Application of Paraconsistent Artificial Neural Networks as a Method of Aid in the Diagnosis of Alzheimer Disease

The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician int...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 34; no. 6; pp. 1073 - 1081
Main Authors da Silva Lopes, Helder Frederico, Abe, Jair M., Anghinah, Renato
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.12.2010
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0148-5598
1573-689X
DOI10.1007/s10916-009-9325-2

Cover

Abstract The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, appropriate to address problems such as prediction and pattern recognition. In this work, it has use a new class of ANN, the Paraconsistent Artificial Neural Network (PANN), which is capable of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns of EEG and to assess its value as a possible auxiliary method for AD diagnosis. Thirty three patients with Alzheimer's disease and 34 controls patients of EEG records were obtained during relaxed wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 and 12.0 Hz (with an average frequency of 10 Hz), allowing a range of 0.5 Hz. The PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 82% of sensitivity and at 61% of specificity. Supported with these results, the PANN could be a promising tool to manipulate EEG analysis, bearing in mind the following considerations: the growing interest of specialists in EEG analysis visual and the ability of the PANN to deal directly imprecise, inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis.
AbstractList The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, appropriate to address problems such as prediction and pattern recognition. In this work, it has use a new class of ANN, the Paraconsistent Artificial Neural Network (PANN), which is capable of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns of EEG and to assess its value as a possible auxiliary method for AD diagnosis. Thirty three patients with Alzheimer's disease and 34 controls patients of EEG records were obtained during relaxed wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 and 12.0 Hz (with an average frequency of 10 Hz), allowing a range of 0.5 Hz. The PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 82% of sensitivity and at 61% of specificity. Supported with these results, the PANN could be a promising tool to manipulate EEG analysis, bearing in mind the following considerations: the growing interest of specialists in EEG analysis visual and the ability of the PANN to deal directly imprecise, inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis.
The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, appropriate to address problems such as prediction and pattern recognition. In this work, it has use a new class of ANN, the Paraconsistent Artificial Neural Network (PANN), which is capable of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns of EEG and to assess its value as a possible auxiliary method for AD diagnosis. Thirty three patients with Alzheimer's disease and 34 controls patients of EEG records were obtained during relaxed wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 and 12.0 Hz (with an average frequency of 10 Hz), allowing a range of 0.5 Hz. The PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 82% of sensitivity and at 61% of specificity. Supported with these results, the PANN could be a promising tool to manipulate EEG analysis, bearing in mind the following considerations: the growing interest of specialists in EEG analysis visual and the ability of the PANN to deal directly imprecise, inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis.The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, appropriate to address problems such as prediction and pattern recognition. In this work, it has use a new class of ANN, the Paraconsistent Artificial Neural Network (PANN), which is capable of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns of EEG and to assess its value as a possible auxiliary method for AD diagnosis. Thirty three patients with Alzheimer's disease and 34 controls patients of EEG records were obtained during relaxed wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 and 12.0 Hz (with an average frequency of 10 Hz), allowing a range of 0.5 Hz. The PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 82% of sensitivity and at 61% of specificity. Supported with these results, the PANN could be a promising tool to manipulate EEG analysis, bearing in mind the following considerations: the growing interest of specialists in EEG analysis visual and the ability of the PANN to deal directly imprecise, inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis.
The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, appropriate to address problems such as prediction and pattern recognition. In this work, it has use a new class of ANN, the Paraconsistent Artificial Neural Network (PANN), which is capable of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns of EEG and to assess its value as a possible auxiliary method for AD diagnosis. Thirty three patients with Alzheimer's disease and 34 controls patients of EEG records were obtained during relaxed wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 and 12.0 Hz (with an average frequency of 10 Hz), allowing a range of 0.5 Hz. The PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 82% of sensitivity and at 61% of specificity. Supported with these results, the PANN could be a promising tool to manipulate EEG analysis, bearing in mind the following considerations: the growing interest of specialists in EEG analysis visual and the ability of the PANN to deal directly imprecise, inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis.[PUBLICATION ABSTRACT]
The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some clinical protocols. However, such analysis is subject to the inherent equipment imprecision, patient movement, electrical records, and physician interpretation of the visual analysis variation. The Artificial Neural Network (ANN) could be a helpful tool, appropriate to address problems such as prediction and pattern recognition. In this work, it has use a new class of ANN, the Paraconsistent Artificial Neural Network (PANN), which is capable of handling uncertain, inconsistent, and paracomplete information, for recognizing predetermined patterns of EEG and to assess its value as a possible auxiliary method for AD diagnosis. Thirty three patients with Alzheimer's disease and 34 controls patients of EEG records were obtained during relaxed wakefulness. It was considered as normal patient pattern, the background EEG activity between 8.0 and 12.0Hz (with an average frequency of 10Hz), allowing a range of 0.5Hz. The PANN was able to recognize waves that belonging to their respective bands of clinical use (theta, delta, alpha, and beta), leading to an agreement with the clinical diagnosis at 82% of sensitivity and at 61% of specificity. Supported with these results, the PANN could be a promising tool to manipulate EEG analysis, bearing in mind the following considerations: the growing interest of specialists in EEG analysis visual and the ability of the PANN to deal directly imprecise, inconsistent and paracomplete data, providing an interesting quantitative and qualitative analysis.
Author da Silva Lopes, Helder Frederico
Abe, Jair M.
Anghinah, Renato
Author_xml – sequence: 1
  givenname: Helder Frederico
  surname: da Silva Lopes
  fullname: da Silva Lopes, Helder Frederico
  email: helder@autobyte.com.br
  organization: Medicine School, University of São Paulo
– sequence: 2
  givenname: Jair M.
  surname: Abe
  fullname: Abe, Jair M.
  organization: Institute for Advanced Studies, University of São Paulo
– sequence: 3
  givenname: Renato
  surname: Anghinah
  fullname: Anghinah, Renato
  organization: Reference Center of Behavioral Disturbances and Dementia (CEREDIC) of Medicine School, University of São Paulo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20703601$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rVDEUhoNU7LT6A9xIcOPqapJ787UcWqtC_VgouAuZ3JNO6p1kmuQi9tebmWkRCiokHDg8z-Ek7wk6iikCQs8peU0JkW8KJZqKjhDd6Z7xjj1CC8pl3wmlvx-hBaGD6jjX6hidlHJNGiiEfIKOGZGkF4Qu0M1yu52CszWkiJPHX2y2LsUSSoVY8TLX4IMLdsKfYM77Un-m_KNg2w7-CHWdxp24DCMOEdc14PNgr2JqI_b96XYNYQO5tQvYAk_RY2-nAs_u6in6dvH269n77vLzuw9ny8vODYTVbuVGL1agWT9K5bn1bHQeGPfacz1KzVi73vvBWSd6PlDH3SC0Igw4EA39KXp1mLvN6WaGUs0mFAfTZCOkuRglKB-YUPS_pOSas4H0QyNfPiCv05xje4ZRRApGlJYNenEHzasNjGabw8bmX-b-0xsgD4DLqZQM3rhQ9wnUbMNkKDG7eM0hXtNSM7t4DWsmfWDeD_-Xww5OaWy8gvxn579LvwGYnLam
CitedBy_id crossref_primary_10_1007_s10916_015_0369_1
crossref_primary_10_1016_j_clinbiochem_2019_07_008
crossref_primary_10_1016_j_ijepes_2021_107317
crossref_primary_10_1145_3344998
crossref_primary_10_3233_ADR_200263
crossref_primary_10_1016_j_bbr_2017_03_012
crossref_primary_10_52547_shefa_9_1_152
crossref_primary_10_1007_s10916_015_0396_y
crossref_primary_10_1016_j_ins_2017_08_074
crossref_primary_10_4018_IJSSCI_312553
crossref_primary_10_4103_jmss_JMSS_11_20
crossref_primary_10_1155_2018_5174815
crossref_primary_10_1016_j_procs_2013_09_194
crossref_primary_10_4155_fsoa_2017_0138
Cites_doi 10.1016/S0140-6736(95)91804-3
10.1007/BF02345969
10.1002/ana.410160403
10.1016/j.cmpb.2005.02.006
10.1126/science.1411538
10.1007/s10916-007-9102-z
10.1016/j.neunet.2005.01.006
10.1016/S0013-4694(97)00106-5
10.1590/S0004-282X2005000400033
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2009
Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2009
– notice: Springer Science+Business Media, LLC 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-009-9325-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 1081
ExternalDocumentID 2191651301
20703601
10_1007_s10916_009_9325_2
Genre Journal Article
Comparative Study
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c402t-bcdf6be923d78f5af2dcfe25f9f59d7922792fff4cac63541c5c469802e5e09e3
IEDL.DBID BENPR
ISSN 0148-5598
IngestDate Fri Sep 05 06:23:21 EDT 2025
Fri Sep 05 08:29:49 EDT 2025
Fri Jul 25 19:30:59 EDT 2025
Mon Jul 21 06:01:47 EDT 2025
Wed Oct 01 04:08:29 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Fri Feb 21 02:25:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Pattern recognition
Artificial neural network
Electroencephalogram
Alzheimer disease
Paraconsistent logic
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-bcdf6be923d78f5af2dcfe25f9f59d7922792fff4cac63541c5c469802e5e09e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 20703601
PQID 807620897
PQPubID 54050
PageCount 9
ParticipantIDs proquest_miscellaneous_861542681
proquest_miscellaneous_759524034
proquest_journals_807620897
pubmed_primary_20703601
crossref_citationtrail_10_1007_s10916_009_9325_2
crossref_primary_10_1007_s10916_009_9325_2
springer_journals_10_1007_s10916_009_9325_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101200
2010-12-00
2010-Dec
20101201
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 20101200
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2010
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Fausett (CR10) 1994
CR4
CR6
CR5
CR8
Kocyigit, Alkan, Erol (CR16) 2008; 32
CR7
CR17
CR13
Nitrini, Caramelli, Bottino, Damasceno, Brucki, Anghinah (CR3) 2005; 63
Erganian, Mahmoudi (CR9) 2005; 43
Weinstein, Kohn, Grever (CR14) 1992; 258
Nuwer, Comi, Emerson, Fuglsang-Frederiksen, Guérit, Hinrichs, Ikeda, Luccas, Rappelsberger (CR2) 1998; 106
Ventouras, Monoyou, Ktonas, Paparrigopoulos, Dikeos, Uzunoglu, Soldatos (CR12) 2005; 78
Subasi, Alkan, Koklukaya, Kiymik (CR11) 2005; 18
Duffy, Albert, Mcnulty, Garvey (CR1) 1984; 16
Baxt (CR15) 1995; 346
R. Nitrini (9325_CR3) 2005; 63
J. Weinstein (9325_CR14) 1992; 258
9325_CR13
9325_CR4
9325_CR7
A. Erganian (9325_CR9) 2005; 43
9325_CR17
9325_CR8
9325_CR5
9325_CR6
A. Subasi (9325_CR11) 2005; 18
F. H. Duffy (9325_CR1) 1984; 16
E. M. Ventouras (9325_CR12) 2005; 78
W. J. Baxt (9325_CR15) 1995; 346
Y. Kocyigit (9325_CR16) 2008; 32
L. Fausett (9325_CR10) 1994
M. R. Nuwer (9325_CR2) 1998; 106
16172732 - Arq Neuropsiquiatr. 2005 Sep;63(3A):713-9
7475607 - Lancet. 1995 Oct 28;346(8983):1135-8
1411538 - Science. 1992 Oct 16;258(5081):447-51
15899305 - Comput Methods Programs Biomed. 2005 Jun;78(3):191-207
6497352 - Ann Neurol. 1984 Oct;16(4):430-8
9743285 - Electroencephalogr Clin Neurophysiol. 1998 Mar;106(3):259-61
18333401 - J Med Syst. 2008 Feb;32(1):17-20
15921885 - Neural Netw. 2005 Sep;18(7):985-97
15865142 - Med Biol Eng Comput. 2005 Mar;43(2):296-305
References_xml – volume: 346
  start-page: 1135
  year: 1995
  end-page: 1138
  ident: CR15
  article-title: Application of artificial neural network to clinical medicine
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– year: 1994
  ident: CR10
  publication-title: Fundamentals of neural network architectures, algorithms, and applications
– ident: CR4
– volume: 43
  start-page: 296
  issue: 2
  year: 2005
  end-page: 305
  ident: CR9
  article-title: Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain–computer interface.
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345969
– ident: CR17
– ident: CR13
– volume: 16
  start-page: 430
  year: 1984
  end-page: 438
  ident: CR1
  article-title: Age differences in brain electrical activity of healthy subjects
  publication-title: Ann Neural
  doi: 10.1002/ana.410160403
– volume: 63
  start-page: 713
  issue: 3A
  year: 2005
  end-page: 719
  ident: CR3
  article-title: Diagnosis of Alzheimer's disease in Brazil: diagnostic criteria and auxiliary tests. Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology
  publication-title: Arq Neuropsiquiatr
– volume: 78
  start-page: 191
  issue: 3
  year: 2005
  end-page: 207
  ident: CR12
  article-title: Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.02.006
– volume: 258
  start-page: 447
  year: 1992
  end-page: 451
  ident: CR14
  article-title: Neural computing in cancer drug development: predicting mechanism of action
  publication-title: Science
  doi: 10.1126/science.1411538
– ident: CR6
– ident: CR5
– volume: 32
  start-page: 17
  issue: 1
  year: 2008
  end-page: 20
  ident: CR16
  article-title: Classification of EEG recordings by using fast independent component analysis and artificial neural network
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-007-9102-z
– ident: CR7
– ident: CR8
– volume: 18
  start-page: 985
  issue: 7
  year: 2005
  end-page: 997
  ident: CR11
  article-title: Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.01.006
– volume: 106
  start-page: 259
  year: 1998
  end-page: 261
  ident: CR2
  article-title: IFCN standards for digital recording of clinical EEG
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/S0013-4694(97)00106-5
– volume: 63
  start-page: 713
  issue: 3A
  year: 2005
  ident: 9325_CR3
  publication-title: Arq Neuropsiquiatr
  doi: 10.1590/S0004-282X2005000400033
– volume: 32
  start-page: 17
  issue: 1
  year: 2008
  ident: 9325_CR16
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-007-9102-z
– volume: 78
  start-page: 191
  issue: 3
  year: 2005
  ident: 9325_CR12
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.02.006
– volume: 258
  start-page: 447
  year: 1992
  ident: 9325_CR14
  publication-title: Science
  doi: 10.1126/science.1411538
– ident: 9325_CR13
– ident: 9325_CR17
– ident: 9325_CR7
– ident: 9325_CR8
– volume: 18
  start-page: 985
  issue: 7
  year: 2005
  ident: 9325_CR11
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.01.006
– volume: 346
  start-page: 1135
  year: 1995
  ident: 9325_CR15
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– volume: 16
  start-page: 430
  year: 1984
  ident: 9325_CR1
  publication-title: Ann Neural
  doi: 10.1002/ana.410160403
– volume: 43
  start-page: 296
  issue: 2
  year: 2005
  ident: 9325_CR9
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345969
– volume: 106
  start-page: 259
  year: 1998
  ident: 9325_CR2
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/S0013-4694(97)00106-5
– ident: 9325_CR5
– ident: 9325_CR6
– ident: 9325_CR4
– volume-title: Fundamentals of neural network architectures, algorithms, and applications
  year: 1994
  ident: 9325_CR10
– reference: 15921885 - Neural Netw. 2005 Sep;18(7):985-97
– reference: 15865142 - Med Biol Eng Comput. 2005 Mar;43(2):296-305
– reference: 1411538 - Science. 1992 Oct 16;258(5081):447-51
– reference: 6497352 - Ann Neurol. 1984 Oct;16(4):430-8
– reference: 7475607 - Lancet. 1995 Oct 28;346(8983):1135-8
– reference: 9743285 - Electroencephalogr Clin Neurophysiol. 1998 Mar;106(3):259-61
– reference: 15899305 - Comput Methods Programs Biomed. 2005 Jun;78(3):191-207
– reference: 18333401 - J Med Syst. 2008 Feb;32(1):17-20
– reference: 16172732 - Arq Neuropsiquiatr. 2005 Sep;63(3A):713-9
SSID ssj0009667
Score 2.0035884
Snippet The visual analysis of EEG has shown useful in helping the diagnosis of Alzheimer disease (AD) when the diagnosis remains uncertain, being used in some...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1073
SubjectTerms Alzheimer Disease - diagnosis
Alzheimer's disease
Electroencephalography
Health Informatics
Health Sciences
Humans
Image Processing, Computer-Assisted
Medical diagnosis
Medical technology
Medicine
Medicine & Public Health
Neural networks
Neural Networks (Computer)
Original Paper
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7KLpRASNs83bRFh5xaFBytZFvHpU0aGjbkkEB6MtaLLEm8bey97K_vSLJ326YpBAwGWZJleaT5pJn5BHDgTT-pKRR1OteUK11RyR0OPJUjfFCC5cZv6E_Os9Mr_u1aXHdx3E3v7d6bJMNM_VuwG0IZ6jfzEXMIivPuUCA6FgMYjr9-Pztece1mWYyS5gX1_OO9MfNflfypjh5hzEf20aB2Tl7BZd_g6G1yezhv1aFe_MXl-Mwveg0bHQwl4yg3b-CFrTfh5aQztG_CetzOIzFKaQt-jleGbjJz5MLTPHvfWhSSug31RCoK4tk-wi24lzekwotMwjnVvuB4asi0Jgg7yZfo5TdtQvrd4sZO7-0DJgeT0TZcnRxffj6l3WkNVOMatKVKG5cpi4DR5IUTlWNGO8uEk05Ik8tAVeic47rSiHL4kRbaH1-ZMitsKu1oBwb1rLZ7QHDNyaoR5zKtpA_EKxQzo0yhllXcOWUSSPufVuqOytyfqHFXrkiYfdeW2LWl79qSJfBxWeRH5PH4X-b9XhLKbkg3ZZGi3kgLmSdAlk9xLHoDS1Xb2bwpcyGF5zfkT2cpEEEiKCqOEtiNIrZsDvOzL66PE_jUi8vq7U-29e2zcu_DGlv647yDQfswt-8RVbXqQzeKfgHbRBZm
  priority: 102
  providerName: Springer Nature
Title Application of Paraconsistent Artificial Neural Networks as a Method of Aid in the Diagnosis of Alzheimer Disease
URI https://link.springer.com/article/10.1007/s10916-009-9325-2
https://www.ncbi.nlm.nih.gov/pubmed/20703601
https://www.proquest.com/docview/807620897
https://www.proquest.com/docview/759524034
https://www.proquest.com/docview/861542681
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: 7X7
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-689X
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 20241005
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60CYzBGF1389oFPexpQ8xVJF8exnC3pGUjpYwFsidj3Wigc9omfdmv3znyJZTSgrFBvgkfSf6k75zvAHwg6ie2mebepIZLbSqeS48dT6cIH7QSqaUF_dlZcjqXPxZqsQOzLhaG3Cq7MTEM1HZlaI38c4YTbhFnefr16ppT0igiV7sMGlWbWcF-CQpjuzCkEVkOYHg8OTv_tVXhTZImflpmnJTJO5qziaVDpMSJK0BIo7i4-6O6hz7vMafhhzTdg-ctkmRFY_oXsOPqfXgya7nyfXjWrMixJtDoJVwXW66arTw7J6Vmco9FO9eb8JxGTYKRYEc4BA_xNatwY7OQappuLJaWLWuGyJF9bxz1lutQfvnvwi3_uhssDqzPK5hPJ7-_nfI24QI3OI3ccG2sT7RDzGfTzKvKC2u8E8rnXuU2zYPaoPdemsogUJFHRhnKQBkLp1ycu_FrGNSr2r0FhtNGUY2lzOMqp1i6TAs7TjSaRUvvtY0g7r5uaVo1ckqKcVludZTJICUapCSDlCKCj_0tV40Ux2MXH3QmK9teuS77NhQB689idyKOpKrd6nZdpipXJFEoH74kQxCIuCY7iuBN0xb66ggaQHGKG8GnrnFs3_5gXd89WtcDeCp6F5pDGGxubt17BEIbPYLddJHiPpuejGBYnPz5ORm1TR5L56L4D5taB44
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC7iBlQQ0XiN8egHfVEaJ73dczwEWU3CxmSXIAnkbTJ94UKcTTIbRP-b_82qnmORkLwFBgbmbLqqu7_qqvoK4B25fmKbae5NarjUpuS59DjwdIrwQSuRWtrQn0yT8ZH8dqyOV-BvlwtDYZXdnBgmajs3tEf-KUODW8RZnn4-O-dUNIqcq10FjbKtrGA3A8NYm9ex537_Qguu3tzdQnG_F2Jn-_DrmLdFBrhB02nBtbE-0Q5xjk0zr0ovrPFOKJ97lds0Dwx73ntpSoOLs9wwylDVxVg45eLcDfG7d2AVUYeQA1j9sj09-L5k_U2SJl9bZpyY0Du3apO7h8iMk28CIZTi4v-F8QraveKpDQvgziN42CJXNmpU7TGsuGoN7k5a3_waPGh2AFmT2PQEzkdL3zibe3ZAzNAUjot6VS3Cdxr2CkYEIeEUItJrVuLBJqG0Nb04mlk2qxgiVbbVBAbO6nD99M8PN_vpLvBy8DI9haNb6ftnMKjmlXsBDM1UUQ6lzOMyp9y9TAs7TDQuzFp6r20Ecde7hWnZz6kIx2mx5G0mgRQokIIEUogIPvSvnDXUHzc9vN6JrGhngbrodTYC1t_F4Us-mbJy88u6SFWuiBJRXv9IhqATcVS2EcHzRhf65giasNGkjuBjpxzLv1_b1pc3tvUt3BsfTvaL_d3p3jrcF334zisYLC4u3WsEYQv9plV1Bie3Pbr-Ad_JQbU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qhSKIaP2K9WMf9EVZmu7t5uNB5PA8W-uVPljoW8x-4UHNtc0V0f_M_86Z3SSHlPatEAjkktySmdn9zc7MbwBeU-gntYXm3uSGS21qXkqPhqdzhA9aidzShv7sINs9kl-O1fEa_O1rYSitsp8Tw0RtF4b2yLcLdLhFWpT5tu-yIg4n0w-nZ5waSFGgte-mETVk3_3-hd5b-35vgqJ-I8T007ePu7xrMMANuk1Lro31mXaIcWxeeFV7YY13QvnSq9LmZWDX895LUxtcmOWOUYY6LqbCKZeWboTvvQW38xF6elSkPv284vvNslipLQtOHOh9QDVW7SEm4xSVQPCkuPh_SbyEcy_FaMPSN70P9zrMysZRyR7Amms2YWPWReU34W7c-2OxpOkhnI1XUXG28OyQOKEpERc1qlmG90TeCkbUIOEUctFbVuPBZqGpNT04nls2bxhiVDaJKYHzNlw_-fPDzX-6c7wc4kuP4OhGvvxjWG8WjXsKDB1UUY-kLNO6pKq9Qgs7yjQuyVp6r20Caf91K9PxnlP7jZNqxdhMAqlQIBUJpBIJvB0eOY2kH9fdvNWLrOrsv60GbU2ADb-i4VI0pm7c4qKtclUqIkOUV99SINxEBFXsJPAk6sIwHEFTNTrTCbzrlWP171eO9dm1Y30FG2hT1de9g_0tuCOGvJ3nsL48v3AvEH0t9cug5wy-37Rh_QMNHD9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+paraconsistent+artificial+neural+networks+as+a+method+of+aid+in+the+diagnosis+of+Alzheimer+disease&rft.jtitle=Journal+of+medical+systems&rft.au=da+Silva+Lopes%2C+Helder+Frederico&rft.au=Abe%2C+Jair+M&rft.au=Anghinah%2C+Renato&rft.date=2010-12-01&rft.issn=0148-5598&rft.volume=34&rft.issue=6&rft.spage=1073&rft_id=info:doi/10.1007%2Fs10916-009-9325-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon