What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure...
Saved in:
Published in | Journal of chemical theory and computation Vol. 19; no. 22; pp. 8273 - 8284 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
American Chemical Society
28.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9618 1549-9626 1549-9626 |
DOI | 10.1021/acs.jctc.3c00908 |
Cover
Abstract | The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau–Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics. |
---|---|
AbstractList | The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau–Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics. The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics. The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau–Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics. |
Author | Slavíček, Petr Janoš, Jiří |
Author_xml | – sequence: 1 givenname: Jiří orcidid: 0000-0001-5903-8538 surname: Janoš fullname: Janoš, Jiří organization: Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic – sequence: 2 givenname: Petr orcidid: 0000-0002-5358-5538 surname: Slavíček fullname: Slavíček, Petr organization: Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic |
BookMark | eNqFkEtvEzEURi1URB-wZ2mJDZuE6_FkYq-qKioUqeKh8lhadzyexsFjBz-o8u9xSQSiC1j5Sj7fp3vPKTnywRtCnjOYM2jYK9RpvtFZz7kGkCAekRO2aOVMdk139Htm4picprQB4Lxt-BNyzJeSSw7shHz7usZMV8HnGFyieW3ox4LO5h0NI_2wDjkMO4-T1ejojZ2Kw2yDT-f00hldQ95qepNj0blEQ7-YmEqi74LHwWJfWU0v3G2INq-np-TxiC6ZZ4f3jHx-fflpdTW7fv_m7erieqZbaPIMBRjeD7jsxr5HvhBGdiOY5UJraOXYD7zXCEPDRwnNUnYS-34wICUXo-Ct5GeE7XuL3-LuDp1T22gnjDvFQN2LU1WcuhenDuJq5nyf2ZZ-MoM2VQj-yQW06u8fb9fqNvyodZ0QTPDa8PLQEMP3YlJWk03aOIfehJJUI4QA3rB2UdEXD9BNKNFXJ6qRTLYtALBKdXtKx5BSNKPSNv-yXxew7l-3wIPgf8__CeR8uoY |
CitedBy_id | crossref_primary_10_1039_D4CP02489C crossref_primary_10_1039_D4FD00062E crossref_primary_10_1063_5_0252505 crossref_primary_10_1063_5_0197768 crossref_primary_10_1039_D4CP03671A crossref_primary_10_1021_acs_jpclett_4c02955 crossref_primary_10_1021_acs_jpca_4c04639 crossref_primary_10_1021_acs_jctc_4c01263 crossref_primary_10_1021_acs_jctc_4c00855 crossref_primary_10_1021_acs_jctc_4c01008 crossref_primary_10_1021_acs_jctc_4c01349 crossref_primary_10_1063_5_0203105 crossref_primary_10_1063_5_0203667 crossref_primary_10_1063_5_0203800 crossref_primary_10_1021_acs_jpca_4c02028 crossref_primary_10_1021_acs_jpca_4c03612 crossref_primary_10_1021_acs_jpcb_4c06924 crossref_primary_10_1063_5_0246270 crossref_primary_10_1021_acs_jpclett_4c00106 crossref_primary_10_1063_5_0246790 crossref_primary_10_1063_5_0198333 crossref_primary_10_1039_D4CP03960B crossref_primary_10_1063_5_0203654 crossref_primary_10_1021_acs_jpclett_3c03014 crossref_primary_10_1063_5_0203636 crossref_primary_10_1021_acs_jpca_4c03481 |
Cites_doi | 10.1039/C8FD00088C 10.1063/1.2715585 10.1002/cphc.201100200 10.1063/1.3314248 10.1021/acs.jpclett.2c03295 10.1039/C2CP43381H 10.1063/1.4938175 10.1103/PhysRevB.75.115409 10.1039/D0FD00037J 10.1021/acs.jctc.1c00346 10.1063/1.449071 10.1103/PhysRevB.106.144304 10.1063/1.4923259 10.1063/1.2978380 10.1021/acs.chemrev.1c00074 10.1063/5.0052118 10.1039/b314253a 10.1021/acs.jpclett.8b00060 10.1063/1.4875702 10.1063/1.4882073 10.1146/annurev.physchem.57.032905.104612 10.1039/d1cp05187c 10.1021/acs.jctc.1c01046 10.1038/s41570-018-0008-8 10.1103/PhysRevA.88.052704 10.1063/1.472486 10.1021/acs.jctc.5b01046 10.1146/annurev-physchem-040215-112245 10.1021/acs.jctc.2c00988 10.1021/jp9063565 10.1021/cr0206667 10.1021/ja00424a001 10.1016/S0009-2614(97)88000-1 10.1002/anie.201607633 10.1021/ct500483t 10.1021/jacs.1c07725 10.1016/j.chemphys.2008.01.014 10.1039/D1CP01843D 10.1021/acs.jctc.0c00644 10.1021/jacs.9b10533 10.1080/00268976.2018.1501112 10.1021/acs.jctc.2c00968 10.1021/ct300321a 10.1021/acs.jctc.9b01129 10.1021/acs.jctc.3c00024 10.1063/1.5048049 10.1063/1.459170 10.1103/PhysRevLett.117.093001 10.1063/1.5095810 10.1016/S0009-2614(00)00691-6 10.1002/wcms.1370 10.1021/jp908936u 10.1080/0144235X.2015.1051354 10.1039/D0CP01353F 10.1021/acs.chemrev.7b00423 10.1002/cphc.201200941 10.1063/1.1545679 10.1007/s00214-011-1073-y 10.1063/5.0062757 10.1021/acs.jctc.7b00018 10.1002/wcms.1417 10.1016/S0009-2614(98)00252-8 10.1021/ct9003004 10.1021/jp110632g 10.1063/5.0005081 10.1126/science.aah3429 10.1002/wcms.1331 10.1039/C8CP07104G 10.1038/s41557-022-01012-0 10.1021/acs.jpcb.5b09838 10.1021/acs.chemrev.7b00577 10.1063/5.0045572 10.1021/acs.jctc.0c00512 10.1038/s41570-021-00278-1 10.1063/1.4829856 10.1021/acs.jctc.7b00958 10.1002/wcms.82 10.1021/acs.jpclett.5b02773 10.1063/1.3506779 10.1021/acs.jctc.2c00804 10.1021/acs.chemrev.0c00223 10.1021/acs.jctc.1c00012 10.1063/1.3633329 10.1063/1.2008258 10.1021/acs.jctc.9b00067 10.1063/1.3436501 10.1103/physreva.84.014701 10.1002/wcms.64 10.1021/acs.jctc.6b00156 10.1063/1.4919780 10.1021/acs.jpclett.9b01902 10.1126/science.abg3091 10.1039/c2fd20055d 10.1039/C9SC01742A |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Nov 28, 2023 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: Copyright American Chemical Society Nov 28, 2023 – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
DOI | 10.1021/acs.jctc.3c00908 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 8284 |
ExternalDocumentID | 10.1021/acs.jctc.3c00908 PMC10688183 10_1021_acs_jctc_3c00908 |
GrantInformation_xml | – fundername: ; grantid: 23-07066S – fundername: ; grantid: A1_FCHI_2023_001 |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC EJD IHE LG6 UNPAY |
ID | FETCH-LOGICAL-c402t-a80e3bda76fbba358e96f0e75cc049fbd3bca0d23f9027969abbde09938f83493 |
IEDL.DBID | UNPAY |
ISSN | 1549-9618 1549-9626 |
IngestDate | Sun Sep 07 11:19:53 EDT 2025 Tue Sep 30 17:17:53 EDT 2025 Fri Jul 11 05:49:08 EDT 2025 Mon Jun 30 13:02:26 EDT 2025 Tue Jul 01 02:03:35 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-a80e3bda76fbba358e96f0e75cc049fbd3bca0d23f9027969abbde09938f83493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5358-5538 0000-0001-5903-8538 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acs.jctc.3c00908 |
PMID | 37939301 |
PQID | 2919440001 |
PQPubID | 2048741 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_1021_acs_jctc_3c00908 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10688183 proquest_miscellaneous_2888032145 proquest_journals_2919440001 crossref_citationtrail_10_1021_acs_jctc_3c00908 crossref_primary_10_1021_acs_jctc_3c00908 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-28 |
PublicationDateYYYYMMDD | 2023-11-28 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref25/cit25 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref71/cit71 doi: 10.1039/C8FD00088C – ident: ref16/cit16 doi: 10.1063/1.2715585 – ident: ref42/cit42 doi: 10.1002/cphc.201100200 – ident: ref22/cit22 doi: 10.1063/1.3314248 – ident: ref38/cit38 doi: 10.1021/acs.jpclett.2c03295 – ident: ref80/cit80 doi: 10.1039/C2CP43381H – ident: ref5/cit5 doi: 10.1063/1.4938175 – ident: ref52/cit52 doi: 10.1103/PhysRevB.75.115409 – ident: ref61/cit61 doi: 10.1039/D0FD00037J – ident: ref17/cit17 doi: 10.1021/acs.jctc.1c00346 – ident: ref73/cit73 doi: 10.1063/1.449071 – ident: ref32/cit32 doi: 10.1103/PhysRevB.106.144304 – ident: ref54/cit54 doi: 10.1063/1.4923259 – ident: ref46/cit46 doi: 10.1063/1.2978380 – ident: ref44/cit44 doi: 10.1021/acs.chemrev.1c00074 – ident: ref37/cit37 doi: 10.1063/5.0052118 – ident: ref39/cit39 doi: 10.1039/b314253a – ident: ref21/cit21 doi: 10.1021/acs.jpclett.8b00060 – ident: ref23/cit23 doi: 10.1063/1.4875702 – ident: ref27/cit27 doi: 10.1063/1.4882073 – ident: ref91/cit91 doi: 10.1146/annurev.physchem.57.032905.104612 – ident: ref49/cit49 doi: 10.1039/d1cp05187c – ident: ref50/cit50 doi: 10.1021/acs.jctc.1c01046 – ident: ref3/cit3 doi: 10.1038/s41570-018-0008-8 – ident: ref26/cit26 doi: 10.1103/PhysRevA.88.052704 – ident: ref34/cit34 doi: 10.1063/1.472486 – ident: ref56/cit56 doi: 10.1021/acs.jctc.5b01046 – ident: ref20/cit20 doi: 10.1146/annurev-physchem-040215-112245 – ident: ref29/cit29 doi: 10.1021/acs.jctc.2c00988 – ident: ref81/cit81 doi: 10.1021/jp9063565 – ident: ref2/cit2 doi: 10.1021/cr0206667 – ident: ref78/cit78 doi: 10.1021/ja00424a001 – ident: ref35/cit35 doi: 10.1016/S0009-2614(97)88000-1 – ident: ref84/cit84 doi: 10.1002/anie.201607633 – ident: ref59/cit59 doi: 10.1021/ct500483t – ident: ref97/cit97 doi: 10.1021/jacs.1c07725 – ident: ref75/cit75 doi: 10.1016/j.chemphys.2008.01.014 – ident: ref41/cit41 doi: 10.1039/D1CP01843D – ident: ref51/cit51 doi: 10.1021/acs.jctc.0c00644 – ident: ref1/cit1 doi: 10.1021/jacs.9b10533 – ident: ref85/cit85 doi: 10.1080/00268976.2018.1501112 – ident: ref95/cit95 doi: 10.1021/acs.jctc.2c00968 – ident: ref70/cit70 doi: 10.1021/ct300321a – ident: ref89/cit89 doi: 10.1021/acs.jctc.9b01129 – ident: ref92/cit92 doi: 10.1021/acs.jctc.3c00024 – ident: ref76/cit76 doi: 10.1063/1.5048049 – ident: ref15/cit15 doi: 10.1063/1.459170 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.117.093001 – ident: ref24/cit24 doi: 10.1063/1.5095810 – ident: ref57/cit57 doi: 10.1016/S0009-2614(00)00691-6 – ident: ref9/cit9 doi: 10.1002/wcms.1370 – ident: ref79/cit79 doi: 10.1021/jp908936u – ident: ref40/cit40 doi: 10.1080/0144235X.2015.1051354 – ident: ref77/cit77 – ident: ref93/cit93 doi: 10.1039/D0CP01353F – ident: ref36/cit36 doi: 10.1021/acs.chemrev.7b00423 – ident: ref45/cit45 doi: 10.1002/cphc.201200941 – ident: ref47/cit47 doi: 10.1063/1.1545679 – ident: ref43/cit43 doi: 10.1007/s00214-011-1073-y – ident: ref48/cit48 doi: 10.1063/5.0062757 – ident: ref11/cit11 – ident: ref86/cit86 doi: 10.1021/acs.jctc.7b00018 – ident: ref12/cit12 doi: 10.1002/wcms.1417 – ident: ref68/cit68 – ident: ref90/cit90 doi: 10.1016/S0009-2614(98)00252-8 – ident: ref69/cit69 doi: 10.1021/ct9003004 – ident: ref62/cit62 doi: 10.1021/jp110632g – ident: ref66/cit66 doi: 10.1063/5.0005081 – ident: ref7/cit7 doi: 10.1126/science.aah3429 – ident: ref67/cit67 doi: 10.1002/wcms.1331 – ident: ref58/cit58 doi: 10.1039/C8CP07104G – ident: ref6/cit6 doi: 10.1038/s41557-022-01012-0 – ident: ref83/cit83 doi: 10.1021/acs.jpcb.5b09838 – ident: ref13/cit13 doi: 10.1021/acs.chemrev.7b00577 – ident: ref64/cit64 doi: 10.1063/5.0045572 – ident: ref28/cit28 doi: 10.1021/acs.jctc.0c00512 – ident: ref98/cit98 doi: 10.1038/s41570-021-00278-1 – ident: ref19/cit19 doi: 10.1063/1.4829856 – ident: ref55/cit55 doi: 10.1021/acs.jctc.7b00958 – ident: ref65/cit65 doi: 10.1002/wcms.82 – ident: ref60/cit60 doi: 10.1021/acs.jpclett.5b02773 – ident: ref18/cit18 doi: 10.1063/1.3506779 – ident: ref10/cit10 doi: 10.1021/acs.jctc.2c00804 – ident: ref33/cit33 doi: 10.1021/acs.chemrev.0c00223 – ident: ref94/cit94 doi: 10.1021/acs.jctc.1c00012 – ident: ref74/cit74 – ident: ref88/cit88 doi: 10.1063/1.3633329 – ident: ref30/cit30 doi: 10.1063/1.2008258 – ident: ref87/cit87 doi: 10.1021/acs.jctc.9b00067 – ident: ref53/cit53 doi: 10.1063/1.3436501 – ident: ref25/cit25 doi: 10.1103/physreva.84.014701 – ident: ref14/cit14 doi: 10.1002/wcms.64 – ident: ref63/cit63 doi: 10.1021/acs.jctc.6b00156 – ident: ref72/cit72 doi: 10.1063/1.4919780 – ident: ref31/cit31 doi: 10.1021/acs.jpclett.9b01902 – ident: ref8/cit8 doi: 10.1126/science.abg3091 – ident: ref82/cit82 doi: 10.1039/c2fd20055d – ident: ref96/cit96 doi: 10.1039/C9SC01742A |
SSID | ssj0033423 |
Score | 2.5515532 |
Snippet | The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While... The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While... |
SourceID | unpaywall pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 8273 |
SubjectTerms | Algorithms Dynamics Electronic structure Potential energy Sensitivity analysis Wave functions |
Title | What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm |
URI | https://www.proquest.com/docview/2919440001 https://www.proquest.com/docview/2888032145 https://pubmed.ncbi.nlm.nih.gov/PMC10688183 https://doi.org/10.1021/acs.jctc.3c00908 |
UnpaywallVersion | publishedVersion |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9626 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjfehedh_z1hUN9rKB01iyZelphNBSBguFLNA9GV2XtKldapvR_fod2Yq3lLHLm0GybB9d_B0dne9D6G2eJzLlJo01pyxOLTGxdBxcFWeghLKJFT53-NOcnS7Tj-fZedjv8LkwO_F7khxJXY8vdKPHVAMa8Fm9e8yHkkZobzk_m37p6FBTTzLZbeWFa7KNSP6uid0_0E9YefdQ5H5bXsvbb3Kz-eWPc_Kwpz-qO6JCf9Dkctw2aqy_36Fx_JePeYQeBNiJp_04eYzu2fIJ2p9t1d6eokvP4Y1n_cH1GgMsxD29xi2uHD5bVU1levF6aGaxvgqqX_UHfDwI6eBFR0bb3ljst-HaGs-rjvtAeVpYPN18rW7WzerqGVqeHH-encZBiCHW4F42seQTS5WROXNKSZpxK5ib2DzTGhwMpwxVWk4MoU6AlyuYkEoZC9iTcsdpKuhzNCqr0r5A2BINRUYKBdhBKSaZy7Jc2YzDWpA5F6GjbecUOrCUe7GMTdFFy0lSgBELb8QiGDFC74Y7rnuGjj_UPdj2dxHmal0QkYg09WA3Qm-GYjC_D53I0lYt1OGwznlNpyxCfGecDM_0PN27JeV61fF1J17YB5bOCL0fhtRfX_Xl_1R-he4TAF8-R5LwAzSC3ravASw16hCchdniMMyWH6XoF_4 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjfehetnYX5q0bGuxlA6exZMvS0wihpQwWCl2gezK6LllTu9Q2o_v1PbIVryljlzeDZNk-uvg7Ojrfh9C7PE9kyk0aa05ZnFpiYuk4uCrOQAllEyt87vDnOTtZpJ_Os_Ow3-FzYbbi9yQ5lLoef9eNHlMNaMBn9e4wH0oaoZ3F_HT6taNDTT3JZLeVF67JJiL5uya2_0C_YOX9Q5G7bXklb37I9frOH-f4cU9_VHdEhf6gycW4bdRY_7xH4_gvH7OHHgXYiaf9ONlHD2z5BO3ONmpvT9GF5_DGs_7geo0BFuKeXuMGVw6fLqumMr14PTRztroMql_1R3w0COngs46Mtr222G_DtTWeVx33gfK0sHi6_lZdr5rl5TO0OD76MjuJgxBDrMG9bGLJJ5YqI3PmlJI041YwN7F5pjU4GE4ZqrScGEKdAC9XMCGVMhawJ-WO01TQ52hUVqV9gbAlGoqMFAqwg1JMMpdlubIZh7Ugcy5Ch5vOKXRgKfdiGeuii5aTpAAjFt6IRTBihN4Pd1z1DB1_qHuw6e8izNW6ICIRaerBboTeDsVgfh86kaWtWqjDYZ3zmk5ZhPjWOBme6Xm6t0vK1bLj6068sA8snRH6MAypv77qy_-p_Ao9JAC-fI4k4QdoBL1tXwNYatSbME9uARvIFwY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Controls+the+Quality+of+Photodynamical+Simulations%3F+Electronic+Structure+Versus+Nonadiabatic+Algorithm&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Jano%C5%A1%2C+Ji%C5%99%C3%AD&rft.au=Slav%C3%AD%C4%8Dek%2C+Petr&rft.date=2023-11-28&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=19&rft.issue=22&rft.spage=8273&rft.epage=8284&rft_id=info:doi/10.1021%2Facs.jctc.3c00908&rft_id=info%3Apmid%2F37939301&rft.externalDocID=PMC10688183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |