What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm

The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 19; no. 22; pp. 8273 - 8284
Main Authors Janoš, Jiří, Slavíček, Petr
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 28.11.2023
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.3c00908

Cover

Abstract The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau–Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
AbstractList The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau–Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau–Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
Author Slavíček, Petr
Janoš, Jiří
Author_xml – sequence: 1
  givenname: Jiří
  orcidid: 0000-0001-5903-8538
  surname: Janoš
  fullname: Janoš, Jiří
  organization: Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
– sequence: 2
  givenname: Petr
  orcidid: 0000-0002-5358-5538
  surname: Slavíček
  fullname: Slavíček, Petr
  organization: Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
BookMark eNqFkEtvEzEURi1URB-wZ2mJDZuE6_FkYq-qKioUqeKh8lhadzyexsFjBz-o8u9xSQSiC1j5Sj7fp3vPKTnywRtCnjOYM2jYK9RpvtFZz7kGkCAekRO2aOVMdk139Htm4picprQB4Lxt-BNyzJeSSw7shHz7usZMV8HnGFyieW3ox4LO5h0NI_2wDjkMO4-T1ejojZ2Kw2yDT-f00hldQ95qepNj0blEQ7-YmEqi74LHwWJfWU0v3G2INq-np-TxiC6ZZ4f3jHx-fflpdTW7fv_m7erieqZbaPIMBRjeD7jsxr5HvhBGdiOY5UJraOXYD7zXCEPDRwnNUnYS-34wICUXo-Ct5GeE7XuL3-LuDp1T22gnjDvFQN2LU1WcuhenDuJq5nyf2ZZ-MoM2VQj-yQW06u8fb9fqNvyodZ0QTPDa8PLQEMP3YlJWk03aOIfehJJUI4QA3rB2UdEXD9BNKNFXJ6qRTLYtALBKdXtKx5BSNKPSNv-yXxew7l-3wIPgf8__CeR8uoY
CitedBy_id crossref_primary_10_1039_D4CP02489C
crossref_primary_10_1039_D4FD00062E
crossref_primary_10_1063_5_0252505
crossref_primary_10_1063_5_0197768
crossref_primary_10_1039_D4CP03671A
crossref_primary_10_1021_acs_jpclett_4c02955
crossref_primary_10_1021_acs_jpca_4c04639
crossref_primary_10_1021_acs_jctc_4c01263
crossref_primary_10_1021_acs_jctc_4c00855
crossref_primary_10_1021_acs_jctc_4c01008
crossref_primary_10_1021_acs_jctc_4c01349
crossref_primary_10_1063_5_0203105
crossref_primary_10_1063_5_0203667
crossref_primary_10_1063_5_0203800
crossref_primary_10_1021_acs_jpca_4c02028
crossref_primary_10_1021_acs_jpca_4c03612
crossref_primary_10_1021_acs_jpcb_4c06924
crossref_primary_10_1063_5_0246270
crossref_primary_10_1021_acs_jpclett_4c00106
crossref_primary_10_1063_5_0246790
crossref_primary_10_1063_5_0198333
crossref_primary_10_1039_D4CP03960B
crossref_primary_10_1063_5_0203654
crossref_primary_10_1021_acs_jpclett_3c03014
crossref_primary_10_1063_5_0203636
crossref_primary_10_1021_acs_jpca_4c03481
Cites_doi 10.1039/C8FD00088C
10.1063/1.2715585
10.1002/cphc.201100200
10.1063/1.3314248
10.1021/acs.jpclett.2c03295
10.1039/C2CP43381H
10.1063/1.4938175
10.1103/PhysRevB.75.115409
10.1039/D0FD00037J
10.1021/acs.jctc.1c00346
10.1063/1.449071
10.1103/PhysRevB.106.144304
10.1063/1.4923259
10.1063/1.2978380
10.1021/acs.chemrev.1c00074
10.1063/5.0052118
10.1039/b314253a
10.1021/acs.jpclett.8b00060
10.1063/1.4875702
10.1063/1.4882073
10.1146/annurev.physchem.57.032905.104612
10.1039/d1cp05187c
10.1021/acs.jctc.1c01046
10.1038/s41570-018-0008-8
10.1103/PhysRevA.88.052704
10.1063/1.472486
10.1021/acs.jctc.5b01046
10.1146/annurev-physchem-040215-112245
10.1021/acs.jctc.2c00988
10.1021/jp9063565
10.1021/cr0206667
10.1021/ja00424a001
10.1016/S0009-2614(97)88000-1
10.1002/anie.201607633
10.1021/ct500483t
10.1021/jacs.1c07725
10.1016/j.chemphys.2008.01.014
10.1039/D1CP01843D
10.1021/acs.jctc.0c00644
10.1021/jacs.9b10533
10.1080/00268976.2018.1501112
10.1021/acs.jctc.2c00968
10.1021/ct300321a
10.1021/acs.jctc.9b01129
10.1021/acs.jctc.3c00024
10.1063/1.5048049
10.1063/1.459170
10.1103/PhysRevLett.117.093001
10.1063/1.5095810
10.1016/S0009-2614(00)00691-6
10.1002/wcms.1370
10.1021/jp908936u
10.1080/0144235X.2015.1051354
10.1039/D0CP01353F
10.1021/acs.chemrev.7b00423
10.1002/cphc.201200941
10.1063/1.1545679
10.1007/s00214-011-1073-y
10.1063/5.0062757
10.1021/acs.jctc.7b00018
10.1002/wcms.1417
10.1016/S0009-2614(98)00252-8
10.1021/ct9003004
10.1021/jp110632g
10.1063/5.0005081
10.1126/science.aah3429
10.1002/wcms.1331
10.1039/C8CP07104G
10.1038/s41557-022-01012-0
10.1021/acs.jpcb.5b09838
10.1021/acs.chemrev.7b00577
10.1063/5.0045572
10.1021/acs.jctc.0c00512
10.1038/s41570-021-00278-1
10.1063/1.4829856
10.1021/acs.jctc.7b00958
10.1002/wcms.82
10.1021/acs.jpclett.5b02773
10.1063/1.3506779
10.1021/acs.jctc.2c00804
10.1021/acs.chemrev.0c00223
10.1021/acs.jctc.1c00012
10.1063/1.3633329
10.1063/1.2008258
10.1021/acs.jctc.9b00067
10.1063/1.3436501
10.1103/physreva.84.014701
10.1002/wcms.64
10.1021/acs.jctc.6b00156
10.1063/1.4919780
10.1021/acs.jpclett.9b01902
10.1126/science.abg3091
10.1039/c2fd20055d
10.1039/C9SC01742A
ContentType Journal Article
Copyright Copyright American Chemical Society Nov 28, 2023
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: Copyright American Chemical Society Nov 28, 2023
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acs.jctc.3c00908
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 8284
ExternalDocumentID 10.1021/acs.jctc.3c00908
PMC10688183
10_1021_acs_jctc_3c00908
GrantInformation_xml – fundername: ;
  grantid: 23-07066S
– fundername: ;
  grantid: A1_FCHI_2023_001
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
EJD
IHE
LG6
UNPAY
ID FETCH-LOGICAL-c402t-a80e3bda76fbba358e96f0e75cc049fbd3bca0d23f9027969abbde09938f83493
IEDL.DBID UNPAY
ISSN 1549-9618
1549-9626
IngestDate Sun Sep 07 11:19:53 EDT 2025
Tue Sep 30 17:17:53 EDT 2025
Fri Jul 11 05:49:08 EDT 2025
Mon Jun 30 13:02:26 EDT 2025
Tue Jul 01 02:03:35 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a80e3bda76fbba358e96f0e75cc049fbd3bca0d23f9027969abbde09938f83493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5358-5538
0000-0001-5903-8538
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acs.jctc.3c00908
PMID 37939301
PQID 2919440001
PQPubID 2048741
PageCount 12
ParticipantIDs unpaywall_primary_10_1021_acs_jctc_3c00908
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10688183
proquest_miscellaneous_2888032145
proquest_journals_2919440001
crossref_citationtrail_10_1021_acs_jctc_3c00908
crossref_primary_10_1021_acs_jctc_3c00908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-28
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-28
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref25/cit25
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref71/cit71
  doi: 10.1039/C8FD00088C
– ident: ref16/cit16
  doi: 10.1063/1.2715585
– ident: ref42/cit42
  doi: 10.1002/cphc.201100200
– ident: ref22/cit22
  doi: 10.1063/1.3314248
– ident: ref38/cit38
  doi: 10.1021/acs.jpclett.2c03295
– ident: ref80/cit80
  doi: 10.1039/C2CP43381H
– ident: ref5/cit5
  doi: 10.1063/1.4938175
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.75.115409
– ident: ref61/cit61
  doi: 10.1039/D0FD00037J
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.1c00346
– ident: ref73/cit73
  doi: 10.1063/1.449071
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.106.144304
– ident: ref54/cit54
  doi: 10.1063/1.4923259
– ident: ref46/cit46
  doi: 10.1063/1.2978380
– ident: ref44/cit44
  doi: 10.1021/acs.chemrev.1c00074
– ident: ref37/cit37
  doi: 10.1063/5.0052118
– ident: ref39/cit39
  doi: 10.1039/b314253a
– ident: ref21/cit21
  doi: 10.1021/acs.jpclett.8b00060
– ident: ref23/cit23
  doi: 10.1063/1.4875702
– ident: ref27/cit27
  doi: 10.1063/1.4882073
– ident: ref91/cit91
  doi: 10.1146/annurev.physchem.57.032905.104612
– ident: ref49/cit49
  doi: 10.1039/d1cp05187c
– ident: ref50/cit50
  doi: 10.1021/acs.jctc.1c01046
– ident: ref3/cit3
  doi: 10.1038/s41570-018-0008-8
– ident: ref26/cit26
  doi: 10.1103/PhysRevA.88.052704
– ident: ref34/cit34
  doi: 10.1063/1.472486
– ident: ref56/cit56
  doi: 10.1021/acs.jctc.5b01046
– ident: ref20/cit20
  doi: 10.1146/annurev-physchem-040215-112245
– ident: ref29/cit29
  doi: 10.1021/acs.jctc.2c00988
– ident: ref81/cit81
  doi: 10.1021/jp9063565
– ident: ref2/cit2
  doi: 10.1021/cr0206667
– ident: ref78/cit78
  doi: 10.1021/ja00424a001
– ident: ref35/cit35
  doi: 10.1016/S0009-2614(97)88000-1
– ident: ref84/cit84
  doi: 10.1002/anie.201607633
– ident: ref59/cit59
  doi: 10.1021/ct500483t
– ident: ref97/cit97
  doi: 10.1021/jacs.1c07725
– ident: ref75/cit75
  doi: 10.1016/j.chemphys.2008.01.014
– ident: ref41/cit41
  doi: 10.1039/D1CP01843D
– ident: ref51/cit51
  doi: 10.1021/acs.jctc.0c00644
– ident: ref1/cit1
  doi: 10.1021/jacs.9b10533
– ident: ref85/cit85
  doi: 10.1080/00268976.2018.1501112
– ident: ref95/cit95
  doi: 10.1021/acs.jctc.2c00968
– ident: ref70/cit70
  doi: 10.1021/ct300321a
– ident: ref89/cit89
  doi: 10.1021/acs.jctc.9b01129
– ident: ref92/cit92
  doi: 10.1021/acs.jctc.3c00024
– ident: ref76/cit76
  doi: 10.1063/1.5048049
– ident: ref15/cit15
  doi: 10.1063/1.459170
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.117.093001
– ident: ref24/cit24
  doi: 10.1063/1.5095810
– ident: ref57/cit57
  doi: 10.1016/S0009-2614(00)00691-6
– ident: ref9/cit9
  doi: 10.1002/wcms.1370
– ident: ref79/cit79
  doi: 10.1021/jp908936u
– ident: ref40/cit40
  doi: 10.1080/0144235X.2015.1051354
– ident: ref77/cit77
– ident: ref93/cit93
  doi: 10.1039/D0CP01353F
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.7b00423
– ident: ref45/cit45
  doi: 10.1002/cphc.201200941
– ident: ref47/cit47
  doi: 10.1063/1.1545679
– ident: ref43/cit43
  doi: 10.1007/s00214-011-1073-y
– ident: ref48/cit48
  doi: 10.1063/5.0062757
– ident: ref11/cit11
– ident: ref86/cit86
  doi: 10.1021/acs.jctc.7b00018
– ident: ref12/cit12
  doi: 10.1002/wcms.1417
– ident: ref68/cit68
– ident: ref90/cit90
  doi: 10.1016/S0009-2614(98)00252-8
– ident: ref69/cit69
  doi: 10.1021/ct9003004
– ident: ref62/cit62
  doi: 10.1021/jp110632g
– ident: ref66/cit66
  doi: 10.1063/5.0005081
– ident: ref7/cit7
  doi: 10.1126/science.aah3429
– ident: ref67/cit67
  doi: 10.1002/wcms.1331
– ident: ref58/cit58
  doi: 10.1039/C8CP07104G
– ident: ref6/cit6
  doi: 10.1038/s41557-022-01012-0
– ident: ref83/cit83
  doi: 10.1021/acs.jpcb.5b09838
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.7b00577
– ident: ref64/cit64
  doi: 10.1063/5.0045572
– ident: ref28/cit28
  doi: 10.1021/acs.jctc.0c00512
– ident: ref98/cit98
  doi: 10.1038/s41570-021-00278-1
– ident: ref19/cit19
  doi: 10.1063/1.4829856
– ident: ref55/cit55
  doi: 10.1021/acs.jctc.7b00958
– ident: ref65/cit65
  doi: 10.1002/wcms.82
– ident: ref60/cit60
  doi: 10.1021/acs.jpclett.5b02773
– ident: ref18/cit18
  doi: 10.1063/1.3506779
– ident: ref10/cit10
  doi: 10.1021/acs.jctc.2c00804
– ident: ref33/cit33
  doi: 10.1021/acs.chemrev.0c00223
– ident: ref94/cit94
  doi: 10.1021/acs.jctc.1c00012
– ident: ref74/cit74
– ident: ref88/cit88
  doi: 10.1063/1.3633329
– ident: ref30/cit30
  doi: 10.1063/1.2008258
– ident: ref87/cit87
  doi: 10.1021/acs.jctc.9b00067
– ident: ref53/cit53
  doi: 10.1063/1.3436501
– ident: ref25/cit25
  doi: 10.1103/physreva.84.014701
– ident: ref14/cit14
  doi: 10.1002/wcms.64
– ident: ref63/cit63
  doi: 10.1021/acs.jctc.6b00156
– ident: ref72/cit72
  doi: 10.1063/1.4919780
– ident: ref31/cit31
  doi: 10.1021/acs.jpclett.9b01902
– ident: ref8/cit8
  doi: 10.1126/science.abg3091
– ident: ref82/cit82
  doi: 10.1039/c2fd20055d
– ident: ref96/cit96
  doi: 10.1039/C9SC01742A
SSID ssj0033423
Score 2.5515532
Snippet The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While...
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While...
SourceID unpaywall
pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8273
SubjectTerms Algorithms
Dynamics
Electronic structure
Potential energy
Sensitivity analysis
Wave functions
Title What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm
URI https://www.proquest.com/docview/2919440001
https://www.proquest.com/docview/2888032145
https://pubmed.ncbi.nlm.nih.gov/PMC10688183
https://doi.org/10.1021/acs.jctc.3c00908
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9626
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjfehedh_z1hUN9rKB01iyZelphNBSBguFLNA9GV2XtKldapvR_fod2Yq3lLHLm0GybB9d_B0dne9D6G2eJzLlJo01pyxOLTGxdBxcFWeghLKJFT53-NOcnS7Tj-fZedjv8LkwO_F7khxJXY8vdKPHVAMa8Fm9e8yHkkZobzk_m37p6FBTTzLZbeWFa7KNSP6uid0_0E9YefdQ5H5bXsvbb3Kz-eWPc_Kwpz-qO6JCf9Dkctw2aqy_36Fx_JePeYQeBNiJp_04eYzu2fIJ2p9t1d6eokvP4Y1n_cH1GgMsxD29xi2uHD5bVU1levF6aGaxvgqqX_UHfDwI6eBFR0bb3ljst-HaGs-rjvtAeVpYPN18rW7WzerqGVqeHH-encZBiCHW4F42seQTS5WROXNKSZpxK5ib2DzTGhwMpwxVWk4MoU6AlyuYkEoZC9iTcsdpKuhzNCqr0r5A2BINRUYKBdhBKSaZy7Jc2YzDWpA5F6GjbecUOrCUe7GMTdFFy0lSgBELb8QiGDFC74Y7rnuGjj_UPdj2dxHmal0QkYg09WA3Qm-GYjC_D53I0lYt1OGwznlNpyxCfGecDM_0PN27JeV61fF1J17YB5bOCL0fhtRfX_Xl_1R-he4TAF8-R5LwAzSC3ravASw16hCchdniMMyWH6XoF_4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjfehetnYX5q0bGuxlA6exZMvS0wihpQwWCl2gezK6LllTu9Q2o_v1PbIVryljlzeDZNk-uvg7Ojrfh9C7PE9kyk0aa05ZnFpiYuk4uCrOQAllEyt87vDnOTtZpJ_Os_Ow3-FzYbbi9yQ5lLoef9eNHlMNaMBn9e4wH0oaoZ3F_HT6taNDTT3JZLeVF67JJiL5uya2_0C_YOX9Q5G7bXklb37I9frOH-f4cU9_VHdEhf6gycW4bdRY_7xH4_gvH7OHHgXYiaf9ONlHD2z5BO3ONmpvT9GF5_DGs_7geo0BFuKeXuMGVw6fLqumMr14PTRztroMql_1R3w0COngs46Mtr222G_DtTWeVx33gfK0sHi6_lZdr5rl5TO0OD76MjuJgxBDrMG9bGLJJ5YqI3PmlJI041YwN7F5pjU4GE4ZqrScGEKdAC9XMCGVMhawJ-WO01TQ52hUVqV9gbAlGoqMFAqwg1JMMpdlubIZh7Ugcy5Ch5vOKXRgKfdiGeuii5aTpAAjFt6IRTBihN4Pd1z1DB1_qHuw6e8izNW6ICIRaerBboTeDsVgfh86kaWtWqjDYZ3zmk5ZhPjWOBme6Xm6t0vK1bLj6068sA8snRH6MAypv77qy_-p_Ao9JAC-fI4k4QdoBL1tXwNYatSbME9uARvIFwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Controls+the+Quality+of+Photodynamical+Simulations%3F+Electronic+Structure+Versus+Nonadiabatic+Algorithm&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Jano%C5%A1%2C+Ji%C5%99%C3%AD&rft.au=Slav%C3%AD%C4%8Dek%2C+Petr&rft.date=2023-11-28&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=19&rft.issue=22&rft.spage=8273&rft.epage=8284&rft_id=info:doi/10.1021%2Facs.jctc.3c00908&rft_id=info%3Apmid%2F37939301&rft.externalDocID=PMC10688183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon