General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm
We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds...
        Saved in:
      
    
          | Published in | Mathematics of operations research Vol. 45; no. 3; pp. 923 - 946 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Linthicum
          INFORMS
    
        01.08.2020
     Institute for Operations Research and the Management Sciences  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0364-765X 1526-5471  | 
| DOI | 10.1287/moor.2019.1017 | 
Cover
| Abstract | We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of
L
2
functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in
L
p
,
p
a real number greater than
2
<
p
<
∞
. We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of
L
2
functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0. | 
    
|---|---|
| AbstractList | We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm's least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in Lp, p a real number greater than 2<p<∞. We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0. We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L 2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in L p , p a real number greater than [Formula: see text]. We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L 2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0. We establish error estimates for the Longstaff-Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of [L.sup.2] functions of finite Vapnik-Chervonenkis (VC) dimension whenever the algorithm's least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in [L.sup.p], p a real number greater than 2 < p <. We also establish new overall error bounds for the Longstaff-Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of [L.sup.2] functions of finite VC dimension and by establishing error estimates as well in the case of e-additive approximate least-squares optimization, e greater than or equal to 0. We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L 2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in L p , p a real number greater than 2 < p < ∞ . We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L 2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0.  | 
    
| Audience | Academic | 
    
| Author | Zanger, Daniel Z. | 
    
| Author_xml | – sequence: 1 givenname: Daniel Z. orcidid: 0000-0003-0678-6617 surname: Zanger fullname: Zanger, Daniel Z. organization: California Science and Technology University, Milpitas, California 95035  | 
    
| BookMark | eNqFkU1LwzAYgINMcE6vnguC4KE1SdOmO44x56AiOIXdQpamXUfbbEmKHyf_g__QX2JKvSgMTyHwPMnL-5yCQaMaCcAFggHCCb2pldIBhmgcIIjoERiiCMd-RCgagCEMY-LTOFqdgFNjthCiiCIyBKu5bKTmlTfTWmlvZmxZcyuNl7ub3UgvVU1hLM_zr4_Ppdi8cG3fvVRyY_3lvuXaofeqsdKbcl0pb1IVSpd2U5-B45xXRp7_nCPwfDt7mt756cN8MZ2kviAQW3-cxBhJEhIRc5HxTGQwd-NHYUbHQsJ8ndAkoVhIIiBeUxJHUuIsy3CWRLnA63AELvt3d1rtW2ks26pWN-5LhgmhIcQYE0dd9VTBK8nKRnQjv9qCt8YwNolDgsMYU-TA68PgYvn4myU9K7QyRsucidJyWzpF87JiCLIuDOvCsC4M68I4Lfij7bRbun47LPi9UDauSm3-478B6rSh3g | 
    
| CitedBy_id | crossref_primary_10_1137_22M1526010 crossref_primary_10_1016_j_jco_2023_101804 crossref_primary_10_2139_ssrn_3797964 crossref_primary_10_3390_sym14071324 crossref_primary_10_1287_opre_2023_2461 crossref_primary_10_1140_epjqt_s40507_022_00124_3  | 
    
| Cites_doi | 10.1016/j.laa.2009.04.017 10.1111/mafi.12125 10.1214/1050516040000008461 10.1007/978-1-4612-5254-2 10.1214/105051605000000412 10.1090/S0273-0979-01-00923-5 10.1109/18.556601 10.1287/mnsc.1030.0155 10.1007/s007800200071 10.1214/105051605000000043 10.1214/105051607000000249 10.1007/s00780-010-0132-x 10.1214/aos/1176345969 10.1109/ACC.2008.4586883 10.1142/9789812836267_0008 10.1007/978-3-7908-2598-5_2 10.1007/978-3-662-02888-9 10.1080/13504860802516881 10.1109/72.935083 10.1007/s00780-013-0204-9 10.21314/JCF.2004.123 10.1002/cpe.2862 10.1007/978-1-4612-0711-5 10.1016/0097-3165(95)90052-7 10.1007/b97848 10.1111/j.1467-9965.2010.00404.x 10.1109/9.793723 10.1214/10-AAP704 10.1093/rfs/14.1.113  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2020 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Aug 2020  | 
    
| Copyright_xml | – notice: COPYRIGHT 2020 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Aug 2020  | 
    
| DBID | AAYXX CITATION ISR JQ2  | 
    
| DOI | 10.1287/moor.2019.1017 | 
    
| DatabaseName | CrossRef Gale In Context: Science ProQuest Computer Science Collection  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Business  | 
    
| EISSN | 1526-5471 | 
    
| EndPage | 946 | 
    
| ExternalDocumentID | A634236271 10_1287_moor_2019_1017 moor20191017  | 
    
| Genre | Research Articles | 
    
| GroupedDBID | 08R 1AW 1OL 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ACYGS ADCOW ADGDI ADMHP ADODI AEILP AELPN AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BES BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL F20 FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HGD HQ6 HVGLF H~9 IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P-O P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XFK XHC XI7 Y99 ZL0 ZY4 -~X .DC 18M 2AX 8H~ AADHG AAOAC AAWIL AAWTO AAYXX ABAWQ ABDNZ ABFAN ABKVW ABQDR ABXSQ ABYRZ ABYWD ABYYQ ACDIW ACGFO ACHJO ACMTB ACTMH ACUHF ACVFL ACXJH ADULT AEGXH AELLO AEMOZ AFVYC AGLNM AHAJD AHQJS AIAGR AIHAF AKBRZ ALRMG AMVHM APTMU ASMEE BAAKF CCPQU CITATION IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA PQGLB PUEGO WHG XOL JQ2  | 
    
| ID | FETCH-LOGICAL-c402t-98621e434c6acdadcd0f10153d79ce0fb878872ce4c02b7465ee2ddd2d85fc2b3 | 
    
| ISSN | 0364-765X | 
    
| IngestDate | Sat Aug 16 15:22:30 EDT 2025 Thu Oct 16 16:00:17 EDT 2025 Thu Oct 16 15:33:49 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Wed Oct 01 02:52:27 EDT 2025 Wed Jan 06 02:47:46 EST 2021  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c402t-98621e434c6acdadcd0f10153d79ce0fb878872ce4c02b7465ee2ddd2d85fc2b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0678-6617 | 
    
| PQID | 2447302224 | 
    
| PQPubID | 37790 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | gale_incontextgauss__A634236271 proquest_journals_2447302224 gale_incontextgauss_ISR_A634236271 crossref_citationtrail_10_1287_moor_2019_1017 crossref_primary_10_1287_moor_2019_1017 informs_primary_10_1287_moor_2019_1017  | 
    
| ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-08-01 | 
    
| PublicationDateYYYYMMDD | 2020-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Linthicum | 
    
| PublicationPlace_xml | – name: Linthicum | 
    
| PublicationTitle | Mathematics of operations research | 
    
| PublicationYear | 2020 | 
    
| Publisher | INFORMS Institute for Operations Research and the Management Sciences  | 
    
| Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences  | 
    
| References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Folland GB (B13) 1984 Feinerman RP (B12) 1973  | 
    
| References_xml | – ident: B12 – ident: B9 – ident: B14 – ident: B10 – ident: B3 – ident: B20 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B31 – ident: B33 – ident: B8 – ident: B11 – ident: B13 – ident: B2 – ident: B26 – ident: B4 – ident: B28 – ident: B6 – ident: B24 – ident: B22 – ident: B17 – ident: B32 – ident: B15 – ident: B30 – ident: B19 – ident: B23 doi: 10.1016/j.laa.2009.04.017 – ident: B33 doi: 10.1111/mafi.12125 – ident: B15 doi: 10.1214/1050516040000008461 – volume-title: Real Analysis: Modern Techniques and their Applications year: 1984 ident: B13 – ident: B24 doi: 10.1007/978-1-4612-5254-2 – ident: B16 doi: 10.1214/105051605000000412 – ident: B6 doi: 10.1090/S0273-0979-01-00923-5 – ident: B21 doi: 10.1109/18.556601 – ident: B27 doi: 10.1287/mnsc.1030.0155 – ident: B4 doi: 10.1007/s007800200071 – ident: B10 doi: 10.1214/105051605000000043 – ident: B11 doi: 10.1214/105051607000000249 – ident: B2 doi: 10.1007/s00780-010-0132-x – ident: B28 doi: 10.1214/aos/1176345969 – ident: B26 doi: 10.1109/ACC.2008.4586883 – ident: B3 doi: 10.1142/9789812836267_0008 – ident: B19 doi: 10.1007/978-3-7908-2598-5_2 – ident: B7 doi: 10.1007/978-3-662-02888-9 – ident: B31 doi: 10.1080/13504860802516881 – ident: B30 doi: 10.1109/72.935083 – ident: B32 doi: 10.1007/s00780-013-0204-9 – ident: B5 doi: 10.21314/JCF.2004.123 – ident: B1 doi: 10.1002/cpe.2862 – ident: B8 doi: 10.1007/978-1-4612-0711-5 – ident: B18 doi: 10.1016/0097-3165(95)90052-7 – ident: B17 doi: 10.1007/b97848 – ident: B20 doi: 10.1111/j.1467-9965.2010.00404.x – volume-title: Polynomial Approximation year: 1973 ident: B12 – ident: B29 doi: 10.1109/9.793723 – ident: B14 doi: 10.1214/10-AAP704 – ident: B22 doi: 10.1093/rfs/14.1.113  | 
    
| SSID | ssj0015714 | 
    
| Score | 2.284526 | 
    
| Snippet | We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all... We establish error estimates for the Longstaff-Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all...  | 
    
| SourceID | proquest gale crossref informs  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 923 | 
    
| SubjectTerms | Algorithms American options Approximation Estimates Finite element analysis Least squares method least-squares regression Mathematical analysis Monte Carlo algorithms Monte Carlo simulation Operations research optimal stopping Optimization Polynomials Primary: 65C05 Primary: dynamic programming/optimal control: Markov Secondary: 62L15, 60J20, 91B70, 93E24 Secondary: Finance: asset pricing/statistics: regression statistical learning theory  | 
    
| Title | General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm | 
    
| URI | https://www.proquest.com/docview/2447302224 | 
    
| Volume | 45 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1526-5471 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: AMVHM dateStart: 19760201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVQJxA88FFAdAywEIKHKZA6jpM8VmhTQRQkuk0VL1Hs2B1Sm2xJKqT9eq4Tx0nVoQEvURVZdupzYl875x4j9CbhjEeSMicRnDmUctdJfAAEIl0G_FFBKGu3z69seko_L_xFd9ponV1S8ffi6tq8kv9BFe4BrjpL9h-QtZXCDfgN-MIVEIbrX2FsPKNhMCvy4vAI3ta1Dh2tdPBLni0h-lPKmYvzX1DBlfZTLStnfrnReUf6ja6kFn2s8sPJapkXP6vzdT9enVlX11rykV_IwmjnjEuQ3U3-UScQd1nr5pOH2VAgnZzNLDKtSEE_7Leu3lYKaKWdnUCnHYj6-4seo07A_EV_qG2cIw2lvN64GTVJxzvjOdE7IsfrPNfWreOodoXqZi6rJ5wwbWTIiDYT2CMwvrsDtDeZnU1n9ouSH4yNlVjzWMbAExr4sF39VoBipunbjYttuTNh11HIyUN03ywf8KThwiN0S2ZDdKfNXhiiB-0pHdj01RDd61lOPkZnhjO45gy2nMHQMobuxrucwVucwTVncM0ZbDnzBJ0eH518nDrmbA1HUJdUTgQr2bGkHhUsEWmSitRV8O99Lw0iIV3FQy0zJUJS4RIeUOZLSdI0JWnoK0G49xQNsjyTzxBOQqW8JFW-8GExSzj3QpeHfpAEUkUeYyPktB0aC2M8r88_WcV6AQoAxBqAWAOgBYfBCL2z5S8ay5U_lnyt8Ym1j0mmhVLLZFOW8af597hjxAi9uq7QVom3Bt8b2zto4Y_NMFDGEB_DLAlhNt2_saXn6G73xh2gQVVs5AsIaiv-0vD1N_ejppI | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Error+Estimates+for+the+Longstaff-Schwartz+Least-Squares+Monte+Carlo+Algorithm&rft.jtitle=Mathematics+of+operations+research&rft.au=Zanger%2C+Daniel+Z&rft.date=2020-08-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=45&rft.issue=3&rft.spage=923&rft_id=info:doi/10.1287%2Fmoor.2019.1017&rft.externalDocID=A634236271 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |