General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm

We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research Vol. 45; no. 3; pp. 923 - 946
Main Author Zanger, Daniel Z.
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.08.2020
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0364-765X
1526-5471
DOI10.1287/moor.2019.1017

Cover

Abstract We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L 2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in L p , p a real number greater than 2 < p < ∞ . We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L 2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0.
AbstractList We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm's least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in Lp, p a real number greater than 2<p<∞. We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0.
We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L 2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in L p , p a real number greater than [Formula: see text]. We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L 2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0.
We establish error estimates for the Longstaff-Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of [L.sup.2] functions of finite Vapnik-Chervonenkis (VC) dimension whenever the algorithm's least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in [L.sup.p], p a real number greater than 2 < p <. We also establish new overall error bounds for the Longstaff-Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of [L.sup.2] functions of finite VC dimension and by establishing error estimates as well in the case of e-additive approximate least-squares optimization, e greater than or equal to 0.
We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all exercise time steps. We obtain, within the context of financial derivative payoff functions bounded according to the uniform norm, new bounds on the stochastic part of the error of this algorithm for an approximation architecture that may be any arbitrary set of L 2 functions of finite Vapnik–Chervonenkis (VC) dimension whenever the algorithm’s least-squares regression optimization step is solved either exactly or approximately. Moreover, we show how to extend these estimates to the case of payoff functions bounded only in L p , p a real number greater than 2 < p < ∞ . We also establish new overall error bounds for the Longstaff–Schwartz algorithm, including estimates on the approximation error also for unconstrained linear, finite-dimensional polynomial approximation. Our results here extend those in the literature by not imposing any uniform boundedness condition on the approximation architectures, allowing each of them to be any set of L 2 functions of finite VC dimension and by establishing error estimates as well in the case of ɛ-additive approximate least-squares optimization, ɛ greater than or equal to 0.
Audience Academic
Author Zanger, Daniel Z.
Author_xml – sequence: 1
  givenname: Daniel Z.
  orcidid: 0000-0003-0678-6617
  surname: Zanger
  fullname: Zanger, Daniel Z.
  organization: California Science and Technology University, Milpitas, California 95035
BookMark eNqFkU1LwzAYgINMcE6vnguC4KE1SdOmO44x56AiOIXdQpamXUfbbEmKHyf_g__QX2JKvSgMTyHwPMnL-5yCQaMaCcAFggHCCb2pldIBhmgcIIjoERiiCMd-RCgagCEMY-LTOFqdgFNjthCiiCIyBKu5bKTmlTfTWmlvZmxZcyuNl7ub3UgvVU1hLM_zr4_Ppdi8cG3fvVRyY_3lvuXaofeqsdKbcl0pb1IVSpd2U5-B45xXRp7_nCPwfDt7mt756cN8MZ2kviAQW3-cxBhJEhIRc5HxTGQwd-NHYUbHQsJ8ndAkoVhIIiBeUxJHUuIsy3CWRLnA63AELvt3d1rtW2ks26pWN-5LhgmhIcQYE0dd9VTBK8nKRnQjv9qCt8YwNolDgsMYU-TA68PgYvn4myU9K7QyRsucidJyWzpF87JiCLIuDOvCsC4M68I4Lfij7bRbun47LPi9UDauSm3-478B6rSh3g
CitedBy_id crossref_primary_10_1137_22M1526010
crossref_primary_10_1016_j_jco_2023_101804
crossref_primary_10_2139_ssrn_3797964
crossref_primary_10_3390_sym14071324
crossref_primary_10_1287_opre_2023_2461
crossref_primary_10_1140_epjqt_s40507_022_00124_3
Cites_doi 10.1016/j.laa.2009.04.017
10.1111/mafi.12125
10.1214/1050516040000008461
10.1007/978-1-4612-5254-2
10.1214/105051605000000412
10.1090/S0273-0979-01-00923-5
10.1109/18.556601
10.1287/mnsc.1030.0155
10.1007/s007800200071
10.1214/105051605000000043
10.1214/105051607000000249
10.1007/s00780-010-0132-x
10.1214/aos/1176345969
10.1109/ACC.2008.4586883
10.1142/9789812836267_0008
10.1007/978-3-7908-2598-5_2
10.1007/978-3-662-02888-9
10.1080/13504860802516881
10.1109/72.935083
10.1007/s00780-013-0204-9
10.21314/JCF.2004.123
10.1002/cpe.2862
10.1007/978-1-4612-0711-5
10.1016/0097-3165(95)90052-7
10.1007/b97848
10.1111/j.1467-9965.2010.00404.x
10.1109/9.793723
10.1214/10-AAP704
10.1093/rfs/14.1.113
ContentType Journal Article
Copyright COPYRIGHT 2020 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Aug 2020
Copyright_xml – notice: COPYRIGHT 2020 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Aug 2020
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1287/moor.2019.1017
DatabaseName CrossRef
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1526-5471
EndPage 946
ExternalDocumentID A634236271
10_1287_moor_2019_1017
moor20191017
Genre Research Articles
GroupedDBID 08R
1AW
1OL
29M
3V.
4.4
4S
5GY
7WY
85S
8AL
8AO
8FE
8FG
8FL
8G5
8H
8VB
AAKYL
AAPBV
ABBHK
ABEFU
ABFLS
ABJCF
ABPPZ
ABUWG
ACIWK
ACNCT
ACYGS
ADCOW
ADGDI
ADMHP
ADODI
AEILP
AELPN
AENEX
AEUPB
AFKRA
AFXKK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BDTQF
BENPR
BES
BEZIV
BGLVJ
BHOJU
BKOMP
BPHCQ
CBXGM
CHNMF
CS3
CWXUR
CZBKB
DQDLB
DSRWC
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECEWR
ECR
ECS
EDO
EFSUC
EJD
EMK
EPL
F20
FEDTE
FRNLG
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HECYW
HGD
HQ6
HVGLF
H~9
IAO
ICW
IEA
IGG
IOF
ISR
ITC
JAA
JBU
JMS
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
M0C
M0N
M2O
M7S
MBDVC
MV1
N95
NIEAY
P-O
P2P
P62
PADUT
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
QWB
RNS
RPU
RXW
SA0
TAE
TH9
TN5
TUS
U5U
WH7
X
XFK
XHC
XI7
Y99
ZL0
ZY4
-~X
.DC
18M
2AX
8H~
AADHG
AAOAC
AAWIL
AAWTO
AAYXX
ABAWQ
ABDNZ
ABFAN
ABKVW
ABQDR
ABXSQ
ABYRZ
ABYWD
ABYYQ
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ACUHF
ACVFL
ACXJH
ADULT
AEGXH
AELLO
AEMOZ
AFVYC
AGLNM
AHAJD
AHQJS
AIAGR
AIHAF
AKBRZ
ALRMG
AMVHM
APTMU
ASMEE
BAAKF
CCPQU
CITATION
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PUEGO
WHG
XOL
JQ2
ID FETCH-LOGICAL-c402t-98621e434c6acdadcd0f10153d79ce0fb878872ce4c02b7465ee2ddd2d85fc2b3
ISSN 0364-765X
IngestDate Sat Aug 16 15:22:30 EDT 2025
Thu Oct 16 16:00:17 EDT 2025
Thu Oct 16 15:33:49 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Wed Oct 01 02:52:27 EDT 2025
Wed Jan 06 02:47:46 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-98621e434c6acdadcd0f10153d79ce0fb878872ce4c02b7465ee2ddd2d85fc2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0678-6617
PQID 2447302224
PQPubID 37790
PageCount 24
ParticipantIDs gale_incontextgauss__A634236271
proquest_journals_2447302224
gale_incontextgauss_ISR_A634236271
crossref_citationtrail_10_1287_moor_2019_1017
crossref_primary_10_1287_moor_2019_1017
informs_primary_10_1287_moor_2019_1017
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Mathematics of operations research
PublicationYear 2020
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Folland GB (B13) 1984
Feinerman RP (B12) 1973
References_xml – ident: B12
– ident: B9
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B8
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B19
– ident: B23
  doi: 10.1016/j.laa.2009.04.017
– ident: B33
  doi: 10.1111/mafi.12125
– ident: B15
  doi: 10.1214/1050516040000008461
– volume-title: Real Analysis: Modern Techniques and their Applications
  year: 1984
  ident: B13
– ident: B24
  doi: 10.1007/978-1-4612-5254-2
– ident: B16
  doi: 10.1214/105051605000000412
– ident: B6
  doi: 10.1090/S0273-0979-01-00923-5
– ident: B21
  doi: 10.1109/18.556601
– ident: B27
  doi: 10.1287/mnsc.1030.0155
– ident: B4
  doi: 10.1007/s007800200071
– ident: B10
  doi: 10.1214/105051605000000043
– ident: B11
  doi: 10.1214/105051607000000249
– ident: B2
  doi: 10.1007/s00780-010-0132-x
– ident: B28
  doi: 10.1214/aos/1176345969
– ident: B26
  doi: 10.1109/ACC.2008.4586883
– ident: B3
  doi: 10.1142/9789812836267_0008
– ident: B19
  doi: 10.1007/978-3-7908-2598-5_2
– ident: B7
  doi: 10.1007/978-3-662-02888-9
– ident: B31
  doi: 10.1080/13504860802516881
– ident: B30
  doi: 10.1109/72.935083
– ident: B32
  doi: 10.1007/s00780-013-0204-9
– ident: B5
  doi: 10.21314/JCF.2004.123
– ident: B1
  doi: 10.1002/cpe.2862
– ident: B8
  doi: 10.1007/978-1-4612-0711-5
– ident: B18
  doi: 10.1016/0097-3165(95)90052-7
– ident: B17
  doi: 10.1007/b97848
– ident: B20
  doi: 10.1111/j.1467-9965.2010.00404.x
– volume-title: Polynomial Approximation
  year: 1973
  ident: B12
– ident: B29
  doi: 10.1109/9.793723
– ident: B14
  doi: 10.1214/10-AAP704
– ident: B22
  doi: 10.1093/rfs/14.1.113
SSID ssj0015714
Score 2.284526
Snippet We establish error estimates for the Longstaff–Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all...
We establish error estimates for the Longstaff-Schwartz algorithm, employing just a single set of independent Monte Carlo sample paths that is reused for all...
SourceID proquest
gale
crossref
informs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 923
SubjectTerms Algorithms
American options
Approximation
Estimates
Finite element analysis
Least squares method
least-squares regression
Mathematical analysis
Monte Carlo algorithms
Monte Carlo simulation
Operations research
optimal stopping
Optimization
Polynomials
Primary: 65C05
Primary: dynamic programming/optimal control: Markov
Secondary: 62L15, 60J20, 91B70, 93E24
Secondary: Finance: asset pricing/statistics: regression
statistical learning theory
Title General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm
URI https://www.proquest.com/docview/2447302224
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: AMVHM
  dateStart: 19760201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVQJxA88FFAdAywEIKHKZA6jpM8VmhTQRQkuk0VL1Hs2B1Sm2xJKqT9eq4Tx0nVoQEvURVZdupzYl875x4j9CbhjEeSMicRnDmUctdJfAAEIl0G_FFBKGu3z69seko_L_xFd9ponV1S8ffi6tq8kv9BFe4BrjpL9h-QtZXCDfgN-MIVEIbrX2FsPKNhMCvy4vAI3ta1Dh2tdPBLni0h-lPKmYvzX1DBlfZTLStnfrnReUf6ja6kFn2s8sPJapkXP6vzdT9enVlX11rykV_IwmjnjEuQ3U3-UScQd1nr5pOH2VAgnZzNLDKtSEE_7Leu3lYKaKWdnUCnHYj6-4seo07A_EV_qG2cIw2lvN64GTVJxzvjOdE7IsfrPNfWreOodoXqZi6rJ5wwbWTIiDYT2CMwvrsDtDeZnU1n9ouSH4yNlVjzWMbAExr4sF39VoBipunbjYttuTNh11HIyUN03ywf8KThwiN0S2ZDdKfNXhiiB-0pHdj01RDd61lOPkZnhjO45gy2nMHQMobuxrucwVucwTVncM0ZbDnzBJ0eH518nDrmbA1HUJdUTgQr2bGkHhUsEWmSitRV8O99Lw0iIV3FQy0zJUJS4RIeUOZLSdI0JWnoK0G49xQNsjyTzxBOQqW8JFW-8GExSzj3QpeHfpAEUkUeYyPktB0aC2M8r88_WcV6AQoAxBqAWAOgBYfBCL2z5S8ay5U_lnyt8Ym1j0mmhVLLZFOW8af597hjxAi9uq7QVom3Bt8b2zto4Y_NMFDGEB_DLAlhNt2_saXn6G73xh2gQVVs5AsIaiv-0vD1N_ejppI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Error+Estimates+for+the+Longstaff-Schwartz+Least-Squares+Monte+Carlo+Algorithm&rft.jtitle=Mathematics+of+operations+research&rft.au=Zanger%2C+Daniel+Z&rft.date=2020-08-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=45&rft.issue=3&rft.spage=923&rft_id=info:doi/10.1287%2Fmoor.2019.1017&rft.externalDocID=A634236271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon