Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method

Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. Methods LSM and ANN m...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of clinical pharmacology Vol. 70; no. 3; pp. 265 - 273
Main Authors Isma’eel, Hussain A., Sakr, George E., Habib, Robert H., Almedawar, Mohamad Musbah, Zgheib, Nathalie K., Elhajj, Imad H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0031-6970
1432-1041
1432-1041
DOI10.1007/s00228-013-1617-2

Cover

Abstract Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. Methods LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique. Results The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %. Conclusions ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.
AbstractList The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique. The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %. ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique. The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error <=1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error >=4 mg/week) by 24 %. ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.[PUBLICATION ABSTRACT]
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.BACKGROUNDThe unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.METHODSLSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.RESULTSThe ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.CONCLUSIONSANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.
Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. Methods LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique. Results The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %. Conclusions ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.
Author Sakr, George E.
Almedawar, Mohamad Musbah
Habib, Robert H.
Elhajj, Imad H.
Zgheib, Nathalie K.
Isma’eel, Hussain A.
Author_xml – sequence: 1
  givenname: Hussain A.
  surname: Isma’eel
  fullname: Isma’eel, Hussain A.
  organization: Division of Cardiology, Department of Internal Medicine, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center
– sequence: 2
  givenname: George E.
  surname: Sakr
  fullname: Sakr, George E.
  organization: Department of Electrical & Computer Engineering, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center
– sequence: 3
  givenname: Robert H.
  surname: Habib
  fullname: Habib, Robert H.
  organization: Division of Cardiology, Department of Internal Medicine, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center
– sequence: 4
  givenname: Mohamad Musbah
  surname: Almedawar
  fullname: Almedawar, Mohamad Musbah
  organization: Division of Cardiology, Department of Internal Medicine, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center
– sequence: 5
  givenname: Nathalie K.
  surname: Zgheib
  fullname: Zgheib, Nathalie K.
  email: nk16@aub.edu.lb
  organization: Department of Pharmacology and Toxicology, American University of Beirut Medical Center, Vascular Medicine Program, American University of Beirut Medical Center
– sequence: 6
  givenname: Imad H.
  surname: Elhajj
  fullname: Elhajj, Imad H.
  email: ie05@aub.edu.lb
  organization: Department of Electrical & Computer Engineering, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512700$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24297344$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEYhYNU7O3VH-BGAiK4Sc3XJDNLKX4UCt3YdXgnk7lNnUmuSabSf2-Ge6tS0NUbwnPOm5Nzhk5CDA6h14yeM0r1h0wp5y2hTBCmmCb8GdowKThhVLITtKFUMKI6TU_RWc53lLKmo-IFOuWSd1pIuUHL5bxP8d4NGKxdEtgHHEcMoXgbYbdM9YSHmB3eJzd4W3wMeMk-7DDg_S2kGWzcueAqX1XVJRU_euthwsFVv3WUnzF9Jz3kumV25TYOL9HzEabsXh3nFt18_vTt4iu5uv5yefHxilhJeSENl20vhOhhaDUTTSMAtBLUNRxoo0aqrOLr_eh4r0GCqOk1sK51g5J2EFv0_uBbM_5YXC5m9tm6qcZyccmGya5jgutOVvTtE_QuLinU162UarVQvK3UmyO19LMbzD75GdKDefzQCrw7ApAtTGOCYH3-w7UN47r2skXswNkUc05u_I0watZyzaFcU8s1a7mGV41-orG-wFpJSeCn_yr5QZnrlrBz6a9w_xT9AkjWt2M
CitedBy_id crossref_primary_10_1080_14017431_2019_1678764
crossref_primary_10_1371_journal_pone_0135784
crossref_primary_10_1007_s12350_017_0823_1
crossref_primary_10_2147_PPA_S471577
crossref_primary_10_1007_s10554_015_0821_9
crossref_primary_10_1016_j_cmpb_2021_106589
crossref_primary_10_1038_s41397_019_0083_3
crossref_primary_10_1002_cpt_334
crossref_primary_10_1038_s41397_024_00336_z
crossref_primary_10_2217_pgs_2017_0122
crossref_primary_10_1007_s40291_014_0090_7
Cites_doi 10.1007/s11239-006-9030-7
10.2217/14622416.9.2.169
10.1016/S0140-6736(95)91804-3
10.1056/NEJMoa0809329
10.1378/chest.08-0670
10.1182/blood-2011-08-372722
10.1038/clpt.2008.10
10.1371/journal.pgen.1000433
10.1136/hrt.2003.025049
10.1093/eurheartj/ehr134
10.1162/neco.1990.2.4.480
10.1182/blood-2008-04-149070
10.1038/sj.clpt.6100316
10.1067/mhj.2000.109223
10.1592/phco.24.14.1311.43144
10.1177/0091270010382910
10.1007/s10916-010-9497-9
10.1161/CIRCULATIONAHA.107.737312
10.1037/1040-3590.12.1.40
10.1016/j.jvn.2009.09.001
10.1111/j.1538-7836.2012.04866.x
10.1182/blood-2009-12-255992
10.1111/j.1365-2125.2006.02806.x
10.1161/CIRCULATIONAHA.111.030148
10.1016/j.pop.2012.11.004
10.1016/j.jacc.2010.03.009
10.1016/j.chroma.2012.07.064
10.1016/S0140-6736(96)90609-1
10.1056/NEJMoa0905561
10.1562/0031-8655(2002)075<0471:POTAAA>2.0.CO;2
10.1182/blood-2011-03-345173
10.1249/01.MSS.0000147580.40591.75
10.5482/ha-1151
10.1038/clpt.2010.13
10.1046/j.1525-1594.1998.06101.x
10.1182/blood-2005-03-1108
10.1160/TH11-06-0388
10.1161/circ.104.17.2118
10.1055/s-0038-1634888
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
2015 INIST-CNRS
Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: 2015 INIST-CNRS
– notice: Springer-Verlag Berlin Heidelberg 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7U9
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1007/s00228-013-1617-2
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Academic Middle East (New)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1432-1041
EndPage 273
ExternalDocumentID 3214476931
24297344
28512700
10_1007_s00228_013_1617_2
Genre Validation Studies
Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67N
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
MK0
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
WOW
Y6R
YLTOR
Z45
Z7U
Z7V
Z7W
Z81
Z82
Z83
Z87
Z8O
Z8P
Z8Q
Z8U
Z8V
Z8W
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U9
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3
IEDL.DBID U2A
ISSN 0031-6970
1432-1041
IngestDate Wed Oct 01 14:27:56 EDT 2025
Tue Oct 07 05:14:18 EDT 2025
Wed Feb 19 01:51:38 EST 2025
Wed Apr 02 07:20:27 EDT 2025
Wed Oct 01 02:24:52 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Fri Feb 21 02:34:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Least-squares modeling
Pharmacogenetics
Anticoagulation
Artificial neural network
INR
Human
Anticoagutation
Prediction
Anticoagulant
Method
Neural network
Modeling
International normalized ratio
Genetics
Predictive factor
Dose
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 24297344
PQID 1496873628
PQPubID 47171
PageCount 9
ParticipantIDs proquest_miscellaneous_1499132794
proquest_journals_1496873628
pubmed_primary_24297344
pascalfrancis_primary_28512700
crossref_primary_10_1007_s00228_013_1617_2
crossref_citationtrail_10_1007_s00228_013_1617_2
springer_journals_10_1007_s00228_013_1617_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: Germany
PublicationTitle European journal of clinical pharmacology
PublicationTitleAbbrev Eur J Clin Pharmacol
PublicationTitleAlternate Eur J Clin Pharmacol
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Ugrinowitsch, Fellingham, Ricard (CR23) 2004; 36
Klein, Altman, Eriksson, Gage, Kimmel, Lee, Limdi, Page, Roden, Wagner, Caldwell, Johnson (CR22) 2009; 360
Narayanan, Lucas (CR28) 1993; 32
Fragkaki, Farmaki, Thomaidis, Tsantili-Kakoulidou, Angelis, Koupparis, Georgakopoulos (CR37) 2012; 1256
Hagan (CR33) 1996
Price, Spitznagel, Downey, Meyer, Risk, el-Ghazzawy (CR38) 2000; 12
Dybowski, Weller, Chang, Gant (CR31) 1996; 347
Connolly, Ezekowitz, Yusuf, Eikelboom, Oldgren, Parekh, Pogue, Reilly, Themeles, Varrone, Wang, Alings, Xavier, Zhu, Diaz, Lewis, Darius, Diener, Joyner, Wallentin (CR43) 2009; 361
Robert-Ebadi, Le Gal, Righini (CR6) 2009; 4
Smith, Ward, Brier (CR29) 1998; 22
Wittkowsky, Devine (CR11) 2004; 24
Fuster, Ryden, Asinger, Cannom, Crijns, Frye, Halperin, Kay, Klein, Levy, McNamara, Prystowsky, Wann, Wyse, Gibbons, Antman, Alpert, Faxon, Gregoratos, Hiratzka, Jacobs, Russell, Smith, Alonso-Garcia, Blomstrom-Lundqvist, de Backer, Flather, Hradec, Oto, Parkhomenko, Silber, Torbicki (CR3) 2001; 104
Ellis (CR1) 2004; 6
CR30
Caraco, Blotnick, Muszkat (CR18) 2008; 83
Vanyrur, Heberger, Kovesdi, Jakus (CR35) 2002; 75
Freeman, Eagle, Bates, Werns, Kline-Rogers, Karavite, Moscucci (CR25) 2000; 140
Lenzini, Wadelius, Kimmel, Anderson, Jorgensen, Pirmohamed, Caldwell, Limdi, Burmester, Dowd, Angchaisuksiri, Bass, Chen, Eriksson, Rane, Lindh, Carlquist, Horne, Grice, Milligan, Eby, Shin, Kim, Kurnik, Stein, McMillin, Pendleton, Berg, Deloukas, Gage (CR20) 2010; 87
Seiler (CR5) 2004; 90
Carlquist, Horne, Muhlestein, Lappe, Whiting, Kolek, Clarke, James, Anderson (CR14) 2006; 22
Gong, Tirona, Schwarz, Crown, Dresser, Larue, Langlois, Lazo-Langner, Zou, Roden, Stein, Rodger, Carrier, Forgie, Wells, Kim (CR45) 2011; 118
Biss, Avery, Brandao, Chalmers, Williams, Grainger, Leathart, Hanley, Daly, Kamali (CR2) 2012; 119
Palareti (CR8) 2011; 31
(CR34) 1985
Ansell, Hirsh, Hylek, Jacobson, Crowther, Palareti (CR9) 2008; 133
Sconce, Khan, Wynne, Avery, Monkhouse, King, Wood, Kesteven, Daly, Kamali (CR13) 2005; 106
Pirmohamed (CR10) 2006; 62
Avorn (CR44) 2011; 123
CR27
Wadelius, Chen, Lindh, Eriksson, Ghori, Bumpstead, Holm, McGinnis, Rane, Deloukas (CR19) 2009; 113
Wu, Wang, Smith, Haller, Drake, Linder, Valdes (CR15) 2008; 9
Esmerian, Mitri, Habbal, Geryess, Zaatari, Alam, Skouri, Mahfouz, Taher, Zgheib (CR12) 2011; 51
Baxt (CR39) 1995; 346
Pengo, Crippa, Falanga, Finazzi, Marongiu, Moia, Palareti, Poli, Testa, Tiraferri, Tosetto, Tripodi, Siragusa, Manotti (CR42) 2012; 10
CR41
Nunnelee (CR16) 2009; 27
Takeuchi, McGinnis, Bourgeois, Barnes, Eriksson, Soranzo, Whittaker, Ranganath, Kumanduri, McLaren, Holm, Lindh, Rane, Wadelius, Deloukas (CR32) 2009; 5
Anderson, Horne, Stevens, Grove, Barton, Nicholas, Kahn, May, Samuelson, Muhlestein, Carlquist (CR46) 2007; 116
Epstein, Moyer, Aubert, Kane DJ, Xia, Verbrugge, Gage, Teagarden (CR21) 2010; 55
Wieloch, Sjalander, Frykman, Rosenqvist, Eriksson, Svensson (CR48) 2011; 32
Zou, Han, So (CR24) 2008; 458
Burnett (CR4) 2013; 40
Palareti, Cosmi (CR7) 2009; 102
Limdi, Wadelius, Cavallari, Eriksson, Crawford, Lee, Chen, Motsinger-Reif, Sagreiya, Liu, Wu, Gage, Jorgensen, Pirmohamed, Shin, Suarez-Kurtz, Kimmel, Johnson, Klein, Wagner (CR17) 2010; 115
Gage, Eby, Johnson, Deych, Rieder, Ridker, Milligan, Grice, Lenzini, Rettie, Aquilante, Grosso, Marsh, Langaee, Farnett, Voora, Veenstra, Glynn, Barrett, McLeod (CR36) 2008; 84
Baxt (CR40) 1990; 2
Horne, Lenzini, Wadelius, Jorgensen, Kimmel, Ridker, Eriksson, Anderson, Pirmohamed, Limdi, Pendleton, McMillin, Burmester, Kurnik, Stein, Caldwell, Eby, Rane, Lindh, Shin, Kim, Angchaisuksiri, Glynn, Kronquist, Carlquist, Grice, Barrack, Li, Gage (CR47) 2012; 107
Purwanto, Logeswaran, Abdul Rahman (CR26) 2012; 36
R Vanyrur (1617_CR35) 2002; 75
C Seiler (1617_CR5) 2004; 90
AK Wittkowsky (1617_CR11) 2004; 24
V Pengo (1617_CR42) 2012; 10
TT Biss (1617_CR2) 2012; 119
JL Anderson (1617_CR46) 2007; 116
BD Horne (1617_CR47) 2012; 107
P Lenzini (1617_CR20) 2010; 87
BP Smith (1617_CR29) 1998; 22
MH Ellis (1617_CR1) 2004; 6
TE Klein (1617_CR22) 2009; 360
WG Baxt (1617_CR39) 1995; 346
J Avorn (1617_CR44) 2011; 123
NA Limdi (1617_CR17) 2010; 115
L. S (1617_CR34) 1985
BF Gage (1617_CR36) 2008; 84
G Palareti (1617_CR7) 2009; 102
1617_CR30
B Burnett (1617_CR4) 2013; 40
R Dybowski (1617_CR31) 1996; 347
MO Esmerian (1617_CR12) 2011; 51
JD Nunnelee (1617_CR16) 2009; 27
M Wadelius (1617_CR19) 2009; 113
M Wieloch (1617_CR48) 2011; 32
C Ugrinowitsch (1617_CR23) 2004; 36
RV Freeman (1617_CR25) 2000; 140
V Fuster (1617_CR3) 2001; 104
EC Purwanto (1617_CR26) 2012; 36
G Palareti (1617_CR8) 2011; 31
F Takeuchi (1617_CR32) 2009; 5
SJ Connolly (1617_CR43) 2009; 361
AH Wu (1617_CR15) 2008; 9
RK Price (1617_CR38) 2000; 12
WG Baxt (1617_CR40) 1990; 2
J Zou (1617_CR24) 2008; 458
MT Hagan (1617_CR33) 1996
RS Epstein (1617_CR21) 2010; 55
H Robert-Ebadi (1617_CR6) 2009; 4
IY Gong (1617_CR45) 2011; 118
J Ansell (1617_CR9) 2008; 133
1617_CR27
MN Narayanan (1617_CR28) 1993; 32
Y Caraco (1617_CR18) 2008; 83
M Pirmohamed (1617_CR10) 2006; 62
EA Sconce (1617_CR13) 2005; 106
JF Carlquist (1617_CR14) 2006; 22
AG Fragkaki (1617_CR37) 2012; 1256
1617_CR41
15609893 - Isr Med Assoc J. 2004 Dec;6(12):770-1
18305455 - Clin Pharmacol Ther. 2008 Sep;84(3):326-31
23402462 - Prim Care. 2013 Mar;40(1):73-90
7475607 - Lancet. 1995 Oct 28;346(8983):1135-8
22827490 - J Thromb Haemost. 2012 Oct;10(10):1979-87
19503778 - Clin Interv Aging. 2009;4:165-77
15628828 - Pharmacotherapy. 2004 Oct;24(10):1311-6
21725053 - Blood. 2011 Sep 15;118(11):3163-71
20203262 - Blood. 2010 May 6;115(18):3827-34
17851566 - Clin Pharmacol Ther. 2008 Mar;83(3):460-70
10752362 - Psychol Assess. 2000 Mar;12(1):40-51
8469161 - Methods Inf Med. 1993 Feb;32(1):55-8
19228618 - N Engl J Med. 2009 Feb 19;360(8):753-64
12017472 - Photochem Photobiol. 2002 May;75(5):471-8
8609749 - Lancet. 1996 Apr 27;347(9009):1146-50
20381283 - J Am Coll Cardiol. 2010 Jun 22;55(25):2804-12
21148049 - J Clin Pharmacol. 2011 Oct;51(10 ):1418-28
21616951 - Eur Heart J. 2011 Sep;32(18):2282-9
22186998 - Thromb Haemost. 2012 Feb;107(2):232-40
21709932 - Hamostaseologie. 2011 Nov;31(4):237-42
10966555 - Am Heart J. 2000 Sep;140(3):511-20
17989110 - Circulation. 2007 Nov 27;116(22):2563-70
17061959 - Br J Clin Pharmacol. 2006 Nov;62(5):509-11
11673357 - Circulation. 2001 Oct 23;104(17):2118-50
15570152 - Med Sci Sports Exerc. 2004 Dec;36(12):2144-8
15947090 - Blood. 2005 Oct 1;106(7):2329-33
20375999 - Clin Pharmacol Ther. 2010 May;87(5):572-8
9754457 - Artif Organs. 1998 Sep;22(9):731-9
17111199 - J Thromb Thrombolysis. 2006 Dec;22(3):191-7
18574025 - Blood. 2009 Jan 22;113(4):784-92
22010099 - Blood. 2012 Jan 19;119(3):868-73
22675726 - J Med Syst. 2012 Apr;36(2):521-31
18370846 - Pharmacogenomics. 2008 Feb;9(2):169-78
19717844 - N Engl J Med. 2009 Sep 17;361(12):1139-51
19065803 - Methods Mol Biol. 2008;458:15-23
21606400 - Circulation. 2011 Jun 7;123(22):2519-21
22901297 - J Chromatogr A. 2012 Sep 21;1256:232-9
19652877 - Thromb Haemost. 2009 Aug;102(2):268-78
15201262 - Heart. 2004 Jul;90(7):818-24
19914573 - J Vasc Nurs. 2009 Dec;27(4):109
19300499 - PLoS Genet. 2009 Mar;5(3):e1000433
18574265 - Chest. 2008 Jun;133(6 Suppl):160S-198S
References_xml – volume: 22
  start-page: 191
  issue: 3
  year: 2006
  end-page: 197
  ident: CR14
  article-title: Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study
  publication-title: J Thromb Thrombolysis
  doi: 10.1007/s11239-006-9030-7
– volume: 9
  start-page: 169
  issue: 2
  year: 2008
  end-page: 178
  ident: CR15
  article-title: Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.9.2.169
– volume: 6
  start-page: 770
  issue: 12
  year: 2004
  end-page: 771
  ident: CR1
  article-title: Artificial neural networks for anticoagulant management–think again!
  publication-title: Isr Med Assoc J: IMAJ
– year: 1996
  ident: CR33
  publication-title: Neural network design
– ident: CR30
– volume: 346
  start-page: 1135
  issue: 8983
  year: 1995
  end-page: 1138
  ident: CR39
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– volume: 360
  start-page: 753
  issue: 8
  year: 2009
  end-page: 764
  ident: CR22
  article-title: Estimation of the warfarin dose with clinical and pharmacogenetic data
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0809329
– volume: 133
  start-page: 160S
  issue: 6 Suppl
  year: 2008
  end-page: 198S
  ident: CR9
  article-title: Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition)
  publication-title: Chest
  doi: 10.1378/chest.08-0670
– volume: 119
  start-page: 868
  issue: 3
  year: 2012
  end-page: 873
  ident: CR2
  article-title: VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children
  publication-title: Blood
  doi: 10.1182/blood-2011-08-372722
– volume: 84
  start-page: 326
  issue: 3
  year: 2008
  end-page: 331
  ident: CR36
  article-title: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2008.10
– volume: 5
  start-page: e1000433
  issue: 3
  year: 2009
  ident: CR32
  article-title: A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000433
– volume: 90
  start-page: 818
  issue: 7
  year: 2004
  end-page: 824
  ident: CR5
  article-title: Management and follow up of prosthetic heart valves
  publication-title: Heart
  doi: 10.1136/hrt.2003.025049
– volume: 32
  start-page: 2282
  issue: 18
  year: 2011
  end-page: 2289
  ident: CR48
  article-title: Anticoagulation control in Sweden: reports of time in therapeutic range, major bleeding, and thrombo-embolic complications from the national quality registry AuriculA
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr134
– volume: 2
  start-page: 480
  issue: 4
  year: 1990
  end-page: 489
  ident: CR40
  article-title: Use of an Artificial Neural Network for Data Analysis in Clinical Decision-Making: The Diagnosis of Acute Coronary Occlusion
  publication-title: Neural Comput
  doi: 10.1162/neco.1990.2.4.480
– volume: 113
  start-page: 784
  issue: 4
  year: 2009
  end-page: 792
  ident: CR19
  article-title: The largest prospective warfarin-treated cohort supports genetic forecasting
  publication-title: Blood
  doi: 10.1182/blood-2008-04-149070
– volume: 83
  start-page: 460
  issue: 3
  year: 2008
  end-page: 470
  ident: CR18
  article-title: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/sj.clpt.6100316
– ident: CR27
– volume: 140
  start-page: 511
  issue: 3
  year: 2000
  end-page: 520
  ident: CR25
  article-title: Comparison of artificial neural networks with logistic regression in prediction of in-hospital death after percutaneous transluminal coronary angioplasty
  publication-title: Am Heart J
  doi: 10.1067/mhj.2000.109223
– volume: 4
  start-page: 165
  year: 2009
  end-page: 177
  ident: CR6
  article-title: Use of anticoagulants in elderly patients: practical recommendations
  publication-title: Clin Interv Aging
– volume: 24
  start-page: 1311
  issue: 10
  year: 2004
  end-page: 1316
  ident: CR11
  article-title: Frequency and causes of overanticoagulation and underanticoagulation in patients treated with warfarin
  publication-title: Pharmacotherapy
  doi: 10.1592/phco.24.14.1311.43144
– volume: 51
  start-page: 1418
  issue: 10
  year: 2011
  end-page: 1428
  ident: CR12
  article-title: Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of Lebanese people
  publication-title: J Clin Pharmacol
  doi: 10.1177/0091270010382910
– volume: 36
  start-page: 521
  issue: 2
  year: 2012
  end-page: 531
  ident: CR26
  article-title: Prediction models for early risk detection of cardiovascular event
  publication-title: J Med Syst
  doi: 10.1007/s10916-010-9497-9
– volume: 116
  start-page: 2563
  issue: 22
  year: 2007
  end-page: 2570
  ident: CR46
  article-title: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.737312
– volume: 458
  start-page: 15
  year: 2008
  end-page: 23
  ident: CR24
  article-title: Overview of artificial neural networks
  publication-title: Methods Mol Biol
– volume: 12
  start-page: 40
  issue: 1
  year: 2000
  end-page: 51
  ident: CR38
  article-title: Applying artificial neural network models to clinical decision making
  publication-title: Psychol Assess
  doi: 10.1037/1040-3590.12.1.40
– volume: 27
  start-page: 109
  issue: 4
  year: 2009
  ident: CR16
  article-title: Review of an Article: The international Warfarin Pharmacogenetics Consortium (2009). Estimation of the warfarin dose with clinical and pharmacogenetic data. NEJM 360 (8): 753–64
  publication-title: J Vasc Nurs: Off Publ Soc Peripher Vasc Nurs
  doi: 10.1016/j.jvn.2009.09.001
– volume: 10
  start-page: 1979
  issue: 10
  year: 2012
  end-page: 1987
  ident: CR42
  article-title: Phase III studies on novel oral anticoagulants for stroke prevention in atrial fibrillation: a look beyond the excellent results
  publication-title: J Thromb Haemost: JTH
  doi: 10.1111/j.1538-7836.2012.04866.x
– volume: 115
  start-page: 3827
  issue: 18
  year: 2010
  end-page: 3834
  ident: CR17
  article-title: Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups
  publication-title: Blood
  doi: 10.1182/blood-2009-12-255992
– volume: 62
  start-page: 509
  issue: 5
  year: 2006
  end-page: 511
  ident: CR10
  article-title: Warfarin: almost 60 years old and still causing problems
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2006.02806.x
– volume: 123
  start-page: 2519
  issue: 22
  year: 2011
  end-page: 2521
  ident: CR44
  article-title: The relative cost-effectiveness of anticoagulants: obvious, except for the cost and the effectiveness
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.030148
– volume: 40
  start-page: 73
  issue: 1
  year: 2013
  end-page: 90
  ident: CR4
  article-title: Management of venous thromboembolism
  publication-title: Prim Care
  doi: 10.1016/j.pop.2012.11.004
– volume: 55
  start-page: 2804
  issue: 25
  year: 2010
  end-page: 2812
  ident: CR21
  article-title: Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study)
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.03.009
– volume: 1256
  start-page: 232
  year: 2012
  end-page: 239
  ident: CR37
  article-title: Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2012.07.064
– volume: 347
  start-page: 1146
  issue: 9009
  year: 1996
  end-page: 1150
  ident: CR31
  article-title: Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)90609-1
– volume: 104
  start-page: 2118
  issue: 17
  year: 2001
  end-page: 2150
  ident: CR3
  article-title: ACC/AHA/ESC Guidelines for the Management of Patients With Atrial Fibrillation: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) Developed in Collaboration With the North American Society of Pacing and Electrophysiology
  publication-title: Circulation
– volume: 361
  start-page: 1139
  issue: 12
  year: 2009
  end-page: 1151
  ident: CR43
  article-title: Dabigatran versus warfarin in patients with atrial fibrillation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0905561
– volume: 75
  start-page: 471
  issue: 5
  year: 2002
  end-page: 478
  ident: CR35
  article-title: Prediction of tumoricidal activity and accumulation of photosensitizers in photodynamic therapy using multiple linear regression and artificial neural networks
  publication-title: Photochem Photobiol
  doi: 10.1562/0031-8655(2002)075<0471:POTAAA>2.0.CO;2
– volume: 118
  start-page: 3163
  issue: 11
  year: 2011
  end-page: 3171
  ident: CR45
  article-title: Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy
  publication-title: Blood
  doi: 10.1182/blood-2011-03-345173
– volume: 36
  start-page: 2144
  issue: 12
  year: 2004
  end-page: 2148
  ident: CR23
  article-title: Limitations of ordinary least squares models in analyzing repeated measures data
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/01.MSS.0000147580.40591.75
– volume: 31
  start-page: 237
  issue: 4
  year: 2011
  end-page: 242
  ident: CR8
  article-title: Bleeding with anticoagulant treatments
  publication-title: Hamostaseologie
  doi: 10.5482/ha-1151
– volume: 87
  start-page: 572
  issue: 5
  year: 2010
  end-page: 578
  ident: CR20
  article-title: Integration of genetic, clinical, and INR data to refine warfarin dosing
  publication-title: Clinical Pharmacol Ther
  doi: 10.1038/clpt.2010.13
– volume: 102
  start-page: 268
  issue: 2
  year: 2009
  end-page: 278
  ident: CR7
  article-title: Bleeding with anticoagulation therapy - who is at risk, and how best to identify such patients
  publication-title: Thromb Haemost
– volume: 32
  start-page: 55
  issue: 1
  year: 1993
  end-page: 58
  ident: CR28
  article-title: A genetic algorithm to improve a neural network to predict a patient’s response to warfarin
  publication-title: Methods Inf Med
– year: 1985
  ident: CR34
  publication-title: Introduction to non-linear optimization
– ident: CR41
– volume: 22
  start-page: 731
  issue: 9
  year: 1998
  end-page: 739
  ident: CR29
  article-title: Prediction of anticoagulation during hemodialysis by population kinetics and an artificial neural network
  publication-title: Artif Organs
  doi: 10.1046/j.1525-1594.1998.06101.x
– volume: 106
  start-page: 2329
  issue: 7
  year: 2005
  end-page: 2333
  ident: CR13
  article-title: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen
  publication-title: Blood
  doi: 10.1182/blood-2005-03-1108
– volume: 107
  start-page: 232
  issue: 2
  year: 2012
  end-page: 240
  ident: CR47
  article-title: Pharmacogenetic warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy
  publication-title: Thromb Haemost
  doi: 10.1160/TH11-06-0388
– volume: 40
  start-page: 73
  issue: 1
  year: 2013
  ident: 1617_CR4
  publication-title: Prim Care
  doi: 10.1016/j.pop.2012.11.004
– volume: 102
  start-page: 268
  issue: 2
  year: 2009
  ident: 1617_CR7
  publication-title: Thromb Haemost
– volume: 1256
  start-page: 232
  year: 2012
  ident: 1617_CR37
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2012.07.064
– volume: 27
  start-page: 109
  issue: 4
  year: 2009
  ident: 1617_CR16
  publication-title: J Vasc Nurs: Off Publ Soc Peripher Vasc Nurs
  doi: 10.1016/j.jvn.2009.09.001
– volume: 123
  start-page: 2519
  issue: 22
  year: 2011
  ident: 1617_CR44
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.030148
– volume-title: Introduction to non-linear optimization
  year: 1985
  ident: 1617_CR34
– volume: 12
  start-page: 40
  issue: 1
  year: 2000
  ident: 1617_CR38
  publication-title: Psychol Assess
  doi: 10.1037/1040-3590.12.1.40
– volume: 113
  start-page: 784
  issue: 4
  year: 2009
  ident: 1617_CR19
  publication-title: Blood
  doi: 10.1182/blood-2008-04-149070
– volume: 36
  start-page: 521
  issue: 2
  year: 2012
  ident: 1617_CR26
  publication-title: J Med Syst
  doi: 10.1007/s10916-010-9497-9
– volume: 24
  start-page: 1311
  issue: 10
  year: 2004
  ident: 1617_CR11
  publication-title: Pharmacotherapy
  doi: 10.1592/phco.24.14.1311.43144
– volume: 55
  start-page: 2804
  issue: 25
  year: 2010
  ident: 1617_CR21
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.03.009
– volume: 361
  start-page: 1139
  issue: 12
  year: 2009
  ident: 1617_CR43
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0905561
– volume: 22
  start-page: 731
  issue: 9
  year: 1998
  ident: 1617_CR29
  publication-title: Artif Organs
  doi: 10.1046/j.1525-1594.1998.06101.x
– volume: 2
  start-page: 480
  issue: 4
  year: 1990
  ident: 1617_CR40
  publication-title: Neural Comput
  doi: 10.1162/neco.1990.2.4.480
– volume: 107
  start-page: 232
  issue: 2
  year: 2012
  ident: 1617_CR47
  publication-title: Thromb Haemost
  doi: 10.1160/TH11-06-0388
– volume: 36
  start-page: 2144
  issue: 12
  year: 2004
  ident: 1617_CR23
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/01.MSS.0000147580.40591.75
– volume: 104
  start-page: 2118
  issue: 17
  year: 2001
  ident: 1617_CR3
  publication-title: Circulation
  doi: 10.1161/circ.104.17.2118
– volume: 6
  start-page: 770
  issue: 12
  year: 2004
  ident: 1617_CR1
  publication-title: Isr Med Assoc J: IMAJ
– volume: 22
  start-page: 191
  issue: 3
  year: 2006
  ident: 1617_CR14
  publication-title: J Thromb Thrombolysis
  doi: 10.1007/s11239-006-9030-7
– ident: 1617_CR27
– volume: 5
  start-page: e1000433
  issue: 3
  year: 2009
  ident: 1617_CR32
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000433
– volume-title: Neural network design
  year: 1996
  ident: 1617_CR33
– volume: 116
  start-page: 2563
  issue: 22
  year: 2007
  ident: 1617_CR46
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.737312
– ident: 1617_CR30
– volume: 4
  start-page: 165
  year: 2009
  ident: 1617_CR6
  publication-title: Clin Interv Aging
– volume: 106
  start-page: 2329
  issue: 7
  year: 2005
  ident: 1617_CR13
  publication-title: Blood
  doi: 10.1182/blood-2005-03-1108
– volume: 62
  start-page: 509
  issue: 5
  year: 2006
  ident: 1617_CR10
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2006.02806.x
– volume: 9
  start-page: 169
  issue: 2
  year: 2008
  ident: 1617_CR15
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.9.2.169
– volume: 140
  start-page: 511
  issue: 3
  year: 2000
  ident: 1617_CR25
  publication-title: Am Heart J
  doi: 10.1067/mhj.2000.109223
– volume: 31
  start-page: 237
  issue: 4
  year: 2011
  ident: 1617_CR8
  publication-title: Hamostaseologie
  doi: 10.5482/ha-1151
– volume: 118
  start-page: 3163
  issue: 11
  year: 2011
  ident: 1617_CR45
  publication-title: Blood
  doi: 10.1182/blood-2011-03-345173
– volume: 84
  start-page: 326
  issue: 3
  year: 2008
  ident: 1617_CR36
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2008.10
– volume: 83
  start-page: 460
  issue: 3
  year: 2008
  ident: 1617_CR18
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/sj.clpt.6100316
– volume: 10
  start-page: 1979
  issue: 10
  year: 2012
  ident: 1617_CR42
  publication-title: J Thromb Haemost: JTH
  doi: 10.1111/j.1538-7836.2012.04866.x
– volume: 346
  start-page: 1135
  issue: 8983
  year: 1995
  ident: 1617_CR39
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– volume: 75
  start-page: 471
  issue: 5
  year: 2002
  ident: 1617_CR35
  publication-title: Photochem Photobiol
  doi: 10.1562/0031-8655(2002)075<0471:POTAAA>2.0.CO;2
– ident: 1617_CR41
– volume: 32
  start-page: 2282
  issue: 18
  year: 2011
  ident: 1617_CR48
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr134
– volume: 347
  start-page: 1146
  issue: 9009
  year: 1996
  ident: 1617_CR31
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)90609-1
– volume: 32
  start-page: 55
  issue: 1
  year: 1993
  ident: 1617_CR28
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634888
– volume: 51
  start-page: 1418
  issue: 10
  year: 2011
  ident: 1617_CR12
  publication-title: J Clin Pharmacol
  doi: 10.1177/0091270010382910
– volume: 87
  start-page: 572
  issue: 5
  year: 2010
  ident: 1617_CR20
  publication-title: Clinical Pharmacol Ther
  doi: 10.1038/clpt.2010.13
– volume: 360
  start-page: 753
  issue: 8
  year: 2009
  ident: 1617_CR22
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0809329
– volume: 90
  start-page: 818
  issue: 7
  year: 2004
  ident: 1617_CR5
  publication-title: Heart
  doi: 10.1136/hrt.2003.025049
– volume: 458
  start-page: 15
  year: 2008
  ident: 1617_CR24
  publication-title: Methods Mol Biol
– volume: 119
  start-page: 868
  issue: 3
  year: 2012
  ident: 1617_CR2
  publication-title: Blood
  doi: 10.1182/blood-2011-08-372722
– volume: 133
  start-page: 160S
  issue: 6 Suppl
  year: 2008
  ident: 1617_CR9
  publication-title: Chest
  doi: 10.1378/chest.08-0670
– volume: 115
  start-page: 3827
  issue: 18
  year: 2010
  ident: 1617_CR17
  publication-title: Blood
  doi: 10.1182/blood-2009-12-255992
– reference: 8609749 - Lancet. 1996 Apr 27;347(9009):1146-50
– reference: 21616951 - Eur Heart J. 2011 Sep;32(18):2282-9
– reference: 17989110 - Circulation. 2007 Nov 27;116(22):2563-70
– reference: 21725053 - Blood. 2011 Sep 15;118(11):3163-71
– reference: 22901297 - J Chromatogr A. 2012 Sep 21;1256:232-9
– reference: 10966555 - Am Heart J. 2000 Sep;140(3):511-20
– reference: 21148049 - J Clin Pharmacol. 2011 Oct;51(10 ):1418-28
– reference: 19065803 - Methods Mol Biol. 2008;458:15-23
– reference: 19914573 - J Vasc Nurs. 2009 Dec;27(4):109
– reference: 9754457 - Artif Organs. 1998 Sep;22(9):731-9
– reference: 19503778 - Clin Interv Aging. 2009;4:165-77
– reference: 12017472 - Photochem Photobiol. 2002 May;75(5):471-8
– reference: 17111199 - J Thromb Thrombolysis. 2006 Dec;22(3):191-7
– reference: 19717844 - N Engl J Med. 2009 Sep 17;361(12):1139-51
– reference: 11673357 - Circulation. 2001 Oct 23;104(17):2118-50
– reference: 19652877 - Thromb Haemost. 2009 Aug;102(2):268-78
– reference: 15201262 - Heart. 2004 Jul;90(7):818-24
– reference: 22186998 - Thromb Haemost. 2012 Feb;107(2):232-40
– reference: 15570152 - Med Sci Sports Exerc. 2004 Dec;36(12):2144-8
– reference: 18305455 - Clin Pharmacol Ther. 2008 Sep;84(3):326-31
– reference: 18370846 - Pharmacogenomics. 2008 Feb;9(2):169-78
– reference: 20381283 - J Am Coll Cardiol. 2010 Jun 22;55(25):2804-12
– reference: 8469161 - Methods Inf Med. 1993 Feb;32(1):55-8
– reference: 15947090 - Blood. 2005 Oct 1;106(7):2329-33
– reference: 15628828 - Pharmacotherapy. 2004 Oct;24(10):1311-6
– reference: 21709932 - Hamostaseologie. 2011 Nov;31(4):237-42
– reference: 17851566 - Clin Pharmacol Ther. 2008 Mar;83(3):460-70
– reference: 15609893 - Isr Med Assoc J. 2004 Dec;6(12):770-1
– reference: 7475607 - Lancet. 1995 Oct 28;346(8983):1135-8
– reference: 19300499 - PLoS Genet. 2009 Mar;5(3):e1000433
– reference: 20375999 - Clin Pharmacol Ther. 2010 May;87(5):572-8
– reference: 22010099 - Blood. 2012 Jan 19;119(3):868-73
– reference: 22675726 - J Med Syst. 2012 Apr;36(2):521-31
– reference: 18574025 - Blood. 2009 Jan 22;113(4):784-92
– reference: 23402462 - Prim Care. 2013 Mar;40(1):73-90
– reference: 17061959 - Br J Clin Pharmacol. 2006 Nov;62(5):509-11
– reference: 10752362 - Psychol Assess. 2000 Mar;12(1):40-51
– reference: 22827490 - J Thromb Haemost. 2012 Oct;10(10):1979-87
– reference: 19228618 - N Engl J Med. 2009 Feb 19;360(8):753-64
– reference: 21606400 - Circulation. 2011 Jun 7;123(22):2519-21
– reference: 20203262 - Blood. 2010 May 6;115(18):3827-34
– reference: 18574265 - Chest. 2008 Jun;133(6 Suppl):160S-198S
SSID ssj0015903
Score 2.1243865
Snippet Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a...
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic...
SourceID proquest
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 265
SubjectTerms Acenocoumarol - administration & dosage
Acenocoumarol - pharmacology
Aged
Aged, 80 and over
Anticoagulants
Anticoagulants - administration & dosage
Anticoagulants - pharmacology
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Dose-Response Relationship, Drug
Drug dosages
Female
Genetics
Genotype
Humans
International Normalized Ratio
Least-Squares Analysis
Male
Medical sciences
Middle Aged
Models, Biological
Neural Networks (Computer)
Pharmacogenetics
Pharmacology
Pharmacology. Drug treatments
Pharmacology/Toxicology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaVQSt91kwYVSg5tRL162PKhlLYkhEKXpSSQm5EluZdiu_s45N9nRn5sQ9uAwWBLwtaMRiPN6PsA3mZpHvI8Lbi2tebK1ZZbjwvXQtuIgOako33I74vs_FJ9u9JXe7AYz8JQWuVoE6Oh9q2jPfIP6MlnJkdzaz51vzmxRlF0daTQsAO1gv8YIcbuwb4gZKwZ7H85XSx_THEFXaQDDO-cZ0U-xTnTCCsqCK15Ljn5_FzcmqkedHaNnVb3bBf_ckf_CqXGGersETwcXEv2udeFx7AXmidwvOyxqa9P2MXuqNX6hB2z5Q61-vopbPvtheAZ_uV2hTVYWzPsd1QVS3z1zYb5dh1Yt6LYDsmTUdL8T2ZZN7SEykhnIrEWtrKKWUio3owwM-MtZpxzmjg966mrn8Hl2enF13M-cDJwhyvNDa5blamklJX1htj9tLQWTVQatLDoS9Vp5jJBz-sgqtwqK9Ehy-28MMFnynn5HGZN24SXwGxRYEljgzZe0aVFZeYyq0WdGidcAunY_6UbAMuJN-NXOUEtR5GVKLKSRFaKBN5NVboereOuwke3hDrVEOiFUjw-gcNRyuUwstflTg8TeDO9xjFJgRbbhHYbyxS4ykdTl8CLXjt2jStiC1P45v2oLn80_r9vfXX3pxzAfXTkVJ8bdwizzWobXqOztKmOhhFwA029D-M
  priority: 102
  providerName: ProQuest
Title Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method
URI https://link.springer.com/article/10.1007/s00228-013-1617-2
https://www.ncbi.nlm.nih.gov/pubmed/24297344
https://www.proquest.com/docview/1496873628
https://www.proquest.com/docview/1499132794
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015903
  issn: 0031-6970
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1041
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015903
  issn: 0031-6970
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1041
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015903
  issn: 0031-6970
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015903
  issn: 0031-6970
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1041
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015903
  issn: 0031-6970
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_07kUQ8dvquUSQe9ALdPPRpI-r7HkoHovcwvpU0jT1RbrLdvfh_ntn0o_18BSEQqFJhpKZJDOZmd8AvM1SE4xJc65drbnyteOuQsM11y4ioHnp6R7y62V2sVSfV3rV53G3Q7T74JKMO_WY7BahWjhVIyCdnOO-e6wJzQuFeClmo-tA52mPtDvlWW5GV-ZtJG4cRvc3rsV5qbuCFrdpnH94S-MhdP4QHvTaI5t17H4Ed0LzGE4XHfz09Rm7OmRTtWfslC0OwNTXT2Df3SCEijnv91scwdY1w6lFaXBUkr7ZsWrdBrbZkvuGWMYoLv4Hc2zTU0J5o7RHHIVUtjHQCCWYESxmfMWgck5nY8W66tRPYXk-v_p4wfuyC9yjMblD01TZUkpZuspSAT8tncNdKA1aOFSX6jTzmaDvdRClccpJ1LmMm-Y2VJnylXwGR826CS-AuRz5I60L2laKHi1KO5VZLerUeuETSIf5L3yPSU6lMX4WI5pyZFmBLCuIZYVI4N04ZNMBcvyr8-QGU8cRAhVNcrkncDJwuegXb4vWUJ5Zgye7TeDN2IzLjnwprgnrfeyToyGPu1kCzzvpOBBXVBBMYcv7QVx-I_63f335X71fwT1U3VQXDXcCR7vtPrxG9WhXTuCuWZkJHM8-ff8yx_eH-eXi2yQukl8G-wnK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7S5NBCKH3HbZqq0ObQRtQrya9DKH0kbJpkWcoGcnNkS84lrN3dNWX_XH9bZ-THNrTNLWCwsaVBeEajGc3oG4A3oR_ZKPITHugi4CovNNcGHdck0A4BLZc57UOejsLhmfp2Hpyvwa_uLAylVXY60SlqU-a0R_4BLfkwjlDdxh-rH5yqRlF0tSuhodvSCmbfQYy1BzuO7fInunDz_aOvyO-3QhweTL4MeVtlgOfoOy3QE1NxJqXMtImpXl0gtcZJ59tAaLQOCj_MQ0HvCyuySCst0cSINDrr1oQqNxLp3oENJVWCzt_G54PR-HsfxwgSv4X9HfAwifq4qu9gTAWhQw8kJx-Di2sr42al58ikoqmu8S_z96_QrVsRDx_A_daUZZ8a2XsIa3b6CHbHDRb2co9NVke75ntsl41XKNnLx1A32xnWMPyr9Qx7sLJgyGcUTX1ZX-ETM-XcsmpGsSSSH0ZJ-pdMs6qlhMJPZzCxF1KZuawnnE6MMDrdzWW4c1qoDWtKZT-Bs1vhzlNYn5ZTuwVMJwm2jLUNYqPoCkQWD2RYiMKPc5F74Hf_P81bgHSq03GV9tDOjmUpsiwllqXCg3d9l6pBB7mp8c41pvY9BFq9FP_3YLvjctpqknm6knsPXvefUQdQYEdPbVm7NslAClStHjxrpGNFXFF1MoVf3nfi8gfx_431-c1DeQV3h5PTk_TkaHT8Au6hEamavLxtWF_MavsSDbVFttPOBgYXtz0BfwNbWErp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBRFE_Db9cgXtg3ZpbjefD0XEerRWyz20cG9xs9n0pVzSywW5f61_nTO7Sc6i9q0QuJDsDuHmY2d2Zn8D8C7yYxPHfspDVYY80KXiqsDANQ2VRUDTUtM-5I_T6Og8-DYNp2tw3Z-FobLK3iZaQ11UmvbI99GTj5IYzW2yX3ZlEZPD8af6ilMHKcq09u00nIicmOUvDN-ag-ND5PV7IcZfz74c8a7DANcYNy0wCguSXEqZqyKhXnWhVAoVzjehUOgZlH6kI0HPSyPyWAVKonsRKwzUTREFupBI9x7cj6VMqZwwng7BHnoJfgf4O-JRGg8ZVd8CmArChR5JTtEFFzfWxEe1apA9peur8S_H96-krV0Lx0_gcefEss9O6p7Cmpk9g92JQ8Fe7rGz1aGuZo_tsskKH3v5HFq3kWEKprRu5ziDVSVDDqNQqov2Eu9YUTWG1XPKIpHkMCrPv2CK1R0lFHs6fYmzkMrc1juhIjFC57Q_trad0xJdMNck-wWc3wlvXsL6rJqZ18BUmuLIRJkwKQK6QpEnIxmVovQTLbQHfv__Z7qDRqcOHZfZAOpsWZYhyzJiWSY8-DBMqR0uyG2Dd24wdZgh0N-lzL8HWz2Xs86GNNlK4j14O7xG7aeUjpqZqrVj0pEUaFQ9eOWkY0U8oL5kAb752IvLH8T_960bt3_KG3iAapd9Pz492YSH6D0GriBvC9YX89Zso4e2yHesKjD4ede69xs2M0iD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accuracy+of+anticoagulant+dose+prediction+using+a+pharmacogenetic+and+artificial+neural+network-based+method&rft.jtitle=European+journal+of+clinical+pharmacology&rft.au=Isma%27eel%2C+Hussain+A&rft.au=Sakr%2C+George+E&rft.au=Habib%2C+Robert+H&rft.au=Almedawar%2C+Mohamad+Musbah&rft.date=2014-03-01&rft.issn=1432-1041&rft.eissn=1432-1041&rft.volume=70&rft.issue=3&rft.spage=265&rft_id=info:doi/10.1007%2Fs00228-013-1617-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-6970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-6970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-6970&client=summon