A numerical method for suspensions of articulated bodies in viscous flows

An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 464; p. 111365
Main Authors Balboa Usabiaga, Florencio, Delmotte, Blaise
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.09.2022
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
1090-2716
DOI10.1016/j.jcp.2022.111365

Cover

Abstract An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. In this work we consider hybrid articulated bodies, i.e. constituted of both linear chains, such as filaments, and closed-loop chains, such as membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size, therefore allowing to study large suspensions with quasilinear computational cost. Additionally, constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, has negligible computational cost and preserves the accuracy of the time-integration scheme. The versatility of our method allows to study a plethora of articulated systems within a unified framework. We showcase its robustness and scalability by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code, where the user can prescribe a set of constraints through a single input file to study a wide spectrum of applications involving suspensions of articulated bodies. •A new method for simulating suspensions of articulated bodies.•Formulated as a single linear system, solved iteratively in a highly scalable fashion.•Naturally combines with fast methods for computing hydrodynamic interactions.•Effectiveness demonstrated through large simulations of bacteria.•Code freely available on GitHub to explore new systems involving articulated bodies.
AbstractList An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. In this work we consider hybrid articulated bodies, i.e. constituted of both linear chains, such as filaments, and closed-loop chains, such as membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size, therefore allowing to study large suspensions with quasilinear computational cost. Additionally, constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, has negligible computational cost and preserves the accuracy of the time-integration scheme. The versatility of our method allows to study a plethora of articulated systems within a unified framework. We showcase its robustness and scalability by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code, where the user can prescribe a set of constraints through a single input file to study a wide spectrum of applications involving suspensions of articulated bodies.
An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. In this work we consider hybrid articulated bodies, i.e. constituted of both linear chains, such as filaments, and closed-loop chains, such as membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size, therefore allowing to study large suspensions with quasilinear computational cost. Additionally, constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, has negligible computational cost and preserves the accuracy of the time-integration scheme. The versatility of our method allows to study a plethora of articulated systems within a unified framework. We showcase its robustness and scalability by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code, where the user can prescribe a set of constraints through a single input file to study a wide spectrum of applications involving suspensions of articulated bodies. •A new method for simulating suspensions of articulated bodies.•Formulated as a single linear system, solved iteratively in a highly scalable fashion.•Naturally combines with fast methods for computing hydrodynamic interactions.•Effectiveness demonstrated through large simulations of bacteria.•Code freely available on GitHub to explore new systems involving articulated bodies.
An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopic world, from bacteria to synthetic micro-swimmers, but it is also encountered when discretizing inextensible bodies, such as filaments or membranes. Simulating suspensions of such articulated bodies requires to solve the hydrodynamic interactions between large collections of objects of arbitrary shape while satisfying the multiple constraints that connect them. Two main challenges arise in this task: limiting the cost of the hydrodynamic solves, and enforcing the constraints within machine precision at each time-step. To address these challenges we propose a formalism that combines the body mobility problem in Stokes flow with a velocity formulation of the constraints, resulting in a mixed mobility-resistance problem. While resistance problems are known to scale poorly with the particle number, our preconditioned iterative solver is not sensitive to the system size. Constraint violations, e.g. due to discrete time-integration errors, are prevented by correcting the particles' positions and orientations at the end of each time-step. Our correction procedure, based on a nonlinear minimisation algorithm, is negligible in terms of computational cost and preserves the accuracy of the time-integration scheme. We showcase the robustness and scalability of our method by exploring the locomotion modes of a model microswimmer inspired by the diatom colony Bacillaria Paxillifer, and by simulating large suspensions of bacteria interacting near a no-slip boundary. Finally, we provide a Python implementation of our framework in a collaborative publicly available code.
ArticleNumber 111365
Author Delmotte, Blaise
Balboa Usabiaga, Florencio
Author_xml – sequence: 1
  givenname: Florencio
  orcidid: 0000-0003-0130-3532
  surname: Balboa Usabiaga
  fullname: Balboa Usabiaga, Florencio
  organization: BCAM - Basque Center for Applied Mathematics, Mazarredo 14, Bilbao, E48009, Basque Country, Spain
– sequence: 2
  givenname: Blaise
  orcidid: 0000-0002-9609-1175
  surname: Delmotte
  fullname: Delmotte, Blaise
  email: blaise.delmotte@ladhyx.polytechnique.fr
  organization: LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
BackLink https://hal.science/hal-03389641$$DView record in HAL
BookMark eNqNkE1r3DAQQEVJoZukP6A3QU89eDsjW7JNT0tom8BCLrkLWR9Exiu5krwh_75eXCj0EHoaEO-JmXdNrkIMlpBPCHsEFF_H_ajnPQPG9ohYC_6O7BB6qFiL4orsABhWfd_jB3Kd8wgAHW-6HXk40LCcbPJaTfRky3M01MVE85JnG7KPIdPoqErF62VSxRo6RONtpj7Qs886Lpm6Kb7kW_LeqSnbj3_mDXn68f3p7r46Pv58uDscK90AK5XpXA1ONFoIAUPLgXHNemXB9b12htXWDabjXAFrBDQdchQd1xyHQbXM1DeEbd8uYVavL2qa5Jz8SaVXiSAvLeQo1xby0kJuLVbpyyY9q794VF7eH47y8gZ13fWiwTOu7OeNnVP8tdhc5BiXFNaTJBM9Y21bI6xUu1E6xZyTdVL7osraqyTlpzd3wX_M_9n_2-bYNezZ2ySz9jZoa3yyukgT_Rv2b-02pIw
CitedBy_id crossref_primary_10_1063_5_0136833
crossref_primary_10_1016_j_jcp_2024_113081
Cites_doi 10.1103/PhysRevLett.123.178004
10.1016/j.jcp.2012.09.021
10.2140/camcos.2016.11.217
10.1017/S0022112079001051
10.1128/jb.127.3.1039-1046.1976
10.1103/PhysRevLett.121.138002
10.1016/j.jcp.2008.01.048
10.1017/S002211207100048X
10.1103/PhysRevLett.93.098103
10.1063/1.4978242
10.1063/1.1670977
10.1017/jfm.2013.402
10.1017/S0962492902000077
10.1017/jfm.2019.640
10.1080/0269249X.1992.9705214
10.1103/PhysRevFluids.3.104102
10.1017/jfm.2019.714
10.1016/S0021-9991(02)00021-9
10.1016/1047-8477(92)90063-G
10.1088/0034-4885/72/9/096601
10.1039/D0SM02184A
10.1016/j.jcp.2015.01.026
10.1017/CBO9780511624124
10.1137/16M1106778
10.1016/j.jcp.2015.11.042
10.1080/09670260701428864
10.1017/S0022112099004152
10.1063/1.4932062
10.1016/0021-9991(87)90140-9
10.1146/annurev-fluid-122109-160736
10.1140/epje/i2015-15139-7
10.1016/j.jtbi.2018.11.016
10.1063/1.4939581
10.1017/S0022112001006735
10.1103/PhysRevFluids.2.113101
10.1128/JB.182.10.2793-2801.2000
10.1038/245380a0
10.1529/biophysj.105.069401
10.1103/PhysRevE.74.021907
10.1016/j.jcp.2020.109846
10.1038/s42005-022-00820-7
10.1103/PhysRevLett.99.058102
10.1039/D1SM01594J
10.1038/338514a0
10.1016/j.jcp.2018.08.041
10.1021/acs.nanolett.5b01981
10.1122/1.551116
10.1146/annurev-fluid-120710-101156
10.1186/s40736-018-0036-9
10.1073/pnas.1405698111
10.1103/PhysRevLett.100.178103
10.1038/nature08906
10.1103/PhysRevE.94.022414
10.1017/S0022112001005912
10.1017/S0022112079002482
10.1017/S0022112003005184
10.1016/j.jcp.2016.10.026
10.1002/smll.201901197
10.1016/S0301-9322(01)00014-3
10.3897/rio.2.e7869
10.1039/D0SM00571A
10.1119/1.10903
10.1039/D1SM00554E
10.1103/PhysRevLett.101.038102
10.1063/1.2803837
10.1063/1.456430
10.1017/S0022112002001544
10.1017/jfm.2020.1048
10.1038/nature04090
10.1063/1.473067
10.1038/s41592-019-0686-2
10.1017/jfm.2012.101
10.1098/rsif.2017.0834
10.1016/j.jcp.2007.06.029
10.1063/1.464607
10.1073/pnas.2009930118
10.1016/j.jcp.2018.08.021
10.1103/PhysRevE.103.023109
10.1063/1.2778937
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright Elsevier Science Ltd. Sep 1, 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Sep 1, 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.jcp.2022.111365
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
Computer Science
EISSN 1090-2716
ExternalDocumentID oai:bird.bcamath.org:20.500.11824/1523
oai:HAL:hal-03389641v1
10_1016_j_jcp_2022_111365
S0021999122004272
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HLZ
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c402t-d8f30f64c6660b75025c29ae0f99cfd23efbd855a0246048151685c51bba72d3
IEDL.DBID .~1
ISSN 0021-9991
1090-2716
IngestDate Sun Oct 26 04:09:40 EDT 2025
Tue Oct 14 20:36:10 EDT 2025
Fri Jul 25 07:00:08 EDT 2025
Wed Oct 01 02:37:00 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Sun Apr 06 06:53:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Articulated bodies
Constraints
Active matter
Suspensions
Fluid-structure interactions
Stokes flow
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-d8f30f64c6660b75025c29ae0f99cfd23efbd855a0246048151685c51bba72d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9609-1175
0000-0003-0130-3532
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11824/1523
PQID 2692277310
PQPubID 2047462
ParticipantIDs unpaywall_primary_10_1016_j_jcp_2022_111365
hal_primary_oai_HAL_hal_03389641v1
proquest_journals_2692277310
crossref_citationtrail_10_1016_j_jcp_2022_111365
crossref_primary_10_1016_j_jcp_2022_111365
elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Blake (br0530) 1971; 46
Wang, Brady (br0260) 2016; 306
Swan, Wang (br0210) 2016; 28
Brosseau, Usabiaga, Lushi, Wu, Ristroph, Ward, Shelley, Zhang (br0550) 2021; 17
Schoeller, Townsend, Westwood, Keaveny (br0180) 2021; 424
Pozrikidis (br0190) 1992
Scagliarini, Pagonabarraga (br0820) 2022
Nielsen, Kiørboe (br0740) 2021; 118
Berke, Turner, Berg, Lauga (br0890) 2008; 101
Ross, Klingenberg (br0160) 1997; 106
Liao, Xing, Zhang, Sun (br0090) 2019; 15
Schoeller, Keaveny (br0370) 2018; 15
Lushi, Wioland, Goldstein (br0810) 2014; 111
Gordon (br0060) 2016; 2
Gauger, Stark (br0620) 2006; 74
Higdon (br0420) 1979; 94
Silmore, Strano, Swan (br0560) 2021; 17
Maeda, Imae, Shioi, Oosawa (br0850) 1976; 127
Saintillan, Shelley (br0880) 2007; 99
Schmid, Switzer, Klingenberg (br0360) 2000; 44
Featherstone (br0460) 1987; vol. 22
Liang, Gimbutas, Greengard, Huang, Jiang (br0510) 2013; 234
Guasto, Rusconi, Stocker (br0730) 2012; 44
Saintillan, Shelley (br0790) 2008; 100
Lindström, Uesaka (br0350) 2007; 19
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (br0650) 2020; 17
Balboa Usabiaga, Kallemov, Delmotte, Bhalla, Griffith, Donev (br0220) 2016; 11
Ichiki (br0640) 2002; 452
Turner, Ryu, Berg (br0750) 2000; 182
Lauga, DiLuzio, Whitesides, Stone (br0860) 2006; 90
Butler, Shaqfeh (br0590) 2002; 468
Trachtenberg, Hammel (br0030) 1992; 109
Doi, Chen (br0410) 1989; 90
McMullen, Holmes-Cerfon, Sciortino, Grosberg, Brujic (br0150) 2018; 121
Kim, Karrila (br0430) 1991
Guazzelli, Hinch (br0600) 2011; 43
Walker, Wheeler, Ishimoto, Gaffney (br0400) 2019; 462
Greengard, Rokhlin (br0230) 1987; 73
Müller (br0040) 1782
Zhang, Chinappi, Biferale (br0760) 2021; 103
Lushi (br0800) 2016; 94
Shum, Yeomans (br0390) 2017; 2
Lomholt, Maxey (br0320) 2003; 184
Westwood, Delmotte, Keaveny (br0450) Jun. 2021
Higdon (br0700) 1979; 90
Smith (br0770) 2009; 465
Lauga, Powers (br0720) 2009; 72
Yan, Blackwell (br0250) 2020
Spagnolie, Lauga (br0900) 2012; 700
Bonnard, Chyba, Rouot, Takagi (br0120) 2018; 10
Dombrowski, Cisneros, Chatkaew, Goldstein, Kessler (br0870) 2004; 93
Marchetti, Raspa, Lindner, Du Roure, Bergougnoux, Guazzelli, Duprat (br0570) 2018; 3
Bao, Rachh, Keaveny, Greengard, Donev (br0470) 2018; 374
Yan, Shelley (br0520) 2018; 375
Tornberg, Greengard (br0240) 2008; 227
Becker, Koehler, Stone (br0110) 2003; 490
Shum, Gaffney, Smith (br0380) 2010; 466
Childs, Brugger, Whitlock, Meredith, Ahern, Pugmire, Biagas, Miller, Harrison, Weber, Krishnan, Fogal, Sanderson, Garth, Bethel, Camp, Rübel, Durant, Favre, Navrátil (br0840) 2012
Swan, Brady (br0500) 2007; 19
Qi, Westphal, Gompper, Winkler (br0830) 2022; 5
Mousavi, Gompper, Winkler (br0910) 2020; 16
Goldstein, Poole, Safko (br0330) 2001
Delong, Balboa Usabiaga, Donev (br0440) 2015; 143
Kapinga, Gordon (br0050) 1992; 7
Berg, Anderson (br0010) 1973; 245
Dreyfus, Baudry, Roper, Fermigier, Stone, Bibette (br0070) 2005; 437
Rotne, Prager (br0480) 1969; 50
Delmotte, Climent, Plouraboué (br0170) 2015; 286
Lighthill (br0710) 1975
Morse (br0920) 2004; 128
Yamamoto, Matsuoka (br0340) 1993; 98
Żuk, Słowicka, Ekiel-Jeżewska, Stone (br0630) 2021; 914
Sierou, Brady (br0280) 2001; 448
Nazockdast, Rahimian, Zorin, Shelley (br0610) 2017; 329
Bettiol, Bonnard, Rouot (br0130) 2018; 56
Montenegro-Johnson, Michelin, Lauga (br0200) 2015; 38
Sacanna, Irvine, Chaikin, Pine (br0140) 2010; 464
Bringley, Peskin (br0680) 2008; 227
Maxey, Patel (br0310) 2001; 27
Herzhaft, Guazzelli (br0580) 1999; 384
br0690
Brosseau, Balboa Usabiaga, Lushi, Wu, Ristroph, Zhang, Ward, Shelley (br0540) 2019; 123
Jahn, Schmid (br0670) 2007; 42
Voglis, Lagaris (br0660) 2004
Block, Blair, Berg (br0020) 1989; 338
Purcell (br0100) 1977; 45
Wajnryb, Mizerski, Zuk, Szymczak (br0490) 2013; 731
Ishimoto (br0780) 2019; 880
Jang, Gutman, Stucki, Seitz, Wendel-García, Newton, Pokki, Ergeneman, Pané, Or (br0080) 2015; 15
Peskin (br0300) 2002; 11
Fiore, Swan (br0290) 2019; 878
Fiore, Usabiaga, Donev, Swan (br0270) 2017; 146
Doi (10.1016/j.jcp.2022.111365_br0410) 1989; 90
Ross (10.1016/j.jcp.2022.111365_br0160) 1997; 106
Sierou (10.1016/j.jcp.2022.111365_br0280) 2001; 448
Lauga (10.1016/j.jcp.2022.111365_br0860) 2006; 90
Brosseau (10.1016/j.jcp.2022.111365_br0540) 2019; 123
Lushi (10.1016/j.jcp.2022.111365_br0800) 2016; 94
Maeda (10.1016/j.jcp.2022.111365_br0850) 1976; 127
Yan (10.1016/j.jcp.2022.111365_br0520) 2018; 375
Montenegro-Johnson (10.1016/j.jcp.2022.111365_br0200) 2015; 38
Balboa Usabiaga (10.1016/j.jcp.2022.111365_br0220) 2016; 11
Maxey (10.1016/j.jcp.2022.111365_br0310) 2001; 27
Shum (10.1016/j.jcp.2022.111365_br0380) 2010; 466
Dombrowski (10.1016/j.jcp.2022.111365_br0870) 2004; 93
Pozrikidis (10.1016/j.jcp.2022.111365_br0190) 1992
Fiore (10.1016/j.jcp.2022.111365_br0270) 2017; 146
Blake (10.1016/j.jcp.2022.111365_br0530) 1971; 46
Lighthill (10.1016/j.jcp.2022.111365_br0710) 1975
Voglis (10.1016/j.jcp.2022.111365_br0660) 2004
Jang (10.1016/j.jcp.2022.111365_br0080) 2015; 15
Becker (10.1016/j.jcp.2022.111365_br0110) 2003; 490
Zhang (10.1016/j.jcp.2022.111365_br0760) 2021; 103
Walker (10.1016/j.jcp.2022.111365_br0400) 2019; 462
Lauga (10.1016/j.jcp.2022.111365_br0720) 2009; 72
Peskin (10.1016/j.jcp.2022.111365_br0300) 2002; 11
Bonnard (10.1016/j.jcp.2022.111365_br0120) 2018; 10
Bringley (10.1016/j.jcp.2022.111365_br0680) 2008; 227
Müller (10.1016/j.jcp.2022.111365_br0040) 1782
Guasto (10.1016/j.jcp.2022.111365_br0730) 2012; 44
Delong (10.1016/j.jcp.2022.111365_br0440) 2015; 143
Gauger (10.1016/j.jcp.2022.111365_br0620) 2006; 74
Ichiki (10.1016/j.jcp.2022.111365_br0640) 2002; 452
Smith (10.1016/j.jcp.2022.111365_br0770) 2009; 465
Delmotte (10.1016/j.jcp.2022.111365_br0170) 2015; 286
Schoeller (10.1016/j.jcp.2022.111365_br0370) 2018; 15
Westwood (10.1016/j.jcp.2022.111365_br0450)
Gordon (10.1016/j.jcp.2022.111365_br0060) 2016; 2
Liao (10.1016/j.jcp.2022.111365_br0090) 2019; 15
Block (10.1016/j.jcp.2022.111365_br0020) 1989; 338
Wajnryb (10.1016/j.jcp.2022.111365_br0490) 2013; 731
Bao (10.1016/j.jcp.2022.111365_br0470) 2018; 374
Featherstone (10.1016/j.jcp.2022.111365_br0460) 1987; vol. 22
Virtanen (10.1016/j.jcp.2022.111365_br0650) 2020; 17
Turner (10.1016/j.jcp.2022.111365_br0750) 2000; 182
Bettiol (10.1016/j.jcp.2022.111365_br0130) 2018; 56
Greengard (10.1016/j.jcp.2022.111365_br0230) 1987; 73
Spagnolie (10.1016/j.jcp.2022.111365_br0900) 2012; 700
Kapinga (10.1016/j.jcp.2022.111365_br0050) 1992; 7
Schoeller (10.1016/j.jcp.2022.111365_br0180) 2021; 424
Lindström (10.1016/j.jcp.2022.111365_br0350) 2007; 19
Purcell (10.1016/j.jcp.2022.111365_br0100) 1977; 45
Jahn (10.1016/j.jcp.2022.111365_br0670) 2007; 42
Yamamoto (10.1016/j.jcp.2022.111365_br0340) 1993; 98
Berke (10.1016/j.jcp.2022.111365_br0890) 2008; 101
Brosseau (10.1016/j.jcp.2022.111365_br0550) 2021; 17
Trachtenberg (10.1016/j.jcp.2022.111365_br0030) 1992; 109
Wang (10.1016/j.jcp.2022.111365_br0260) 2016; 306
Higdon (10.1016/j.jcp.2022.111365_br0700) 1979; 90
McMullen (10.1016/j.jcp.2022.111365_br0150) 2018; 121
Qi (10.1016/j.jcp.2022.111365_br0830) 2022; 5
Guazzelli (10.1016/j.jcp.2022.111365_br0600) 2011; 43
Saintillan (10.1016/j.jcp.2022.111365_br0790) 2008; 100
Sacanna (10.1016/j.jcp.2022.111365_br0140) 2010; 464
Herzhaft (10.1016/j.jcp.2022.111365_br0580) 1999; 384
Dreyfus (10.1016/j.jcp.2022.111365_br0070) 2005; 437
Goldstein (10.1016/j.jcp.2022.111365_br0330) 2001
Silmore (10.1016/j.jcp.2022.111365_br0560) 2021; 17
Ishimoto (10.1016/j.jcp.2022.111365_br0780) 2019; 880
Rotne (10.1016/j.jcp.2022.111365_br0480) 1969; 50
Nielsen (10.1016/j.jcp.2022.111365_br0740) 2021; 118
Swan (10.1016/j.jcp.2022.111365_br0500) 2007; 19
Lomholt (10.1016/j.jcp.2022.111365_br0320) 2003; 184
Childs (10.1016/j.jcp.2022.111365_br0840) 2012
Morse (10.1016/j.jcp.2022.111365_br0920) 2004; 128
Kim (10.1016/j.jcp.2022.111365_br0430) 1991
Butler (10.1016/j.jcp.2022.111365_br0590) 2002; 468
Shum (10.1016/j.jcp.2022.111365_br0390) 2017; 2
Swan (10.1016/j.jcp.2022.111365_br0210) 2016; 28
Higdon (10.1016/j.jcp.2022.111365_br0420) 1979; 94
Nazockdast (10.1016/j.jcp.2022.111365_br0610) 2017; 329
Mousavi (10.1016/j.jcp.2022.111365_br0910) 2020; 16
Liang (10.1016/j.jcp.2022.111365_br0510) 2013; 234
Schmid (10.1016/j.jcp.2022.111365_br0360) 2000; 44
Lushi (10.1016/j.jcp.2022.111365_br0810) 2014; 111
Fiore (10.1016/j.jcp.2022.111365_br0290) 2019; 878
Saintillan (10.1016/j.jcp.2022.111365_br0880) 2007; 99
Scagliarini (10.1016/j.jcp.2022.111365_br0820) 2022
Marchetti (10.1016/j.jcp.2022.111365_br0570) 2018; 3
Żuk (10.1016/j.jcp.2022.111365_br0630) 2021; 914
Berg (10.1016/j.jcp.2022.111365_br0010) 1973; 245
Tornberg (10.1016/j.jcp.2022.111365_br0240) 2008; 227
Yan (10.1016/j.jcp.2022.111365_br0250)
References_xml – volume: 182
  start-page: 2793
  year: 2000
  end-page: 2801
  ident: br0750
  article-title: Real-time imaging of fluorescent flagellar filaments
  publication-title: J. Bacteriol.
– volume: 15
  year: 2019
  ident: br0090
  article-title: Magnetically driven undulatory microswimmers integrating multiple rigid segments
  publication-title: Small
– volume: 10
  start-page: 1
  year: 2018
  end-page: 27
  ident: br0120
  article-title: Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot
  publication-title: Pac. J. Math. Ind.
– volume: 90
  start-page: 5271
  year: 1989
  end-page: 5279
  ident: br0410
  article-title: Simulation of aggregating colloids in shear flow
  publication-title: J. Chem. Phys.
– volume: 99
  year: 2007
  ident: br0880
  article-title: Orientational order and instabilities in suspensions of self-locomoting rods
  publication-title: Phys. Rev. Lett.
– volume: 466
  start-page: 1725
  year: 2010
  end-page: 1748
  ident: br0380
  article-title: Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– year: 1991
  ident: br0430
  article-title: Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann Series in Chemical Engineering
– volume: 44
  start-page: 373
  year: 2012
  end-page: 400
  ident: br0730
  article-title: Fluid mechanics of planktonic microorganisms
  publication-title: Annu. Rev. Fluid Mech.
– volume: 127
  start-page: 1039
  year: 1976
  end-page: 1046
  ident: br0850
  article-title: Effect of temperature on motility and chemotaxis of escherichia coli
  publication-title: J. Bacteriol.
– volume: 45
  start-page: 3
  year: 1977
  end-page: 11
  ident: br0100
  article-title: Life at low Reynolds number
  publication-title: Am. J. Phys.
– volume: 227
  start-page: 1613
  year: 2008
  end-page: 1619
  ident: br0240
  article-title: A fast multipole method for the three-dimensional Stokes equations
  publication-title: J. Comput. Phys.
– volume: 73
  start-page: 325
  year: 1987
  end-page: 348
  ident: br0230
  article-title: A fast algorithm for particle simulations
  publication-title: J. Comput. Phys.
– volume: 103
  year: 2021
  ident: br0760
  article-title: Base flow decomposition for complex moving objects in linear hydrodynamics: application to helix-shaped flagellated microswimmers
  publication-title: Phys. Rev. E
– volume: 437
  start-page: 862
  year: 2005
  end-page: 865
  ident: br0070
  article-title: Microscopic artificial swimmers
  publication-title: Nature
– volume: 490
  start-page: 15
  year: 2003
  ident: br0110
  article-title: On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer
  publication-title: J. Fluid Mech.
– volume: 286
  start-page: 14
  year: 2015
  end-page: 37
  ident: br0170
  article-title: A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number
  publication-title: J. Comput. Phys.
– volume: 375
  start-page: 263
  year: 2018
  end-page: 270
  ident: br0520
  article-title: Universal image system for non-periodic and periodic Stokes flows above a no-slip wall
  publication-title: J. Comput. Phys.
– volume: 146
  year: 2017
  ident: br0270
  article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations
  publication-title: J. Chem. Phys.
– volume: 465
  start-page: 3605
  year: 2009
  end-page: 3626
  ident: br0770
  article-title: A boundary element regularized stokeslet method applied to cilia- and flagella-driven flow
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– ident: br0690
– volume: 7
  start-page: 215
  year: 1992
  end-page: 220
  ident: br0050
  article-title: Cell attachment in the motile colonial diatom bacillaria paxillifer
  publication-title: Diatom Res.
– volume: 384
  start-page: 133
  year: 1999
  end-page: 158
  ident: br0580
  article-title: Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres
  publication-title: J. Fluid Mech.
– volume: 106
  start-page: 2949
  year: 1997
  end-page: 2960
  ident: br0160
  article-title: Dynamic simulation of flexible fibers composed of linked rigid bodies
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 6597
  year: 2021
  end-page: 6602
  ident: br0550
  article-title: Metallic microswimmers driven up the wall by gravity
  publication-title: Soft Matter
– volume: 3
  year: 2018
  ident: br0570
  article-title: Deformation of a flexible fiber settling in a quiescent viscous fluid
  publication-title: Phys. Rev. Fluids
– start-page: 357
  year: 2012
  end-page: 372
  ident: br0840
  article-title: Visit: an end-user tool for visualizing and analyzing very large data
  publication-title: High Performance Visualization–Enabling Extreme-Scale Scientific Insight
– volume: 72
  year: 2009
  ident: br0720
  article-title: The hydrodynamics of swimming microorganisms
  publication-title: Rep. Prog. Phys.
– volume: 11
  start-page: 217
  year: 2016
  end-page: 296
  ident: br0220
  article-title: Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach
  publication-title: Commun. Appl. Math. Comput. Sci.
– volume: 329
  start-page: 173
  year: 2017
  end-page: 209
  ident: br0610
  article-title: A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
  publication-title: J. Comput. Phys.
– volume: 462
  start-page: 311
  year: 2019
  end-page: 320
  ident: br0400
  article-title: Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study
  publication-title: J. Theor. Biol.
– volume: 121
  year: 2018
  ident: br0150
  article-title: Freely jointed polymers made of droplets
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 113306
  year: 2007
  ident: br0500
  article-title: Simulation of hydrodynamically interacting particles near a no-slip boundary
  publication-title: Phys. Fluids
– volume: 94
  year: 2016
  ident: br0800
  article-title: Stability and dynamics of anisotropically tumbling chemotactic swimmers
  publication-title: Phys. Rev. E
– volume: 123
  year: 2019
  ident: br0540
  article-title: Relating rheotaxis and hydrodynamic actuation using asymmetric gold-platinum phoretic rods
  publication-title: Phys. Rev. Lett.
– volume: 15
  year: 2018
  ident: br0370
  article-title: From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions
  publication-title: J. R. Soc. Interface
– volume: 914
  year: 2021
  ident: br0630
  article-title: Universal features of the shape of elastic fibres in shear flow
  publication-title: J. Fluid Mech.
– year: 2020
  ident: br0250
  article-title: Kernel aggregated fast multipole method: efficient summation of Laplace and Stokes kernel functions
– volume: 42
  start-page: 295
  year: 2007
  end-page: 312
  ident: br0670
  article-title: Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species
  publication-title: Eur. J. Phycol.
– volume: 93
  year: 2004
  ident: br0870
  article-title: Self-concentration and large-scale coherence in bacterial dynamics
  publication-title: Phys. Rev. Lett.
– volume: 374
  start-page: 1094
  year: 2018
  end-page: 1119
  ident: br0470
  article-title: A fluctuating boundary integral method for brownian suspensions
  publication-title: J. Comput. Phys.
– year: 2022
  ident: br0820
  article-title: Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers
  publication-title: Soft Matter
– volume: 464
  start-page: 575
  year: 2010
  end-page: 578
  ident: br0140
  article-title: Lock and key colloids
  publication-title: Nature
– volume: 50
  start-page: 4831
  year: 1969
  ident: br0480
  article-title: Variational treatment of hydrodynamic interaction in polymers
  publication-title: J. Chem. Phys.
– year: 2001
  ident: br0330
  article-title: Classical Mechanics
– volume: 468
  start-page: 205
  year: 2002
  end-page: 237
  ident: br0590
  article-title: Dynamic simulations of the inhomogeneous sedimentation of rigid fibres
  publication-title: J. Fluid Mech.
– volume: 100
  year: 2008
  ident: br0790
  article-title: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations
  publication-title: Phys. Rev. Lett.
– volume: 700
  start-page: 105
  year: 2012
  end-page: 147
  ident: br0900
  article-title: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations
  publication-title: J. Fluid Mech.
– year: Jun. 2021
  ident: br0450
  article-title: A generalised drift-correcting time integration scheme for Brownian suspensions of rigid particles with arbitrary shape
– volume: 245
  start-page: 380
  year: 1973
  end-page: 382
  ident: br0010
  article-title: Bacteria swim by rotating their flagellar filaments
  publication-title: Nature
– volume: 74
  year: 2006
  ident: br0620
  article-title: Numerical study of a microscopic artificial swimmer
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: br0300
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– start-page: 7
  year: 2004
  ident: br0660
  article-title: A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization
  publication-title: WSEAS International Conference on Applied Mathematics
– volume: vol. 22
  year: 1987
  ident: br0460
  article-title: Robot Dynamics Algorithms
  publication-title: Robotics: Vision, Manipulation and Sensors
– volume: 16
  start-page: 4866
  year: 2020
  end-page: 4875
  ident: br0910
  article-title: Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study
  publication-title: Soft Matter
– volume: 94
  start-page: 331
  year: 1979
  end-page: 351
  ident: br0420
  article-title: The hydrodynamics of flagellar propulsion: helical waves
  publication-title: J. Fluid Mech.
– year: 1992
  ident: br0190
  article-title: Boundary Integral and Singularity Methods for Linearized Viscous Flow
  publication-title: Cambridge Texts in Applied Mathematics
– volume: 143
  year: 2015
  ident: br0440
  article-title: Brownian dynamics of confined rigid bodies
  publication-title: J. Chem. Phys.
– year: 1782
  ident: br0040
  article-title: Kleine Schriften aus der Naturhistorie, vol. 1
– volume: 234
  start-page: 133
  year: 2013
  end-page: 139
  ident: br0510
  article-title: A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications
  publication-title: J. Comput. Phys.
– volume: 880
  start-page: 620
  year: 2019
  end-page: 652
  ident: br0780
  article-title: Bacterial spinning top
  publication-title: J. Fluid Mech.
– volume: 227
  start-page: 5397
  year: 2008
  ident: br0680
  article-title: Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain
  publication-title: J. Comput. Phys.
– volume: 28
  year: 2016
  ident: br0210
  article-title: Rapid calculation of hydrodynamic and transport properties in concentrated solutions of colloidal particles and macromolecules
  publication-title: Phys. Fluids
– volume: 46
  start-page: 199
  year: 1971
  end-page: 208
  ident: br0530
  article-title: A spherical envelope approach to ciliary propulsion
  publication-title: J. Fluid Mech.
– volume: 111
  start-page: 9733
  year: 2014
  end-page: 9738
  ident: br0810
  article-title: Fluid flows created by swimming bacteria drive self-organization in confined suspensions
  publication-title: Proc. Natl. Acad. Sci.
– volume: 43
  start-page: 97
  year: 2011
  end-page: 116
  ident: br0600
  article-title: Fluctuations and instability in sedimentation
  publication-title: Annu. Rev. Fluid Mech.
– volume: 98
  start-page: 644
  year: 1993
  end-page: 650
  ident: br0340
  article-title: A method for dynamic simulation of rigid and flexible fibers in a flow field
  publication-title: J. Chem. Phys.
– volume: 38
  start-page: 139
  year: 2015
  ident: br0200
  article-title: A regularised singularity approach to phoretic problems
  publication-title: Eur. Phys. J. E
– volume: 56
  start-page: 1794
  year: 2018
  end-page: 1822
  ident: br0130
  article-title: Optimal strokes at low Reynolds number: a geometric and numerical study of copepod and purcell swimmers
  publication-title: SIAM J. Control Optim.
– volume: 2
  year: 2017
  ident: br0390
  article-title: Entrainment and scattering in microswimmer-colloid interactions
  publication-title: Phys. Rev. Fluids
– year: 1975
  ident: br0710
  article-title: Mathematical Biofluiddynamics
– volume: 731
  year: 2013
  ident: br0490
  article-title: Generalization of the Rotne-Prager-Yamakawa mobility and shear disturbance tensors
  publication-title: J. Fluid Mech.
– volume: 101
  year: 2008
  ident: br0890
  article-title: Hydrodynamic attraction of swimming microorganisms by surfaces
  publication-title: Phys. Rev. Lett.
– volume: 338
  start-page: 514
  year: 1989
  end-page: 518
  ident: br0020
  article-title: Compliance of bacterial flagella measured with optical tweezers
  publication-title: Nature
– volume: 2
  year: 2016
  ident: br0060
  article-title: Partial synchronization of the colonial diatom Bacillaria “paradoxa”
  publication-title: Res. Ideas Outcomes
– volume: 109
  start-page: 18
  year: 1992
  end-page: 27
  ident: br0030
  article-title: The rigidity of bacterial flagellar filaments and its relation to filament polymorphism
  publication-title: J. Struct. Biol.
– volume: 128
  start-page: 110
  year: 2004
  ident: br0920
  article-title: Theory of constrained brownian motion
  publication-title: Adv. Chem. Phys.
– volume: 19
  year: 2007
  ident: br0350
  article-title: Simulation of the motion of flexible fibers in viscous fluid flow
  publication-title: Phys. Fluids
– volume: 17
  start-page: 4707
  year: 2021
  end-page: 4718
  ident: br0560
  article-title: Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow
  publication-title: Soft Matter
– volume: 878
  start-page: 544
  year: 2019
  end-page: 597
  ident: br0290
  article-title: Fast Stokesian dynamics
  publication-title: J. Fluid Mech.
– volume: 27
  start-page: 1603
  year: 2001
  end-page: 1626
  ident: br0310
  article-title: Localized force representations for particles sedimenting in Stokes flow
  publication-title: Int. J. Multiph. Flow
– volume: 184
  start-page: 381
  year: 2003
  end-page: 405
  ident: br0320
  article-title: Force-coupling method for particulate two-phase flow: Stokes flow
  publication-title: J. Comput. Phys.
– volume: 15
  start-page: 4829
  year: 2015
  end-page: 4833
  ident: br0080
  article-title: Undulatory locomotion of magnetic multilink nanoswimmers
  publication-title: Nano Lett.
– volume: 306
  start-page: 443
  year: 2016
  end-page: 477
  ident: br0260
  article-title: Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions
  publication-title: J. Comput. Phys.
– volume: 118
  year: 2021
  ident: br0740
  article-title: Foraging trade-offs, flagellar arrangements, and flow architecture of planktonic protists
  publication-title: Proc. Natl. Acad. Sci.
– volume: 452
  start-page: 231
  year: 2002
  ident: br0640
  article-title: Improvement of the stokesian dynamics method for systems with a finite number of particles
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: br0650
  article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 44
  start-page: 781
  year: 2000
  end-page: 809
  ident: br0360
  article-title: Simulations of fiber flocculation: effects of fiber properties and interfiber friction
  publication-title: J. Rheol.
– volume: 424
  year: 2021
  ident: br0180
  article-title: Methods for suspensions of passive and active filaments
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 1
  year: 2022
  end-page: 12
  ident: br0830
  article-title: Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion
  publication-title: Commun. Phys.
– volume: 90
  start-page: 685
  year: 1979
  ident: br0700
  article-title: A hydrodynamic analysis of flagellar propulsion
  publication-title: J. Fluid Mech.
– volume: 90
  start-page: 400
  year: 2006
  end-page: 412
  ident: br0860
  article-title: Swimming in circles: motion of bacteria near solid boundaries
  publication-title: Biophys. J.
– volume: 448
  start-page: 115
  year: 2001
  end-page: 146
  ident: br0280
  article-title: Accelerated stokesian dynamics simulations
  publication-title: J. Fluid Mech.
– volume: 123
  year: 2019
  ident: 10.1016/j.jcp.2022.111365_br0540
  article-title: Relating rheotaxis and hydrodynamic actuation using asymmetric gold-platinum phoretic rods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.178004
– year: 1782
  ident: 10.1016/j.jcp.2022.111365_br0040
– volume: 234
  start-page: 133
  year: 2013
  ident: 10.1016/j.jcp.2022.111365_br0510
  article-title: A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.09.021
– volume: 11
  start-page: 217
  issue: 2
  year: 2016
  ident: 10.1016/j.jcp.2022.111365_br0220
  article-title: Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2016.11.217
– volume: 94
  start-page: 331
  issue: 2
  year: 1979
  ident: 10.1016/j.jcp.2022.111365_br0420
  article-title: The hydrodynamics of flagellar propulsion: helical waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112079001051
– volume: 127
  start-page: 1039
  issue: 3
  year: 1976
  ident: 10.1016/j.jcp.2022.111365_br0850
  article-title: Effect of temperature on motility and chemotaxis of escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.127.3.1039-1046.1976
– volume: 121
  issue: 13
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0150
  article-title: Freely jointed polymers made of droplets
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.138002
– volume: 227
  start-page: 5397
  year: 2008
  ident: 10.1016/j.jcp.2022.111365_br0680
  article-title: Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.048
– volume: 46
  start-page: 199
  issue: 01
  year: 1971
  ident: 10.1016/j.jcp.2022.111365_br0530
  article-title: A spherical envelope approach to ciliary propulsion
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207100048X
– volume: 93
  year: 2004
  ident: 10.1016/j.jcp.2022.111365_br0870
  article-title: Self-concentration and large-scale coherence in bacterial dynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.098103
– volume: 128
  start-page: 110
  issue: 65–189
  year: 2004
  ident: 10.1016/j.jcp.2022.111365_br0920
  article-title: Theory of constrained brownian motion
  publication-title: Adv. Chem. Phys.
– volume: 146
  issue: 12
  year: 2017
  ident: 10.1016/j.jcp.2022.111365_br0270
  article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4978242
– volume: 50
  start-page: 4831
  year: 1969
  ident: 10.1016/j.jcp.2022.111365_br0480
  article-title: Variational treatment of hydrodynamic interaction in polymers
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1670977
– volume: 731
  year: 2013
  ident: 10.1016/j.jcp.2022.111365_br0490
  article-title: Generalization of the Rotne-Prager-Yamakawa mobility and shear disturbance tensors
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.402
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.jcp.2022.111365_br0300
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 878
  start-page: 544
  year: 2019
  ident: 10.1016/j.jcp.2022.111365_br0290
  article-title: Fast Stokesian dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.640
– start-page: 7
  year: 2004
  ident: 10.1016/j.jcp.2022.111365_br0660
  article-title: A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization
– volume: 7
  start-page: 215
  issue: 2
  year: 1992
  ident: 10.1016/j.jcp.2022.111365_br0050
  article-title: Cell attachment in the motile colonial diatom bacillaria paxillifer
  publication-title: Diatom Res.
  doi: 10.1080/0269249X.1992.9705214
– volume: 3
  issue: 10
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0570
  article-title: Deformation of a flexible fiber settling in a quiescent viscous fluid
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.104102
– volume: 880
  start-page: 620
  year: 2019
  ident: 10.1016/j.jcp.2022.111365_br0780
  article-title: Bacterial spinning top
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.714
– volume: 184
  start-page: 381
  issue: 2
  year: 2003
  ident: 10.1016/j.jcp.2022.111365_br0320
  article-title: Force-coupling method for particulate two-phase flow: Stokes flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(02)00021-9
– year: 1975
  ident: 10.1016/j.jcp.2022.111365_br0710
– volume: 109
  start-page: 18
  issue: 1
  year: 1992
  ident: 10.1016/j.jcp.2022.111365_br0030
  article-title: The rigidity of bacterial flagellar filaments and its relation to filament polymorphism
  publication-title: J. Struct. Biol.
  doi: 10.1016/1047-8477(92)90063-G
– volume: 72
  issue: 9
  year: 2009
  ident: 10.1016/j.jcp.2022.111365_br0720
  article-title: The hydrodynamics of swimming microorganisms
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/9/096601
– volume: 17
  start-page: 4707
  issue: 18
  year: 2021
  ident: 10.1016/j.jcp.2022.111365_br0560
  article-title: Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow
  publication-title: Soft Matter
  doi: 10.1039/D0SM02184A
– volume: 286
  start-page: 14
  year: 2015
  ident: 10.1016/j.jcp.2022.111365_br0170
  article-title: A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.01.026
– year: 1992
  ident: 10.1016/j.jcp.2022.111365_br0190
  article-title: Boundary Integral and Singularity Methods for Linearized Viscous Flow
  doi: 10.1017/CBO9780511624124
– volume: 56
  start-page: 1794
  issue: 3
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0130
  article-title: Optimal strokes at low Reynolds number: a geometric and numerical study of copepod and purcell swimmers
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/16M1106778
– volume: 306
  start-page: 443
  year: 2016
  ident: 10.1016/j.jcp.2022.111365_br0260
  article-title: Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.042
– volume: 42
  start-page: 295
  issue: 3
  year: 2007
  ident: 10.1016/j.jcp.2022.111365_br0670
  article-title: Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species
  publication-title: Eur. J. Phycol.
  doi: 10.1080/09670260701428864
– volume: 384
  start-page: 133
  year: 1999
  ident: 10.1016/j.jcp.2022.111365_br0580
  article-title: Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099004152
– volume: 143
  issue: 14
  year: 2015
  ident: 10.1016/j.jcp.2022.111365_br0440
  article-title: Brownian dynamics of confined rigid bodies
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4932062
– volume: 73
  start-page: 325
  issue: 2
  year: 1987
  ident: 10.1016/j.jcp.2022.111365_br0230
  article-title: A fast algorithm for particle simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90140-9
– volume: 43
  start-page: 97
  year: 2011
  ident: 10.1016/j.jcp.2022.111365_br0600
  article-title: Fluctuations and instability in sedimentation
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122109-160736
– volume: 465
  start-page: 3605
  issue: 2112
  year: 2009
  ident: 10.1016/j.jcp.2022.111365_br0770
  article-title: A boundary element regularized stokeslet method applied to cilia- and flagella-driven flow
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 38
  start-page: 139
  issue: 12
  year: 2015
  ident: 10.1016/j.jcp.2022.111365_br0200
  article-title: A regularised singularity approach to phoretic problems
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2015-15139-7
– volume: 462
  start-page: 311
  year: 2019
  ident: 10.1016/j.jcp.2022.111365_br0400
  article-title: Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.11.016
– volume: 28
  issue: 1
  year: 2016
  ident: 10.1016/j.jcp.2022.111365_br0210
  article-title: Rapid calculation of hydrodynamic and transport properties in concentrated solutions of colloidal particles and macromolecules
  publication-title: Phys. Fluids
  doi: 10.1063/1.4939581
– volume: 452
  start-page: 231
  year: 2002
  ident: 10.1016/j.jcp.2022.111365_br0640
  article-title: Improvement of the stokesian dynamics method for systems with a finite number of particles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001006735
– volume: 2
  issue: 11
  year: 2017
  ident: 10.1016/j.jcp.2022.111365_br0390
  article-title: Entrainment and scattering in microswimmer-colloid interactions
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.113101
– volume: 182
  start-page: 2793
  issue: 10
  year: 2000
  ident: 10.1016/j.jcp.2022.111365_br0750
  article-title: Real-time imaging of fluorescent flagellar filaments
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.10.2793-2801.2000
– volume: 245
  start-page: 380
  issue: 5425
  year: 1973
  ident: 10.1016/j.jcp.2022.111365_br0010
  article-title: Bacteria swim by rotating their flagellar filaments
  publication-title: Nature
  doi: 10.1038/245380a0
– volume: 90
  start-page: 400
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2022.111365_br0860
  article-title: Swimming in circles: motion of bacteria near solid boundaries
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.069401
– volume: 74
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2022.111365_br0620
  article-title: Numerical study of a microscopic artificial swimmer
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.021907
– volume: 424
  year: 2021
  ident: 10.1016/j.jcp.2022.111365_br0180
  article-title: Methods for suspensions of passive and active filaments
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109846
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.jcp.2022.111365_br0830
  article-title: Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-00820-7
– start-page: 357
  year: 2012
  ident: 10.1016/j.jcp.2022.111365_br0840
  article-title: Visit: an end-user tool for visualizing and analyzing very large data
– year: 2001
  ident: 10.1016/j.jcp.2022.111365_br0330
– volume: 99
  year: 2007
  ident: 10.1016/j.jcp.2022.111365_br0880
  article-title: Orientational order and instabilities in suspensions of self-locomoting rods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.058102
– year: 2022
  ident: 10.1016/j.jcp.2022.111365_br0820
  article-title: Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers
  publication-title: Soft Matter
  doi: 10.1039/D1SM01594J
– volume: 338
  start-page: 514
  issue: 6215
  year: 1989
  ident: 10.1016/j.jcp.2022.111365_br0020
  article-title: Compliance of bacterial flagella measured with optical tweezers
  publication-title: Nature
  doi: 10.1038/338514a0
– volume: 375
  start-page: 263
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0520
  article-title: Universal image system for non-periodic and periodic Stokes flows above a no-slip wall
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.041
– volume: 15
  start-page: 4829
  issue: 7
  year: 2015
  ident: 10.1016/j.jcp.2022.111365_br0080
  article-title: Undulatory locomotion of magnetic multilink nanoswimmers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01981
– volume: 44
  start-page: 781
  issue: 4
  year: 2000
  ident: 10.1016/j.jcp.2022.111365_br0360
  article-title: Simulations of fiber flocculation: effects of fiber properties and interfiber friction
  publication-title: J. Rheol.
  doi: 10.1122/1.551116
– volume: vol. 22
  year: 1987
  ident: 10.1016/j.jcp.2022.111365_br0460
  article-title: Robot Dynamics Algorithms
– volume: 44
  start-page: 373
  issue: 1
  year: 2012
  ident: 10.1016/j.jcp.2022.111365_br0730
  article-title: Fluid mechanics of planktonic microorganisms
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101156
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0120
  article-title: Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot
  publication-title: Pac. J. Math. Ind.
  doi: 10.1186/s40736-018-0036-9
– volume: 466
  start-page: 1725
  issue: 2118
  year: 2010
  ident: 10.1016/j.jcp.2022.111365_br0380
  article-title: Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
– volume: 111
  start-page: 9733
  issue: 27
  year: 2014
  ident: 10.1016/j.jcp.2022.111365_br0810
  article-title: Fluid flows created by swimming bacteria drive self-organization in confined suspensions
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1405698111
– volume: 100
  year: 2008
  ident: 10.1016/j.jcp.2022.111365_br0790
  article-title: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.178103
– volume: 464
  start-page: 575
  issue: 7288
  year: 2010
  ident: 10.1016/j.jcp.2022.111365_br0140
  article-title: Lock and key colloids
  publication-title: Nature
  doi: 10.1038/nature08906
– ident: 10.1016/j.jcp.2022.111365_br0450
– volume: 94
  year: 2016
  ident: 10.1016/j.jcp.2022.111365_br0800
  article-title: Stability and dynamics of anisotropically tumbling chemotactic swimmers
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.022414
– volume: 448
  start-page: 115
  year: 2001
  ident: 10.1016/j.jcp.2022.111365_br0280
  article-title: Accelerated stokesian dynamics simulations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001005912
– year: 1991
  ident: 10.1016/j.jcp.2022.111365_br0430
– volume: 90
  start-page: 685
  issue: 04
  year: 1979
  ident: 10.1016/j.jcp.2022.111365_br0700
  article-title: A hydrodynamic analysis of flagellar propulsion
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112079002482
– volume: 490
  start-page: 15
  year: 2003
  ident: 10.1016/j.jcp.2022.111365_br0110
  article-title: On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003005184
– volume: 329
  start-page: 173
  year: 2017
  ident: 10.1016/j.jcp.2022.111365_br0610
  article-title: A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.026
– volume: 15
  issue: 36
  year: 2019
  ident: 10.1016/j.jcp.2022.111365_br0090
  article-title: Magnetically driven undulatory microswimmers integrating multiple rigid segments
  publication-title: Small
  doi: 10.1002/smll.201901197
– volume: 27
  start-page: 1603
  issue: 9
  year: 2001
  ident: 10.1016/j.jcp.2022.111365_br0310
  article-title: Localized force representations for particles sedimenting in Stokes flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(01)00014-3
– volume: 2
  year: 2016
  ident: 10.1016/j.jcp.2022.111365_br0060
  article-title: Partial synchronization of the colonial diatom Bacillaria “paradoxa”
  publication-title: Res. Ideas Outcomes
  doi: 10.3897/rio.2.e7869
– volume: 16
  start-page: 4866
  issue: 20
  year: 2020
  ident: 10.1016/j.jcp.2022.111365_br0910
  article-title: Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study
  publication-title: Soft Matter
  doi: 10.1039/D0SM00571A
– volume: 45
  start-page: 3
  issue: 1
  year: 1977
  ident: 10.1016/j.jcp.2022.111365_br0100
  article-title: Life at low Reynolds number
  publication-title: Am. J. Phys.
  doi: 10.1119/1.10903
– volume: 17
  start-page: 6597
  year: 2021
  ident: 10.1016/j.jcp.2022.111365_br0550
  article-title: Metallic microswimmers driven up the wall by gravity
  publication-title: Soft Matter
  doi: 10.1039/D1SM00554E
– volume: 101
  year: 2008
  ident: 10.1016/j.jcp.2022.111365_br0890
  article-title: Hydrodynamic attraction of swimming microorganisms by surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.038102
– volume: 19
  start-page: 113306
  issue: 11
  year: 2007
  ident: 10.1016/j.jcp.2022.111365_br0500
  article-title: Simulation of hydrodynamically interacting particles near a no-slip boundary
  publication-title: Phys. Fluids
  doi: 10.1063/1.2803837
– volume: 90
  start-page: 5271
  issue: 10
  year: 1989
  ident: 10.1016/j.jcp.2022.111365_br0410
  article-title: Simulation of aggregating colloids in shear flow
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456430
– volume: 468
  start-page: 205
  year: 2002
  ident: 10.1016/j.jcp.2022.111365_br0590
  article-title: Dynamic simulations of the inhomogeneous sedimentation of rigid fibres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002001544
– volume: 914
  year: 2021
  ident: 10.1016/j.jcp.2022.111365_br0630
  article-title: Universal features of the shape of elastic fibres in shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.1048
– ident: 10.1016/j.jcp.2022.111365_br0250
– volume: 437
  start-page: 862
  issue: 7060
  year: 2005
  ident: 10.1016/j.jcp.2022.111365_br0070
  article-title: Microscopic artificial swimmers
  publication-title: Nature
  doi: 10.1038/nature04090
– volume: 106
  start-page: 2949
  issue: 7
  year: 1997
  ident: 10.1016/j.jcp.2022.111365_br0160
  article-title: Dynamic simulation of flexible fibers composed of linked rigid bodies
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473067
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.jcp.2022.111365_br0650
  article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 700
  start-page: 105
  year: 2012
  ident: 10.1016/j.jcp.2022.111365_br0900
  article-title: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.101
– volume: 15
  issue: 140
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0370
  article-title: From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0834
– volume: 227
  start-page: 1613
  issue: 3
  year: 2008
  ident: 10.1016/j.jcp.2022.111365_br0240
  article-title: A fast multipole method for the three-dimensional Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.029
– volume: 98
  start-page: 644
  issue: 1
  year: 1993
  ident: 10.1016/j.jcp.2022.111365_br0340
  article-title: A method for dynamic simulation of rigid and flexible fibers in a flow field
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464607
– volume: 118
  issue: 3
  year: 2021
  ident: 10.1016/j.jcp.2022.111365_br0740
  article-title: Foraging trade-offs, flagellar arrangements, and flow architecture of planktonic protists
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2009930118
– volume: 374
  start-page: 1094
  year: 2018
  ident: 10.1016/j.jcp.2022.111365_br0470
  article-title: A fluctuating boundary integral method for brownian suspensions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.021
– volume: 103
  year: 2021
  ident: 10.1016/j.jcp.2022.111365_br0760
  article-title: Base flow decomposition for complex moving objects in linear hydrodynamics: application to helix-shaped flagellated microswimmers
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.103.023109
– volume: 19
  issue: 11
  year: 2007
  ident: 10.1016/j.jcp.2022.111365_br0350
  article-title: Simulation of the motion of flexible fibers in viscous fluid flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.2778937
SSID ssj0008548
Score 2.4431608
Snippet An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111365
SubjectTerms Active matter
Algorithms
Articulated bodies
Bacteria
Chains
Computational efficiency
Computational physics
Computer Science
Computing costs
Constraints
Filaments
Fluid mechanics
Fluid-structure interactions
Iterative methods
Locomotion
Mechanics
Membranes
Modeling and Simulation
Numerical methods
Physics
Rigid structures
Robustness (mathematics)
Stokes flow
Suspensions
Time integration
Viscous flow
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R7QEulE-xUCoLcQJlcRzbGx9XiGqLoOLQSuVkxXYs2kbJimxawa9nHCdLVapWXCIlsqNYM5N5Iz-_AXhLjTOIRGmSWj5PeDjEZZT0iaUFk0XuTNmfrfp6KJfH_POJOPkrknRNXoDRmaAhrHPGP2CmybZgWwoE3RPYPj78tvgeCRxpEmBOv6-paMKwBBj3L3sm15kNwpSMhd9DFrLIzRlo60egQl7Bmfe7elX8uiyq6krK2d-B5XhwJzJNzmfd2szs7391HO9azSN4OMBOsoh-8hjulfUT2BkgKBkCvH0KBwtSd3ETpyKxuzRBWEvarl0Fqjv6KGk86f0tNP7CyaYJRERyWpOL09Y2XUt81Vy2z-Bo_9PRx2UydFtILNaQ68TlPqNecosFDTUIJJiwTBUl9UpZ71hWeuNyIQrM6rJXmUllLqxIjSnmzGXPYVI3dfkCiJXKp4XMnPclF1bl3DmvyhQvuVGKTYGOBtB2UCIPDTEqPVLOzjTaTAeb6WizKbzbTFlFGY7bBvPRqnrAEREfaEwTt017gx6weX3Q3V4uvujwjGIhryRPL9Ip7I4OoodobzWTirH5HJHyFN5vnObuD335X6NfwYNwFwluuzBZ_-zK14iI1mZviIY_KEcCAg
  priority: 102
  providerName: Unpaywall
Title A numerical method for suspensions of articulated bodies in viscous flows
URI https://dx.doi.org/10.1016/j.jcp.2022.111365
https://www.proquest.com/docview/2692277310
https://hal.science/hal-03389641
http://hdl.handle.net/20.500.11824/1523
UnpaywallVersion submittedVersion
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RemgvhdJWXaDIqnpqlZI4jhMfI1S0fHTFASR6smI7VhdFyarZgLjw2_EkzhakikpcEsWyI2fGmXmW38wAfAmVUQ6JhkGkWRowDOJSgttAhwXlRWZU2cdW_Zzx6QU7vkwu1-BgjIVBWqW3_YNN7621b9n30txfzOcY40sxhj6itC8YgXaYsRSrGHy_-0vzyBI2WGOkIrje48lmz_G60piyklI0HDH6l3_7phe_kST5AIG-6upFcXtTVNUDZ3S4CW88iiT5MNG3sFbWW7DhESXx_2v7Do5yUnfDmUxFhmLRxKFU0nbtApnrbsmRxpL-g7GOlxusGuQVknlNruetbrqW2Kq5ad_D-eGP84Np4IsnBNptCZeByWwcWs6025-EyuECmmgqijK0QmhraFxaZbIkKZyT5n3SmIhniU4ipYqUmvgDrNdNXX4EormwUcFjY23JEi0yZowVZeQumRKCTiAcpSa1TyyO9S0qOTLIrqQTtERBy0HQE_i6GrIYsmo81ZmNqpCPloZ0Vv-pYZ-d2lavxzTa0_xUYlvo9uWCs-g6msDuqFXpf95WUi4oTVMHfCfwbaXp_090-3kT3YHX-DQQ13ZhffmnKz85pLNUe_1S3oOX-dHJdObuF7Oz_Nc9gQP7qg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHOil0Je65VGr6qlVSuLY3vi4QqCFLpy2EjcrtmN1UZSsmg2ol_52ZhJnoVIFEpccHDtyZsbzkL-ZIeRLbJwBTzSOEsvHEcckLqOkj2ycM5lnzhRdbtXFpZz-5OdX4mqDHA-5MAirDLq_1-mdtg4jR4GaR8vFAnN8GebQJ4x1DSNAD29xwcYYgX3_e4_zyATv1TFiEWD6cLXZgbyuLdasZAw1R4oG5v_G6cUvREk-cEG322qZ_7nNy_KBNTrdJa-CG0kn_U5fk42iekN2gktJw4Ft3pKzCa3a_lKmpH23aApuKm3aZonQdZA5Wnva_TE28oLFpkZgIV1U9GbR2LptqC_r2-YdmZ-ezI-nUeieEFmICVeRy3wae8ktBCixAceACctUXsReKesdSwtvXCZEDlZadlVjEpkJKxJj8jFz6XuyWdVV8YFQK5VPcpk67wsurMq4c14VCTwyoxQbkXigmrahsjg2uCj1ACG71kBojYTWPaFH5Ot6ybIvq_HYZD6wQv8jGxrU_mPLPgPb1p_HOtrTyUzjWAyBuZI8uUlGZH_gqg6nt9FMKgaCBJ7viHxbc_rpjX583kY_ke3p_GKmZ2eXP_bIS3zTo9j2yebqd1scgNuzMoedWN8Bb-37jw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R7QEulE-xUCoLcQJlcRzbGx9XiGqLoOLQSuVkxXYs2kbJimxawa9nHCdLVapWXCIlsqNYM5N5Iz-_AXhLjTOIRGmSWj5PeDjEZZT0iaUFk0XuTNmfrfp6KJfH_POJOPkrknRNXoDRmaAhrHPGP2CmybZgWwoE3RPYPj78tvgeCRxpEmBOv6-paMKwBBj3L3sm15kNwpSMhd9DFrLIzRlo60egQl7Bmfe7elX8uiyq6krK2d-B5XhwJzJNzmfd2szs7391HO9azSN4OMBOsoh-8hjulfUT2BkgKBkCvH0KBwtSd3ETpyKxuzRBWEvarl0Fqjv6KGk86f0tNP7CyaYJRERyWpOL09Y2XUt81Vy2z-Bo_9PRx2UydFtILNaQ68TlPqNecosFDTUIJJiwTBUl9UpZ71hWeuNyIQrM6rJXmUllLqxIjSnmzGXPYVI3dfkCiJXKp4XMnPclF1bl3DmvyhQvuVGKTYGOBtB2UCIPDTEqPVLOzjTaTAeb6WizKbzbTFlFGY7bBvPRqnrAEREfaEwTt017gx6weX3Q3V4uvujwjGIhryRPL9Ip7I4OoodobzWTirH5HJHyFN5vnObuD335X6NfwYNwFwluuzBZ_-zK14iI1mZviIY_KEcCAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+suspensions+of+articulated+bodies+in+viscous+flows&rft.jtitle=Journal+of+computational+physics&rft.au=Usabiaga%2C+Florencio+Balboa&rft.au=Delmotte%2C+Blaise&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=464&rft_id=info:doi/10.1016%2Fj.jcp.2022.111365&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03389641v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon