Unsupervised Multi-View CNN for Salient View Selection and 3D Interest Point Detection
We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating...
        Saved in:
      
    
          | Published in | International journal of computer vision Vol. 130; no. 5; pp. 1210 - 1227 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.05.2022
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-5691 1573-1405 1573-1405  | 
| DOI | 10.1007/s11263-022-01592-x | 
Cover
| Abstract | We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method can be used to select salient views of 3D scenes containing multiple objects. We also develop a method based on the UMVCNN for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the UMVCNN is amenable to different 3D shape understanding tasks. | 
    
|---|---|
| AbstractList | We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method can be used to select salient views of 3D scenes containing multiple objects. We also develop a method based on the UMVCNN for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the UMVCNN is amenable to different 3D shape understanding tasks. | 
    
| Audience | Academic | 
    
| Author | Song, Ran Liu, Yonghuai Zhang, Wei Zhao, Yitian  | 
    
| Author_xml | – sequence: 1 givenname: Ran surname: Song fullname: Song, Ran organization: School of Control Science and Engineering, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei email: davidzhang@sdu.edu.cn organization: School of Control Science and Engineering, Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University – sequence: 3 givenname: Yitian surname: Zhao fullname: Zhao, Yitian organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 4 givenname: Yonghuai surname: Liu fullname: Liu, Yonghuai organization: Department of Computer Science, Edge Hill University  | 
    
| BookMark | eNqNkM1KJTEQRoMoeNV5AVcB13EqSSedXsrVmRH8Ax23Ibe7WiJt-pqkR317oy0ILmTIIlCpk_rq7JDNMAYkZJ_DIQeofybOhZYMhGDAVSPY8wZZcFVLxitQm2QBjQCmdMO3yU5K9wAgjJALcvs3pGmN8Z9P2NHzacie3Xp8osuLC9qPkV67wWPI9L14jQO22Y-ButBReUxPQ8aIKdOr0ZemY8zz-x7Z6t2Q8MfHvUtufp3cLP-ws8vfp8ujM9ZWIDLTqtGNayUg6rZfmU5LjZWDrpedaozTxpTMq0aYvlJmpWtVVdxwrk1tAGu5S-T87RTW7uXJDYNdR__g4ovlYN_M2NmMLWbsuxn7XKiDmVrH8XEq6e39OMVQclqhlWokh1qUrsO5684NaH3oxxxdW06HD74t-ntf6kc1cFPcVqoAYgbaOKYUsf-_LOYL1Prs3hSWaX74Hv1YPpU54Q7j5xrfUK_STaVy | 
    
| CitedBy_id | crossref_primary_10_3390_rs15153775 crossref_primary_10_1016_j_aej_2024_09_087 crossref_primary_10_1109_TCSVT_2024_3359681 crossref_primary_10_1007_s00521_023_08644_4 crossref_primary_10_1007_s11263_023_01905_8 crossref_primary_10_1109_TMM_2022_3200852 crossref_primary_10_7717_peerj_cs_1584 crossref_primary_10_1007_s10109_023_00429_6 crossref_primary_10_1109_TAI_2023_3321584 crossref_primary_10_1007_s00371_024_03708_5  | 
    
| Cites_doi | 10.1016/j.vrih.2019.01.001 10.1109/VR.2018.8447553 10.1109/ICCV.2017.558 10.1109/ICCV.2019.00045 10.1109/CVPR.2018.00028 10.1109/CVPR.2016.90 10.1007/978-3-030-01267-0_37 10.1016/0010-0285(89)90009-1 10.1109/CVPR.2017.702 10.1038/4511 10.1111/j.1467-8659.2009.01412.x 10.1109/CVPR.2017.29 10.1109/TPAMI.2016.2522437 10.1111/j.1467-8659.2008.01162.x 10.1145/1877808.1877819 10.1007/s00371-012-0746-4 10.1007/978-3-030-58529-7_27 10.1109/IROS45743.2020.9341304 10.1007/s00371-015-1069-z 10.1109/ICIP.2003.1246940 10.1007/s00371-005-0326-y 10.1109/CVPR.2016.609 10.1145/2019627.2019628 10.1109/TVCG.2018.2853751 10.1068/p2897 10.1109/CVPR.2018.00269 10.1007/s00371-015-1091-1 10.1109/ICCV.2015.123 10.1109/CVPR.2009.5206748 10.1007/s11263-009-0296-z 10.1109/TVCG.2018.2885750 10.1007/s00371-016-1334-9 10.3758/BF03200774 10.1057/978-1-349-95121-5_2565-1 10.1109/CVPR42600.2020.00639 10.1109/IROS.2018.8593524 10.1007/s00371-013-0806-4 10.1111/cgf.13082 10.1109/ICVRV.2014.12 10.1109/ICCV.2015.114 10.1037/0033-295X.94.2.115 10.1145/237170.237269 10.1016/0042-6989(94)90277-1 10.1145/1073204.1073244 10.1111/cgf.12317 10.1007/BF01449896  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s11263-022-01592-x | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1573-1405 | 
    
| EndPage | 1227 | 
    
| ExternalDocumentID | oai:pure.atira.dk:openaire/53db4dc4-9cdc-4783-97ca-62ec384e6c5a A701892045 10_1007_s11263_022_01592_x  | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62076148; 61991411 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c402t-65969ac30ee6cfb8d636e4a0df3d598a688569b928f458b67544181168780e73 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0920-5691 1573-1405  | 
    
| IngestDate | Sun Oct 26 03:49:05 EDT 2025 Sat Jul 26 00:05:30 EDT 2025 Mon Oct 20 16:59:45 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Wed Oct 01 05:08:43 EDT 2025 Fri Feb 21 02:46:00 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | View-object consistency View selection Multi-view CNN Unsupervised 3D deep learning 3D interest point detection  | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c402t-65969ac30ee6cfb8d636e4a0df3d598a688569b928f458b67544181168780e73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://research.edgehill.ac.uk/en/publications/53db4dc4-9cdc-4783-97ca-62ec384e6c5a | 
    
| PQID | 2655931072 | 
    
| PQPubID | 1456341 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11263_022_01592_x proquest_journals_2655931072 gale_infotracacademiconefile_A701892045 crossref_primary_10_1007_s11263_022_01592_x crossref_citationtrail_10_1007_s11263_022_01592_x springer_journals_10_1007_s11263_022_01592_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220500 2022-05-00 20220501  | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | International journal of computer vision | 
    
| PublicationTitleAbbrev | Int J Comput Vis | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer US Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V  | 
    
| References | He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 ZhaoSOoiWTModeling 3d synthetic view dissimilarityThe Visual Comptures201632442944310.1007/s00371-015-1069-z ZhaoLLiangSJiaJWeiYLearning best views of 3d shapes from sketch contourThe Visual Comptures2015316–876577410.1007/s00371-015-1091-1 Curless, B., & Levoy, M. (1996) A volumetric method for building complex models from range images. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp 303–312 Defferrard, M., Bresson, X., & Vandergheynst, P. (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS, pp 3844–3852 He, K., Zhang, X., Ren, S., & Sun, J. (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S. (2017) 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, p 8 Novotny, D., Larlus, D., Vedaldi, A. (2017) Learning 3d object categories by looking around them. In: Proceedings of the IEEE international conference on computer vision Guérin, J., Gibaru, O., Nyiri, E., Thieryl, S., & Boots, B. (2018) Semantically meaningful view selection. In: 018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1061–1066 Page, DL., Koschan, AF., Sukumar, SR., Roui-Abidi, B., Abidi, MA. (2003) Shape analysis algorithm based on information theory. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1, pp I–229 Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017) 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp 1802–1811 Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008) Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proceeding of eurographics, pp 643–652 Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015) 3D shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920 PerronOZur theorie der matricesMathematische Zeitschrift1907642248263151143810.1007/BF01449896 TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCognitive Psychology198921223328210.1016/0010-0285(89)90009-1 MianABennamounMOwensROn the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenesInternational Journal of Computer Vision201089234836110.1007/s11263-009-0296-z ZhangYFeiGOverview of 3d scene viewpoints evaluation methodVirtual Reality & Intelligent Hardware20191434138510.1016/j.vrih.2019.01.001 Shilane, P., Min, P., Kazhdan, M., Funkhouser, T. (2004) The princeton shape benchmark. In: Proceedings of shape modeling applications BlanzVTarrMJBülthoffHHWhat object attributes determine canonical views?Perception199928557559910.1068/p2897 Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013) Spectral networks and locally connected networks on graphs. In: Proceeding of ICLR Han, H., Li, J., Wang, W., Zhao, H., & Hua, M. (2014) View selection of 3d objects based on saliency segmentation. In: IEEE conference on virtual reality and visualization, pp 214–219 He, J., Wang, L., Zhou, W., Zhang, H., Cui, X., & Guo, Y .(2018) Viewpoint assessment and recommendation for photographing architectures. In: IEEE transactions on visualization and computer graphics Zhu, K., Chen, W., Zhang, W., Song, R., & Li, Y. (2020) Autonomous robot navigation based on multi-camera perception. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5879–5885 Song, R., Zhang, W., Zhao, Y., & Liu, Y. (2020). Unsupervised multi-view cnn for salient view selection of 3d objects and scenes. European Conference on Computer Vision (pp. 454–470). ECCV: Springer. CutzuFEdelmanSCanonical views in object representation and recognitionVision Research199434223037305610.1016/0042-6989(94)90277-1 GiorgiDBiasottiSParaboschiLShape retrieval contest 2007: Watertight models trackSHREC Competition2007877 Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., & Tai, CL. (2020) D3feat: Joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp 6359–6367 WolfeJMGuided search 2.0 a revised model of visual searchPsychonomic bulletin & review19941220223810.3758/BF03200774 SongRLiuYRosinPLDistinction of 3D objects and scenes via classification network and markov random fieldIEEE Transactions on Visualization and Computer Graphics20202662204221810.1109/TVCG.2018.2885750 KochCPoggioTPredicting the visual world: silence is goldenNature Neuroscience1999291010.1038/4511 Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., & Seidel, HP. (2006) Towards stable and salient multi-view representation of 3d shapes. In: IEEE International conference on shape modeling and applications 2006 (SMI’06) Lienhard, S., Specht, M., Neubert, B., Pauly, M., & Müller, P. (2014) Thumbnail galleries for procedural models. In: Computer Graphics Forum, Wiley Online Library, vol 33, pp 361–370 Mezuman, E., & Weiss, Y. (2012) Learning about canonical views from internet image collections. In: Proceedings of NeurIPS, pp 719–727 ChenXSaparovAPangBFunkhouserTSchelling points on 3d surface meshesACM Transactions on Graphics (Proc SIG- 974 GRAPH)201231429 Newman, ME. (2008) The mathematics of networks. The new palgrave encyclopedia of economics Shilane, P., & Funkhouser, T. (2006) Selecting distinctive 3d shape descriptors for similarity retrieval. In: IEEE International conference on shape modeling and applications 2006 (SMI’06) SongRLiuYMartinRRosinP3d point of interest detection via spectral irregularity diffusionThe Visual Computer2013296–869570510.1007/s00371-013-0806-4 DutagaciHCheungCGodilAEvaluation of 3d interest point detection techniques via human-generated ground truthThe Visual Computer20122890191710.1007/s00371-012-0746-4 SecordALuJFinkelsteinASinghMNealenAPerceptual models of viewpoint preferenceACM Transactions on Graphics (TOG)201130510910.1145/2019627.2019628 3D Warehouse (2020) https://3dwarehouse.sketchup.com BiedermanIRecognition-by-components: a theory of human image understandingPsychological Review198794211510.1037/0033-295X.94.2.115 PolonskyOPatanéGBiasottiSGotsmanCSpagnuoloMWhat’s in an image?The Visual Computer2005218–1084084710.1007/s00371-005-0326-y Qi, CR., Su, H., Nießner, M., Dai, A., Yan, M., & Guibas, L. (2016) Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5648–5656 Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009) Surface feature detection and description with applications to mesh matching. In: 2009 IEEE conference on computer vision and pattern recognition, pp 373–380 Li, J., & Lee, GH. (2019) Usip: Unsupervised stable interest point detection from 3d point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision , pp 361–370 Freitag, S., Weyers, B., & Kuhlen, TW. (2018) Interactive exploration assistance for immersive virtual environments based on object visibility and viewpoint quality. In: 2018 IEEE Conference on virtual reality and 3D user interfaces (VR), pp 355–362 SongRLiuYMartinREchavarriaKRLocal-to-global mesh saliencyThe Visual Computer201834332333610.1007/s00371-016-1334-9 VázquezPPFeixasMSbertMHeidrichWViewpoint selection using viewpoint entropyVMV20011273280 Deng, H., Birdal, T., & Ilic, S. (2018) PPFnet: Global context aware local features for robust 3d point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 195–205 LeeCHVarshneyAJacobsDWMesh saliencyACM Transition Graph (Proc SIGGRAPH)200524365966610.1145/1073204.1073244 HuangHKalogerakisEChaudhuriSCeylanDKimVGYumerELearning local shape descriptors from part correspondences with multiview convolutional networksACM Transactions on Graphics (TOG)20183716 Dutagaci, H., Cheung, CP., & Godil, A. (2010) A benchmark for best view selection of 3d objects. In: Proceedings of ACM workshop on 3DOR, pp 45–50 Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, EG. (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953 HaywardWGEffects of outline shape in object recognitionJournal of experimental psychology: human perception and Performance1998242427 Kostrikov, I., Bruna, J., Panozzo, D., & Zorin, D. (2018) Surface networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition KimShTaiYWLeeJYParkJKweonISCategory-specific salient view selection via deep convolutional neural networksComputer Graphics Forum201736831332810.1111/cgf.13082 VieiraTBordignonAPeixotoATavaresGLopesHVelhoLLewinerTLearning good views through intelligent galleriesComputer Graphics Forum200928271772610.1111/j.1467-8659.2009.01412.x Yew, ZJ., & Lee, GH. (2018) 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In: Proceedings of the European conference on computer vision (ECCV), pp 607–623 LeifmanGShtromETalASurface regions of interest for viewpoint selectionIEEE Transactions on Pattern Analysis and Machine Intelligence201638122544255610.1109/TPAMI.2016.2522437 R Song (1592_CR44) 2020; 26 1592_CR20 O Perron (1592_CR36) 1907; 64 1592_CR26 F Cutzu (1592_CR9) 1994; 34 1592_CR23 1592_CR21 X Chen (1592_CR7) 2012; 31 V Blanz (1592_CR4) 1999; 28 1592_CR29 R Song (1592_CR43) 2018; 34 PP Vázquez (1592_CR48) 2001; 1 T Vieira (1592_CR49) 2009; 28 S Zhao (1592_CR58) 2016; 32 1592_CR53 1592_CR52 JM Wolfe (1592_CR50) 1994; 1 1592_CR51 D Giorgi (1592_CR15) 2007; 8 1592_CR17 1592_CR16 1592_CR59 1592_CR14 1592_CR12 1592_CR11 1592_CR55 1592_CR10 1592_CR54 H Dutagaci (1592_CR13) 2012; 28 1592_CR19 WG Hayward (1592_CR18) 1998; 24 A Secord (1592_CR39) 2011; 30 Y Zhang (1592_CR56) 2019; 1 C Koch (1592_CR25) 1999; 2 1592_CR41 1592_CR40 R Song (1592_CR42) 2013; 29 L Zhao (1592_CR57) 2015; 31 1592_CR5 1592_CR6 1592_CR8 1592_CR1 1592_CR46 1592_CR2 1592_CR45 H Huang (1592_CR22) 2018; 37 O Polonsky (1592_CR37) 2005; 21 I Biederman (1592_CR3) 1987; 94 A Mian (1592_CR32) 2010; 89 CH Lee (1592_CR27) 2005; 24 Sh Kim (1592_CR24) 2017; 36 1592_CR31 1592_CR30 1592_CR38 1592_CR35 1592_CR34 1592_CR33 MJ Tarr (1592_CR47) 1989; 21 G Leifman (1592_CR28) 2016; 38  | 
    
| References_xml | – reference: TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCognitive Psychology198921223328210.1016/0010-0285(89)90009-1 – reference: Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., & Seidel, HP. (2006) Towards stable and salient multi-view representation of 3d shapes. In: IEEE International conference on shape modeling and applications 2006 (SMI’06) – reference: HaywardWGEffects of outline shape in object recognitionJournal of experimental psychology: human perception and Performance1998242427 – reference: Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017) 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp 1802–1811 – reference: ZhangYFeiGOverview of 3d scene viewpoints evaluation methodVirtual Reality & Intelligent Hardware20191434138510.1016/j.vrih.2019.01.001 – reference: Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013) Spectral networks and locally connected networks on graphs. In: Proceeding of ICLR – reference: He, J., Wang, L., Zhou, W., Zhang, H., Cui, X., & Guo, Y .(2018) Viewpoint assessment and recommendation for photographing architectures. In: IEEE transactions on visualization and computer graphics – reference: Li, J., & Lee, GH. (2019) Usip: Unsupervised stable interest point detection from 3d point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision , pp 361–370 – reference: Shilane, P., Min, P., Kazhdan, M., Funkhouser, T. (2004) The princeton shape benchmark. In: Proceedings of shape modeling applications – reference: PolonskyOPatanéGBiasottiSGotsmanCSpagnuoloMWhat’s in an image?The Visual Computer2005218–1084084710.1007/s00371-005-0326-y – reference: Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, EG. (2015) Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953 – reference: Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., & Tai, CL. (2020) D3feat: Joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp 6359–6367 – reference: Shilane, P., & Funkhouser, T. (2006) Selecting distinctive 3d shape descriptors for similarity retrieval. In: IEEE International conference on shape modeling and applications 2006 (SMI’06) – reference: Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008) Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proceeding of eurographics, pp 643–652 – reference: HuangHKalogerakisEChaudhuriSCeylanDKimVGYumerELearning local shape descriptors from part correspondences with multiview convolutional networksACM Transactions on Graphics (TOG)20183716 – reference: Defferrard, M., Bresson, X., & Vandergheynst, P. (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS, pp 3844–3852 – reference: DutagaciHCheungCGodilAEvaluation of 3d interest point detection techniques via human-generated ground truthThe Visual Computer20122890191710.1007/s00371-012-0746-4 – reference: SecordALuJFinkelsteinASinghMNealenAPerceptual models of viewpoint preferenceACM Transactions on Graphics (TOG)201130510910.1145/2019627.2019628 – reference: 3D Warehouse (2020) https://3dwarehouse.sketchup.com – reference: Yew, ZJ., & Lee, GH. (2018) 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In: Proceedings of the European conference on computer vision (ECCV), pp 607–623 – reference: Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015) 3D shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920 – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 – reference: Page, DL., Koschan, AF., Sukumar, SR., Roui-Abidi, B., Abidi, MA. (2003) Shape analysis algorithm based on information theory. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1, pp I–229 – reference: Guérin, J., Gibaru, O., Nyiri, E., Thieryl, S., & Boots, B. (2018) Semantically meaningful view selection. In: 018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1061–1066 – reference: Song, R., Zhang, W., Zhao, Y., & Liu, Y. (2020). Unsupervised multi-view cnn for salient view selection of 3d objects and scenes. European Conference on Computer Vision (pp. 454–470). ECCV: Springer. – reference: Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S. (2017) 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, p 8 – reference: BlanzVTarrMJBülthoffHHWhat object attributes determine canonical views?Perception199928557559910.1068/p2897 – reference: Mezuman, E., & Weiss, Y. (2012) Learning about canonical views from internet image collections. In: Proceedings of NeurIPS, pp 719–727 – reference: Novotny, D., Larlus, D., Vedaldi, A. (2017) Learning 3d object categories by looking around them. In: Proceedings of the IEEE international conference on computer vision – reference: VázquezPPFeixasMSbertMHeidrichWViewpoint selection using viewpoint entropyVMV20011273280 – reference: Kostrikov, I., Bruna, J., Panozzo, D., & Zorin, D. (2018) Surface networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: WolfeJMGuided search 2.0 a revised model of visual searchPsychonomic bulletin & review19941220223810.3758/BF03200774 – reference: Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009) Surface feature detection and description with applications to mesh matching. In: 2009 IEEE conference on computer vision and pattern recognition, pp 373–380 – reference: CutzuFEdelmanSCanonical views in object representation and recognitionVision Research199434223037305610.1016/0042-6989(94)90277-1 – reference: SongRLiuYRosinPLDistinction of 3D objects and scenes via classification network and markov random fieldIEEE Transactions on Visualization and Computer Graphics20202662204221810.1109/TVCG.2018.2885750 – reference: BiedermanIRecognition-by-components: a theory of human image understandingPsychological Review198794211510.1037/0033-295X.94.2.115 – reference: MianABennamounMOwensROn the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenesInternational Journal of Computer Vision201089234836110.1007/s11263-009-0296-z – reference: Curless, B., & Levoy, M. (1996) A volumetric method for building complex models from range images. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp 303–312 – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 – reference: Dutagaci, H., Cheung, CP., & Godil, A. (2010) A benchmark for best view selection of 3d objects. In: Proceedings of ACM workshop on 3DOR, pp 45–50 – reference: Qi, CR., Su, H., Nießner, M., Dai, A., Yan, M., & Guibas, L. (2016) Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5648–5656 – reference: ZhaoLLiangSJiaJWeiYLearning best views of 3d shapes from sketch contourThe Visual Comptures2015316–876577410.1007/s00371-015-1091-1 – reference: PerronOZur theorie der matricesMathematische Zeitschrift1907642248263151143810.1007/BF01449896 – reference: ChenXSaparovAPangBFunkhouserTSchelling points on 3d surface meshesACM Transactions on Graphics (Proc SIG- 974 GRAPH)201231429 – reference: GiorgiDBiasottiSParaboschiLShape retrieval contest 2007: Watertight models trackSHREC Competition2007877 – reference: Zhu, K., Chen, W., Zhang, W., Song, R., & Li, Y. (2020) Autonomous robot navigation based on multi-camera perception. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5879–5885 – reference: Han, H., Li, J., Wang, W., Zhao, H., & Hua, M. (2014) View selection of 3d objects based on saliency segmentation. In: IEEE conference on virtual reality and visualization, pp 214–219 – reference: SongRLiuYMartinREchavarriaKRLocal-to-global mesh saliencyThe Visual Computer201834332333610.1007/s00371-016-1334-9 – reference: SongRLiuYMartinRRosinP3d point of interest detection via spectral irregularity diffusionThe Visual Computer2013296–869570510.1007/s00371-013-0806-4 – reference: KimShTaiYWLeeJYParkJKweonISCategory-specific salient view selection via deep convolutional neural networksComputer Graphics Forum201736831332810.1111/cgf.13082 – reference: VieiraTBordignonAPeixotoATavaresGLopesHVelhoLLewinerTLearning good views through intelligent galleriesComputer Graphics Forum200928271772610.1111/j.1467-8659.2009.01412.x – reference: LeeCHVarshneyAJacobsDWMesh saliencyACM Transition Graph (Proc SIGGRAPH)200524365966610.1145/1073204.1073244 – reference: KochCPoggioTPredicting the visual world: silence is goldenNature Neuroscience1999291010.1038/4511 – reference: Newman, ME. (2008) The mathematics of networks. The new palgrave encyclopedia of economics – reference: LeifmanGShtromETalASurface regions of interest for viewpoint selectionIEEE Transactions on Pattern Analysis and Machine Intelligence201638122544255610.1109/TPAMI.2016.2522437 – reference: Deng, H., Birdal, T., & Ilic, S. (2018) PPFnet: Global context aware local features for robust 3d point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 195–205 – reference: Freitag, S., Weyers, B., & Kuhlen, TW. (2018) Interactive exploration assistance for immersive virtual environments based on object visibility and viewpoint quality. In: 2018 IEEE Conference on virtual reality and 3D user interfaces (VR), pp 355–362 – reference: Lienhard, S., Specht, M., Neubert, B., Pauly, M., & Müller, P. (2014) Thumbnail galleries for procedural models. In: Computer Graphics Forum, Wiley Online Library, vol 33, pp 361–370 – reference: ZhaoSOoiWTModeling 3d synthetic view dissimilarityThe Visual Comptures201632442944310.1007/s00371-015-1069-z – volume: 1 start-page: 341 issue: 4 year: 2019 ident: 1592_CR56 publication-title: Virtual Reality & Intelligent Hardware doi: 10.1016/j.vrih.2019.01.001 – ident: 1592_CR14 doi: 10.1109/VR.2018.8447553 – ident: 1592_CR34 doi: 10.1109/ICCV.2017.558 – ident: 1592_CR29 doi: 10.1109/ICCV.2019.00045 – volume: 24 start-page: 427 issue: 2 year: 1998 ident: 1592_CR18 publication-title: Journal of experimental psychology: human perception and Performance – ident: 1592_CR11 doi: 10.1109/CVPR.2018.00028 – volume: 1 start-page: 273 year: 2001 ident: 1592_CR48 publication-title: VMV – ident: 1592_CR21 doi: 10.1109/CVPR.2016.90 – ident: 1592_CR41 – ident: 1592_CR53 doi: 10.1007/978-3-030-01267-0_37 – volume: 21 start-page: 233 issue: 2 year: 1989 ident: 1592_CR47 publication-title: Cognitive Psychology doi: 10.1016/0010-0285(89)90009-1 – ident: 1592_CR23 doi: 10.1109/CVPR.2017.702 – volume: 2 start-page: 9 year: 1999 ident: 1592_CR25 publication-title: Nature Neuroscience doi: 10.1038/4511 – volume: 28 start-page: 717 issue: 2 year: 2009 ident: 1592_CR49 publication-title: Computer Graphics Forum doi: 10.1111/j.1467-8659.2009.01412.x – ident: 1592_CR55 doi: 10.1109/CVPR.2017.29 – volume: 38 start-page: 2544 issue: 12 year: 2016 ident: 1592_CR28 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2522437 – ident: 1592_CR6 doi: 10.1111/j.1467-8659.2008.01162.x – ident: 1592_CR12 doi: 10.1145/1877808.1877819 – ident: 1592_CR51 – volume: 28 start-page: 901 year: 2012 ident: 1592_CR13 publication-title: The Visual Computer doi: 10.1007/s00371-012-0746-4 – ident: 1592_CR40 – ident: 1592_CR45 doi: 10.1007/978-3-030-58529-7_27 – ident: 1592_CR59 doi: 10.1109/IROS45743.2020.9341304 – volume: 32 start-page: 429 issue: 4 year: 2016 ident: 1592_CR58 publication-title: The Visual Comptures doi: 10.1007/s00371-015-1069-z – volume: 8 start-page: 7 issue: 7 year: 2007 ident: 1592_CR15 publication-title: SHREC Competition – ident: 1592_CR35 doi: 10.1109/ICIP.2003.1246940 – volume: 21 start-page: 840 issue: 8–10 year: 2005 ident: 1592_CR37 publication-title: The Visual Computer doi: 10.1007/s00371-005-0326-y – ident: 1592_CR38 doi: 10.1109/CVPR.2016.609 – volume: 30 start-page: 109 issue: 5 year: 2011 ident: 1592_CR39 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/2019627.2019628 – ident: 1592_CR19 doi: 10.1109/TVCG.2018.2853751 – volume: 28 start-page: 575 issue: 5 year: 1999 ident: 1592_CR4 publication-title: Perception doi: 10.1068/p2897 – ident: 1592_CR26 doi: 10.1109/CVPR.2018.00269 – volume: 37 start-page: 6 issue: 1 year: 2018 ident: 1592_CR22 publication-title: ACM Transactions on Graphics (TOG) – volume: 31 start-page: 765 issue: 6–8 year: 2015 ident: 1592_CR57 publication-title: The Visual Comptures doi: 10.1007/s00371-015-1091-1 – ident: 1592_CR20 doi: 10.1109/ICCV.2015.123 – volume: 31 start-page: 29 issue: 4 year: 2012 ident: 1592_CR7 publication-title: ACM Transactions on Graphics (Proc SIG- 974 GRAPH) – ident: 1592_CR54 doi: 10.1109/CVPR.2009.5206748 – volume: 89 start-page: 348 issue: 2 year: 2010 ident: 1592_CR32 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0296-z – volume: 26 start-page: 2204 issue: 6 year: 2020 ident: 1592_CR44 publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2018.2885750 – ident: 1592_CR5 – volume: 34 start-page: 323 issue: 3 year: 2018 ident: 1592_CR43 publication-title: The Visual Computer doi: 10.1007/s00371-016-1334-9 – ident: 1592_CR1 – volume: 1 start-page: 202 issue: 2 year: 1994 ident: 1592_CR50 publication-title: Psychonomic bulletin & review doi: 10.3758/BF03200774 – ident: 1592_CR33 doi: 10.1057/978-1-349-95121-5_2565-1 – ident: 1592_CR2 doi: 10.1109/CVPR42600.2020.00639 – ident: 1592_CR16 doi: 10.1109/IROS.2018.8593524 – volume: 29 start-page: 695 issue: 6–8 year: 2013 ident: 1592_CR42 publication-title: The Visual Computer doi: 10.1007/s00371-013-0806-4 – volume: 36 start-page: 313 issue: 8 year: 2017 ident: 1592_CR24 publication-title: Computer Graphics Forum doi: 10.1111/cgf.13082 – ident: 1592_CR17 doi: 10.1109/ICVRV.2014.12 – ident: 1592_CR46 doi: 10.1109/ICCV.2015.114 – volume: 94 start-page: 115 issue: 2 year: 1987 ident: 1592_CR3 publication-title: Psychological Review doi: 10.1037/0033-295X.94.2.115 – ident: 1592_CR8 doi: 10.1145/237170.237269 – volume: 34 start-page: 3037 issue: 22 year: 1994 ident: 1592_CR9 publication-title: Vision Research doi: 10.1016/0042-6989(94)90277-1 – volume: 24 start-page: 659 issue: 3 year: 2005 ident: 1592_CR27 publication-title: ACM Transition Graph (Proc SIGGRAPH) doi: 10.1145/1073204.1073244 – ident: 1592_CR52 – ident: 1592_CR30 doi: 10.1111/cgf.12317 – ident: 1592_CR10 – ident: 1592_CR31 – volume: 64 start-page: 248 issue: 2 year: 1907 ident: 1592_CR36 publication-title: Mathematische Zeitschrift doi: 10.1007/BF01449896  | 
    
| SSID | ssj0002823 | 
    
| Score | 2.4886034 | 
    
| Snippet | We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D... | 
    
| SourceID | unpaywall proquest gale crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1210 | 
    
| SubjectTerms | Artificial Intelligence Channels Computer Imaging Computer Science Consistency Deep learning Evaluation Human subjects Image Processing and Computer Vision Machine learning Neural networks Object recognition Pattern Recognition Pattern Recognition and Graphics Science Semantics Special Issue on 3D Computer Vision Vision  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48EYsLcgHJA7UInFsxzlUqE9VHKKKPtSb5fghVVplF3ZXlH_POHF2Sw8rLjnYk8TyjGc-2_MA-ISgg5XGZdQLxyna45I2LHjKbRChDC7DZ_S2qOXZFf9-I262oB5iYaJb5aATO0XtpjaekX9lErEvYpGSfZv9pLFqVLxdHUpomFRawe13KcYewTaLmbFGsH14Up__WOlm3GD0xeVx0yRklacwmj6YLmfdnWZ0VRAVo3f_mKqHCvvezelTeLxsZ-bPbzOZ3DNOpy_gWUKV5KAXg5ew5dtX8DwhTJLW7xybhiIOQ9truL5q58tZ1BhzJO3icek1TgU5qmuCiJZcIFJHy0S6xouubA7ykpjWkeKYdCeKOFByPr1FomO_6PvfwOXpyeXRGU3FFqjFLeSCSlHJytgi817a0CgnC-m5yVwonKiUkUrhhDUVU4EL1ciYOA_RQS5VqTJfFm9h1E5b_w6IM7lSLnDOC88DZ8Z5byUSVo2wTGVjyIdp1TYlIo_1MCZ6nUI5skIjK3THCn03hi-rd2Z9Go6N1J8jt3Rco_hla1KoAY4vZrvSB2WWqyom4h_D7sBQnRbvXK9FbQx7A5PX3Zv-u7cShP8Y5vvNP9-BJ6yTxuhduQujxa-l_4AIaNF8TGL9F90x_ho priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_XgW1xf5CB40ECbJml6XHwgHhZBV7yFtElAWOpid1n9906y6a6KiF56SKZpyExmvjTzQOgEQAfNtUmI5YYRsMc5KamzhFWOu9yZBJ7e26Inbvrs9ok_xaCwpvV2b68kg6aeB7ulNNw5elcCXlACyHGJ-3ReIMV92p3pXzhETAvIw8GIiyKNoTI_j_HFHH1Xyp9uR1fR8rge6veJHgw-GaDrDbQWkSPuTlm9iRZsvYXWI4rEcY820NQWamjbttFjv27GQ68VGiANMbfk8dlO8EWvhwG14ntA42B9cGi8D6VxgF9Y1wZnlzj8NYSJ4ruXZyC6tKNp_w56uL56uLghsaACqeCYOCKCF6LQVZZYKypXSiMyYZlOjMsML6QWUsKClQWVjnFZCp8cDxBAKmQuE5tnu2ixfqntHsJGp1IaxxjLLHOMamNtJYCwKHlFZdJBabusqorJxn3Ni4Gap0n2rFDAChVYod466Gz2znCaauNX6lPPLeX3IYxc6RhOAPPzGa1UN09SWfhk-x102DJUxQ3aKCrgKAXQNqcddN4yed7923fPZ4Lwh2nu_2_0A7RCg3R6j8pDtDh6HdsjQD2j8jgI-Qfp7vT8 priority: 102 providerName: Springer Nature  | 
    
| Title | Unsupervised Multi-View CNN for Salient View Selection and 3D Interest Point Detection | 
    
| URI | https://link.springer.com/article/10.1007/s11263-022-01592-x https://www.proquest.com/docview/2655931072 https://research.edgehill.ac.uk/en/publications/53db4dc4-9cdc-4783-97ca-62ec384e6c5a  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 130 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-1405 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-1405 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1405 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1405 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZdchg7rPvJUrqgw2CHVa0tS7J89NqkZQMT1qS0JyNL8igLbmhs2u2v35Mtt1kPZYNdbJCebdl6fvqepPc9hD4A6KCxMgGx3DAC43FMClpawnTJy7g0ARzdbotMnCzYl3N-voXmfSyMp7hxhva7dfPhPqTKVgerjXmsAx6ZghnNSKKNJiyWEUlirYigVkeSWaE5oKah4IDQB2i4yGbpRUu7B94SF0lHoxpHBPwL7mNpuoi6kLYLm26_Ak8ouf1jvHpotTeWT5-hp021Uj9v1HK5MUJNt1HTv1u3MeXHflMX-_rXA9rH__3yL9BzD2lx2ungS7Rlq1do28Nb7I3HGor6DBJ92Wt0tqjWzcqZqzWItsHA5OzS3uDDLMMAp_EpuAkwLOK28LTN2QNtw6oyODrC7XQmfCA8u7oEoSNbd_Vv0Hw6mR-eEJ_pgWjwX2viuilROgostL0spBGRsEwFpowMT6QSUkKnFQmVJeOyEI61D6BJKGQsAxtHb9GguqrsO4SNCqU0JWMssqxkVBlrtQDBpOCaymCEwr47c-1Z0F0yjmV-z9_sVCAHFchbFchvR-jT3TWrjgPkUemPTktyZyDgzlr5OAdon6PaytM4CGXisgCM0G6vSLm3HOucCvDxAHPHdIT2euW6r37suXt3CvgXzdz5N_FdNKivG_seEFhdjNETOT0eo2F6fPF1AufPk2z2DUoXNB37n-03zkIuBw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeWvpSt6XUh1Y9FIvEcRzngCpgQUuhESoL4mY5sSNVWmW3za6AH9f_1nHi7FIOq1645GBPHMszmYftmQ_gIzodLNEmoDY2nKI9TmjOSkt5UcZlUpoAn-62RSYGF_zbVXy1An-6XBh3rbLTiY2iNuPC7ZHvMIG-L_oiCfs6-UUdapQ7Xe0gNLSHVjC7TYkxn9hxYm-vMYSrd4_7yO9PjB0dDg8G1KMM0AJjpykVcSpSXUSBtaIoc2lEJCzXgSkjE6dSCyljkeYpkyWPZS5cxTg0i6GQiQxsEuGwj2CNRzzF2G9t_zA7-zE3BRjPtFj2GKPhIKHP2mlz90LWHKG6mxFxyujNP5bxvn24c1D7BNZn1UTfXuvR6I4tPNqAp96JJXut1D2HFVu9gGfeoSVeXdTY1GFGdG0v4fKiqmcTp6BqJG3Sf-klrjw5yDKCDjQ5x8AADSFpGs8blB4UHaIrQ6I-aTYwcaLkbPwTifp22va_guFDrPprWK3GlX0DxOhQSlNyziPLS860sbYQSJjmccFk0IOwW1ZV-LrnDn5jpBYVmx0rFLJCNaxQNz34Mn9n0lb9WEr92XFLOZWAIxfaZzbg_FxxLbWXBKFMXd3_Hmx2DFVeV9RqIdk92O6YvOhe9t3tuSD8xzTfLv_4B1gfDL-fqtPj7OQdPGaNZLqLnZuwOv09s-_R-ZrmW17ECagH_qn-AgHsOJ8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKxOPAG7FQwAcQB2o1cRzHOSBUdVlailaV-lBvluOHhLTKLmRXbT-Nv2OcOLuFw4pLLznYE9vyjOdhzwPgHSodrNA2oS63nKI8LmjFvKPc-NwX3ib4Dd4WY7F_yr-d5-cb8LuPhQlulT1PbBm1nZpwR77DBOq-qIsUbMdHt4ij4ejz7CcNFaTCS2tfTqMjkUN3dYHmW_PpYIi4fs_Y6MvJ3j6NFQaoQbtpTkVeilKbLHFOGF9JKzLhuE6sz2xeSi2kzEVZlUx6nstKhGxxKBJTIQuZuCLDYW_B7SIkcQ9B6qOvSyGAlkxXxR6tMxwijfE6XdReytrH0-ATkZeMXv4lE_-VDNeeaO_D3UU901cXejK5JgVHj-BBVF_Jbkdvj2HD1U_gYVRlSWQUDTb11SL6tqdwdlo3i1lgTQ2CtoG_9Az3nOyNxwRVZ3KMJgGKQNI2Hrf1eZBoiK4tyYakvbrEhZKj6Q8EGrp51_8MTm5iz5_DZj2t3QsgVqdSWs85zxz3nGnrnBEIWFa5YTIZQNpvqzIx43kovDFRq1zNARUKUaFaVKjLAXxc_jPr8n2shf4QsKUCM8CRjY4xDbi-kFZL7RZJKsuQ8X8AWz1CVeQSjVrR9AC2eySvutfNu70khP9Y5sv1k7-FO3iU1PeD8eEruMdawgwenVuwOf-1cK9R65pXb1r6JqBu-Dz9AVCsNjk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQcqh6KPSlbgWVD5V6KIbE7xxXUIQ4rJDYRfQUOX5UqKuwYhNB--s7ThzYckBU6iUHe5LY8WT8je35BqHPADqoMi4jXjhOYD5WpKLBE26DCCq4DK7xtMVUnsz56aW43ECzIRYmUdxEQ_vDx_XwFFLl64Pl2jrWgWCu4s5yUlhnCVeakUJZQyT1lmnupRWAmjalAIQ-Qpvz6dnke0e7B96SkEVPo6oYAf9CpFiaPqIup93GZjyvIApK7v6arx5b7bXt05foRVsvza9bs1iszVDHW6gd-tYfTPm53zbVvv39iPbxf3d-G71KkBZPeh18jTZ8_QZtJXiLk_FYQdGQQWIoe4su5vWqXUZztQLRLhiYXFz5W3w4nWKA0_gc3ASYFnFXeN7l7IG2YVM7zI5wt5wJHwifXV-B0JFv-vp3aHb8bXZ4QlKmB2LBf21IHKbCWJZ5aHuotJNMem4yF5gThTZSaxi0qqA6cKErGVn7AJrkUiudecXeo1F9XfsPCDuTa-0C55x5Hjg1znsrQbCohKU6G6N8GM7SJhb0mIxjUT7wN0cVKEEFyk4Fyrsx-np_z7LnAHlS-kvUkjIaCHiyNSnOAdoXqbbKicpyXcQsAGO0MyhSmSzHqqQSfDzA3IqO0d6gXA_VT713714Bn9HMj_8mvoNGzU3rdwGBNdWn9EP9ARWSKQo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Multi-View+CNN+for+Salient+View+Selection+and+3D+Interest+Point+Detection&rft.jtitle=International+journal+of+computer+vision&rft.au=Song%2C+Ran&rft.au=Zhang%2C+Wei&rft.au=Zhao%2C+Yitian&rft.au=Liu%2C+Yonghuai&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=5&rft.spage=1210&rft.epage=1227&rft_id=info:doi/10.1007%2Fs11263-022-01592-x&rft.externalDocID=10_1007_s11263_022_01592_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |