Unsupervised Multi-View CNN for Salient View Selection and 3D Interest Point Detection

We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 130; no. 5; pp. 1210 - 1227
Main Authors Song, Ran, Zhang, Wei, Zhao, Yitian, Liu, Yonghuai
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-5691
1573-1405
1573-1405
DOI10.1007/s11263-022-01592-x

Cover

Abstract We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method can be used to select salient views of 3D scenes containing multiple objects. We also develop a method based on the UMVCNN for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the UMVCNN is amenable to different 3D shape understanding tasks.
AbstractList We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method can be used to select salient views of 3D scenes containing multiple objects. We also develop a method based on the UMVCNN for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the UMVCNN is amenable to different 3D shape understanding tasks.
Audience Academic
Author Song, Ran
Liu, Yonghuai
Zhang, Wei
Zhao, Yitian
Author_xml – sequence: 1
  givenname: Ran
  surname: Song
  fullname: Song, Ran
  organization: School of Control Science and Engineering, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: davidzhang@sdu.edu.cn
  organization: School of Control Science and Engineering, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University
– sequence: 3
  givenname: Yitian
  surname: Zhao
  fullname: Zhao, Yitian
  organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 4
  givenname: Yonghuai
  surname: Liu
  fullname: Liu, Yonghuai
  organization: Department of Computer Science, Edge Hill University
BookMark eNqNkM1KJTEQRoMoeNV5AVcB13EqSSedXsrVmRH8Ax23Ibe7WiJt-pqkR317oy0ILmTIIlCpk_rq7JDNMAYkZJ_DIQeofybOhZYMhGDAVSPY8wZZcFVLxitQm2QBjQCmdMO3yU5K9wAgjJALcvs3pGmN8Z9P2NHzacie3Xp8osuLC9qPkV67wWPI9L14jQO22Y-ButBReUxPQ8aIKdOr0ZemY8zz-x7Z6t2Q8MfHvUtufp3cLP-ws8vfp8ujM9ZWIDLTqtGNayUg6rZfmU5LjZWDrpedaozTxpTMq0aYvlJmpWtVVdxwrk1tAGu5S-T87RTW7uXJDYNdR__g4ovlYN_M2NmMLWbsuxn7XKiDmVrH8XEq6e39OMVQclqhlWokh1qUrsO5684NaH3oxxxdW06HD74t-ntf6kc1cFPcVqoAYgbaOKYUsf-_LOYL1Prs3hSWaX74Hv1YPpU54Q7j5xrfUK_STaVy
CitedBy_id crossref_primary_10_3390_rs15153775
crossref_primary_10_1016_j_aej_2024_09_087
crossref_primary_10_1109_TCSVT_2024_3359681
crossref_primary_10_1007_s00521_023_08644_4
crossref_primary_10_1007_s11263_023_01905_8
crossref_primary_10_1109_TMM_2022_3200852
crossref_primary_10_7717_peerj_cs_1584
crossref_primary_10_1007_s10109_023_00429_6
crossref_primary_10_1109_TAI_2023_3321584
crossref_primary_10_1007_s00371_024_03708_5
Cites_doi 10.1016/j.vrih.2019.01.001
10.1109/VR.2018.8447553
10.1109/ICCV.2017.558
10.1109/ICCV.2019.00045
10.1109/CVPR.2018.00028
10.1109/CVPR.2016.90
10.1007/978-3-030-01267-0_37
10.1016/0010-0285(89)90009-1
10.1109/CVPR.2017.702
10.1038/4511
10.1111/j.1467-8659.2009.01412.x
10.1109/CVPR.2017.29
10.1109/TPAMI.2016.2522437
10.1111/j.1467-8659.2008.01162.x
10.1145/1877808.1877819
10.1007/s00371-012-0746-4
10.1007/978-3-030-58529-7_27
10.1109/IROS45743.2020.9341304
10.1007/s00371-015-1069-z
10.1109/ICIP.2003.1246940
10.1007/s00371-005-0326-y
10.1109/CVPR.2016.609
10.1145/2019627.2019628
10.1109/TVCG.2018.2853751
10.1068/p2897
10.1109/CVPR.2018.00269
10.1007/s00371-015-1091-1
10.1109/ICCV.2015.123
10.1109/CVPR.2009.5206748
10.1007/s11263-009-0296-z
10.1109/TVCG.2018.2885750
10.1007/s00371-016-1334-9
10.3758/BF03200774
10.1057/978-1-349-95121-5_2565-1
10.1109/CVPR42600.2020.00639
10.1109/IROS.2018.8593524
10.1007/s00371-013-0806-4
10.1111/cgf.13082
10.1109/ICVRV.2014.12
10.1109/ICCV.2015.114
10.1037/0033-295X.94.2.115
10.1145/237170.237269
10.1016/0042-6989(94)90277-1
10.1145/1073204.1073244
10.1111/cgf.12317
10.1007/BF01449896
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
ADTOC
UNPAY
DOI 10.1007/s11263-022-01592-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1227
ExternalDocumentID oai:pure.atira.dk:openaire/53db4dc4-9cdc-4783-97ca-62ec384e6c5a
A701892045
10_1007_s11263_022_01592_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076148; 61991411
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c402t-65969ac30ee6cfb8d636e4a0df3d598a688569b928f458b67544181168780e73
IEDL.DBID UNPAY
ISSN 0920-5691
1573-1405
IngestDate Sun Oct 26 03:49:05 EDT 2025
Sat Jul 26 00:05:30 EDT 2025
Mon Oct 20 16:59:45 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Wed Oct 01 05:08:43 EDT 2025
Fri Feb 21 02:46:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords View-object consistency
View selection
Multi-view CNN
Unsupervised 3D deep learning
3D interest point detection
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-65969ac30ee6cfb8d636e4a0df3d598a688569b928f458b67544181168780e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://research.edgehill.ac.uk/en/publications/53db4dc4-9cdc-4783-97ca-62ec384e6c5a
PQID 2655931072
PQPubID 1456341
PageCount 18
ParticipantIDs unpaywall_primary_10_1007_s11263_022_01592_x
proquest_journals_2655931072
gale_infotracacademiconefile_A701892045
crossref_primary_10_1007_s11263_022_01592_x
crossref_citationtrail_10_1007_s11263_022_01592_x
springer_journals_10_1007_s11263_022_01592_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
ZhaoSOoiWTModeling 3d synthetic view dissimilarityThe Visual Comptures201632442944310.1007/s00371-015-1069-z
ZhaoLLiangSJiaJWeiYLearning best views of 3d shapes from sketch contourThe Visual Comptures2015316–876577410.1007/s00371-015-1091-1
Curless, B., & Levoy, M. (1996) A volumetric method for building complex models from range images. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp 303–312
Defferrard, M., Bresson, X., & Vandergheynst, P. (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS, pp 3844–3852
He, K., Zhang, X., Ren, S., & Sun, J. (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S. (2017) 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, p 8
Novotny, D., Larlus, D., Vedaldi, A. (2017) Learning 3d object categories by looking around them. In: Proceedings of the IEEE international conference on computer vision
Guérin, J., Gibaru, O., Nyiri, E., Thieryl, S., & Boots, B. (2018) Semantically meaningful view selection. In: 018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1061–1066
Page, DL., Koschan, AF., Sukumar, SR., Roui-Abidi, B., Abidi, MA. (2003) Shape analysis algorithm based on information theory. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1, pp I–229
Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017) 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp 1802–1811
Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008) Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proceeding of eurographics, pp 643–652
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015) 3D shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920
PerronOZur theorie der matricesMathematische Zeitschrift1907642248263151143810.1007/BF01449896
TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCognitive Psychology198921223328210.1016/0010-0285(89)90009-1
MianABennamounMOwensROn the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenesInternational Journal of Computer Vision201089234836110.1007/s11263-009-0296-z
ZhangYFeiGOverview of 3d scene viewpoints evaluation methodVirtual Reality & Intelligent Hardware20191434138510.1016/j.vrih.2019.01.001
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T. (2004) The princeton shape benchmark. In: Proceedings of shape modeling applications
BlanzVTarrMJBülthoffHHWhat object attributes determine canonical views?Perception199928557559910.1068/p2897
Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013) Spectral networks and locally connected networks on graphs. In: Proceeding of ICLR
Han, H., Li, J., Wang, W., Zhao, H., & Hua, M. (2014) View selection of 3d objects based on saliency segmentation. In: IEEE conference on virtual reality and visualization, pp 214–219
He, J., Wang, L., Zhou, W., Zhang, H., Cui, X., & Guo, Y .(2018) Viewpoint assessment and recommendation for photographing architectures. In: IEEE transactions on visualization and computer graphics
Zhu, K., Chen, W., Zhang, W., Song, R., & Li, Y. (2020) Autonomous robot navigation based on multi-camera perception. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5879–5885
Song, R., Zhang, W., Zhao, Y., & Liu, Y. (2020). Unsupervised multi-view cnn for salient view selection of 3d objects and scenes. European Conference on Computer Vision (pp. 454–470). ECCV: Springer.
CutzuFEdelmanSCanonical views in object representation and recognitionVision Research199434223037305610.1016/0042-6989(94)90277-1
GiorgiDBiasottiSParaboschiLShape retrieval contest 2007: Watertight models trackSHREC Competition2007877
Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., & Tai, CL. (2020) D3feat: Joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp 6359–6367
WolfeJMGuided search 2.0 a revised model of visual searchPsychonomic bulletin & review19941220223810.3758/BF03200774
SongRLiuYRosinPLDistinction of 3D objects and scenes via classification network and markov random fieldIEEE Transactions on Visualization and Computer Graphics20202662204221810.1109/TVCG.2018.2885750
KochCPoggioTPredicting the visual world: silence is goldenNature Neuroscience1999291010.1038/4511
Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., & Seidel, HP. (2006) Towards stable and salient multi-view representation of 3d shapes. In: IEEE International conference on shape modeling and applications 2006 (SMI’06)
Lienhard, S., Specht, M., Neubert, B., Pauly, M., & Müller, P. (2014) Thumbnail galleries for procedural models. In: Computer Graphics Forum, Wiley Online Library, vol 33, pp 361–370
Mezuman, E., & Weiss, Y. (2012) Learning about canonical views from internet image collections. In: Proceedings of NeurIPS, pp 719–727
ChenXSaparovAPangBFunkhouserTSchelling points on 3d surface meshesACM Transactions on Graphics (Proc SIG- 974 GRAPH)201231429
Newman, ME. (2008) The mathematics of networks. The new palgrave encyclopedia of economics
Shilane, P., & Funkhouser, T. (2006) Selecting distinctive 3d shape descriptors for similarity retrieval. In: IEEE International conference on shape modeling and applications 2006 (SMI’06)
SongRLiuYMartinRRosinP3d point of interest detection via spectral irregularity diffusionThe Visual Computer2013296–869570510.1007/s00371-013-0806-4
DutagaciHCheungCGodilAEvaluation of 3d interest point detection techniques via human-generated ground truthThe Visual Computer20122890191710.1007/s00371-012-0746-4
SecordALuJFinkelsteinASinghMNealenAPerceptual models of viewpoint preferenceACM Transactions on Graphics (TOG)201130510910.1145/2019627.2019628
3D Warehouse (2020) https://3dwarehouse.sketchup.com
BiedermanIRecognition-by-components: a theory of human image understandingPsychological Review198794211510.1037/0033-295X.94.2.115
PolonskyOPatanéGBiasottiSGotsmanCSpagnuoloMWhat’s in an image?The Visual Computer2005218–1084084710.1007/s00371-005-0326-y
Qi, CR., Su, H., Nießner, M., Dai, A., Yan, M., & Guibas, L. (2016) Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5648–5656
Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009) Surface feature detection and description with applications to mesh matching. In: 2009 IEEE conference on computer vision and pattern recognition, pp 373–380
Li, J., & Lee, GH. (2019) Usip: Unsupervised stable interest point detection from 3d point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision , pp 361–370
Freitag, S., Weyers, B., & Kuhlen, TW. (2018) Interactive exploration assistance for immersive virtual environments based on object visibility and viewpoint quality. In: 2018 IEEE Conference on virtual reality and 3D user interfaces (VR), pp 355–362
SongRLiuYMartinREchavarriaKRLocal-to-global mesh saliencyThe Visual Computer201834332333610.1007/s00371-016-1334-9
VázquezPPFeixasMSbertMHeidrichWViewpoint selection using viewpoint entropyVMV20011273280
Deng, H., Birdal, T., & Ilic, S. (2018) PPFnet: Global context aware local features for robust 3d point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 195–205
LeeCHVarshneyAJacobsDWMesh saliencyACM Transition Graph (Proc SIGGRAPH)200524365966610.1145/1073204.1073244
HuangHKalogerakisEChaudhuriSCeylanDKimVGYumerELearning local shape descriptors from part correspondences with multiview convolutional networksACM Transactions on Graphics (TOG)20183716
Dutagaci, H., Cheung, CP., & Godil, A. (2010) A benchmark for best view selection of 3d objects. In: Proceedings of ACM workshop on 3DOR, pp 45–50
Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, EG. (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953
HaywardWGEffects of outline shape in object recognitionJournal of experimental psychology: human perception and Performance1998242427
Kostrikov, I., Bruna, J., Panozzo, D., & Zorin, D. (2018) Surface networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition
KimShTaiYWLeeJYParkJKweonISCategory-specific salient view selection via deep convolutional neural networksComputer Graphics Forum201736831332810.1111/cgf.13082
VieiraTBordignonAPeixotoATavaresGLopesHVelhoLLewinerTLearning good views through intelligent galleriesComputer Graphics Forum200928271772610.1111/j.1467-8659.2009.01412.x
Yew, ZJ., & Lee, GH. (2018) 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In: Proceedings of the European conference on computer vision (ECCV), pp 607–623
LeifmanGShtromETalASurface regions of interest for viewpoint selectionIEEE Transactions on Pattern Analysis and Machine Intelligence201638122544255610.1109/TPAMI.2016.2522437
R Song (1592_CR44) 2020; 26
1592_CR20
O Perron (1592_CR36) 1907; 64
1592_CR26
F Cutzu (1592_CR9) 1994; 34
1592_CR23
1592_CR21
X Chen (1592_CR7) 2012; 31
V Blanz (1592_CR4) 1999; 28
1592_CR29
R Song (1592_CR43) 2018; 34
PP Vázquez (1592_CR48) 2001; 1
T Vieira (1592_CR49) 2009; 28
S Zhao (1592_CR58) 2016; 32
1592_CR53
1592_CR52
JM Wolfe (1592_CR50) 1994; 1
1592_CR51
D Giorgi (1592_CR15) 2007; 8
1592_CR17
1592_CR16
1592_CR59
1592_CR14
1592_CR12
1592_CR11
1592_CR55
1592_CR10
1592_CR54
H Dutagaci (1592_CR13) 2012; 28
1592_CR19
WG Hayward (1592_CR18) 1998; 24
A Secord (1592_CR39) 2011; 30
Y Zhang (1592_CR56) 2019; 1
C Koch (1592_CR25) 1999; 2
1592_CR41
1592_CR40
R Song (1592_CR42) 2013; 29
L Zhao (1592_CR57) 2015; 31
1592_CR5
1592_CR6
1592_CR8
1592_CR1
1592_CR46
1592_CR2
1592_CR45
H Huang (1592_CR22) 2018; 37
O Polonsky (1592_CR37) 2005; 21
I Biederman (1592_CR3) 1987; 94
A Mian (1592_CR32) 2010; 89
CH Lee (1592_CR27) 2005; 24
Sh Kim (1592_CR24) 2017; 36
1592_CR31
1592_CR30
1592_CR38
1592_CR35
1592_CR34
1592_CR33
MJ Tarr (1592_CR47) 1989; 21
G Leifman (1592_CR28) 2016; 38
References_xml – reference: TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCognitive Psychology198921223328210.1016/0010-0285(89)90009-1
– reference: Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., & Seidel, HP. (2006) Towards stable and salient multi-view representation of 3d shapes. In: IEEE International conference on shape modeling and applications 2006 (SMI’06)
– reference: HaywardWGEffects of outline shape in object recognitionJournal of experimental psychology: human perception and Performance1998242427
– reference: Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017) 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp 1802–1811
– reference: ZhangYFeiGOverview of 3d scene viewpoints evaluation methodVirtual Reality & Intelligent Hardware20191434138510.1016/j.vrih.2019.01.001
– reference: Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013) Spectral networks and locally connected networks on graphs. In: Proceeding of ICLR
– reference: He, J., Wang, L., Zhou, W., Zhang, H., Cui, X., & Guo, Y .(2018) Viewpoint assessment and recommendation for photographing architectures. In: IEEE transactions on visualization and computer graphics
– reference: Li, J., & Lee, GH. (2019) Usip: Unsupervised stable interest point detection from 3d point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision , pp 361–370
– reference: Shilane, P., Min, P., Kazhdan, M., Funkhouser, T. (2004) The princeton shape benchmark. In: Proceedings of shape modeling applications
– reference: PolonskyOPatanéGBiasottiSGotsmanCSpagnuoloMWhat’s in an image?The Visual Computer2005218–1084084710.1007/s00371-005-0326-y
– reference: Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, EG. (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953
– reference: Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., & Tai, CL. (2020) D3feat: Joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp 6359–6367
– reference: Shilane, P., & Funkhouser, T. (2006) Selecting distinctive 3d shape descriptors for similarity retrieval. In: IEEE International conference on shape modeling and applications 2006 (SMI’06)
– reference: Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008) Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proceeding of eurographics, pp 643–652
– reference: HuangHKalogerakisEChaudhuriSCeylanDKimVGYumerELearning local shape descriptors from part correspondences with multiview convolutional networksACM Transactions on Graphics (TOG)20183716
– reference: Defferrard, M., Bresson, X., & Vandergheynst, P. (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS, pp 3844–3852
– reference: DutagaciHCheungCGodilAEvaluation of 3d interest point detection techniques via human-generated ground truthThe Visual Computer20122890191710.1007/s00371-012-0746-4
– reference: SecordALuJFinkelsteinASinghMNealenAPerceptual models of viewpoint preferenceACM Transactions on Graphics (TOG)201130510910.1145/2019627.2019628
– reference: 3D Warehouse (2020) https://3dwarehouse.sketchup.com
– reference: Yew, ZJ., & Lee, GH. (2018) 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In: Proceedings of the European conference on computer vision (ECCV), pp 607–623
– reference: Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015) 3D shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
– reference: Page, DL., Koschan, AF., Sukumar, SR., Roui-Abidi, B., Abidi, MA. (2003) Shape analysis algorithm based on information theory. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1, pp I–229
– reference: Guérin, J., Gibaru, O., Nyiri, E., Thieryl, S., & Boots, B. (2018) Semantically meaningful view selection. In: 018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1061–1066
– reference: Song, R., Zhang, W., Zhao, Y., & Liu, Y. (2020). Unsupervised multi-view cnn for salient view selection of 3d objects and scenes. European Conference on Computer Vision (pp. 454–470). ECCV: Springer.
– reference: Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S. (2017) 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, p 8
– reference: BlanzVTarrMJBülthoffHHWhat object attributes determine canonical views?Perception199928557559910.1068/p2897
– reference: Mezuman, E., & Weiss, Y. (2012) Learning about canonical views from internet image collections. In: Proceedings of NeurIPS, pp 719–727
– reference: Novotny, D., Larlus, D., Vedaldi, A. (2017) Learning 3d object categories by looking around them. In: Proceedings of the IEEE international conference on computer vision
– reference: VázquezPPFeixasMSbertMHeidrichWViewpoint selection using viewpoint entropyVMV20011273280
– reference: Kostrikov, I., Bruna, J., Panozzo, D., & Zorin, D. (2018) Surface networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: WolfeJMGuided search 2.0 a revised model of visual searchPsychonomic bulletin & review19941220223810.3758/BF03200774
– reference: Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009) Surface feature detection and description with applications to mesh matching. In: 2009 IEEE conference on computer vision and pattern recognition, pp 373–380
– reference: CutzuFEdelmanSCanonical views in object representation and recognitionVision Research199434223037305610.1016/0042-6989(94)90277-1
– reference: SongRLiuYRosinPLDistinction of 3D objects and scenes via classification network and markov random fieldIEEE Transactions on Visualization and Computer Graphics20202662204221810.1109/TVCG.2018.2885750
– reference: BiedermanIRecognition-by-components: a theory of human image understandingPsychological Review198794211510.1037/0033-295X.94.2.115
– reference: MianABennamounMOwensROn the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenesInternational Journal of Computer Vision201089234836110.1007/s11263-009-0296-z
– reference: Curless, B., & Levoy, M. (1996) A volumetric method for building complex models from range images. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp 303–312
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
– reference: Dutagaci, H., Cheung, CP., & Godil, A. (2010) A benchmark for best view selection of 3d objects. In: Proceedings of ACM workshop on 3DOR, pp 45–50
– reference: Qi, CR., Su, H., Nießner, M., Dai, A., Yan, M., & Guibas, L. (2016) Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5648–5656
– reference: ZhaoLLiangSJiaJWeiYLearning best views of 3d shapes from sketch contourThe Visual Comptures2015316–876577410.1007/s00371-015-1091-1
– reference: PerronOZur theorie der matricesMathematische Zeitschrift1907642248263151143810.1007/BF01449896
– reference: ChenXSaparovAPangBFunkhouserTSchelling points on 3d surface meshesACM Transactions on Graphics (Proc SIG- 974 GRAPH)201231429
– reference: GiorgiDBiasottiSParaboschiLShape retrieval contest 2007: Watertight models trackSHREC Competition2007877
– reference: Zhu, K., Chen, W., Zhang, W., Song, R., & Li, Y. (2020) Autonomous robot navigation based on multi-camera perception. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5879–5885
– reference: Han, H., Li, J., Wang, W., Zhao, H., & Hua, M. (2014) View selection of 3d objects based on saliency segmentation. In: IEEE conference on virtual reality and visualization, pp 214–219
– reference: SongRLiuYMartinREchavarriaKRLocal-to-global mesh saliencyThe Visual Computer201834332333610.1007/s00371-016-1334-9
– reference: SongRLiuYMartinRRosinP3d point of interest detection via spectral irregularity diffusionThe Visual Computer2013296–869570510.1007/s00371-013-0806-4
– reference: KimShTaiYWLeeJYParkJKweonISCategory-specific salient view selection via deep convolutional neural networksComputer Graphics Forum201736831332810.1111/cgf.13082
– reference: VieiraTBordignonAPeixotoATavaresGLopesHVelhoLLewinerTLearning good views through intelligent galleriesComputer Graphics Forum200928271772610.1111/j.1467-8659.2009.01412.x
– reference: LeeCHVarshneyAJacobsDWMesh saliencyACM Transition Graph (Proc SIGGRAPH)200524365966610.1145/1073204.1073244
– reference: KochCPoggioTPredicting the visual world: silence is goldenNature Neuroscience1999291010.1038/4511
– reference: Newman, ME. (2008) The mathematics of networks. The new palgrave encyclopedia of economics
– reference: LeifmanGShtromETalASurface regions of interest for viewpoint selectionIEEE Transactions on Pattern Analysis and Machine Intelligence201638122544255610.1109/TPAMI.2016.2522437
– reference: Deng, H., Birdal, T., & Ilic, S. (2018) PPFnet: Global context aware local features for robust 3d point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 195–205
– reference: Freitag, S., Weyers, B., & Kuhlen, TW. (2018) Interactive exploration assistance for immersive virtual environments based on object visibility and viewpoint quality. In: 2018 IEEE Conference on virtual reality and 3D user interfaces (VR), pp 355–362
– reference: Lienhard, S., Specht, M., Neubert, B., Pauly, M., & Müller, P. (2014) Thumbnail galleries for procedural models. In: Computer Graphics Forum, Wiley Online Library, vol 33, pp 361–370
– reference: ZhaoSOoiWTModeling 3d synthetic view dissimilarityThe Visual Comptures201632442944310.1007/s00371-015-1069-z
– volume: 1
  start-page: 341
  issue: 4
  year: 2019
  ident: 1592_CR56
  publication-title: Virtual Reality & Intelligent Hardware
  doi: 10.1016/j.vrih.2019.01.001
– ident: 1592_CR14
  doi: 10.1109/VR.2018.8447553
– ident: 1592_CR34
  doi: 10.1109/ICCV.2017.558
– ident: 1592_CR29
  doi: 10.1109/ICCV.2019.00045
– volume: 24
  start-page: 427
  issue: 2
  year: 1998
  ident: 1592_CR18
  publication-title: Journal of experimental psychology: human perception and Performance
– ident: 1592_CR11
  doi: 10.1109/CVPR.2018.00028
– volume: 1
  start-page: 273
  year: 2001
  ident: 1592_CR48
  publication-title: VMV
– ident: 1592_CR21
  doi: 10.1109/CVPR.2016.90
– ident: 1592_CR41
– ident: 1592_CR53
  doi: 10.1007/978-3-030-01267-0_37
– volume: 21
  start-page: 233
  issue: 2
  year: 1989
  ident: 1592_CR47
  publication-title: Cognitive Psychology
  doi: 10.1016/0010-0285(89)90009-1
– ident: 1592_CR23
  doi: 10.1109/CVPR.2017.702
– volume: 2
  start-page: 9
  year: 1999
  ident: 1592_CR25
  publication-title: Nature Neuroscience
  doi: 10.1038/4511
– volume: 28
  start-page: 717
  issue: 2
  year: 2009
  ident: 1592_CR49
  publication-title: Computer Graphics Forum
  doi: 10.1111/j.1467-8659.2009.01412.x
– ident: 1592_CR55
  doi: 10.1109/CVPR.2017.29
– volume: 38
  start-page: 2544
  issue: 12
  year: 2016
  ident: 1592_CR28
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2522437
– ident: 1592_CR6
  doi: 10.1111/j.1467-8659.2008.01162.x
– ident: 1592_CR12
  doi: 10.1145/1877808.1877819
– ident: 1592_CR51
– volume: 28
  start-page: 901
  year: 2012
  ident: 1592_CR13
  publication-title: The Visual Computer
  doi: 10.1007/s00371-012-0746-4
– ident: 1592_CR40
– ident: 1592_CR45
  doi: 10.1007/978-3-030-58529-7_27
– ident: 1592_CR59
  doi: 10.1109/IROS45743.2020.9341304
– volume: 32
  start-page: 429
  issue: 4
  year: 2016
  ident: 1592_CR58
  publication-title: The Visual Comptures
  doi: 10.1007/s00371-015-1069-z
– volume: 8
  start-page: 7
  issue: 7
  year: 2007
  ident: 1592_CR15
  publication-title: SHREC Competition
– ident: 1592_CR35
  doi: 10.1109/ICIP.2003.1246940
– volume: 21
  start-page: 840
  issue: 8–10
  year: 2005
  ident: 1592_CR37
  publication-title: The Visual Computer
  doi: 10.1007/s00371-005-0326-y
– ident: 1592_CR38
  doi: 10.1109/CVPR.2016.609
– volume: 30
  start-page: 109
  issue: 5
  year: 2011
  ident: 1592_CR39
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/2019627.2019628
– ident: 1592_CR19
  doi: 10.1109/TVCG.2018.2853751
– volume: 28
  start-page: 575
  issue: 5
  year: 1999
  ident: 1592_CR4
  publication-title: Perception
  doi: 10.1068/p2897
– ident: 1592_CR26
  doi: 10.1109/CVPR.2018.00269
– volume: 37
  start-page: 6
  issue: 1
  year: 2018
  ident: 1592_CR22
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 31
  start-page: 765
  issue: 6–8
  year: 2015
  ident: 1592_CR57
  publication-title: The Visual Comptures
  doi: 10.1007/s00371-015-1091-1
– ident: 1592_CR20
  doi: 10.1109/ICCV.2015.123
– volume: 31
  start-page: 29
  issue: 4
  year: 2012
  ident: 1592_CR7
  publication-title: ACM Transactions on Graphics (Proc SIG- 974 GRAPH)
– ident: 1592_CR54
  doi: 10.1109/CVPR.2009.5206748
– volume: 89
  start-page: 348
  issue: 2
  year: 2010
  ident: 1592_CR32
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0296-z
– volume: 26
  start-page: 2204
  issue: 6
  year: 2020
  ident: 1592_CR44
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2018.2885750
– ident: 1592_CR5
– volume: 34
  start-page: 323
  issue: 3
  year: 2018
  ident: 1592_CR43
  publication-title: The Visual Computer
  doi: 10.1007/s00371-016-1334-9
– ident: 1592_CR1
– volume: 1
  start-page: 202
  issue: 2
  year: 1994
  ident: 1592_CR50
  publication-title: Psychonomic bulletin & review
  doi: 10.3758/BF03200774
– ident: 1592_CR33
  doi: 10.1057/978-1-349-95121-5_2565-1
– ident: 1592_CR2
  doi: 10.1109/CVPR42600.2020.00639
– ident: 1592_CR16
  doi: 10.1109/IROS.2018.8593524
– volume: 29
  start-page: 695
  issue: 6–8
  year: 2013
  ident: 1592_CR42
  publication-title: The Visual Computer
  doi: 10.1007/s00371-013-0806-4
– volume: 36
  start-page: 313
  issue: 8
  year: 2017
  ident: 1592_CR24
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.13082
– ident: 1592_CR17
  doi: 10.1109/ICVRV.2014.12
– ident: 1592_CR46
  doi: 10.1109/ICCV.2015.114
– volume: 94
  start-page: 115
  issue: 2
  year: 1987
  ident: 1592_CR3
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.94.2.115
– ident: 1592_CR8
  doi: 10.1145/237170.237269
– volume: 34
  start-page: 3037
  issue: 22
  year: 1994
  ident: 1592_CR9
  publication-title: Vision Research
  doi: 10.1016/0042-6989(94)90277-1
– volume: 24
  start-page: 659
  issue: 3
  year: 2005
  ident: 1592_CR27
  publication-title: ACM Transition Graph (Proc SIGGRAPH)
  doi: 10.1145/1073204.1073244
– ident: 1592_CR52
– ident: 1592_CR30
  doi: 10.1111/cgf.12317
– ident: 1592_CR10
– ident: 1592_CR31
– volume: 64
  start-page: 248
  issue: 2
  year: 1907
  ident: 1592_CR36
  publication-title: Mathematische Zeitschrift
  doi: 10.1007/BF01449896
SSID ssj0002823
Score 2.4886034
Snippet We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D...
SourceID unpaywall
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1210
SubjectTerms Artificial Intelligence
Channels
Computer Imaging
Computer Science
Consistency
Deep learning
Evaluation
Human subjects
Image Processing and Computer Vision
Machine learning
Neural networks
Object recognition
Pattern Recognition
Pattern Recognition and Graphics
Science
Semantics
Special Issue on 3D Computer Vision
Vision
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48EYsLcgHJA7UInFsxzlUqE9VHKKKPtSb5fghVVplF3ZXlH_POHF2Sw8rLjnYk8TyjGc-2_MA-ISgg5XGZdQLxyna45I2LHjKbRChDC7DZ_S2qOXZFf9-I262oB5iYaJb5aATO0XtpjaekX9lErEvYpGSfZv9pLFqVLxdHUpomFRawe13KcYewTaLmbFGsH14Up__WOlm3GD0xeVx0yRklacwmj6YLmfdnWZ0VRAVo3f_mKqHCvvezelTeLxsZ-bPbzOZ3DNOpy_gWUKV5KAXg5ew5dtX8DwhTJLW7xybhiIOQ9truL5q58tZ1BhzJO3icek1TgU5qmuCiJZcIFJHy0S6xouubA7ykpjWkeKYdCeKOFByPr1FomO_6PvfwOXpyeXRGU3FFqjFLeSCSlHJytgi817a0CgnC-m5yVwonKiUkUrhhDUVU4EL1ciYOA_RQS5VqTJfFm9h1E5b_w6IM7lSLnDOC88DZ8Z5byUSVo2wTGVjyIdp1TYlIo_1MCZ6nUI5skIjK3THCn03hi-rd2Z9Go6N1J8jt3Rco_hla1KoAY4vZrvSB2WWqyom4h_D7sBQnRbvXK9FbQx7A5PX3Zv-u7cShP8Y5vvNP9-BJ6yTxuhduQujxa-l_4AIaNF8TGL9F90x_ho
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_XgW1xf5CB40ECbJml6XHwgHhZBV7yFtElAWOpid1n9906y6a6KiF56SKZpyExmvjTzQOgEQAfNtUmI5YYRsMc5KamzhFWOu9yZBJ7e26Inbvrs9ok_xaCwpvV2b68kg6aeB7ulNNw5elcCXlACyHGJ-3ReIMV92p3pXzhETAvIw8GIiyKNoTI_j_HFHH1Xyp9uR1fR8rge6veJHgw-GaDrDbQWkSPuTlm9iRZsvYXWI4rEcY820NQWamjbttFjv27GQ68VGiANMbfk8dlO8EWvhwG14ntA42B9cGi8D6VxgF9Y1wZnlzj8NYSJ4ruXZyC6tKNp_w56uL56uLghsaACqeCYOCKCF6LQVZZYKypXSiMyYZlOjMsML6QWUsKClQWVjnFZCp8cDxBAKmQuE5tnu2ixfqntHsJGp1IaxxjLLHOMamNtJYCwKHlFZdJBabusqorJxn3Ni4Gap0n2rFDAChVYod466Gz2znCaauNX6lPPLeX3IYxc6RhOAPPzGa1UN09SWfhk-x102DJUxQ3aKCrgKAXQNqcddN4yed7923fPZ4Lwh2nu_2_0A7RCg3R6j8pDtDh6HdsjQD2j8jgI-Qfp7vT8
  priority: 102
  providerName: Springer Nature
Title Unsupervised Multi-View CNN for Salient View Selection and 3D Interest Point Detection
URI https://link.springer.com/article/10.1007/s11263-022-01592-x
https://www.proquest.com/docview/2655931072
https://research.edgehill.ac.uk/en/publications/53db4dc4-9cdc-4783-97ca-62ec384e6c5a
UnpaywallVersion submittedVersion
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-1405
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1405
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZdchg7rPvJUrqgw2CHVa0tS7J89NqkZQMT1qS0JyNL8igLbmhs2u2v35Mtt1kPZYNdbJCebdl6fvqepPc9hD4A6KCxMgGx3DAC43FMClpawnTJy7g0ARzdbotMnCzYl3N-voXmfSyMp7hxhva7dfPhPqTKVgerjXmsAx6ZghnNSKKNJiyWEUlirYigVkeSWaE5oKah4IDQB2i4yGbpRUu7B94SF0lHoxpHBPwL7mNpuoi6kLYLm26_Ak8ouf1jvHpotTeWT5-hp021Uj9v1HK5MUJNt1HTv1u3MeXHflMX-_rXA9rH__3yL9BzD2lx2ungS7Rlq1do28Nb7I3HGor6DBJ92Wt0tqjWzcqZqzWItsHA5OzS3uDDLMMAp_EpuAkwLOK28LTN2QNtw6oyODrC7XQmfCA8u7oEoSNbd_Vv0Hw6mR-eEJ_pgWjwX2viuilROgostL0spBGRsEwFpowMT6QSUkKnFQmVJeOyEI61D6BJKGQsAxtHb9GguqrsO4SNCqU0JWMssqxkVBlrtQDBpOCaymCEwr47c-1Z0F0yjmV-z9_sVCAHFchbFchvR-jT3TWrjgPkUemPTktyZyDgzlr5OAdon6PaytM4CGXisgCM0G6vSLm3HOucCvDxAHPHdIT2euW6r37suXt3CvgXzdz5N_FdNKivG_seEFhdjNETOT0eo2F6fPF1AufPk2z2DUoXNB37n-03zkIuBw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeWvpSt6XUh1Y9FIvEcRzngCpgQUuhESoL4mY5sSNVWmW3za6AH9f_1nHi7FIOq1645GBPHMszmYftmQ_gIzodLNEmoDY2nKI9TmjOSkt5UcZlUpoAn-62RSYGF_zbVXy1An-6XBh3rbLTiY2iNuPC7ZHvMIG-L_oiCfs6-UUdapQ7Xe0gNLSHVjC7TYkxn9hxYm-vMYSrd4_7yO9PjB0dDg8G1KMM0AJjpykVcSpSXUSBtaIoc2lEJCzXgSkjE6dSCyljkeYpkyWPZS5cxTg0i6GQiQxsEuGwj2CNRzzF2G9t_zA7-zE3BRjPtFj2GKPhIKHP2mlz90LWHKG6mxFxyujNP5bxvn24c1D7BNZn1UTfXuvR6I4tPNqAp96JJXut1D2HFVu9gGfeoSVeXdTY1GFGdG0v4fKiqmcTp6BqJG3Sf-klrjw5yDKCDjQ5x8AADSFpGs8blB4UHaIrQ6I-aTYwcaLkbPwTifp22va_guFDrPprWK3GlX0DxOhQSlNyziPLS860sbYQSJjmccFk0IOwW1ZV-LrnDn5jpBYVmx0rFLJCNaxQNz34Mn9n0lb9WEr92XFLOZWAIxfaZzbg_FxxLbWXBKFMXd3_Hmx2DFVeV9RqIdk92O6YvOhe9t3tuSD8xzTfLv_4B1gfDL-fqtPj7OQdPGaNZLqLnZuwOv09s-_R-ZrmW17ECagH_qn-AgHsOJ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKxOPAG7FQwAcQB2o1cRzHOSBUdVlailaV-lBvluOHhLTKLmRXbT-Nv2OcOLuFw4pLLznYE9vyjOdhzwPgHSodrNA2oS63nKI8LmjFvKPc-NwX3ib4Dd4WY7F_yr-d5-cb8LuPhQlulT1PbBm1nZpwR77DBOq-qIsUbMdHt4ij4ejz7CcNFaTCS2tfTqMjkUN3dYHmW_PpYIi4fs_Y6MvJ3j6NFQaoQbtpTkVeilKbLHFOGF9JKzLhuE6sz2xeSi2kzEVZlUx6nstKhGxxKBJTIQuZuCLDYW_B7SIkcQ9B6qOvSyGAlkxXxR6tMxwijfE6XdReytrH0-ATkZeMXv4lE_-VDNeeaO_D3UU901cXejK5JgVHj-BBVF_Jbkdvj2HD1U_gYVRlSWQUDTb11SL6tqdwdlo3i1lgTQ2CtoG_9Az3nOyNxwRVZ3KMJgGKQNI2Hrf1eZBoiK4tyYakvbrEhZKj6Q8EGrp51_8MTm5iz5_DZj2t3QsgVqdSWs85zxz3nGnrnBEIWFa5YTIZQNpvqzIx43kovDFRq1zNARUKUaFaVKjLAXxc_jPr8n2shf4QsKUCM8CRjY4xDbi-kFZL7RZJKsuQ8X8AWz1CVeQSjVrR9AC2eySvutfNu70khP9Y5sv1k7-FO3iU1PeD8eEruMdawgwenVuwOf-1cK9R65pXb1r6JqBu-Dz9AVCsNjk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQcqh6KPSlbgWVD5V6KIbE7xxXUIQ4rJDYRfQUOX5UqKuwYhNB--s7ThzYckBU6iUHe5LY8WT8je35BqHPADqoMi4jXjhOYD5WpKLBE26DCCq4DK7xtMVUnsz56aW43ECzIRYmUdxEQ_vDx_XwFFLl64Pl2jrWgWCu4s5yUlhnCVeakUJZQyT1lmnupRWAmjalAIQ-Qpvz6dnke0e7B96SkEVPo6oYAf9CpFiaPqIup93GZjyvIApK7v6arx5b7bXt05foRVsvza9bs1iszVDHW6gd-tYfTPm53zbVvv39iPbxf3d-G71KkBZPeh18jTZ8_QZtJXiLk_FYQdGQQWIoe4su5vWqXUZztQLRLhiYXFz5W3w4nWKA0_gc3ASYFnFXeN7l7IG2YVM7zI5wt5wJHwifXV-B0JFv-vp3aHb8bXZ4QlKmB2LBf21IHKbCWJZ5aHuotJNMem4yF5gThTZSaxi0qqA6cKErGVn7AJrkUiudecXeo1F9XfsPCDuTa-0C55x5Hjg1znsrQbCohKU6G6N8GM7SJhb0mIxjUT7wN0cVKEEFyk4Fyrsx-np_z7LnAHlS-kvUkjIaCHiyNSnOAdoXqbbKicpyXcQsAGO0MyhSmSzHqqQSfDzA3IqO0d6gXA_VT713714Bn9HMj_8mvoNGzU3rdwGBNdWn9EP9ARWSKQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Multi-View+CNN+for+Salient+View+Selection+and+3D+Interest+Point+Detection&rft.jtitle=International+journal+of+computer+vision&rft.au=Song%2C+Ran&rft.au=Zhang%2C+Wei&rft.au=Zhao%2C+Yitian&rft.au=Liu%2C+Yonghuai&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=5&rft.spage=1210&rft.epage=1227&rft_id=info:doi/10.1007%2Fs11263-022-01592-x&rft.externalDocID=10_1007_s11263_022_01592_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon