Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method
Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. Methods LSM and ANN m...
        Saved in:
      
    
          | Published in | European journal of clinical pharmacology Vol. 70; no. 3; pp. 265 - 273 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.03.2014
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0031-6970 1432-1041 1432-1041  | 
| DOI | 10.1007/s00228-013-1617-2 | 
Cover
| Abstract | Background
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.
Methods
LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.
Results
The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.
Conclusions
ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study. | 
    
|---|---|
| AbstractList | The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.
LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.
The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.
ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study. The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique. The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error <=1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error >=4 mg/week) by 24 %. ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.[PUBLICATION ABSTRACT] The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.BACKGROUNDThe unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.METHODSLSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.RESULTSThe ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.CONCLUSIONSANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study. Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. Methods LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique. Results The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %. Conclusions ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.  | 
    
| Author | Sakr, George E. Almedawar, Mohamad Musbah Habib, Robert H. Elhajj, Imad H. Zgheib, Nathalie K. Isma’eel, Hussain A.  | 
    
| Author_xml | – sequence: 1 givenname: Hussain A. surname: Isma’eel fullname: Isma’eel, Hussain A. organization: Division of Cardiology, Department of Internal Medicine, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center – sequence: 2 givenname: George E. surname: Sakr fullname: Sakr, George E. organization: Department of Electrical & Computer Engineering, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center – sequence: 3 givenname: Robert H. surname: Habib fullname: Habib, Robert H. organization: Division of Cardiology, Department of Internal Medicine, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center – sequence: 4 givenname: Mohamad Musbah surname: Almedawar fullname: Almedawar, Mohamad Musbah organization: Division of Cardiology, Department of Internal Medicine, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center – sequence: 5 givenname: Nathalie K. surname: Zgheib fullname: Zgheib, Nathalie K. email: nk16@aub.edu.lb organization: Department of Pharmacology and Toxicology, American University of Beirut Medical Center, Vascular Medicine Program, American University of Beirut Medical Center – sequence: 6 givenname: Imad H. surname: Elhajj fullname: Elhajj, Imad H. email: ie05@aub.edu.lb organization: Department of Electrical & Computer Engineering, American University of Beirut, Vascular Medicine Program, American University of Beirut Medical Center  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512700$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24297344$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNp9kU1rFTEYhYNU7O3VH-BGAiK4Sc3XJDNLKX4UCt3YdXgnk7lNnUmuSabSf2-Ge6tS0NUbwnPOm5Nzhk5CDA6h14yeM0r1h0wp5y2hTBCmmCb8GdowKThhVLITtKFUMKI6TU_RWc53lLKmo-IFOuWSd1pIuUHL5bxP8d4NGKxdEtgHHEcMoXgbYbdM9YSHmB3eJzd4W3wMeMk-7DDg_S2kGWzcueAqX1XVJRU_euthwsFVv3WUnzF9Jz3kumV25TYOL9HzEabsXh3nFt18_vTt4iu5uv5yefHxilhJeSENl20vhOhhaDUTTSMAtBLUNRxoo0aqrOLr_eh4r0GCqOk1sK51g5J2EFv0_uBbM_5YXC5m9tm6qcZyccmGya5jgutOVvTtE_QuLinU162UarVQvK3UmyO19LMbzD75GdKDefzQCrw7ApAtTGOCYH3-w7UN47r2skXswNkUc05u_I0watZyzaFcU8s1a7mGV41-orG-wFpJSeCn_yr5QZnrlrBz6a9w_xT9AkjWt2M | 
    
| CitedBy_id | crossref_primary_10_1080_14017431_2019_1678764 crossref_primary_10_1371_journal_pone_0135784 crossref_primary_10_1007_s12350_017_0823_1 crossref_primary_10_2147_PPA_S471577 crossref_primary_10_1007_s10554_015_0821_9 crossref_primary_10_1016_j_cmpb_2021_106589 crossref_primary_10_1038_s41397_019_0083_3 crossref_primary_10_1002_cpt_334 crossref_primary_10_1038_s41397_024_00336_z crossref_primary_10_2217_pgs_2017_0122 crossref_primary_10_1007_s40291_014_0090_7  | 
    
| Cites_doi | 10.1007/s11239-006-9030-7 10.2217/14622416.9.2.169 10.1016/S0140-6736(95)91804-3 10.1056/NEJMoa0809329 10.1378/chest.08-0670 10.1182/blood-2011-08-372722 10.1038/clpt.2008.10 10.1371/journal.pgen.1000433 10.1136/hrt.2003.025049 10.1093/eurheartj/ehr134 10.1162/neco.1990.2.4.480 10.1182/blood-2008-04-149070 10.1038/sj.clpt.6100316 10.1067/mhj.2000.109223 10.1592/phco.24.14.1311.43144 10.1177/0091270010382910 10.1007/s10916-010-9497-9 10.1161/CIRCULATIONAHA.107.737312 10.1037/1040-3590.12.1.40 10.1016/j.jvn.2009.09.001 10.1111/j.1538-7836.2012.04866.x 10.1182/blood-2009-12-255992 10.1111/j.1365-2125.2006.02806.x 10.1161/CIRCULATIONAHA.111.030148 10.1016/j.pop.2012.11.004 10.1016/j.jacc.2010.03.009 10.1016/j.chroma.2012.07.064 10.1016/S0140-6736(96)90609-1 10.1056/NEJMoa0905561 10.1562/0031-8655(2002)075<0471:POTAAA>2.0.CO;2 10.1182/blood-2011-03-345173 10.1249/01.MSS.0000147580.40591.75 10.5482/ha-1151 10.1038/clpt.2010.13 10.1046/j.1525-1594.1998.06101.x 10.1182/blood-2005-03-1108 10.1160/TH11-06-0388 10.1161/circ.104.17.2118 10.1055/s-0038-1634888  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag Berlin Heidelberg 2013 2015 INIST-CNRS Springer-Verlag Berlin Heidelberg 2014  | 
    
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 – notice: 2015 INIST-CNRS – notice: Springer-Verlag Berlin Heidelberg 2014  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7U9 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH H94 K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8  | 
    
| DOI | 10.1007/s00228-013-1617-2 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Pharmacy, Therapeutics, & Pharmacology | 
    
| EISSN | 1432-1041 | 
    
| EndPage | 273 | 
    
| ExternalDocumentID | 3214476931 24297344 28512700 10_1007_s00228_013_1617_2  | 
    
| Genre | Validation Studies Journal Article  | 
    
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67N 67Z 6NX 6PF 78A 7RV 7X7 88E 8AO 8FI 8FJ 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECT EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 WOW Y6R YLTOR Z45 Z7U Z7V Z7W Z81 Z82 Z83 Z87 Z8O Z8P Z8Q Z8U Z8V Z8W Z91 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO IQODW CGR CUY CVF ECM EIF NPM 7TK 7U9 7XB 8FK H94 K9. PKEHL PQEST PQUKI 7X8  | 
    
| ID | FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0031-6970 1432-1041  | 
    
| IngestDate | Wed Oct 01 14:27:56 EDT 2025 Tue Oct 07 05:14:18 EDT 2025 Wed Feb 19 01:51:38 EST 2025 Wed Apr 02 07:20:27 EDT 2025 Wed Oct 01 02:24:52 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Fri Feb 21 02:34:23 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Least-squares modeling Pharmacogenetics Anticoagulation Artificial neural network INR Human Anticoagutation Prediction Anticoagulant Method Neural network Modeling International normalized ratio Genetics Predictive factor Dose  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 24297344 | 
    
| PQID | 1496873628 | 
    
| PQPubID | 47171 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_1499132794 proquest_journals_1496873628 pubmed_primary_24297344 pascalfrancis_primary_28512700 crossref_primary_10_1007_s00228_013_1617_2 crossref_citationtrail_10_1007_s00228_013_1617_2 springer_journals_10_1007_s00228_013_1617_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-03-01 | 
    
| PublicationDateYYYYMMDD | 2014-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: Germany  | 
    
| PublicationTitle | European journal of clinical pharmacology | 
    
| PublicationTitleAbbrev | Eur J Clin Pharmacol | 
    
| PublicationTitleAlternate | Eur J Clin Pharmacol | 
    
| PublicationYear | 2014 | 
    
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V  | 
    
| References | Ugrinowitsch, Fellingham, Ricard (CR23) 2004; 36 Klein, Altman, Eriksson, Gage, Kimmel, Lee, Limdi, Page, Roden, Wagner, Caldwell, Johnson (CR22) 2009; 360 Narayanan, Lucas (CR28) 1993; 32 Fragkaki, Farmaki, Thomaidis, Tsantili-Kakoulidou, Angelis, Koupparis, Georgakopoulos (CR37) 2012; 1256 Hagan (CR33) 1996 Price, Spitznagel, Downey, Meyer, Risk, el-Ghazzawy (CR38) 2000; 12 Dybowski, Weller, Chang, Gant (CR31) 1996; 347 Connolly, Ezekowitz, Yusuf, Eikelboom, Oldgren, Parekh, Pogue, Reilly, Themeles, Varrone, Wang, Alings, Xavier, Zhu, Diaz, Lewis, Darius, Diener, Joyner, Wallentin (CR43) 2009; 361 Robert-Ebadi, Le Gal, Righini (CR6) 2009; 4 Smith, Ward, Brier (CR29) 1998; 22 Wittkowsky, Devine (CR11) 2004; 24 Fuster, Ryden, Asinger, Cannom, Crijns, Frye, Halperin, Kay, Klein, Levy, McNamara, Prystowsky, Wann, Wyse, Gibbons, Antman, Alpert, Faxon, Gregoratos, Hiratzka, Jacobs, Russell, Smith, Alonso-Garcia, Blomstrom-Lundqvist, de Backer, Flather, Hradec, Oto, Parkhomenko, Silber, Torbicki (CR3) 2001; 104 Ellis (CR1) 2004; 6 CR30 Caraco, Blotnick, Muszkat (CR18) 2008; 83 Vanyrur, Heberger, Kovesdi, Jakus (CR35) 2002; 75 Freeman, Eagle, Bates, Werns, Kline-Rogers, Karavite, Moscucci (CR25) 2000; 140 Lenzini, Wadelius, Kimmel, Anderson, Jorgensen, Pirmohamed, Caldwell, Limdi, Burmester, Dowd, Angchaisuksiri, Bass, Chen, Eriksson, Rane, Lindh, Carlquist, Horne, Grice, Milligan, Eby, Shin, Kim, Kurnik, Stein, McMillin, Pendleton, Berg, Deloukas, Gage (CR20) 2010; 87 Seiler (CR5) 2004; 90 Carlquist, Horne, Muhlestein, Lappe, Whiting, Kolek, Clarke, James, Anderson (CR14) 2006; 22 Gong, Tirona, Schwarz, Crown, Dresser, Larue, Langlois, Lazo-Langner, Zou, Roden, Stein, Rodger, Carrier, Forgie, Wells, Kim (CR45) 2011; 118 Biss, Avery, Brandao, Chalmers, Williams, Grainger, Leathart, Hanley, Daly, Kamali (CR2) 2012; 119 Palareti (CR8) 2011; 31 (CR34) 1985 Ansell, Hirsh, Hylek, Jacobson, Crowther, Palareti (CR9) 2008; 133 Sconce, Khan, Wynne, Avery, Monkhouse, King, Wood, Kesteven, Daly, Kamali (CR13) 2005; 106 Pirmohamed (CR10) 2006; 62 Avorn (CR44) 2011; 123 CR27 Wadelius, Chen, Lindh, Eriksson, Ghori, Bumpstead, Holm, McGinnis, Rane, Deloukas (CR19) 2009; 113 Wu, Wang, Smith, Haller, Drake, Linder, Valdes (CR15) 2008; 9 Esmerian, Mitri, Habbal, Geryess, Zaatari, Alam, Skouri, Mahfouz, Taher, Zgheib (CR12) 2011; 51 Baxt (CR39) 1995; 346 Pengo, Crippa, Falanga, Finazzi, Marongiu, Moia, Palareti, Poli, Testa, Tiraferri, Tosetto, Tripodi, Siragusa, Manotti (CR42) 2012; 10 CR41 Nunnelee (CR16) 2009; 27 Takeuchi, McGinnis, Bourgeois, Barnes, Eriksson, Soranzo, Whittaker, Ranganath, Kumanduri, McLaren, Holm, Lindh, Rane, Wadelius, Deloukas (CR32) 2009; 5 Anderson, Horne, Stevens, Grove, Barton, Nicholas, Kahn, May, Samuelson, Muhlestein, Carlquist (CR46) 2007; 116 Epstein, Moyer, Aubert, Kane DJ, Xia, Verbrugge, Gage, Teagarden (CR21) 2010; 55 Wieloch, Sjalander, Frykman, Rosenqvist, Eriksson, Svensson (CR48) 2011; 32 Zou, Han, So (CR24) 2008; 458 Burnett (CR4) 2013; 40 Palareti, Cosmi (CR7) 2009; 102 Limdi, Wadelius, Cavallari, Eriksson, Crawford, Lee, Chen, Motsinger-Reif, Sagreiya, Liu, Wu, Gage, Jorgensen, Pirmohamed, Shin, Suarez-Kurtz, Kimmel, Johnson, Klein, Wagner (CR17) 2010; 115 Gage, Eby, Johnson, Deych, Rieder, Ridker, Milligan, Grice, Lenzini, Rettie, Aquilante, Grosso, Marsh, Langaee, Farnett, Voora, Veenstra, Glynn, Barrett, McLeod (CR36) 2008; 84 Baxt (CR40) 1990; 2 Horne, Lenzini, Wadelius, Jorgensen, Kimmel, Ridker, Eriksson, Anderson, Pirmohamed, Limdi, Pendleton, McMillin, Burmester, Kurnik, Stein, Caldwell, Eby, Rane, Lindh, Shin, Kim, Angchaisuksiri, Glynn, Kronquist, Carlquist, Grice, Barrack, Li, Gage (CR47) 2012; 107 Purwanto, Logeswaran, Abdul Rahman (CR26) 2012; 36 R Vanyrur (1617_CR35) 2002; 75 C Seiler (1617_CR5) 2004; 90 AK Wittkowsky (1617_CR11) 2004; 24 V Pengo (1617_CR42) 2012; 10 TT Biss (1617_CR2) 2012; 119 JL Anderson (1617_CR46) 2007; 116 BD Horne (1617_CR47) 2012; 107 P Lenzini (1617_CR20) 2010; 87 BP Smith (1617_CR29) 1998; 22 MH Ellis (1617_CR1) 2004; 6 TE Klein (1617_CR22) 2009; 360 WG Baxt (1617_CR39) 1995; 346 J Avorn (1617_CR44) 2011; 123 NA Limdi (1617_CR17) 2010; 115 L. S (1617_CR34) 1985 BF Gage (1617_CR36) 2008; 84 G Palareti (1617_CR7) 2009; 102 1617_CR30 B Burnett (1617_CR4) 2013; 40 R Dybowski (1617_CR31) 1996; 347 MO Esmerian (1617_CR12) 2011; 51 JD Nunnelee (1617_CR16) 2009; 27 M Wadelius (1617_CR19) 2009; 113 M Wieloch (1617_CR48) 2011; 32 C Ugrinowitsch (1617_CR23) 2004; 36 RV Freeman (1617_CR25) 2000; 140 V Fuster (1617_CR3) 2001; 104 EC Purwanto (1617_CR26) 2012; 36 G Palareti (1617_CR8) 2011; 31 F Takeuchi (1617_CR32) 2009; 5 SJ Connolly (1617_CR43) 2009; 361 AH Wu (1617_CR15) 2008; 9 RK Price (1617_CR38) 2000; 12 WG Baxt (1617_CR40) 1990; 2 J Zou (1617_CR24) 2008; 458 MT Hagan (1617_CR33) 1996 RS Epstein (1617_CR21) 2010; 55 H Robert-Ebadi (1617_CR6) 2009; 4 IY Gong (1617_CR45) 2011; 118 J Ansell (1617_CR9) 2008; 133 1617_CR27 MN Narayanan (1617_CR28) 1993; 32 Y Caraco (1617_CR18) 2008; 83 M Pirmohamed (1617_CR10) 2006; 62 EA Sconce (1617_CR13) 2005; 106 JF Carlquist (1617_CR14) 2006; 22 AG Fragkaki (1617_CR37) 2012; 1256 1617_CR41 15609893 - Isr Med Assoc J. 2004 Dec;6(12):770-1 18305455 - Clin Pharmacol Ther. 2008 Sep;84(3):326-31 23402462 - Prim Care. 2013 Mar;40(1):73-90 7475607 - Lancet. 1995 Oct 28;346(8983):1135-8 22827490 - J Thromb Haemost. 2012 Oct;10(10):1979-87 19503778 - Clin Interv Aging. 2009;4:165-77 15628828 - Pharmacotherapy. 2004 Oct;24(10):1311-6 21725053 - Blood. 2011 Sep 15;118(11):3163-71 20203262 - Blood. 2010 May 6;115(18):3827-34 17851566 - Clin Pharmacol Ther. 2008 Mar;83(3):460-70 10752362 - Psychol Assess. 2000 Mar;12(1):40-51 8469161 - Methods Inf Med. 1993 Feb;32(1):55-8 19228618 - N Engl J Med. 2009 Feb 19;360(8):753-64 12017472 - Photochem Photobiol. 2002 May;75(5):471-8 8609749 - Lancet. 1996 Apr 27;347(9009):1146-50 20381283 - J Am Coll Cardiol. 2010 Jun 22;55(25):2804-12 21148049 - J Clin Pharmacol. 2011 Oct;51(10 ):1418-28 21616951 - Eur Heart J. 2011 Sep;32(18):2282-9 22186998 - Thromb Haemost. 2012 Feb;107(2):232-40 21709932 - Hamostaseologie. 2011 Nov;31(4):237-42 10966555 - Am Heart J. 2000 Sep;140(3):511-20 17989110 - Circulation. 2007 Nov 27;116(22):2563-70 17061959 - Br J Clin Pharmacol. 2006 Nov;62(5):509-11 11673357 - Circulation. 2001 Oct 23;104(17):2118-50 15570152 - Med Sci Sports Exerc. 2004 Dec;36(12):2144-8 15947090 - Blood. 2005 Oct 1;106(7):2329-33 20375999 - Clin Pharmacol Ther. 2010 May;87(5):572-8 9754457 - Artif Organs. 1998 Sep;22(9):731-9 17111199 - J Thromb Thrombolysis. 2006 Dec;22(3):191-7 18574025 - Blood. 2009 Jan 22;113(4):784-92 22010099 - Blood. 2012 Jan 19;119(3):868-73 22675726 - J Med Syst. 2012 Apr;36(2):521-31 18370846 - Pharmacogenomics. 2008 Feb;9(2):169-78 19717844 - N Engl J Med. 2009 Sep 17;361(12):1139-51 19065803 - Methods Mol Biol. 2008;458:15-23 21606400 - Circulation. 2011 Jun 7;123(22):2519-21 22901297 - J Chromatogr A. 2012 Sep 21;1256:232-9 19652877 - Thromb Haemost. 2009 Aug;102(2):268-78 15201262 - Heart. 2004 Jul;90(7):818-24 19914573 - J Vasc Nurs. 2009 Dec;27(4):109 19300499 - PLoS Genet. 2009 Mar;5(3):e1000433 18574265 - Chest. 2008 Jun;133(6 Suppl):160S-198S  | 
    
| References_xml | – volume: 22 start-page: 191 issue: 3 year: 2006 end-page: 197 ident: CR14 article-title: Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study publication-title: J Thromb Thrombolysis doi: 10.1007/s11239-006-9030-7 – volume: 9 start-page: 169 issue: 2 year: 2008 end-page: 178 ident: CR15 article-title: Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations publication-title: Pharmacogenomics doi: 10.2217/14622416.9.2.169 – volume: 6 start-page: 770 issue: 12 year: 2004 end-page: 771 ident: CR1 article-title: Artificial neural networks for anticoagulant management–think again! publication-title: Isr Med Assoc J: IMAJ – year: 1996 ident: CR33 publication-title: Neural network design – ident: CR30 – volume: 346 start-page: 1135 issue: 8983 year: 1995 end-page: 1138 ident: CR39 article-title: Application of artificial neural networks to clinical medicine publication-title: Lancet doi: 10.1016/S0140-6736(95)91804-3 – volume: 360 start-page: 753 issue: 8 year: 2009 end-page: 764 ident: CR22 article-title: Estimation of the warfarin dose with clinical and pharmacogenetic data publication-title: N Engl J Med doi: 10.1056/NEJMoa0809329 – volume: 133 start-page: 160S issue: 6 Suppl year: 2008 end-page: 198S ident: CR9 article-title: Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition) publication-title: Chest doi: 10.1378/chest.08-0670 – volume: 119 start-page: 868 issue: 3 year: 2012 end-page: 873 ident: CR2 article-title: VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children publication-title: Blood doi: 10.1182/blood-2011-08-372722 – volume: 84 start-page: 326 issue: 3 year: 2008 end-page: 331 ident: CR36 article-title: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2008.10 – volume: 5 start-page: e1000433 issue: 3 year: 2009 ident: CR32 article-title: A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000433 – volume: 90 start-page: 818 issue: 7 year: 2004 end-page: 824 ident: CR5 article-title: Management and follow up of prosthetic heart valves publication-title: Heart doi: 10.1136/hrt.2003.025049 – volume: 32 start-page: 2282 issue: 18 year: 2011 end-page: 2289 ident: CR48 article-title: Anticoagulation control in Sweden: reports of time in therapeutic range, major bleeding, and thrombo-embolic complications from the national quality registry AuriculA publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr134 – volume: 2 start-page: 480 issue: 4 year: 1990 end-page: 489 ident: CR40 article-title: Use of an Artificial Neural Network for Data Analysis in Clinical Decision-Making: The Diagnosis of Acute Coronary Occlusion publication-title: Neural Comput doi: 10.1162/neco.1990.2.4.480 – volume: 113 start-page: 784 issue: 4 year: 2009 end-page: 792 ident: CR19 article-title: The largest prospective warfarin-treated cohort supports genetic forecasting publication-title: Blood doi: 10.1182/blood-2008-04-149070 – volume: 83 start-page: 460 issue: 3 year: 2008 end-page: 470 ident: CR18 article-title: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study publication-title: Clin Pharmacol Ther doi: 10.1038/sj.clpt.6100316 – ident: CR27 – volume: 140 start-page: 511 issue: 3 year: 2000 end-page: 520 ident: CR25 article-title: Comparison of artificial neural networks with logistic regression in prediction of in-hospital death after percutaneous transluminal coronary angioplasty publication-title: Am Heart J doi: 10.1067/mhj.2000.109223 – volume: 4 start-page: 165 year: 2009 end-page: 177 ident: CR6 article-title: Use of anticoagulants in elderly patients: practical recommendations publication-title: Clin Interv Aging – volume: 24 start-page: 1311 issue: 10 year: 2004 end-page: 1316 ident: CR11 article-title: Frequency and causes of overanticoagulation and underanticoagulation in patients treated with warfarin publication-title: Pharmacotherapy doi: 10.1592/phco.24.14.1311.43144 – volume: 51 start-page: 1418 issue: 10 year: 2011 end-page: 1428 ident: CR12 article-title: Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of Lebanese people publication-title: J Clin Pharmacol doi: 10.1177/0091270010382910 – volume: 36 start-page: 521 issue: 2 year: 2012 end-page: 531 ident: CR26 article-title: Prediction models for early risk detection of cardiovascular event publication-title: J Med Syst doi: 10.1007/s10916-010-9497-9 – volume: 116 start-page: 2563 issue: 22 year: 2007 end-page: 2570 ident: CR46 article-title: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.737312 – volume: 458 start-page: 15 year: 2008 end-page: 23 ident: CR24 article-title: Overview of artificial neural networks publication-title: Methods Mol Biol – volume: 12 start-page: 40 issue: 1 year: 2000 end-page: 51 ident: CR38 article-title: Applying artificial neural network models to clinical decision making publication-title: Psychol Assess doi: 10.1037/1040-3590.12.1.40 – volume: 27 start-page: 109 issue: 4 year: 2009 ident: CR16 article-title: Review of an Article: The international Warfarin Pharmacogenetics Consortium (2009). Estimation of the warfarin dose with clinical and pharmacogenetic data. NEJM 360 (8): 753–64 publication-title: J Vasc Nurs: Off Publ Soc Peripher Vasc Nurs doi: 10.1016/j.jvn.2009.09.001 – volume: 10 start-page: 1979 issue: 10 year: 2012 end-page: 1987 ident: CR42 article-title: Phase III studies on novel oral anticoagulants for stroke prevention in atrial fibrillation: a look beyond the excellent results publication-title: J Thromb Haemost: JTH doi: 10.1111/j.1538-7836.2012.04866.x – volume: 115 start-page: 3827 issue: 18 year: 2010 end-page: 3834 ident: CR17 article-title: Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups publication-title: Blood doi: 10.1182/blood-2009-12-255992 – volume: 62 start-page: 509 issue: 5 year: 2006 end-page: 511 ident: CR10 article-title: Warfarin: almost 60 years old and still causing problems publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2006.02806.x – volume: 123 start-page: 2519 issue: 22 year: 2011 end-page: 2521 ident: CR44 article-title: The relative cost-effectiveness of anticoagulants: obvious, except for the cost and the effectiveness publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.030148 – volume: 40 start-page: 73 issue: 1 year: 2013 end-page: 90 ident: CR4 article-title: Management of venous thromboembolism publication-title: Prim Care doi: 10.1016/j.pop.2012.11.004 – volume: 55 start-page: 2804 issue: 25 year: 2010 end-page: 2812 ident: CR21 article-title: Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.03.009 – volume: 1256 start-page: 232 year: 2012 end-page: 239 ident: CR37 article-title: Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids publication-title: J Chromatogr A doi: 10.1016/j.chroma.2012.07.064 – volume: 347 start-page: 1146 issue: 9009 year: 1996 end-page: 1150 ident: CR31 article-title: Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm publication-title: Lancet doi: 10.1016/S0140-6736(96)90609-1 – volume: 104 start-page: 2118 issue: 17 year: 2001 end-page: 2150 ident: CR3 article-title: ACC/AHA/ESC Guidelines for the Management of Patients With Atrial Fibrillation: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) Developed in Collaboration With the North American Society of Pacing and Electrophysiology publication-title: Circulation – volume: 361 start-page: 1139 issue: 12 year: 2009 end-page: 1151 ident: CR43 article-title: Dabigatran versus warfarin in patients with atrial fibrillation publication-title: N Engl J Med doi: 10.1056/NEJMoa0905561 – volume: 75 start-page: 471 issue: 5 year: 2002 end-page: 478 ident: CR35 article-title: Prediction of tumoricidal activity and accumulation of photosensitizers in photodynamic therapy using multiple linear regression and artificial neural networks publication-title: Photochem Photobiol doi: 10.1562/0031-8655(2002)075<0471:POTAAA>2.0.CO;2 – volume: 118 start-page: 3163 issue: 11 year: 2011 end-page: 3171 ident: CR45 article-title: Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy publication-title: Blood doi: 10.1182/blood-2011-03-345173 – volume: 36 start-page: 2144 issue: 12 year: 2004 end-page: 2148 ident: CR23 article-title: Limitations of ordinary least squares models in analyzing repeated measures data publication-title: Med Sci Sports Exerc doi: 10.1249/01.MSS.0000147580.40591.75 – volume: 31 start-page: 237 issue: 4 year: 2011 end-page: 242 ident: CR8 article-title: Bleeding with anticoagulant treatments publication-title: Hamostaseologie doi: 10.5482/ha-1151 – volume: 87 start-page: 572 issue: 5 year: 2010 end-page: 578 ident: CR20 article-title: Integration of genetic, clinical, and INR data to refine warfarin dosing publication-title: Clinical Pharmacol Ther doi: 10.1038/clpt.2010.13 – volume: 102 start-page: 268 issue: 2 year: 2009 end-page: 278 ident: CR7 article-title: Bleeding with anticoagulation therapy - who is at risk, and how best to identify such patients publication-title: Thromb Haemost – volume: 32 start-page: 55 issue: 1 year: 1993 end-page: 58 ident: CR28 article-title: A genetic algorithm to improve a neural network to predict a patient’s response to warfarin publication-title: Methods Inf Med – year: 1985 ident: CR34 publication-title: Introduction to non-linear optimization – ident: CR41 – volume: 22 start-page: 731 issue: 9 year: 1998 end-page: 739 ident: CR29 article-title: Prediction of anticoagulation during hemodialysis by population kinetics and an artificial neural network publication-title: Artif Organs doi: 10.1046/j.1525-1594.1998.06101.x – volume: 106 start-page: 2329 issue: 7 year: 2005 end-page: 2333 ident: CR13 article-title: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen publication-title: Blood doi: 10.1182/blood-2005-03-1108 – volume: 107 start-page: 232 issue: 2 year: 2012 end-page: 240 ident: CR47 article-title: Pharmacogenetic warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy publication-title: Thromb Haemost doi: 10.1160/TH11-06-0388 – volume: 40 start-page: 73 issue: 1 year: 2013 ident: 1617_CR4 publication-title: Prim Care doi: 10.1016/j.pop.2012.11.004 – volume: 102 start-page: 268 issue: 2 year: 2009 ident: 1617_CR7 publication-title: Thromb Haemost – volume: 1256 start-page: 232 year: 2012 ident: 1617_CR37 publication-title: J Chromatogr A doi: 10.1016/j.chroma.2012.07.064 – volume: 27 start-page: 109 issue: 4 year: 2009 ident: 1617_CR16 publication-title: J Vasc Nurs: Off Publ Soc Peripher Vasc Nurs doi: 10.1016/j.jvn.2009.09.001 – volume: 123 start-page: 2519 issue: 22 year: 2011 ident: 1617_CR44 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.030148 – volume-title: Introduction to non-linear optimization year: 1985 ident: 1617_CR34 – volume: 12 start-page: 40 issue: 1 year: 2000 ident: 1617_CR38 publication-title: Psychol Assess doi: 10.1037/1040-3590.12.1.40 – volume: 113 start-page: 784 issue: 4 year: 2009 ident: 1617_CR19 publication-title: Blood doi: 10.1182/blood-2008-04-149070 – volume: 36 start-page: 521 issue: 2 year: 2012 ident: 1617_CR26 publication-title: J Med Syst doi: 10.1007/s10916-010-9497-9 – volume: 24 start-page: 1311 issue: 10 year: 2004 ident: 1617_CR11 publication-title: Pharmacotherapy doi: 10.1592/phco.24.14.1311.43144 – volume: 55 start-page: 2804 issue: 25 year: 2010 ident: 1617_CR21 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.03.009 – volume: 361 start-page: 1139 issue: 12 year: 2009 ident: 1617_CR43 publication-title: N Engl J Med doi: 10.1056/NEJMoa0905561 – volume: 22 start-page: 731 issue: 9 year: 1998 ident: 1617_CR29 publication-title: Artif Organs doi: 10.1046/j.1525-1594.1998.06101.x – volume: 2 start-page: 480 issue: 4 year: 1990 ident: 1617_CR40 publication-title: Neural Comput doi: 10.1162/neco.1990.2.4.480 – volume: 107 start-page: 232 issue: 2 year: 2012 ident: 1617_CR47 publication-title: Thromb Haemost doi: 10.1160/TH11-06-0388 – volume: 36 start-page: 2144 issue: 12 year: 2004 ident: 1617_CR23 publication-title: Med Sci Sports Exerc doi: 10.1249/01.MSS.0000147580.40591.75 – volume: 104 start-page: 2118 issue: 17 year: 2001 ident: 1617_CR3 publication-title: Circulation doi: 10.1161/circ.104.17.2118 – volume: 6 start-page: 770 issue: 12 year: 2004 ident: 1617_CR1 publication-title: Isr Med Assoc J: IMAJ – volume: 22 start-page: 191 issue: 3 year: 2006 ident: 1617_CR14 publication-title: J Thromb Thrombolysis doi: 10.1007/s11239-006-9030-7 – ident: 1617_CR27 – volume: 5 start-page: e1000433 issue: 3 year: 2009 ident: 1617_CR32 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000433 – volume-title: Neural network design year: 1996 ident: 1617_CR33 – volume: 116 start-page: 2563 issue: 22 year: 2007 ident: 1617_CR46 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.737312 – ident: 1617_CR30 – volume: 4 start-page: 165 year: 2009 ident: 1617_CR6 publication-title: Clin Interv Aging – volume: 106 start-page: 2329 issue: 7 year: 2005 ident: 1617_CR13 publication-title: Blood doi: 10.1182/blood-2005-03-1108 – volume: 62 start-page: 509 issue: 5 year: 2006 ident: 1617_CR10 publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2006.02806.x – volume: 9 start-page: 169 issue: 2 year: 2008 ident: 1617_CR15 publication-title: Pharmacogenomics doi: 10.2217/14622416.9.2.169 – volume: 140 start-page: 511 issue: 3 year: 2000 ident: 1617_CR25 publication-title: Am Heart J doi: 10.1067/mhj.2000.109223 – volume: 31 start-page: 237 issue: 4 year: 2011 ident: 1617_CR8 publication-title: Hamostaseologie doi: 10.5482/ha-1151 – volume: 118 start-page: 3163 issue: 11 year: 2011 ident: 1617_CR45 publication-title: Blood doi: 10.1182/blood-2011-03-345173 – volume: 84 start-page: 326 issue: 3 year: 2008 ident: 1617_CR36 publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2008.10 – volume: 83 start-page: 460 issue: 3 year: 2008 ident: 1617_CR18 publication-title: Clin Pharmacol Ther doi: 10.1038/sj.clpt.6100316 – volume: 10 start-page: 1979 issue: 10 year: 2012 ident: 1617_CR42 publication-title: J Thromb Haemost: JTH doi: 10.1111/j.1538-7836.2012.04866.x – volume: 346 start-page: 1135 issue: 8983 year: 1995 ident: 1617_CR39 publication-title: Lancet doi: 10.1016/S0140-6736(95)91804-3 – volume: 75 start-page: 471 issue: 5 year: 2002 ident: 1617_CR35 publication-title: Photochem Photobiol doi: 10.1562/0031-8655(2002)075<0471:POTAAA>2.0.CO;2 – ident: 1617_CR41 – volume: 32 start-page: 2282 issue: 18 year: 2011 ident: 1617_CR48 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr134 – volume: 347 start-page: 1146 issue: 9009 year: 1996 ident: 1617_CR31 publication-title: Lancet doi: 10.1016/S0140-6736(96)90609-1 – volume: 32 start-page: 55 issue: 1 year: 1993 ident: 1617_CR28 publication-title: Methods Inf Med doi: 10.1055/s-0038-1634888 – volume: 51 start-page: 1418 issue: 10 year: 2011 ident: 1617_CR12 publication-title: J Clin Pharmacol doi: 10.1177/0091270010382910 – volume: 87 start-page: 572 issue: 5 year: 2010 ident: 1617_CR20 publication-title: Clinical Pharmacol Ther doi: 10.1038/clpt.2010.13 – volume: 360 start-page: 753 issue: 8 year: 2009 ident: 1617_CR22 publication-title: N Engl J Med doi: 10.1056/NEJMoa0809329 – volume: 90 start-page: 818 issue: 7 year: 2004 ident: 1617_CR5 publication-title: Heart doi: 10.1136/hrt.2003.025049 – volume: 458 start-page: 15 year: 2008 ident: 1617_CR24 publication-title: Methods Mol Biol – volume: 119 start-page: 868 issue: 3 year: 2012 ident: 1617_CR2 publication-title: Blood doi: 10.1182/blood-2011-08-372722 – volume: 133 start-page: 160S issue: 6 Suppl year: 2008 ident: 1617_CR9 publication-title: Chest doi: 10.1378/chest.08-0670 – volume: 115 start-page: 3827 issue: 18 year: 2010 ident: 1617_CR17 publication-title: Blood doi: 10.1182/blood-2009-12-255992 – reference: 8609749 - Lancet. 1996 Apr 27;347(9009):1146-50 – reference: 21616951 - Eur Heart J. 2011 Sep;32(18):2282-9 – reference: 17989110 - Circulation. 2007 Nov 27;116(22):2563-70 – reference: 21725053 - Blood. 2011 Sep 15;118(11):3163-71 – reference: 22901297 - J Chromatogr A. 2012 Sep 21;1256:232-9 – reference: 10966555 - Am Heart J. 2000 Sep;140(3):511-20 – reference: 21148049 - J Clin Pharmacol. 2011 Oct;51(10 ):1418-28 – reference: 19065803 - Methods Mol Biol. 2008;458:15-23 – reference: 19914573 - J Vasc Nurs. 2009 Dec;27(4):109 – reference: 9754457 - Artif Organs. 1998 Sep;22(9):731-9 – reference: 19503778 - Clin Interv Aging. 2009;4:165-77 – reference: 12017472 - Photochem Photobiol. 2002 May;75(5):471-8 – reference: 17111199 - J Thromb Thrombolysis. 2006 Dec;22(3):191-7 – reference: 19717844 - N Engl J Med. 2009 Sep 17;361(12):1139-51 – reference: 11673357 - Circulation. 2001 Oct 23;104(17):2118-50 – reference: 19652877 - Thromb Haemost. 2009 Aug;102(2):268-78 – reference: 15201262 - Heart. 2004 Jul;90(7):818-24 – reference: 22186998 - Thromb Haemost. 2012 Feb;107(2):232-40 – reference: 15570152 - Med Sci Sports Exerc. 2004 Dec;36(12):2144-8 – reference: 18305455 - Clin Pharmacol Ther. 2008 Sep;84(3):326-31 – reference: 18370846 - Pharmacogenomics. 2008 Feb;9(2):169-78 – reference: 20381283 - J Am Coll Cardiol. 2010 Jun 22;55(25):2804-12 – reference: 8469161 - Methods Inf Med. 1993 Feb;32(1):55-8 – reference: 15947090 - Blood. 2005 Oct 1;106(7):2329-33 – reference: 15628828 - Pharmacotherapy. 2004 Oct;24(10):1311-6 – reference: 21709932 - Hamostaseologie. 2011 Nov;31(4):237-42 – reference: 17851566 - Clin Pharmacol Ther. 2008 Mar;83(3):460-70 – reference: 15609893 - Isr Med Assoc J. 2004 Dec;6(12):770-1 – reference: 7475607 - Lancet. 1995 Oct 28;346(8983):1135-8 – reference: 19300499 - PLoS Genet. 2009 Mar;5(3):e1000433 – reference: 20375999 - Clin Pharmacol Ther. 2010 May;87(5):572-8 – reference: 22010099 - Blood. 2012 Jan 19;119(3):868-73 – reference: 22675726 - J Med Syst. 2012 Apr;36(2):521-31 – reference: 18574025 - Blood. 2009 Jan 22;113(4):784-92 – reference: 23402462 - Prim Care. 2013 Mar;40(1):73-90 – reference: 17061959 - Br J Clin Pharmacol. 2006 Nov;62(5):509-11 – reference: 10752362 - Psychol Assess. 2000 Mar;12(1):40-51 – reference: 22827490 - J Thromb Haemost. 2012 Oct;10(10):1979-87 – reference: 19228618 - N Engl J Med. 2009 Feb 19;360(8):753-64 – reference: 21606400 - Circulation. 2011 Jun 7;123(22):2519-21 – reference: 20203262 - Blood. 2010 May 6;115(18):3827-34 – reference: 18574265 - Chest. 2008 Jun;133(6 Suppl):160S-198S  | 
    
| SSID | ssj0015903 | 
    
| Score | 2.1243865 | 
    
| Snippet | Background
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a... The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 265 | 
    
| SubjectTerms | Acenocoumarol - administration & dosage Acenocoumarol - pharmacology Aged Aged, 80 and over Anticoagulants Anticoagulants - administration & dosage Anticoagulants - pharmacology Biological and medical sciences Biomedical and Life Sciences Biomedicine Dose-Response Relationship, Drug Drug dosages Female Genetics Genotype Humans International Normalized Ratio Least-Squares Analysis Male Medical sciences Middle Aged Models, Biological Neural Networks (Computer) Pharmacogenetics Pharmacology Pharmacology. Drug treatments Pharmacology/Toxicology  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaVQSt91kwYVSg5tRL162PKhlLYkhEKXpSSQm5EluZdiu_s45N9nRn5sQ9uAwWBLwtaMRiPN6PsA3mZpHvI8Lbi2tebK1ZZbjwvXQtuIgOako33I74vs_FJ9u9JXe7AYz8JQWuVoE6Oh9q2jPfIP6MlnJkdzaz51vzmxRlF0daTQsAO1gv8YIcbuwb4gZKwZ7H85XSx_THEFXaQDDO-cZ0U-xTnTCCsqCK15Ljn5_FzcmqkedHaNnVb3bBf_ckf_CqXGGersETwcXEv2udeFx7AXmidwvOyxqa9P2MXuqNX6hB2z5Q61-vopbPvtheAZ_uV2hTVYWzPsd1QVS3z1zYb5dh1Yt6LYDsmTUdL8T2ZZN7SEykhnIrEWtrKKWUio3owwM-MtZpxzmjg966mrn8Hl2enF13M-cDJwhyvNDa5blamklJX1htj9tLQWTVQatLDoS9Vp5jJBz-sgqtwqK9Ehy-28MMFnynn5HGZN24SXwGxRYEljgzZe0aVFZeYyq0WdGidcAunY_6UbAMuJN-NXOUEtR5GVKLKSRFaKBN5NVboereOuwke3hDrVEOiFUjw-gcNRyuUwstflTg8TeDO9xjFJgRbbhHYbyxS4ykdTl8CLXjt2jStiC1P45v2oLn80_r9vfXX3pxzAfXTkVJ8bdwizzWobXqOztKmOhhFwA029D-M priority: 102 providerName: ProQuest  | 
    
| Title | Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method | 
    
| URI | https://link.springer.com/article/10.1007/s00228-013-1617-2 https://www.ncbi.nlm.nih.gov/pubmed/24297344 https://www.proquest.com/docview/1496873628 https://www.proquest.com/docview/1499132794  | 
    
| Volume | 70 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015903 issn: 0031-6970 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1041 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015903 issn: 0031-6970 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1041 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015903 issn: 0031-6970 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015903 issn: 0031-6970 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1041 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015903 issn: 0031-6970 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_07kUQ8dvquUSQe9ALdPPRpI-r7HkoHovcwvpU0jT1RbrLdvfh_ntn0o_18BSEQqFJhpKZJDOZmd8AvM1SE4xJc65drbnyteOuQsM11y4ioHnp6R7y62V2sVSfV3rV53G3Q7T74JKMO_WY7BahWjhVIyCdnOO-e6wJzQuFeClmo-tA52mPtDvlWW5GV-ZtJG4cRvc3rsV5qbuCFrdpnH94S-MhdP4QHvTaI5t17H4Ed0LzGE4XHfz09Rm7OmRTtWfslC0OwNTXT2Df3SCEijnv91scwdY1w6lFaXBUkr7ZsWrdBrbZkvuGWMYoLv4Hc2zTU0J5o7RHHIVUtjHQCCWYESxmfMWgck5nY8W66tRPYXk-v_p4wfuyC9yjMblD01TZUkpZuspSAT8tncNdKA1aOFSX6jTzmaDvdRClccpJ1LmMm-Y2VJnylXwGR826CS-AuRz5I60L2laKHi1KO5VZLerUeuETSIf5L3yPSU6lMX4WI5pyZFmBLCuIZYVI4N04ZNMBcvyr8-QGU8cRAhVNcrkncDJwuegXb4vWUJ5Zgye7TeDN2IzLjnwprgnrfeyToyGPu1kCzzvpOBBXVBBMYcv7QVx-I_63f335X71fwT1U3VQXDXcCR7vtPrxG9WhXTuCuWZkJHM8-ff8yx_eH-eXi2yQukl8G-wnK | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7S5NBCKH3HbZqq0ObQRtQrya9DKH0kbJpkWcoGcnNkS84lrN3dNWX_XH9bZ-THNrTNLWCwsaVBeEajGc3oG4A3oR_ZKPITHugi4CovNNcGHdck0A4BLZc57UOejsLhmfp2Hpyvwa_uLAylVXY60SlqU-a0R_4BLfkwjlDdxh-rH5yqRlF0tSuhodvSCmbfQYy1BzuO7fInunDz_aOvyO-3QhweTL4MeVtlgOfoOy3QE1NxJqXMtImpXl0gtcZJ59tAaLQOCj_MQ0HvCyuySCst0cSINDrr1oQqNxLp3oENJVWCzt_G54PR-HsfxwgSv4X9HfAwifq4qu9gTAWhQw8kJx-Di2sr42al58ikoqmu8S_z96_QrVsRDx_A_daUZZ8a2XsIa3b6CHbHDRb2co9NVke75ntsl41XKNnLx1A32xnWMPyr9Qx7sLJgyGcUTX1ZX-ETM-XcsmpGsSSSH0ZJ-pdMs6qlhMJPZzCxF1KZuawnnE6MMDrdzWW4c1qoDWtKZT-Bs1vhzlNYn5ZTuwVMJwm2jLUNYqPoCkQWD2RYiMKPc5F74Hf_P81bgHSq03GV9tDOjmUpsiwllqXCg3d9l6pBB7mp8c41pvY9BFq9FP_3YLvjctpqknm6knsPXvefUQdQYEdPbVm7NslAClStHjxrpGNFXFF1MoVf3nfi8gfx_431-c1DeQV3h5PTk_TkaHT8Au6hEamavLxtWF_MavsSDbVFttPOBgYXtz0BfwNbWErp | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBRFE_Db9cgXtg3ZpbjefD0XEerRWyz20cG9xs9n0pVzSywW5f61_nTO7Sc6i9q0QuJDsDuHmY2d2Zn8D8C7yYxPHfspDVYY80KXiqsDANQ2VRUDTUtM-5I_T6Og8-DYNp2tw3Z-FobLK3iZaQ11UmvbI99GTj5IYzW2yX3ZlEZPD8af6ilMHKcq09u00nIicmOUvDN-ag-ND5PV7IcZfz74c8a7DANcYNy0wCguSXEqZqyKhXnWhVAoVzjehUOgZlH6kI0HPSyPyWAVKonsRKwzUTREFupBI9x7cj6VMqZwwng7BHnoJfgf4O-JRGg8ZVd8CmArChR5JTtEFFzfWxEe1apA9peur8S_H96-krV0Lx0_gcefEss9O6p7Cmpk9g92JQ8Fe7rGz1aGuZo_tsskKH3v5HFq3kWEKprRu5ziDVSVDDqNQqov2Eu9YUTWG1XPKIpHkMCrPv2CK1R0lFHs6fYmzkMrc1juhIjFC57Q_trad0xJdMNck-wWc3wlvXsL6rJqZ18BUmuLIRJkwKQK6QpEnIxmVovQTLbQHfv__Z7qDRqcOHZfZAOpsWZYhyzJiWSY8-DBMqR0uyG2Dd24wdZgh0N-lzL8HWz2Xs86GNNlK4j14O7xG7aeUjpqZqrVj0pEUaFQ9eOWkY0U8oL5kAb752IvLH8T_960bt3_KG3iAapd9Pz492YSH6D0GriBvC9YX89Zso4e2yHesKjD4ede69xs2M0iD | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+accuracy+of+anticoagulant+dose+prediction+using+a+pharmacogenetic+and+artificial+neural+network-based+method&rft.jtitle=European+journal+of+clinical+pharmacology&rft.au=Isma%27eel%2C+Hussain+A&rft.au=Sakr%2C+George+E&rft.au=Habib%2C+Robert+H&rft.au=Almedawar%2C+Mohamad+Musbah&rft.date=2014-03-01&rft.issn=1432-1041&rft.eissn=1432-1041&rft.volume=70&rft.issue=3&rft.spage=265&rft_id=info:doi/10.1007%2Fs00228-013-1617-2&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-6970&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-6970&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-6970&client=summon |