Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine

This paper proposes a learning framework for single-hidden layer feedforward neural networks (SLFN) called optimized extreme learning machine (O-ELM). In O-ELM, the structure and the parameters of the SLFN are determined using an optimization method. The output weights, like in the batch ELM, are ob...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 129; pp. 428 - 436
Main Authors Matias, Tiago, Souza, Francisco, Araújo, Rui, Antunes, Carlos Henggeler
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 10.04.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2013.09.016

Cover

Abstract This paper proposes a learning framework for single-hidden layer feedforward neural networks (SLFN) called optimized extreme learning machine (O-ELM). In O-ELM, the structure and the parameters of the SLFN are determined using an optimization method. The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov's regularization in order to improve the SLFN performance in the presence of noisy data. The optimization method is used to the set of input variables, the hidden-layer configuration and bias, the input weights and Tikhonov's regularization factor. The proposed framework has been tested with three optimization methods (genetic algorithms, simulated annealing, and differential evolution) over 16 benchmark problems available in public repositories.
AbstractList This paper proposes a learning framework for single-hidden layer feedforward neural networks (SLFN) called optimized extreme learning machine (O-ELM). In O-ELM, the structure and the parameters of the SLFN are determined using an optimization method. The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov's regularization in order to improve the SLFN performance in the presence of noisy data. The optimization method is used to the set of input variables, the hidden-layer configuration and bias, the input weights and Tikhonov's regularization factor. The proposed framework has been tested with three optimization methods (genetic algorithms, simulated annealing, and differential evolution) over 16 benchmark problems available in public repositories.
Author Araújo, Rui
Matias, Tiago
Antunes, Carlos Henggeler
Souza, Francisco
Author_xml – sequence: 1
  givenname: Tiago
  surname: Matias
  fullname: Matias, Tiago
  email: tmatias@isr.uc.pt
  organization: Institute of Systems and Robotics (ISR-UC), University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal
– sequence: 2
  givenname: Francisco
  surname: Souza
  fullname: Souza, Francisco
  email: fasouza@isr.uc.pt
  organization: Institute of Systems and Robotics (ISR-UC), University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal
– sequence: 3
  givenname: Rui
  surname: Araújo
  fullname: Araújo, Rui
  email: rui@isr.uc.pt
  organization: Institute of Systems and Robotics (ISR-UC), University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal
– sequence: 4
  givenname: Carlos Henggeler
  surname: Antunes
  fullname: Antunes, Carlos Henggeler
  email: ch@deec.uc.pt
  organization: Department of Electrical and Computer Engineering (DEEC-UC), University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28284407$$DView record in Pascal Francis
BookMark eNqFkUuPFCEUhYkZE3tG_4ELNiZuqrxAvXBhYibjI-nEja4JBRebloIWqh3HXy-dntm4cFaX3HzncHPOJbmIKSIhLxm0DNjwZt9GPJq0tByYaEG2dfmEbNg08mbi03BBNiB533DB-DNyWcoegI2Myw3ZbVHn6ON3mhzVtNRXwGbnrcVIg77DTB2idSnf6mxp_SfrUMd6m_IPejzxVEeaDqtf_B-0FH-vGRek4cF30WbnIz4nT50OBV_czyvy7cPN1-tPzfbLx8_X77eN6YCvTQ-zYGxwIKWWw8gmCfNsQHeDG4wRfBx7HHS9zhrGoTPYucnYaRZiFjgjE1fk9dn3kNPPI5ZVLb4YDEFHTMeiWDXteTcN8DjaCwYga4wVfXWP6mJ0cFlH44s6ZL_ofKd4Tbnr4MS9PXMmp1IyOmX8qlef4pq1D4qBOjWm9urcmDo1pkCquqzi7h_xg_8jsndnGdZYf3nMqhiP0aD1Gc2qbPL_N_gLuSa1nQ
CitedBy_id crossref_primary_10_1016_j_tust_2020_103595
crossref_primary_10_1016_j_knosys_2020_106599
crossref_primary_10_2166_wst_2023_249
crossref_primary_10_1109_ACCESS_2021_3068127
crossref_primary_10_1007_s13349_022_00603_2
crossref_primary_10_1016_j_tust_2022_104757
crossref_primary_10_3390_app12136599
crossref_primary_10_1007_s11356_022_24420_8
crossref_primary_10_1007_s11633_022_1315_6
crossref_primary_10_1016_j_matpr_2021_01_619
crossref_primary_10_1016_j_jsse_2019_10_005
crossref_primary_10_3233_JIFS_162162
crossref_primary_10_1016_j_eswa_2017_10_053
crossref_primary_10_1108_MMMS_07_2024_0199
crossref_primary_10_1166_jctn_2020_9114
crossref_primary_10_1016_j_enconman_2017_08_014
crossref_primary_10_1016_j_jvcir_2019_102585
crossref_primary_10_1017_S026357472200145X
crossref_primary_10_17706_jsw_11_5_440_454
crossref_primary_10_1016_j_compmedimag_2024_102345
crossref_primary_10_1016_j_porgcoat_2022_107296
crossref_primary_10_1016_j_solener_2024_112785
crossref_primary_10_23919_CJEE_2023_000004
crossref_primary_10_1007_s11063_017_9700_9
crossref_primary_10_1016_j_apm_2016_10_002
crossref_primary_10_1016_j_ces_2021_117273
crossref_primary_10_1007_s11042_023_16381_y
crossref_primary_10_3389_fenrg_2024_1376306
crossref_primary_10_1007_s10479_020_03878_0
crossref_primary_10_1007_s13369_023_08627_6
crossref_primary_10_1007_s42979_021_00601_z
crossref_primary_10_1016_j_biosx_2023_100333
crossref_primary_10_1007_s13042_018_0833_6
crossref_primary_10_1155_2022_4744939
crossref_primary_10_1007_s12205_022_0128_z
crossref_primary_10_1155_2015_529724
crossref_primary_10_1007_s10845_020_01627_5
crossref_primary_10_1155_2015_418060
crossref_primary_10_1016_j_neucom_2018_07_080
crossref_primary_10_1142_S1469026823410018
crossref_primary_10_1002_we_2323
crossref_primary_10_1186_s40069_023_00622_3
crossref_primary_10_1063_1_5113555
crossref_primary_10_1109_TNNLS_2016_2536649
crossref_primary_10_1016_j_eswa_2018_03_024
crossref_primary_10_1109_ACCESS_2019_2900563
crossref_primary_10_7498_aps_65_130501
crossref_primary_10_1038_s41598_024_74446_w
crossref_primary_10_1109_TSMC_2022_3213628
crossref_primary_10_1007_s11063_016_9496_z
crossref_primary_10_1016_j_apenergy_2024_123122
crossref_primary_10_1016_j_tust_2019_103103
crossref_primary_10_3390_electronics12040926
crossref_primary_10_1155_2016_7892875
crossref_primary_10_3390_su15129604
crossref_primary_10_1007_s13042_020_01073_y
crossref_primary_10_1007_s00521_018_3652_5
Cites_doi 10.1109/ICNC.2007.13
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2010.11.035
10.1016/j.neucom.2008.10.010
10.1007/s11063-008-9077-x
10.1080/00207179608921659
10.1109/ETFA.2011.6059084
10.1016/0893-6080(89)90020-8
10.1016/j.patcog.2005.03.028
10.1109/TNN.2009.2036259
10.1109/TNN.2006.875977
10.1016/j.neucom.2011.04.009
10.1109/TNN.2002.804317
10.1016/j.neucom.2010.01.023
10.1007/BF01170953
10.1109/TAP.2007.891510
10.1007/s11063-012-9236-y
10.1109/IJCNN.1989.118638
10.1109/TNN.2005.860885
10.1016/j.neunet.2005.03.010
10.1016/j.neucom.2011.02.006
10.1109/TEVC.2004.826895
10.1073/pnas.89.23.11322
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QO
8FD
FR3
P64
7SC
7TB
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2013.09.016
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Engineering Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 436
ExternalDocumentID 28284407
10_1016_j_neucom_2013_09_016
S0925231213009314
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
BNPGV
IQODW
SSH
7QO
8FD
FR3
P64
7SC
7TB
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-50b3116f099a9671890bbc0a46f6cc32775e6addedc1204ce4f8cd8b33b3ebe13
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Sat Sep 27 21:07:14 EDT 2025
Tue Oct 07 10:00:24 EDT 2025
Wed Apr 02 07:35:47 EDT 2025
Thu Apr 24 22:53:28 EDT 2025
Wed Oct 01 03:45:19 EDT 2025
Fri Feb 23 02:27:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Single-hidden layer feedforward neural networks
Optimized extreme learning machine
Simulated annealing
Genetic algorithms
Evolutionary algorithm
Bias
Neural network
Optimization
Feedforward neural nets
Genetic algorithm
Least squares method
Hidden variable theory
Batch process
Feedforward
Learning algorithm
Regularization
Signal to noise ratio
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-50b3116f099a9671890bbc0a46f6cc32775e6addedc1204ce4f8cd8b33b3ebe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1531009187
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1671524860
proquest_miscellaneous_1531009187
pascalfrancis_primary_28284407
crossref_citationtrail_10_1016_j_neucom_2013_09_016
crossref_primary_10_1016_j_neucom_2013_09_016
elsevier_sciencedirect_doi_10_1016_j_neucom_2013_09_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-10
PublicationDateYYYYMMDD 2014-04-10
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-10
  day: 10
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References S. Kirkpatrick, C.D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing, Technical Report, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 1982.
R. Hecht-Nielsen, Theory of the back propagation neural network, in: International Joint Conference on Neural Networks, 1989, pp. 593–605.
Tsai, Chou, Liu (bib12) 2006; 17
Feoktistov (bib27) 2006
DELVE Repository by University of Toronto. URL

Haupt, Haupt (bib25) 2004
2010
Ferentinos (bib8) 2005; 18
Subudhi, Jena (bib9) 2008; 27
Leung, Lam, Ling, Tam (bib11) 2003; 14
Deng, Li, Irwin (bib1) 2011; 74
Holland (bib21) 1975
2013.
Haupt (bib20) 2007; 55
T. Matias, F. Souza, R. Araújo, The O-ELM Toolbox. URL
Miche, Sorjamaa, Bas, Simula, Jutten, Lendasse (bib5) 2010; 21
L. Torgo, URL
Bi (bib24) 2010; 73
Ben-Israel, Greville (bib19) 2003
Chen, Chng, Alkadhimi (bib7) 1996; 64
Honerkamp, Weese (bib17) 1990; 2
Cao, Lin, Huang (bib16) 2012; 36
Subudhi, Jena (bib2) 2011; 74
F. Souza, T. Matias, R. Araújo, Co-evolutionary genetic multilayer perceptron for feature selection and model design, in: IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA 2011), 2011, pp. 1–7.
.
Tsai, Liu, Chou (bib13) 2004; 8
J. Xu, Y. Lu, D.W.C. Ho, A combined genetic algorithm and orthogonal transformation for designing feedforward neural networks, in: 3rd International Conference on Natural Computation, vol. 1, 2007, pp. 10–14.
Zhu, Qin, Suganthan, Huang (bib15) 2005; 38
Ragulskis, Lukoseviciute (bib33) 2009; 72
Huang, Chen, Siew (bib18) 2006; 17
R.D. King, S. Muggleton, R.A. Lewis, M.J. Sternberg, Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase, in: Proceedings of the National Academy of Sciences of the United States of America, vol. 89, 1992, pp. 11322–11326.
A. Frank, A. Asuncion, UCI machine Learning Repository. URL
Huang, Zhu, Siew (bib6) 2006; 70
R. Storn, K. Price, Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report, International Computer Science Institute (ICSI), Berkeley, California, 1995.
P. A. C. Valdivieso, J. J. M. Guervós, J. González, V.M.R. Santos, G. Romero, Sa-prop: optimization of multilayer perceptron parameters using simulated annealing, in: Lecture Notes in Computer Science, vol. 1606, Springer, 1999, pp. 661–670.
Hornik, Stinchcombe, White (bib4) 1989; 2
Mohamed (bib22) 2011; 74
Huang (10.1016/j.neucom.2013.09.016_bib18) 2006; 17
10.1016/j.neucom.2013.09.016_bib29
Tsai (10.1016/j.neucom.2013.09.016_bib12) 2006; 17
10.1016/j.neucom.2013.09.016_bib28
10.1016/j.neucom.2013.09.016_bib26
10.1016/j.neucom.2013.09.016_bib3
Huang (10.1016/j.neucom.2013.09.016_bib6) 2006; 70
Cao (10.1016/j.neucom.2013.09.016_bib16) 2012; 36
10.1016/j.neucom.2013.09.016_bib23
Ragulskis (10.1016/j.neucom.2013.09.016_bib33) 2009; 72
Haupt (10.1016/j.neucom.2013.09.016_bib25) 2004
Hornik (10.1016/j.neucom.2013.09.016_bib4) 1989; 2
Leung (10.1016/j.neucom.2013.09.016_bib11) 2003; 14
Chen (10.1016/j.neucom.2013.09.016_bib7) 1996; 64
Ferentinos (10.1016/j.neucom.2013.09.016_bib8) 2005; 18
Tsai (10.1016/j.neucom.2013.09.016_bib13) 2004; 8
Haupt (10.1016/j.neucom.2013.09.016_bib20) 2007; 55
Holland (10.1016/j.neucom.2013.09.016_bib21) 1975
10.1016/j.neucom.2013.09.016_bib14
Deng (10.1016/j.neucom.2013.09.016_bib1) 2011; 74
Mohamed (10.1016/j.neucom.2013.09.016_bib22) 2011; 74
10.1016/j.neucom.2013.09.016_bib34
10.1016/j.neucom.2013.09.016_bib10
Ben-Israel (10.1016/j.neucom.2013.09.016_bib19) 2003
10.1016/j.neucom.2013.09.016_bib32
10.1016/j.neucom.2013.09.016_bib31
Subudhi (10.1016/j.neucom.2013.09.016_bib9) 2008; 27
Honerkamp (10.1016/j.neucom.2013.09.016_bib17) 1990; 2
Bi (10.1016/j.neucom.2013.09.016_bib24) 2010; 73
10.1016/j.neucom.2013.09.016_bib30
Miche (10.1016/j.neucom.2013.09.016_bib5) 2010; 21
Subudhi (10.1016/j.neucom.2013.09.016_bib2) 2011; 74
Feoktistov (10.1016/j.neucom.2013.09.016_bib27) 2006
Zhu (10.1016/j.neucom.2013.09.016_bib15) 2005; 38
References_xml – volume: 64
  start-page: 829
  year: 1996
  end-page: 837
  ident: bib7
  article-title: Regularized orthogonal least squares algorithm for constructing radial basis function networks
  publication-title: Int. J. Control
– volume: 17
  start-page: 879
  year: 2006
  end-page: 892
  ident: bib18
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans. Neural Netw.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib6
  article-title: Extreme learning machine
  publication-title: Neurocomputing
– volume: 2
  start-page: 17
  year: 1990
  end-page: 30
  ident: bib17
  article-title: Tikhonov's regularization method for ill-posed problems
  publication-title: Contin. Mech. Thermodyn.
– reference: 〉, 2010
– reference: T. Matias, F. Souza, R. Araújo, The O-ELM Toolbox. URL: 〈
– reference: P. A. C. Valdivieso, J. J. M. Guervós, J. González, V.M.R. Santos, G. Romero, Sa-prop: optimization of multilayer perceptron parameters using simulated annealing, in: Lecture Notes in Computer Science, vol. 1606, Springer, 1999, pp. 661–670.
– reference: R. Hecht-Nielsen, Theory of the back propagation neural network, in: International Joint Conference on Neural Networks, 1989, pp. 593–605.
– reference: F. Souza, T. Matias, R. Araújo, Co-evolutionary genetic multilayer perceptron for feature selection and model design, in: IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA 2011), 2011, pp. 1–7.
– year: 2004
  ident: bib25
  article-title: Practical Genetic Algorithms
– volume: 36
  start-page: 285
  year: 2012
  end-page: 305
  ident: bib16
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Process. Lett.
– volume: 74
  start-page: 1696
  year: 2011
  end-page: 1709
  ident: bib2
  article-title: Nonlinear system identification using memetic differential evolution trained neural networks
  publication-title: Neurocomputing
– volume: 72
  start-page: 2618
  year: 2009
  end-page: 2626
  ident: bib33
  article-title: Non-uniform attractor embedding for time series forecasting by fuzzy inference systems
  publication-title: Neurocomputing
– reference: L. Torgo, URL: 〈
– reference: DELVE Repository by University of Toronto. URL: 〈
– reference: J. Xu, Y. Lu, D.W.C. Ho, A combined genetic algorithm and orthogonal transformation for designing feedforward neural networks, in: 3rd International Conference on Natural Computation, vol. 1, 2007, pp. 10–14.
– volume: 55
  start-page: 577
  year: 2007
  end-page: 582
  ident: bib20
  article-title: Antenna design with a mixed integer genetic algorithm
  publication-title: IEEE Trans. Antennas Propag.
– reference: 〉, 2013.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib4
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 27
  start-page: 285
  year: 2008
  end-page: 296
  ident: bib9
  article-title: Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification
  publication-title: Neural Process. Lett.
– volume: 74
  start-page: 2422
  year: 2011
  end-page: 2429
  ident: bib1
  article-title: Fast automatic two-stage nonlinear model identification based on the extreme learning machine
  publication-title: Neurocomputing
– year: 2003
  ident: bib19
  article-title: Generalized Inverses
– reference:
– volume: 74
  start-page: 3180
  year: 2011
  end-page: 3192
  ident: bib22
  article-title: Rules extraction from constructively trained neural networks based on genetic algorithms
  publication-title: Neurocomputing
– reference: .
– volume: 18
  start-page: 934
  year: 2005
  end-page: 950
  ident: bib8
  article-title: Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms
  publication-title: Neural Netw.
– volume: 17
  start-page: 69
  year: 2006
  end-page: 80
  ident: bib12
  article-title: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
  publication-title: IEEE Trans. Neural Netw.
– volume: 38
  start-page: 1759
  year: 2005
  end-page: 1763
  ident: bib15
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
– reference: S. Kirkpatrick, C.D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing, Technical Report, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 1982.
– year: 2006
  ident: bib27
  article-title: Differential Evolution
– reference: A. Frank, A. Asuncion, UCI machine Learning Repository. URL: 〈
– volume: 8
  start-page: 365
  year: 2004
  end-page: 377
  ident: bib13
  article-title: Hybrid Taguchi-genetic algorithm for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 79
  year: 2003
  end-page: 88
  ident: bib11
  article-title: Tuning of the structure and parameters of neural network using an improved genetic algorithm
  publication-title: IEEE Trans. Neural Netw.
– reference: R. Storn, K. Price, Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report, International Computer Science Institute (ICSI), Berkeley, California, 1995.
– volume: 21
  start-page: 158
  year: 2010
  end-page: 162
  ident: bib5
  article-title: Op-elm
  publication-title: IEEE Trans. Neural Netw.
– reference: R.D. King, S. Muggleton, R.A. Lewis, M.J. Sternberg, Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase, in: Proceedings of the National Academy of Sciences of the United States of America, vol. 89, 1992, pp. 11322–11326.
– volume: 73
  start-page: 2394
  year: 2010
  end-page: 2406
  ident: bib24
  article-title: Deterministic local alignment methods improved by a simple genetic algorithm
  publication-title: Neurocomputing
– year: 1975
  ident: bib21
  article-title: Adaptation in Natural and Artificial Systems
– ident: 10.1016/j.neucom.2013.09.016_bib14
  doi: 10.1109/ICNC.2007.13
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.neucom.2013.09.016_bib6
  article-title: Extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 74
  start-page: 2422
  issue: 16
  year: 2011
  ident: 10.1016/j.neucom.2013.09.016_bib1
  article-title: Fast automatic two-stage nonlinear model identification based on the extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.035
– year: 2003
  ident: 10.1016/j.neucom.2013.09.016_bib19
– volume: 72
  start-page: 2618
  issue: 10–12
  year: 2009
  ident: 10.1016/j.neucom.2013.09.016_bib33
  article-title: Non-uniform attractor embedding for time series forecasting by fuzzy inference systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.10.010
– volume: 27
  start-page: 285
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2013.09.016_bib9
  article-title: Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-008-9077-x
– volume: 64
  start-page: 829
  issue: 5
  year: 1996
  ident: 10.1016/j.neucom.2013.09.016_bib7
  article-title: Regularized orthogonal least squares algorithm for constructing radial basis function networks
  publication-title: Int. J. Control
  doi: 10.1080/00207179608921659
– ident: 10.1016/j.neucom.2013.09.016_bib23
  doi: 10.1109/ETFA.2011.6059084
– ident: 10.1016/j.neucom.2013.09.016_bib34
– ident: 10.1016/j.neucom.2013.09.016_bib31
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.neucom.2013.09.016_bib4
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– year: 2006
  ident: 10.1016/j.neucom.2013.09.016_bib27
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  ident: 10.1016/j.neucom.2013.09.016_bib15
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.03.028
– volume: 21
  start-page: 158
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2013.09.016_bib5
  article-title: Op-elm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2036259
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2013.09.016_bib18
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.875977
– ident: 10.1016/j.neucom.2013.09.016_bib28
– volume: 74
  start-page: 3180
  issue: 17
  year: 2011
  ident: 10.1016/j.neucom.2013.09.016_bib22
  article-title: Rules extraction from constructively trained neural networks based on genetic algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.009
– ident: 10.1016/j.neucom.2013.09.016_bib26
– volume: 14
  start-page: 79
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2013.09.016_bib11
  article-title: Tuning of the structure and parameters of neural network using an improved genetic algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.804317
– volume: 73
  start-page: 2394
  issue: 13–15
  year: 2010
  ident: 10.1016/j.neucom.2013.09.016_bib24
  article-title: Deterministic local alignment methods improved by a simple genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.023
– volume: 2
  start-page: 17
  year: 1990
  ident: 10.1016/j.neucom.2013.09.016_bib17
  article-title: Tikhonov's regularization method for ill-posed problems
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/BF01170953
– volume: 55
  start-page: 577
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2013.09.016_bib20
  article-title: Antenna design with a mixed integer genetic algorithm
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2007.891510
– ident: 10.1016/j.neucom.2013.09.016_bib10
– year: 2004
  ident: 10.1016/j.neucom.2013.09.016_bib25
– volume: 36
  start-page: 285
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2013.09.016_bib16
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-012-9236-y
– ident: 10.1016/j.neucom.2013.09.016_bib29
– ident: 10.1016/j.neucom.2013.09.016_bib30
– ident: 10.1016/j.neucom.2013.09.016_bib3
  doi: 10.1109/IJCNN.1989.118638
– volume: 17
  start-page: 69
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2013.09.016_bib12
  article-title: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.860885
– volume: 18
  start-page: 934
  issue: 7
  year: 2005
  ident: 10.1016/j.neucom.2013.09.016_bib8
  article-title: Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.03.010
– volume: 74
  start-page: 1696
  issue: 10
  year: 2011
  ident: 10.1016/j.neucom.2013.09.016_bib2
  article-title: Nonlinear system identification using memetic differential evolution trained neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.02.006
– volume: 8
  start-page: 365
  issue: 4
  year: 2004
  ident: 10.1016/j.neucom.2013.09.016_bib13
  article-title: Hybrid Taguchi-genetic algorithm for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826895
– ident: 10.1016/j.neucom.2013.09.016_bib32
  doi: 10.1073/pnas.89.23.11322
– year: 1975
  ident: 10.1016/j.neucom.2013.09.016_bib21
SSID ssj0017129
Score 2.3834457
Snippet This paper proposes a learning framework for single-hidden layer feedforward neural networks (SLFN) called optimized extreme learning machine (O-ELM). In...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 428
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer simulation
Connectionism. Neural networks
Differential evolution
Evolution
Exact sciences and technology
Feedforward
Genetic algorithms
Learning
Neural networks
Optimization
Optimized extreme learning machine
Regularization
Simulated annealing
Single-hidden layer feedforward neural networks
Theoretical computing
Title Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine
URI https://dx.doi.org/10.1016/j.neucom.2013.09.016
https://www.proquest.com/docview/1531009187
https://www.proquest.com/docview/1671524860
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbGuRRKm_RB3SRGhV5V67WvYzAxTktzaQO-CUmWbBdn1yT2JYf89szswxBSauhxhaRdZqR5aD_NR8hXK6XPcm5Z7mzOdNQpK6K1zMbIE-eVsA6PBn5ep9Mb_X2WzHpk3N2FQVhla_sbm15b67Zl1EpztFmtRr94ISGLwpJkmJbXZNZaZ8hi8O1xD_MQmZBNvT2ZMOzdXZ-rMV5l2CFmBJygqqudIuv5393T6429B6HFhu3iheGuvdHkmLxpw0h60XzpCemF8h1521E00HbHvifLtn7qglaRWooHA-vAllg3pKRrC_E2jeC_IHJF9CzF6pYwbdlgwymC4hfUlrQCw3K7eghzCrYcTxTpupv3tkZjhg_kZnL5ezxlLbkC85AyblnCnRIijRAh2iIFD1Vw5zy3Oo2p90pmWRJSNH5zLyTXPuiY-3nulHIKFC_UR9IvqzJ8IjQr8qBCIW2uLNiDBCJON4e8K0Ao5nkoBkR1MjW-rTyOBBhr00HM_phGEwY1YXhhoHFA2H7Upqm8caB_1qnLPFtBBpzDgZHDZ9rdvw7TUQ0Z74B86dRtYPfhLxVbhmp3b8BfCFh9Iv9XH5BuIpHs6_N_f-IpeQVPNWRI8DPS397twjlEQ1s3rJf7kBxdXP2YXj8BZKcMZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6iBwVxF-sawWtsllmPIkpdLyp4C0maaKWdFm0vHvztvjdLQRQFrzNJJryXvCXz5XuEHBkpXZpxwzJrMhaFKGF5MIaZEHhsnRLG4tHAzW3SeYguH-PHGXLa3IVBWGVt-yubXlrr-km7lmZ71Ou173guIYtCSjJMy7GY9VwUyxQzsOOPKc5DpEJWhHsyZti8uT9XgrwKP0HQCHhBVdKdYtnzn_3T4si8gdRCVe7im-Uu3dH5Clmq40h6Uk11lcz4Yo0sNzUaaL1l18lzTaD6RIeBGoonA33PnpE4pKB9AwE3DeDAIHRF-CxFeksYtqjA4RRR8U_UFHQIlmXQe_ddCsYcjxRpvxl3UMIx_QZ5OD-7P-2wuroCc5AzjlnMrRIiCRAimjwBF5Vzax03URIS5xQIMvYJWr-uE5JHzkchc93MKmUVaF6oTTJbDAu_RWiaZ175XJpMGTAIMYSctguJl4dYzHGft4hqZKpdTT2OFTD6usGYvehKExo1oXmu4WGLsGmvUUW98Uf7tFGX_rKENHiHP3ruf9Hu9HOYj0aQ8rbIYaNuDdsP_6mYwg8nbxochoDlJ7Lf2oB0Y4nVvrb_PcUDMt-5v7nW1xe3VztkAd6U-CHBd8ns-HXi9yA0Gtv9cul_AnvqDfs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+of+a+single-hidden+layer+feedforward+neural+network+using+an+optimized+extreme+learning+machine&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Matias%2C+Tiago&rft.au=Souza%2C+Francisco&rft.au=Araujo%2C+Rui&rft.au=Antunes%2C+Carlos&rft.date=2014-04-10&rft.issn=0925-2312&rft.volume=129&rft.spage=428&rft.epage=436&rft_id=info:doi/10.1016%2Fj.neucom.2013.09.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon