – year: 2001 ident: br0330 article-title: Classical Mechanics – volume: 468 start-page: 205 year: 2002 end-page: 237 ident: br0590 article-title: Dynamic simulations of the inhomogeneous sedimentation of rigid fibres publication-title: J. Fluid Mech. – volume: 100 year: 2008 ident: br0790 article-title: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations publication-title: Phys. Rev. Lett. – volume: 700 start-page: 105 year: 2012 end-page: 147 ident: br0900 article-title: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations publication-title: J. Fluid Mech. – year: Jun. 2021 ident: br0450 article-title: A generalised drift-correcting time integration scheme for Brownian suspensions of rigid particles with arbitrary shape – volume: 245 start-page: 380 year: 1973 end-page: 382 ident: br0010 article-title: Bacteria swim by rotating their flagellar filaments publication-title: Nature – volume: 74 year: 2006 ident: br0620 article-title: Numerical study of a microscopic artificial swimmer publication-title: Phys. Rev. E – volume: 11 start-page: 479 year: 2002 end-page: 517 ident: br0300 article-title: The immersed boundary method publication-title: Acta Numer. – start-page: 7 year: 2004 ident: br0660 article-title: A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization publication-title: WSEAS International Conference on Applied Mathematics – volume: vol. 22 year: 1987 ident: br0460 article-title: Robot Dynamics Algorithms publication-title: Robotics: Vision, Manipulation and Sensors – volume: 16 start-page: 4866 year: 2020 end-page: 4875 ident: br0910 article-title: Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study publication-title: Soft Matter – volume: 94 start-page: 331 year: 1979 end-page: 351 ident: br0420 article-title: The hydrodynamics of flagellar propulsion: helical waves publication-title: J. Fluid Mech. – year: 1992 ident: br0190 article-title: Boundary Integral and Singularity Methods for Linearized Viscous Flow publication-title: Cambridge Texts in Applied Mathematics – volume: 143 year: 2015 ident: br0440 article-title: Brownian dynamics of confined rigid bodies publication-title: J. Chem. Phys. – year: 1782 ident: br0040 article-title: Kleine Schriften aus der Naturhistorie, vol. 1 – volume: 234 start-page: 133 year: 2013 end-page: 139 ident: br0510 article-title: A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications publication-title: J. Comput. Phys. – volume: 880 start-page: 620 year: 2019 end-page: 652 ident: br0780 article-title: Bacterial spinning top publication-title: J. Fluid Mech. – volume: 227 start-page: 5397 year: 2008 ident: br0680 article-title: Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain publication-title: J. Comput. Phys. – volume: 28 year: 2016 ident: br0210 article-title: Rapid calculation of hydrodynamic and transport properties in concentrated solutions of colloidal particles and macromolecules publication-title: Phys. Fluids – volume: 46 start-page: 199 year: 1971 end-page: 208 ident: br0530 article-title: A spherical envelope approach to ciliary propulsion publication-title: J. Fluid Mech. – volume: 111 start-page: 9733 year: 2014 end-page: 9738 ident: br0810 article-title: Fluid flows created by swimming bacteria drive self-organization in confined suspensions publication-title: Proc. Natl. Acad. Sci. – volume: 43 start-page: 97 year: 2011 end-page: 116 ident: br0600 article-title: Fluctuations and instability in sedimentation publication-title: Annu. Rev. Fluid Mech. – volume: 98 start-page: 644 year: 1993 end-page: 650 ident: br0340 article-title: A method for dynamic simulation of rigid and flexible fibers in a flow field publication-title: J. Chem. Phys. – volume: 38 start-page: 139 year: 2015 ident: br0200 article-title: A regularised singularity approach to phoretic problems publication-title: Eur. Phys. J. E – volume: 56 start-page: 1794 year: 2018 end-page: 1822 ident: br0130 article-title: Optimal strokes at low Reynolds number: a geometric and numerical study of copepod and purcell swimmers publication-title: SIAM J. Control Optim. – volume: 2 year: 2017 ident: br0390 article-title: Entrainment and scattering in microswimmer-colloid interactions publication-title: Phys. Rev. Fluids – year: 1975 ident: br0710 article-title: Mathematical Biofluiddynamics – volume: 731 year: 2013 ident: br0490 article-title: Generalization of the Rotne-Prager-Yamakawa mobility and shear disturbance tensors publication-title: J. Fluid Mech. – volume: 101 year: 2008 ident: br0890 article-title: Hydrodynamic attraction of swimming microorganisms by surfaces publication-title: Phys. Rev. Lett. – volume: 338 start-page: 514 year: 1989 end-page: 518 ident: br0020 article-title: Compliance of bacterial flagella measured with optical tweezers publication-title: Nature – volume: 2 year: 2016 ident: br0060 article-title: Partial synchronization of the colonial diatom Bacillaria “paradoxa” publication-title: Res. Ideas Outcomes – volume: 109 start-page: 18 year: 1992 end-page: 27 ident: br0030 article-title: The rigidity of bacterial flagellar filaments and its relation to filament polymorphism publication-title: J. Struct. Biol. – volume: 128 start-page: 110 year: 2004 ident: br0920 article-title: Theory of constrained brownian motion publication-title: Adv. Chem. Phys. – volume: 19 year: 2007 ident: br0350 article-title: Simulation of the motion of flexible fibers in viscous fluid flow publication-title: Phys. Fluids – volume: 17 start-page: 4707 year: 2021 end-page: 4718 ident: br0560 article-title: Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow publication-title: Soft Matter – volume: 878 start-page: 544 year: 2019 end-page: 597 ident: br0290 article-title: Fast Stokesian dynamics publication-title: J. Fluid Mech. – volume: 27 start-page: 1603 year: 2001 end-page: 1626 ident: br0310 article-title: Localized force representations for particles sedimenting in Stokes flow publication-title: Int. J. Multiph. Flow – volume: 184 start-page: 381 year: 2003 end-page: 405 ident: br0320 article-title: Force-coupling method for particulate two-phase flow: Stokes flow publication-title: J. Comput. Phys. – volume: 15 start-page: 4829 year: 2015 end-page: 4833 ident: br0080 article-title: Undulatory locomotion of magnetic multilink nanoswimmers publication-title: Nano Lett. – volume: 306 start-page: 443 year: 2016 end-page: 477 ident: br0260 article-title: Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions publication-title: J. Comput. Phys. – volume: 118 year: 2021 ident: br0740 article-title: Foraging trade-offs, flagellar arrangements, and flow architecture of planktonic protists publication-title: Proc. Natl. Acad. Sci. – volume: 452 start-page: 231 year: 2002 ident: br0640 article-title: Improvement of the stokesian dynamics method for systems with a finite number of particles publication-title: J. Fluid Mech. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: br0650 article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – volume: 44 start-page: 781 year: 2000 end-page: 809 ident: br0360 article-title: Simulations of fiber flocculation: effects of fiber properties and interfiber friction publication-title: J. Rheol. – volume: 424 year: 2021 ident: br0180 article-title: Methods for suspensions of passive and active filaments publication-title: J. Comput. Phys. – volume: 5 start-page: 1 year: 2022 end-page: 12 ident: br0830 article-title: Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion publication-title: Commun. Phys. – volume: 90 start-page: 685 year: 1979 ident: br0700 article-title: A hydrodynamic analysis of flagellar propulsion publication-title: J. Fluid Mech. – volume: 90 start-page: 400 year: 2006 end-page: 412 ident: br0860 article-title: Swimming in circles: motion of bacteria near solid boundaries publication-title: Biophys. J. – volume: 448 start-page: 115 year: 2001 end-page: 146 ident: br0280 article-title: Accelerated stokesian dynamics simulations publication-title: J. Fluid Mech. – volume: 123 year: 2019 ident: 10.1016/j.jcp.2022.111365_br0540 article-title: Relating rheotaxis and hydrodynamic actuation using asymmetric gold-platinum phoretic rods publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.178004 – year: 1782 ident: 10.1016/j.jcp.2022.111365_br0040 – volume: 234 start-page: 133 year: 2013 ident: 10.1016/j.jcp.2022.111365_br0510 article-title: A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.09.021 – volume: 11 start-page: 217 issue: 2 year: 2016 ident: 10.1016/j.jcp.2022.111365_br0220 article-title: Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach publication-title: Commun. Appl. Math. Comput. Sci. doi: 10.2140/camcos.2016.11.217 – volume: 94 start-page: 331 issue: 2 year: 1979 ident: 10.1016/j.jcp.2022.111365_br0420 article-title: The hydrodynamics of flagellar propulsion: helical waves publication-title: J. Fluid Mech. doi: 10.1017/S0022112079001051 – volume: 127 start-page: 1039 issue: 3 year: 1976 ident: 10.1016/j.jcp.2022.111365_br0850 article-title: Effect of temperature on motility and chemotaxis of escherichia coli publication-title: J. Bacteriol. doi: 10.1128/jb.127.3.1039-1046.1976 – volume: 121 issue: 13 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0150 article-title: Freely jointed polymers made of droplets publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.138002 – volume: 227 start-page: 5397 year: 2008 ident: 10.1016/j.jcp.2022.111365_br0680 article-title: Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.01.048 – volume: 46 start-page: 199 issue: 01 year: 1971 ident: 10.1016/j.jcp.2022.111365_br0530 article-title: A spherical envelope approach to ciliary propulsion publication-title: J. Fluid Mech. doi: 10.1017/S002211207100048X – volume: 93 year: 2004 ident: 10.1016/j.jcp.2022.111365_br0870 article-title: Self-concentration and large-scale coherence in bacterial dynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.098103 – volume: 128 start-page: 110 issue: 65–189 year: 2004 ident: 10.1016/j.jcp.2022.111365_br0920 article-title: Theory of constrained brownian motion publication-title: Adv. Chem. Phys. – volume: 146 issue: 12 year: 2017 ident: 10.1016/j.jcp.2022.111365_br0270 article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations publication-title: J. Chem. Phys. doi: 10.1063/1.4978242 – volume: 50 start-page: 4831 year: 1969 ident: 10.1016/j.jcp.2022.111365_br0480 article-title: Variational treatment of hydrodynamic interaction in polymers publication-title: J. Chem. Phys. doi: 10.1063/1.1670977 – volume: 731 year: 2013 ident: 10.1016/j.jcp.2022.111365_br0490 article-title: Generalization of the Rotne-Prager-Yamakawa mobility and shear disturbance tensors publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.402 – volume: 11 start-page: 479 year: 2002 ident: 10.1016/j.jcp.2022.111365_br0300 article-title: The immersed boundary method publication-title: Acta Numer. doi: 10.1017/S0962492902000077 – volume: 878 start-page: 544 year: 2019 ident: 10.1016/j.jcp.2022.111365_br0290 article-title: Fast Stokesian dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.640 – start-page: 7 year: 2004 ident: 10.1016/j.jcp.2022.111365_br0660 article-title: A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization – volume: 7 start-page: 215 issue: 2 year: 1992 ident: 10.1016/j.jcp.2022.111365_br0050 article-title: Cell attachment in the motile colonial diatom bacillaria paxillifer publication-title: Diatom Res. doi: 10.1080/0269249X.1992.9705214 – volume: 3 issue: 10 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0570 article-title: Deformation of a flexible fiber settling in a quiescent viscous fluid publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.104102 – volume: 880 start-page: 620 year: 2019 ident: 10.1016/j.jcp.2022.111365_br0780 article-title: Bacterial spinning top publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.714 – volume: 184 start-page: 381 issue: 2 year: 2003 ident: 10.1016/j.jcp.2022.111365_br0320 article-title: Force-coupling method for particulate two-phase flow: Stokes flow publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(02)00021-9 – year: 1975 ident: 10.1016/j.jcp.2022.111365_br0710 – volume: 109 start-page: 18 issue: 1 year: 1992 ident: 10.1016/j.jcp.2022.111365_br0030 article-title: The rigidity of bacterial flagellar filaments and its relation to filament polymorphism publication-title: J. Struct. Biol. doi: 10.1016/1047-8477(92)90063-G – volume: 72 issue: 9 year: 2009 ident: 10.1016/j.jcp.2022.111365_br0720 article-title: The hydrodynamics of swimming microorganisms publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/9/096601 – volume: 17 start-page: 4707 issue: 18 year: 2021 ident: 10.1016/j.jcp.2022.111365_br0560 article-title: Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow publication-title: Soft Matter doi: 10.1039/D0SM02184A – volume: 286 start-page: 14 year: 2015 ident: 10.1016/j.jcp.2022.111365_br0170 article-title: A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.01.026 – year: 1992 ident: 10.1016/j.jcp.2022.111365_br0190 article-title: Boundary Integral and Singularity Methods for Linearized Viscous Flow doi: 10.1017/CBO9780511624124 – volume: 56 start-page: 1794 issue: 3 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0130 article-title: Optimal strokes at low Reynolds number: a geometric and numerical study of copepod and purcell swimmers publication-title: SIAM J. Control Optim. doi: 10.1137/16M1106778 – volume: 306 start-page: 443 year: 2016 ident: 10.1016/j.jcp.2022.111365_br0260 article-title: Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.11.042 – volume: 42 start-page: 295 issue: 3 year: 2007 ident: 10.1016/j.jcp.2022.111365_br0670 article-title: Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species publication-title: Eur. J. Phycol. doi: 10.1080/09670260701428864 – volume: 384 start-page: 133 year: 1999 ident: 10.1016/j.jcp.2022.111365_br0580 article-title: Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres publication-title: J. Fluid Mech. doi: 10.1017/S0022112099004152 – volume: 143 issue: 14 year: 2015 ident: 10.1016/j.jcp.2022.111365_br0440 article-title: Brownian dynamics of confined rigid bodies publication-title: J. Chem. Phys. doi: 10.1063/1.4932062 – volume: 73 start-page: 325 issue: 2 year: 1987 ident: 10.1016/j.jcp.2022.111365_br0230 article-title: A fast algorithm for particle simulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90140-9 – volume: 43 start-page: 97 year: 2011 ident: 10.1016/j.jcp.2022.111365_br0600 article-title: Fluctuations and instability in sedimentation publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122109-160736 – volume: 465 start-page: 3605 issue: 2112 year: 2009 ident: 10.1016/j.jcp.2022.111365_br0770 article-title: A boundary element regularized stokeslet method applied to cilia- and flagella-driven flow publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – volume: 38 start-page: 139 issue: 12 year: 2015 ident: 10.1016/j.jcp.2022.111365_br0200 article-title: A regularised singularity approach to phoretic problems publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2015-15139-7 – volume: 462 start-page: 311 year: 2019 ident: 10.1016/j.jcp.2022.111365_br0400 article-title: Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.11.016 – volume: 28 issue: 1 year: 2016 ident: 10.1016/j.jcp.2022.111365_br0210 article-title: Rapid calculation of hydrodynamic and transport properties in concentrated solutions of colloidal particles and macromolecules publication-title: Phys. Fluids doi: 10.1063/1.4939581 – volume: 452 start-page: 231 year: 2002 ident: 10.1016/j.jcp.2022.111365_br0640 article-title: Improvement of the stokesian dynamics method for systems with a finite number of particles publication-title: J. Fluid Mech. doi: 10.1017/S0022112001006735 – volume: 2 issue: 11 year: 2017 ident: 10.1016/j.jcp.2022.111365_br0390 article-title: Entrainment and scattering in microswimmer-colloid interactions publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.113101 – volume: 182 start-page: 2793 issue: 10 year: 2000 ident: 10.1016/j.jcp.2022.111365_br0750 article-title: Real-time imaging of fluorescent flagellar filaments publication-title: J. Bacteriol. doi: 10.1128/JB.182.10.2793-2801.2000 – volume: 245 start-page: 380 issue: 5425 year: 1973 ident: 10.1016/j.jcp.2022.111365_br0010 article-title: Bacteria swim by rotating their flagellar filaments publication-title: Nature doi: 10.1038/245380a0 – volume: 90 start-page: 400 issue: 2 year: 2006 ident: 10.1016/j.jcp.2022.111365_br0860 article-title: Swimming in circles: motion of bacteria near solid boundaries publication-title: Biophys. J. doi: 10.1529/biophysj.105.069401 – volume: 74 issue: 2 year: 2006 ident: 10.1016/j.jcp.2022.111365_br0620 article-title: Numerical study of a microscopic artificial swimmer publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.021907 – volume: 424 year: 2021 ident: 10.1016/j.jcp.2022.111365_br0180 article-title: Methods for suspensions of passive and active filaments publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109846 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.jcp.2022.111365_br0830 article-title: Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion publication-title: Commun. Phys. doi: 10.1038/s42005-022-00820-7 – start-page: 357 year: 2012 ident: 10.1016/j.jcp.2022.111365_br0840 article-title: Visit: an end-user tool for visualizing and analyzing very large data – year: 2001 ident: 10.1016/j.jcp.2022.111365_br0330 – volume: 99 year: 2007 ident: 10.1016/j.jcp.2022.111365_br0880 article-title: Orientational order and instabilities in suspensions of self-locomoting rods publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.058102 – year: 2022 ident: 10.1016/j.jcp.2022.111365_br0820 article-title: Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers publication-title: Soft Matter doi: 10.1039/D1SM01594J – volume: 338 start-page: 514 issue: 6215 year: 1989 ident: 10.1016/j.jcp.2022.111365_br0020 article-title: Compliance of bacterial flagella measured with optical tweezers publication-title: Nature doi: 10.1038/338514a0 – volume: 375 start-page: 263 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0520 article-title: Universal image system for non-periodic and periodic Stokes flows above a no-slip wall publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.041 – volume: 15 start-page: 4829 issue: 7 year: 2015 ident: 10.1016/j.jcp.2022.111365_br0080 article-title: Undulatory locomotion of magnetic multilink nanoswimmers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01981 – volume: 44 start-page: 781 issue: 4 year: 2000 ident: 10.1016/j.jcp.2022.111365_br0360 article-title: Simulations of fiber flocculation: effects of fiber properties and interfiber friction publication-title: J. Rheol. doi: 10.1122/1.551116 – volume: vol. 22 year: 1987 ident: 10.1016/j.jcp.2022.111365_br0460 article-title: Robot Dynamics Algorithms – volume: 44 start-page: 373 issue: 1 year: 2012 ident: 10.1016/j.jcp.2022.111365_br0730 article-title: Fluid mechanics of planktonic microorganisms publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101156 – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0120 article-title: Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot publication-title: Pac. J. Math. Ind. doi: 10.1186/s40736-018-0036-9 – volume: 466 start-page: 1725 issue: 2118 year: 2010 ident: 10.1016/j.jcp.2022.111365_br0380 article-title: Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. – volume: 111 start-page: 9733 issue: 27 year: 2014 ident: 10.1016/j.jcp.2022.111365_br0810 article-title: Fluid flows created by swimming bacteria drive self-organization in confined suspensions publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1405698111 – volume: 100 year: 2008 ident: 10.1016/j.jcp.2022.111365_br0790 article-title: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.178103 – volume: 464 start-page: 575 issue: 7288 year: 2010 ident: 10.1016/j.jcp.2022.111365_br0140 article-title: Lock and key colloids publication-title: Nature doi: 10.1038/nature08906 – ident: 10.1016/j.jcp.2022.111365_br0450 – volume: 94 year: 2016 ident: 10.1016/j.jcp.2022.111365_br0800 article-title: Stability and dynamics of anisotropically tumbling chemotactic swimmers publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.022414 – volume: 448 start-page: 115 year: 2001 ident: 10.1016/j.jcp.2022.111365_br0280 article-title: Accelerated stokesian dynamics simulations publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005912 – year: 1991 ident: 10.1016/j.jcp.2022.111365_br0430 – volume: 90 start-page: 685 issue: 04 year: 1979 ident: 10.1016/j.jcp.2022.111365_br0700 article-title: A hydrodynamic analysis of flagellar propulsion publication-title: J. Fluid Mech. doi: 10.1017/S0022112079002482 – volume: 490 start-page: 15 year: 2003 ident: 10.1016/j.jcp.2022.111365_br0110 article-title: On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer publication-title: J. Fluid Mech. doi: 10.1017/S0022112003005184 – volume: 329 start-page: 173 year: 2017 ident: 10.1016/j.jcp.2022.111365_br0610 article-title: A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.026 – volume: 15 issue: 36 year: 2019 ident: 10.1016/j.jcp.2022.111365_br0090 article-title: Magnetically driven undulatory microswimmers integrating multiple rigid segments publication-title: Small doi: 10.1002/smll.201901197 – volume: 27 start-page: 1603 issue: 9 year: 2001 ident: 10.1016/j.jcp.2022.111365_br0310 article-title: Localized force representations for particles sedimenting in Stokes flow publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(01)00014-3 – volume: 2 year: 2016 ident: 10.1016/j.jcp.2022.111365_br0060 article-title: Partial synchronization of the colonial diatom Bacillaria “paradoxa” publication-title: Res. Ideas Outcomes doi: 10.3897/rio.2.e7869 – volume: 16 start-page: 4866 issue: 20 year: 2020 ident: 10.1016/j.jcp.2022.111365_br0910 article-title: Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study publication-title: Soft Matter doi: 10.1039/D0SM00571A – volume: 45 start-page: 3 issue: 1 year: 1977 ident: 10.1016/j.jcp.2022.111365_br0100 article-title: Life at low Reynolds number publication-title: Am. J. Phys. doi: 10.1119/1.10903 – volume: 17 start-page: 6597 year: 2021 ident: 10.1016/j.jcp.2022.111365_br0550 article-title: Metallic microswimmers driven up the wall by gravity publication-title: Soft Matter doi: 10.1039/D1SM00554E – volume: 101 year: 2008 ident: 10.1016/j.jcp.2022.111365_br0890 article-title: Hydrodynamic attraction of swimming microorganisms by surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.038102 – volume: 19 start-page: 113306 issue: 11 year: 2007 ident: 10.1016/j.jcp.2022.111365_br0500 article-title: Simulation of hydrodynamically interacting particles near a no-slip boundary publication-title: Phys. Fluids doi: 10.1063/1.2803837 – volume: 90 start-page: 5271 issue: 10 year: 1989 ident: 10.1016/j.jcp.2022.111365_br0410 article-title: Simulation of aggregating colloids in shear flow publication-title: J. Chem. Phys. doi: 10.1063/1.456430 – volume: 468 start-page: 205 year: 2002 ident: 10.1016/j.jcp.2022.111365_br0590 article-title: Dynamic simulations of the inhomogeneous sedimentation of rigid fibres publication-title: J. Fluid Mech. doi: 10.1017/S0022112002001544 – volume: 914 year: 2021 ident: 10.1016/j.jcp.2022.111365_br0630 article-title: Universal features of the shape of elastic fibres in shear flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.1048 – ident: 10.1016/j.jcp.2022.111365_br0250 – volume: 437 start-page: 862 issue: 7060 year: 2005 ident: 10.1016/j.jcp.2022.111365_br0070 article-title: Microscopic artificial swimmers publication-title: Nature doi: 10.1038/nature04090 – volume: 106 start-page: 2949 issue: 7 year: 1997 ident: 10.1016/j.jcp.2022.111365_br0160 article-title: Dynamic simulation of flexible fibers composed of linked rigid bodies publication-title: J. Chem. Phys. doi: 10.1063/1.473067 – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.jcp.2022.111365_br0650 article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 700 start-page: 105 year: 2012 ident: 10.1016/j.jcp.2022.111365_br0900 article-title: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.101 – volume: 15 issue: 140 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0370 article-title: From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0834 – volume: 227 start-page: 1613 issue: 3 year: 2008 ident: 10.1016/j.jcp.2022.111365_br0240 article-title: A fast multipole method for the three-dimensional Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.029 – volume: 98 start-page: 644 issue: 1 year: 1993 ident: 10.1016/j.jcp.2022.111365_br0340 article-title: A method for dynamic simulation of rigid and flexible fibers in a flow field publication-title: J. Chem. Phys. doi: 10.1063/1.464607 – volume: 118 issue: 3 year: 2021 ident: 10.1016/j.jcp.2022.111365_br0740 article-title: Foraging trade-offs, flagellar arrangements, and flow architecture of planktonic protists publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2009930118 – volume: 374 start-page: 1094 year: 2018 ident: 10.1016/j.jcp.2022.111365_br0470 article-title: A fluctuating boundary integral method for brownian suspensions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.021 – volume: 103 year: 2021 ident: 10.1016/j.jcp.2022.111365_br0760 article-title: Base flow decomposition for complex moving objects in linear hydrodynamics: application to helix-shaped flagellated microswimmers publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.023109 – volume: 19 issue: 11 year: 2007 ident: 10.1016/j.jcp.2022.111365_br0350 article-title: Simulation of the motion of flexible fibers in viscous fluid flow publication-title: Phys. Fluids doi: 10.1063/1.2778937 |
| SSID | ssj0008548 |
| Score | 2.4431608 |
| Snippet | An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of... |
| SourceID | unpaywall hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111365 |
| SubjectTerms | Active matter Algorithms Articulated bodies Bacteria Chains Computational efficiency Computational physics Computer Science Computing costs Constraints Filaments Fluid mechanics Fluid-structure interactions Iterative methods Locomotion Mechanics Membranes Modeling and Simulation Numerical methods Physics Rigid structures Robustness (mathematics) Stokes flow Suspensions Time integration Viscous flow |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R7QEulE-xUCoLcQJlcRzbGx9XiGqLoOLQSuVkxXYs2kbJimxawa9nHCdLVapWXCIlsqNYM5N5Iz-_AXhLjTOIRGmSWj5PeDjEZZT0iaUFk0XuTNmfrfp6KJfH_POJOPkrknRNXoDRmaAhrHPGP2CmybZgWwoE3RPYPj78tvgeCRxpEmBOv6-paMKwBBj3L3sm15kNwpSMhd9DFrLIzRlo60egQl7Bmfe7elX8uiyq6krK2d-B5XhwJzJNzmfd2szs7391HO9azSN4OMBOsoh-8hjulfUT2BkgKBkCvH0KBwtSd3ETpyKxuzRBWEvarl0Fqjv6KGk86f0tNP7CyaYJRERyWpOL09Y2XUt81Vy2z-Bo_9PRx2UydFtILNaQ68TlPqNecosFDTUIJJiwTBUl9UpZ71hWeuNyIQrM6rJXmUllLqxIjSnmzGXPYVI3dfkCiJXKp4XMnPclF1bl3DmvyhQvuVGKTYGOBtB2UCIPDTEqPVLOzjTaTAeb6WizKbzbTFlFGY7bBvPRqnrAEREfaEwTt017gx6weX3Q3V4uvujwjGIhryRPL9Ip7I4OoodobzWTirH5HJHyFN5vnObuD335X6NfwYNwFwluuzBZ_-zK14iI1mZviIY_KEcCAg priority: 102 providerName: Unpaywall |
| Title | A numerical method for suspensions of articulated bodies in viscous flows |
| URI | https://dx.doi.org/10.1016/j.jcp.2022.111365 https://www.proquest.com/docview/2692277310 https://hal.science/hal-03389641 http://hdl.handle.net/20.500.11824/1523 |
| UnpaywallVersion | submittedVersion |
| Volume | 464 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RemgvhdJWXaDIqnpqlZI4jhMfI1S0fHTFASR6smI7VhdFyarZgLjw2_EkzhakikpcEsWyI2fGmXmW38wAfAmVUQ6JhkGkWRowDOJSgttAhwXlRWZU2cdW_Zzx6QU7vkwu1-BgjIVBWqW3_YNN7621b9n30txfzOcY40sxhj6itC8YgXaYsRSrGHy_-0vzyBI2WGOkIrje48lmz_G60piyklI0HDH6l3_7phe_kST5AIG-6upFcXtTVNUDZ3S4CW88iiT5MNG3sFbWW7DhESXx_2v7Do5yUnfDmUxFhmLRxKFU0nbtApnrbsmRxpL-g7GOlxusGuQVknlNruetbrqW2Kq5ad_D-eGP84Np4IsnBNptCZeByWwcWs6025-EyuECmmgqijK0QmhraFxaZbIkKZyT5n3SmIhniU4ipYqUmvgDrNdNXX4EormwUcFjY23JEi0yZowVZeQumRKCTiAcpSa1TyyO9S0qOTLIrqQTtERBy0HQE_i6GrIYsmo81ZmNqpCPloZ0Vv-pYZ-d2lavxzTa0_xUYlvo9uWCs-g6msDuqFXpf95WUi4oTVMHfCfwbaXp_090-3kT3YHX-DQQ13ZhffmnKz85pLNUe_1S3oOX-dHJdObuF7Oz_Nc9gQP7qg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHOil0Je65VGr6qlVSuLY3vi4QqCFLpy2EjcrtmN1UZSsmg2ol_52ZhJnoVIFEpccHDtyZsbzkL-ZIeRLbJwBTzSOEsvHEcckLqOkj2ycM5lnzhRdbtXFpZz-5OdX4mqDHA-5MAirDLq_1-mdtg4jR4GaR8vFAnN8GebQJ4x1DSNAD29xwcYYgX3_e4_zyATv1TFiEWD6cLXZgbyuLdasZAw1R4oG5v_G6cUvREk-cEG322qZ_7nNy_KBNTrdJa-CG0kn_U5fk42iekN2gktJw4Ft3pKzCa3a_lKmpH23aApuKm3aZonQdZA5Wnva_TE28oLFpkZgIV1U9GbR2LptqC_r2-YdmZ-ezI-nUeieEFmICVeRy3wae8ktBCixAceACctUXsReKesdSwtvXCZEDlZadlVjEpkJKxJj8jFz6XuyWdVV8YFQK5VPcpk67wsurMq4c14VCTwyoxQbkXigmrahsjg2uCj1ACG71kBojYTWPaFH5Ot6ybIvq_HYZD6wQv8jGxrU_mPLPgPb1p_HOtrTyUzjWAyBuZI8uUlGZH_gqg6nt9FMKgaCBJ7viHxbc_rpjX583kY_ke3p_GKmZ2eXP_bIS3zTo9j2yebqd1scgNuzMoedWN8Bb-37jw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R7QEulE-xUCoLcQJlcRzbGx9XiGqLoOLQSuVkxXYs2kbJimxawa9nHCdLVapWXCIlsqNYM5N5Iz-_AXhLjTOIRGmSWj5PeDjEZZT0iaUFk0XuTNmfrfp6KJfH_POJOPkrknRNXoDRmaAhrHPGP2CmybZgWwoE3RPYPj78tvgeCRxpEmBOv6-paMKwBBj3L3sm15kNwpSMhd9DFrLIzRlo60egQl7Bmfe7elX8uiyq6krK2d-B5XhwJzJNzmfd2szs7391HO9azSN4OMBOsoh-8hjulfUT2BkgKBkCvH0KBwtSd3ETpyKxuzRBWEvarl0Fqjv6KGk86f0tNP7CyaYJRERyWpOL09Y2XUt81Vy2z-Bo_9PRx2UydFtILNaQ68TlPqNecosFDTUIJJiwTBUl9UpZ71hWeuNyIQrM6rJXmUllLqxIjSnmzGXPYVI3dfkCiJXKp4XMnPclF1bl3DmvyhQvuVGKTYGOBtB2UCIPDTEqPVLOzjTaTAeb6WizKbzbTFlFGY7bBvPRqnrAEREfaEwTt017gx6weX3Q3V4uvujwjGIhryRPL9Ip7I4OoodobzWTirH5HJHyFN5vnObuD335X6NfwYNwFwluuzBZ_-zK14iI1mZviIY_KEcCAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+suspensions+of+articulated+bodies+in+viscous+flows&rft.jtitle=Journal+of+computational+physics&rft.au=Usabiaga%2C+Florencio+Balboa&rft.au=Delmotte%2C+Blaise&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=464&rft_id=info:doi/10.1016%2Fj.jcp.2022.111365&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03389641v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |