CFD-driven symbolic identification of algebraic Reynolds-stress models
A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbu...
Saved in:
| Published in | Journal of computational physics Vol. 457; p. 111037 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Elsevier Inc
15.05.2022
Elsevier Science Ltd Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 1090-2716 |
| DOI | 10.1016/j.jcp.2022.111037 |
Cover
| Abstract | A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities of a baseline linear eddy viscosity model (LEVM) are expressed as functions of tensor polynomials selected from a library of candidate functions. The CFD-driven training consists in solving a blackbox optimization problem in which the fitness of candidate EARSM models is evaluated by running RANS simulations. The procedure enables training models against any target quantity of interest, computable as an output of the CFD model. Unlike the frozen-training approach, the proposed methodology is not restricted to data sets for which full fields of high-fidelity data, including second flow order statistics, are available. However, the solution of a high-dimensional expensive blackbox function optimization problem is required. Several steps are then undertaken to reduce the associated computational burden. First, a sensitivity analysis is used to identify the most influential terms and to reduce the dimensionality of the search space. Afterwards, the Constrained Optimization using Response Surface (CORS) algorithm, which approximates the black-box cost function using a response surface constructed from a limited number of CFD solves, is used to find the optimal model parameters. Model discovery and cross-validation is performed for three configurations of 2D turbulent separated flows in channels of variable section using different sets of training data to show the flexibility of the method. The discovered models are then applied to the prediction of an unseen 2D separated flow with higher Reynolds number and different geometry. The predictions of the discovered models for the new case are shown to be not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model derived from purely physical arguments. The proposed deterministic symbolic identification approach constitutes a promising candidate for building accurate and robust RANS models customized for a given class of flows at moderate computational cost.
•A symbolic identification method for data-driven learning of EARSMs is proposed•CFD-driven training may use sparse high-fidelity data for any quantity of interest•The approach is successfully applied to learn EARSMs for 2D separated flows•The learned models improve predictions over standard RANS models•The learned models generalize well to other 2D separated flows |
|---|---|
| AbstractList | A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities of a baseline linear eddy viscosity model (LEVM) are expressed as functions of tensor polynomials selected from a library of candidate functions. The CFD-driven training consists in solving a blackbox optimization problem in which the fitness of candidate EARSM models is evaluated by running RANS simulations. The procedure enables training models against any target quantity of interest, computable as an output of the CFD model. Unlike the frozen-training approach, the proposed methodology is not restricted to data sets for which full fields of high-fidelity data, including second flow order statistics, are available. However, the solution of a high-dimensional expensive blackbox function optimization problem is required. Several steps are then undertaken to reduce the associated computational burden. First, a sensitivity analysis is used to identify the most influential terms and to reduce the dimensionality of the search space. Afterwards, the Constrained Optimization using Response Surface (CORS) algorithm, which approximates the black-box cost function using a response surface constructed from a limited number of CFD solves, is used to find the optimal model parameters. Model discovery and cross-validation is performed for three configurations of 2D turbulent separated flows in channels of variable section using different sets of training data to show the flexibility of the method. The discovered models are then applied to the prediction of an unseen 2D separated flow with higher Reynolds number and different geometry. The predictions of the discovered models for the new case are shown to be not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model derived from purely physical arguments. The proposed deterministic symbolic identification approach constitutes a promising candidate for building accurate and robust RANS models customized for a given class of flows at moderate computational cost. A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities of a baseline linear eddy viscosity model (LEVM) are expressed as functions of tensor polynomials selected from a library of candidate functions. The CFD-driven training consists in solving a blackbox optimization problem in which the fitness of candidate EARSM models is evaluated by running RANS simulations. The procedure enables training models against any target quantity of interest, computable as an output of the CFD model. Unlike the frozen-training approach, the proposed methodology is not restricted to data sets for which full fields of high-fidelity data, including second flow order statistics, are available. However, the solution of a high-dimensional expensive blackbox function optimization problem is required. Several steps are then undertaken to reduce the associated computational burden. First, a sensitivity analysis is used to identify the most influential terms and to reduce the dimensionality of the search space. Afterwards, the Constrained Optimization using Response Surface (CORS) algorithm, which approximates the black-box cost function using a response surface constructed from a limited number of CFD solves, is used to find the optimal model parameters. Model discovery and cross-validation is performed for three configurations of 2D turbulent separated flows in channels of variable section using different sets of training data to show the flexibility of the method. The discovered models are then applied to the prediction of an unseen 2D separated flow with higher Reynolds number and different geometry. The predictions of the discovered models for the new case are shown to be not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model derived from purely physical arguments. The proposed deterministic symbolic identification approach constitutes a promising candidate for building accurate and robust RANS models customized for a given class of flows at moderate computational cost. •A symbolic identification method for data-driven learning of EARSMs is proposed•CFD-driven training may use sparse high-fidelity data for any quantity of interest•The approach is successfully applied to learn EARSMs for 2D separated flows•The learned models improve predictions over standard RANS models•The learned models generalize well to other 2D separated flows |
| ArticleNumber | 111037 |
| Author | Ben Hassan Saïdi, Ismaïl Grasso, Francesco Cinnella, Paola Schmelzer, Martin |
| Author_xml | – sequence: 1 givenname: Ismaïl orcidid: 0000-0001-9648-3075 surname: Ben Hassan Saïdi fullname: Ben Hassan Saïdi, Ismaïl email: ismail.benhassansaidi@ensam.eu organization: Institut Aérotechnique, CNAM, 15 Rue Marat, 78210 Saint-Cyr-l'École, France – sequence: 2 givenname: Martin surname: Schmelzer fullname: Schmelzer, Martin organization: Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 2, Delft, the Netherlands – sequence: 3 givenname: Paola surname: Cinnella fullname: Cinnella, Paola organization: Institut Jean Le Rond D'Alembert, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France – sequence: 4 givenname: Francesco surname: Grasso fullname: Grasso, Francesco organization: Laboratoire DynFluid, CNAM, 151 Boulevard de l'Hopital, 75013 Paris, France |
| BackLink | https://hal.science/hal-03892546$$DView record in HAL |
| BookMark | eNqNkMtqGzEUQEVxoXbaD-huIKsuxrl6zIuuglsnAUOhJGuhka4aDWPJlcYu8_cZdwKBLEJWAumcy9VZkYUPHgn5SmFNgZZX3brThzUDxtaUUuDVB7Kk0EDOKlouyBKA0bxpGvqJrFLqAKAuRL0k2832R26iO6HP0rhvQ-905gz6wVmn1eCCz4LNVP8H26imt984-tCblKchYkrZPhjs02fy0ao-4Zfn84I8bH_eb27z3a-bu831LtcC2JBzKJnQdVkbylFrywtDbQMKVaGsNRW2lWBVZVpTVIVGZIUF3YBRorTQCssvCJvnHv1Bjf9U38tDdHsVR0lBnkvITk4l5LmEnEtM0rdZelQveFBO3l7v5PkOeN2wQpQnOrGXM3uI4e8R0yC7cIx--pNkZSF4w6ngE0VnSseQUkT7ri2qV452w__AwxS2f9P8PptTaDw5jDJph16jcRH1IE1wb9hPrUyk9Q |
| CitedBy_id | crossref_primary_10_1063_5_0253703 crossref_primary_10_1016_j_taml_2021_100280 crossref_primary_10_1016_j_taml_2024_100503 crossref_primary_10_1016_j_compfluid_2023_105993 crossref_primary_10_1016_j_combustflame_2023_112925 crossref_primary_10_1063_5_0130052 crossref_primary_10_1088_1367_2630_ad6689 crossref_primary_10_1063_5_0231494 crossref_primary_10_1016_j_ijheatfluidflow_2022_109017 crossref_primary_10_1017_jfm_2022_744 crossref_primary_10_1063_5_0174470 crossref_primary_10_1063_5_0207256 crossref_primary_10_1063_5_0160977 crossref_primary_10_1007_s00466_023_02342_7 crossref_primary_10_1007_s10494_024_00539_1 crossref_primary_10_1016_j_ijheatfluidflow_2023_109140 crossref_primary_10_1063_5_0149547 crossref_primary_10_1063_5_0247759 crossref_primary_10_1063_5_0184157 crossref_primary_10_1063_5_0207704 |
| Cites_doi | 10.1103/PhysRevFluids.6.050504 10.1007/s10494-018-0005-5 10.1017/S0022112075001814 10.1016/j.paerosci.2018.10.001 10.1007/s10898-004-0570-0 10.1017/S0022112075003382 10.1073/pnas.1517384113 10.1007/s10494-017-9870-6 10.1016/j.ijheatfluidflow.2017.09.017 10.1080/14685240701506896 10.1080/10618560902776828 10.1016/j.jcp.2016.08.015 10.1007/BF00271513 10.1016/j.compfluid.2021.105213 10.1007/BF01575099 10.1016/j.jcp.2020.109413 10.1103/PhysRevFluids.3.074602 10.1115/1.4041753 10.1007/s10494-019-00089-x 10.1051/eucass/201203089 10.1016/j.compfluid.2021.104997 10.1007/s10710-019-09371-3 10.1080/14685248.2011.637923 10.1017/S0022112093002034 10.1126/sciadv.1602614 10.1017/S0022112099007004 10.2514/3.12149 10.1016/j.jmps.2021.104742 10.1016/j.jcp.2021.110153 10.1103/PhysRevFluids.5.084611 10.1146/annurev-fluid-010518-040547 10.1063/1.168744 10.1016/j.compfluid.2008.05.002 10.1017/jfm.2016.615 10.1016/j.jcp.2015.11.012 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. Copyright Elsevier Science Ltd. May 15, 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. May 15, 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC ADTOC UNPAY |
| DOI | 10.1016/j.jcp.2022.111037 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| ExternalDocumentID | 10.1016/j.jcp.2022.111037 oai:HAL:hal-03892546v1 10_1016_j_jcp_2022_111037 S0021999122000997 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c402t-30624c868d13eccf35d1f90aea5affd7eb74277dbd575cee25f0c90da46f0b4f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0021-9991 1090-2716 |
| IngestDate | Sun Oct 26 03:42:07 EDT 2025 Tue Oct 14 20:24:41 EDT 2025 Fri Jul 25 06:26:52 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Wed Oct 01 02:36:58 EDT 2025 Fri Feb 23 02:39:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Symbolic identification Separated flows Turbulence modelling Symbolic identification Turbulence modelling Separated flows |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-30624c868d13eccf35d1f90aea5affd7eb74277dbd575cee25f0c90da46f0b4f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9648-3075 0000-0001-9979-0783 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0021999122000997?via%3Dihub |
| PQID | 2654393143 |
| PQPubID | 2047462 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jcp_2022_111037 hal_primary_oai_HAL_hal_03892546v1 proquest_journals_2654393143 crossref_primary_10_1016_j_jcp_2022_111037 crossref_citationtrail_10_1016_j_jcp_2022_111037 elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111037 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
| References | Brunton, Proctor, Kutz (br0180) 2016; 113 Pope (br0050) 2001 Versteeg, Malalasekera (br0060) 2007 Hellsten, Wallin (br0030) 2009; 23 Brunton, Kutz (br0380) 2019 Wu, Xiao, Paterson (br0130) 2018; 3 Michélen Str ofer, Xiao (br0280) 2021; 11 Weller, Tabor, Jasak, Fureby (br0330) 1998; 12 Marquillie, Ehrenstein, Laval (br0360) 2011; 681 Bishop (br0400) 2006 Kommenda, Burlacu, Kronberger, Affenzeller (br0450) 2020; 21 Zhao, Akolekar, Weatheritt, Michelassi, Sandberg (br0270) 2020; 411 Zhang, Dwight, Schmelzer, Gómez, Han, Hickel (br0220) 2021; 432 Steiner, Dwight, Viré (br0210) 2022; 233 Paris, Duraisamy (br0110) 2016; 305 Bentaleb, Lardeau, Leschziner (br0370) 2012; 13 Beetham, Capecelatro (br0240) 08 2020; 5 Menter (br0310) 1994; 32 Yang, Wang, Liu, Eldar, Zhang (br0460) 2016; vol. 48 Speziale, Abid, Durbin (br0420) 1994; 9 Breuer, Peller, Rapp, Manhart (br0350) 2009; 38 Xiao, Cinnella (br0090) 2019; 108 McConaghy (br0390) 2011 Durbin (br0490) 1991; 3 Huijing, Dwight, Schmelzer (br0200) 2021; 225 Wallin, Johansson (br0480) 2000; 403 Wilcox (br0020) 2006 Gatski, Speziale (br0080) 1993; 254 Rudy, Brunton, Proctor, Kutz (br0190) 2017; 3 Banerjee, Krahl, Durst, Zenger (br0290) 2007; 8 Regis, Shoemaker (br0300) 2005; 31 Schmelzer, Dwight, Cinnella (br0010) 2020; 104 Gargiulo, Ozoroski, Hallock, Haghiri, Sandberg, Visonneau, Deng, Guilmineau, Geneau, Jeans, Bettle, Kerkvliet, Toxopeus, Duetsch-Patel, Sundarraj, Borgoltz, Devenport, Roy, Lowe (br0170) 2022 Weatheritt, Sandberg (br0150) 2017; 68 Ling, Kurzawski, Templeton (br0120) 2016; 807 Menter, Garbaruk, Egorov (br0320) 2012; 3 Duraisamy, Iaccarino, Xiao (br0100) 2019; 51 Holland, Baeder, Duraisamy (br0260) 2019 Duraisamy (br0250) 2021; 6 Wang, Chen, Liu (br0230) 2022; 159 Emory, Iaccarino (br0430) 2014 Caretto, Gosman, Patankar, Spalding (br0340) 1973 Pope (br0070) 1975; 72 Weatheritt, Sandberg (br0140) 2016; 325 Edeling, Iaccarino, Cinnella (br0440) 2018; 100 Launder, Reece, Rodi (br0040) 1975; 68 Gloerfelt, Cinnella (br0470) 2019; 103 Knysh, Korkolis (br0410) 2016 Akolekar, Weatheritt, Hutchins, Sandberg, Laskowski, Michelassi (br0160) 2019; 141 Caretto (10.1016/j.jcp.2022.111037_br0340) 1973 Durbin (10.1016/j.jcp.2022.111037_br0490) 1991; 3 Xiao (10.1016/j.jcp.2022.111037_br0090) 2019; 108 Paris (10.1016/j.jcp.2022.111037_br0110) 2016; 305 Schmelzer (10.1016/j.jcp.2022.111037_br0010) 2020; 104 Menter (10.1016/j.jcp.2022.111037_br0320) 2012; 3 Wallin (10.1016/j.jcp.2022.111037_br0480) 2000; 403 Gatski (10.1016/j.jcp.2022.111037_br0080) 1993; 254 Wu (10.1016/j.jcp.2022.111037_br0130) 2018; 3 Breuer (10.1016/j.jcp.2022.111037_br0350) 2009; 38 Duraisamy (10.1016/j.jcp.2022.111037_br0250) 2021; 6 Launder (10.1016/j.jcp.2022.111037_br0040) 1975; 68 Weatheritt (10.1016/j.jcp.2022.111037_br0140) 2016; 325 Emory (10.1016/j.jcp.2022.111037_br0430) 2014 Hellsten (10.1016/j.jcp.2022.111037_br0030) 2009; 23 Pope (10.1016/j.jcp.2022.111037_br0050) 2001 Edeling (10.1016/j.jcp.2022.111037_br0440) 2018; 100 Yang (10.1016/j.jcp.2022.111037_br0460) 2016; vol. 48 Ling (10.1016/j.jcp.2022.111037_br0120) 2016; 807 Bishop (10.1016/j.jcp.2022.111037_br0400) 2006 Holland (10.1016/j.jcp.2022.111037_br0260) 2019 Regis (10.1016/j.jcp.2022.111037_br0300) 2005; 31 Weller (10.1016/j.jcp.2022.111037_br0330) 1998; 12 Zhao (10.1016/j.jcp.2022.111037_br0270) 2020; 411 Kommenda (10.1016/j.jcp.2022.111037_br0450) 2020; 21 Weatheritt (10.1016/j.jcp.2022.111037_br0150) 2017; 68 Brunton (10.1016/j.jcp.2022.111037_br0180) 2016; 113 Duraisamy (10.1016/j.jcp.2022.111037_br0100) 2019; 51 Pope (10.1016/j.jcp.2022.111037_br0070) 1975; 72 Akolekar (10.1016/j.jcp.2022.111037_br0160) 2019; 141 Michélen Str ofer (10.1016/j.jcp.2022.111037_br0280) 2021; 11 Banerjee (10.1016/j.jcp.2022.111037_br0290) 2007; 8 Marquillie (10.1016/j.jcp.2022.111037_br0360) 2011; 681 Wang (10.1016/j.jcp.2022.111037_br0230) 2022; 159 Brunton (10.1016/j.jcp.2022.111037_br0380) 2019 Zhang (10.1016/j.jcp.2022.111037_br0220) 2021; 432 Versteeg (10.1016/j.jcp.2022.111037_br0060) 2007 Gargiulo (10.1016/j.jcp.2022.111037_br0170) 2022 Beetham (10.1016/j.jcp.2022.111037_br0240) 2020; 5 Knysh (10.1016/j.jcp.2022.111037_br0410) Menter (10.1016/j.jcp.2022.111037_br0310) 1994; 32 Huijing (10.1016/j.jcp.2022.111037_br0200) 2021; 225 Speziale (10.1016/j.jcp.2022.111037_br0420) 1994; 9 McConaghy (10.1016/j.jcp.2022.111037_br0390) 2011 Rudy (10.1016/j.jcp.2022.111037_br0190) 2017; 3 Gloerfelt (10.1016/j.jcp.2022.111037_br0470) 2019; 103 Bentaleb (10.1016/j.jcp.2022.111037_br0370) 2012; 13 Wilcox (10.1016/j.jcp.2022.111037_br0020) 2006 Steiner (10.1016/j.jcp.2022.111037_br0210) 2022; 233 |
| References_xml | – volume: 432 year: 2021 ident: br0220 article-title: Customized data-driven rans closures for bi-fidelity les–rans optimization publication-title: J. Comput. Phys. – volume: 6 year: 2021 ident: br0250 article-title: Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence publication-title: Phys. Rev. Fluids – volume: 3 year: 2018 ident: br0130 article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework publication-title: Phys. Rev. Fluids – volume: 8 start-page: N32 year: 2007 ident: br0290 article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches publication-title: J. Turbul. – volume: 807 start-page: 155 year: 2016 end-page: 166 ident: br0120 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. – volume: 3 start-page: 89 year: 2012 end-page: 104 ident: br0320 article-title: Explicit algebraic reynolds stress models for anisotropic wall-bounded flows publication-title: Progr. Flight Phys. – volume: 159 year: 2022 ident: br0230 article-title: Establish algebraic data-driven constitutive models for elastic solids with a tensorial sparse symbolic regression method and a hybrid feature selection technique publication-title: J. Mech. Phys. Solids – start-page: 1 year: 2022 end-page: 33 ident: br0170 article-title: Computations of the BeVERLI Hill Three-Dimensional Separating Flow Model Validation Cases – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: br0310 article-title: Two-equation eddy-viscosity turbulence model for engineering applications publication-title: AIAA J. – volume: 100 start-page: 593 year: 2018 end-page: 616 ident: br0440 article-title: Data-free and data-driven rans predictions with quantified uncertainty publication-title: Flow Turbul. Combust. – year: 2007 ident: br0060 article-title: An Introduction to Computational Fluid Dynamics: the Finite Volume Method – volume: 141 year: 2019 ident: br0160 article-title: Development and use of machine-learnt algebraic reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines publication-title: J. Turbomach. – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: br0180 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. – start-page: 123 year: 2014 end-page: 138 ident: br0430 article-title: Visualizing Turbulence Anisotropy in the Spatial Domain with Componentality Contours – year: 2001 ident: br0050 article-title: Turbulent Flows – volume: 11 year: 2021 ident: br0280 article-title: End-to-end differentiable learning of turbulence models from indirect observations publication-title: Theor. Appl. Mech. Lett. – year: 2006 ident: br0400 article-title: Pattern Recognition and Machine Learning – volume: 108 start-page: 1 year: 2019 end-page: 31 ident: br0090 article-title: Quantification of model uncertainty in rans simulations: a review publication-title: Prog. Aerosp. Sci. – start-page: 235 year: 2011 end-page: 260 ident: br0390 article-title: Ffx: fast, scalable, deterministic symbolic regression technology publication-title: Genetic Programming Theory and Practice IX – volume: 72 start-page: 331 year: 1975 end-page: 340 ident: br0070 article-title: A more general effective-viscosity hypothesis publication-title: J. Fluid Mech. – volume: vol. 48 start-page: 2472 year: 2016 end-page: 2481 ident: br0460 article-title: Sparse nonlinear regression: parameter estimation under nonconvexity publication-title: Proceedings of the 33rd International Conference on Machine Learning – volume: 3 start-page: 1 year: 1991 end-page: 13 ident: br0490 article-title: Near-wall turbulence closure modeling without “damping functions” publication-title: Theor. Comput. Fluid Dyn. – volume: 403 start-page: 89 year: 2000 end-page: 132 ident: br0480 article-title: An explicit algebraic reynolds stress model for incompressible and compressible turbulent flows publication-title: J. Fluid Mech. – volume: 31 start-page: 153 year: 2005 end-page: 171 ident: br0300 article-title: Constrained global optimization of expensive black box functions using radial basis functions publication-title: J. Glob. Optim. – volume: 12 start-page: 620 year: 1998 end-page: 631 ident: br0330 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. – volume: 254 start-page: 59 year: 1993 end-page: 78 ident: br0080 article-title: On explicit algebraic stress models for complex turbulent flows publication-title: J. Fluid Mech. – volume: 9 start-page: 369 year: 1994 end-page: 403 ident: br0420 article-title: On the realizability of reynolds stress turbulence closures publication-title: J. Sci. Comput. – volume: 103 start-page: 55 year: 2019 end-page: 91 ident: br0470 article-title: Large eddy simulation requirements for the flow over periodic hills publication-title: Flow Turbul. Combust. – volume: 305 start-page: 758 year: 2016 ident: br0110 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. – volume: 104 start-page: 579 year: 2020 end-page: 603 ident: br0010 article-title: Discovery of algebraic reynolds-stress models using sparse symbolic regression publication-title: Flow Turbul. Combust. – volume: 23 start-page: 349 year: 2009 end-page: 361 ident: br0030 article-title: Explicit algebraic reynolds stress and non-linear eddy-viscosity models publication-title: Int. J. Comput. Fluid Dyn. – year: 2016 ident: br0410 article-title: Blackbox: a procedure for parallel optimization of expensive black-box functions – volume: 325 start-page: 22 year: 2016 end-page: 37 ident: br0140 article-title: A novel evolutionary algorithm applied to algebraic modifications of the rans stress–strain relationship publication-title: J. Comput. Phys. – start-page: 1884 year: 2019 ident: br0260 article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling publication-title: AIAA Scitech 2019 Forum – volume: 3 year: 2017 ident: br0190 article-title: Data-driven discovery of partial differential equations publication-title: Sci. Adv. – volume: 68 start-page: 298 year: 2017 end-page: 318 ident: br0150 article-title: The development of algebraic stress models using a novel evolutionary algorithm publication-title: Int. J. Heat Fluid Flow – volume: 68 start-page: 537 year: 1975 end-page: 566 ident: br0040 article-title: Progress in the development of a reynolds-stress turbulence closure publication-title: J. Fluid Mech. – volume: 411 year: 2020 ident: br0270 article-title: Rans turbulence model development using cfd-driven machine learning publication-title: J. Comput. Phys. – volume: 225 year: 2021 ident: br0200 article-title: Data-driven RANS closures for three-dimensional flows around bluff bodies publication-title: Comput. Fluids – start-page: 60 year: 1973 end-page: 68 ident: br0340 article-title: Two calculation procedures for steady, three-dimensional flows with recirculation publication-title: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics – volume: 38 start-page: 433 year: 2009 end-page: 457 ident: br0350 article-title: Flow over periodic hills–numerical and experimental study in a wide range of reynolds numbers publication-title: Comput. Fluids – volume: 51 start-page: 357 year: 2019 end-page: 377 ident: br0100 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – volume: 5 year: 08 2020 ident: br0240 article-title: Formulating turbulence closures using sparse regression with embedded form invariance publication-title: Phys. Rev. Fluids – volume: 21 start-page: 471 year: 2020 end-page: 501 ident: br0450 article-title: Parameter identification for symbolic regression using nonlinear least squares publication-title: Genet. Program. Evol. Mach. – volume: 681 start-page: 30 year: 2011 ident: br0360 article-title: Instability of streaks in wall turbulence with adverse pressure gradient publication-title: J. Fluid Mech. – volume: 13 start-page: N4 year: 2012 ident: br0370 article-title: Large-eddy simulation of turbulent boundary layer separation from a rounded step publication-title: J. Turbul. – volume: 233 year: 2022 ident: br0210 article-title: Data-driven RANS closures for wind turbine wakes under neutral conditions publication-title: Comput. Fluids – year: 2019 ident: br0380 article-title: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control – year: 2006 ident: br0020 article-title: Turbulence Modeling for CFD – year: 2019 ident: 10.1016/j.jcp.2022.111037_br0380 – volume: 6 year: 2021 ident: 10.1016/j.jcp.2022.111037_br0250 article-title: Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.6.050504 – volume: 681 start-page: 30 issue: 205–240 year: 2011 ident: 10.1016/j.jcp.2022.111037_br0360 article-title: Instability of streaks in wall turbulence with adverse pressure gradient publication-title: J. Fluid Mech. – volume: 103 start-page: 55 issue: 1 year: 2019 ident: 10.1016/j.jcp.2022.111037_br0470 article-title: Large eddy simulation requirements for the flow over periodic hills publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-018-0005-5 – volume: 68 start-page: 537 issue: 3 year: 1975 ident: 10.1016/j.jcp.2022.111037_br0040 article-title: Progress in the development of a reynolds-stress turbulence closure publication-title: J. Fluid Mech. doi: 10.1017/S0022112075001814 – year: 2007 ident: 10.1016/j.jcp.2022.111037_br0060 – start-page: 235 year: 2011 ident: 10.1016/j.jcp.2022.111037_br0390 article-title: Ffx: fast, scalable, deterministic symbolic regression technology – volume: 108 start-page: 1 year: 2019 ident: 10.1016/j.jcp.2022.111037_br0090 article-title: Quantification of model uncertainty in rans simulations: a review publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.10.001 – volume: 31 start-page: 153 issue: 1 year: 2005 ident: 10.1016/j.jcp.2022.111037_br0300 article-title: Constrained global optimization of expensive black box functions using radial basis functions publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-0570-0 – volume: 72 start-page: 331 issue: 2 year: 1975 ident: 10.1016/j.jcp.2022.111037_br0070 article-title: A more general effective-viscosity hypothesis publication-title: J. Fluid Mech. doi: 10.1017/S0022112075003382 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10.1016/j.jcp.2022.111037_br0180 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – volume: 100 start-page: 593 issue: 3 year: 2018 ident: 10.1016/j.jcp.2022.111037_br0440 article-title: Data-free and data-driven rans predictions with quantified uncertainty publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-017-9870-6 – volume: 68 start-page: 298 year: 2017 ident: 10.1016/j.jcp.2022.111037_br0150 article-title: The development of algebraic stress models using a novel evolutionary algorithm publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2017.09.017 – volume: 8 start-page: N32 year: 2007 ident: 10.1016/j.jcp.2022.111037_br0290 article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches publication-title: J. Turbul. doi: 10.1080/14685240701506896 – volume: 23 start-page: 349 issue: 4 year: 2009 ident: 10.1016/j.jcp.2022.111037_br0030 article-title: Explicit algebraic reynolds stress and non-linear eddy-viscosity models publication-title: Int. J. Comput. Fluid Dyn. doi: 10.1080/10618560902776828 – volume: 325 start-page: 22 year: 2016 ident: 10.1016/j.jcp.2022.111037_br0140 article-title: A novel evolutionary algorithm applied to algebraic modifications of the rans stress–strain relationship publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.08.015 – volume: 3 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.jcp.2022.111037_br0490 article-title: Near-wall turbulence closure modeling without “damping functions” publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/BF00271513 – volume: 233 year: 2022 ident: 10.1016/j.jcp.2022.111037_br0210 article-title: Data-driven RANS closures for wind turbine wakes under neutral conditions publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2021.105213 – start-page: 123 year: 2014 ident: 10.1016/j.jcp.2022.111037_br0430 – volume: vol. 48 start-page: 2472 year: 2016 ident: 10.1016/j.jcp.2022.111037_br0460 article-title: Sparse nonlinear regression: parameter estimation under nonconvexity – volume: 9 start-page: 369 issue: 4 year: 1994 ident: 10.1016/j.jcp.2022.111037_br0420 article-title: On the realizability of reynolds stress turbulence closures publication-title: J. Sci. Comput. doi: 10.1007/BF01575099 – volume: 411 year: 2020 ident: 10.1016/j.jcp.2022.111037_br0270 article-title: Rans turbulence model development using cfd-driven machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109413 – volume: 3 year: 2018 ident: 10.1016/j.jcp.2022.111037_br0130 article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.074602 – start-page: 1884 year: 2019 ident: 10.1016/j.jcp.2022.111037_br0260 article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling – volume: 141 issue: 4 year: 2019 ident: 10.1016/j.jcp.2022.111037_br0160 article-title: Development and use of machine-learnt algebraic reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines publication-title: J. Turbomach. doi: 10.1115/1.4041753 – volume: 104 start-page: 579 issue: 2 year: 2020 ident: 10.1016/j.jcp.2022.111037_br0010 article-title: Discovery of algebraic reynolds-stress models using sparse symbolic regression publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-019-00089-x – volume: 3 start-page: 89 year: 2012 ident: 10.1016/j.jcp.2022.111037_br0320 article-title: Explicit algebraic reynolds stress models for anisotropic wall-bounded flows publication-title: Progr. Flight Phys. doi: 10.1051/eucass/201203089 – volume: 225 year: 2021 ident: 10.1016/j.jcp.2022.111037_br0200 article-title: Data-driven RANS closures for three-dimensional flows around bluff bodies publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2021.104997 – ident: 10.1016/j.jcp.2022.111037_br0410 – start-page: 1 year: 2022 ident: 10.1016/j.jcp.2022.111037_br0170 – volume: 21 start-page: 471 year: 2020 ident: 10.1016/j.jcp.2022.111037_br0450 article-title: Parameter identification for symbolic regression using nonlinear least squares publication-title: Genet. Program. Evol. Mach. doi: 10.1007/s10710-019-09371-3 – volume: 13 start-page: N4 year: 2012 ident: 10.1016/j.jcp.2022.111037_br0370 article-title: Large-eddy simulation of turbulent boundary layer separation from a rounded step publication-title: J. Turbul. doi: 10.1080/14685248.2011.637923 – volume: 254 start-page: 59 year: 1993 ident: 10.1016/j.jcp.2022.111037_br0080 article-title: On explicit algebraic stress models for complex turbulent flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112093002034 – volume: 3 issue: 4 year: 2017 ident: 10.1016/j.jcp.2022.111037_br0190 article-title: Data-driven discovery of partial differential equations publication-title: Sci. Adv. doi: 10.1126/sciadv.1602614 – volume: 403 start-page: 89 year: 2000 ident: 10.1016/j.jcp.2022.111037_br0480 article-title: An explicit algebraic reynolds stress model for incompressible and compressible turbulent flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112099007004 – year: 2001 ident: 10.1016/j.jcp.2022.111037_br0050 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.jcp.2022.111037_br0310 article-title: Two-equation eddy-viscosity turbulence model for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 159 year: 2022 ident: 10.1016/j.jcp.2022.111037_br0230 article-title: Establish algebraic data-driven constitutive models for elastic solids with a tensorial sparse symbolic regression method and a hybrid feature selection technique publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104742 – volume: 432 year: 2021 ident: 10.1016/j.jcp.2022.111037_br0220 article-title: Customized data-driven rans closures for bi-fidelity les–rans optimization publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110153 – volume: 5 year: 2020 ident: 10.1016/j.jcp.2022.111037_br0240 article-title: Formulating turbulence closures using sparse regression with embedded form invariance publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.084611 – volume: 51 start-page: 357 year: 2019 ident: 10.1016/j.jcp.2022.111037_br0100 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040547 – volume: 12 start-page: 620 issue: 6 year: 1998 ident: 10.1016/j.jcp.2022.111037_br0330 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. doi: 10.1063/1.168744 – start-page: 60 year: 1973 ident: 10.1016/j.jcp.2022.111037_br0340 article-title: Two calculation procedures for steady, three-dimensional flows with recirculation – volume: 38 start-page: 433 issue: 2 year: 2009 ident: 10.1016/j.jcp.2022.111037_br0350 article-title: Flow over periodic hills–numerical and experimental study in a wide range of reynolds numbers publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2008.05.002 – year: 2006 ident: 10.1016/j.jcp.2022.111037_br0400 – volume: 11 year: 2021 ident: 10.1016/j.jcp.2022.111037_br0280 article-title: End-to-end differentiable learning of turbulence models from indirect observations publication-title: Theor. Appl. Mech. Lett. – year: 2006 ident: 10.1016/j.jcp.2022.111037_br0020 – volume: 807 start-page: 155 year: 2016 ident: 10.1016/j.jcp.2022.111037_br0120 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.615 – volume: 305 start-page: 758 year: 2016 ident: 10.1016/j.jcp.2022.111037_br0110 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.11.012 |
| SSID | ssj0008548 |
| Score | 2.5526862 |
| Snippet | A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is... |
| SourceID | unpaywall hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111037 |
| SubjectTerms | Accuracy Algebra Algorithms Computational fluid dynamics Computational physics Computing costs Configuration management Cost function Eddy viscosity Engineering Sciences Flow separation Fluid flow Machine learning Optimization Polynomials Response surface methodology Reynolds number Reynolds stress Sensitivity analysis Separated flows Symbolic identification Tensors Training Turbulence modelling Two dimensional flow Two dimensional models |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rF734FtcXRTwp0TRNX8dldVlEPYiCt5AmDa6s3cWuyl787c606aogCh6bJiWdSSbfkG9mCDlMdBpZE3IqEpVSEeiEZrHmVMOCtlyBxnO80b26jvp34uI-vG-RbhMLg7RKZ_trm15Za9dy6qR5Oh4MMMaXYwy9z3mFczCiXIgYqxicvH_SPJJQ1NYYqQjQu7nZrDhejxpTVnKOhoNhKfSfz6a5ByRJfkGgCy_FWE3f1HD45TDqrZAlhyK9Tj3RVdLKizWy7BCl5_ZruU563d4ZNc9o0bxy-pRhEmBvYBxDqFKKN7Ie1voArxne3eTTYjQ0Ja1jSLyqUE65Qe5657fdPnWVE6gGf3BCwQ_gQidRYvwAdGSD0Pg2ZSpXobLWxHkGHnEcm8wAWoNjkoeW6ZQZJSLLMmGDTTJfjIp8i3gAVwyAPMANFk5zlirNFHzTt5FgGrTZJqyRmdQurThWtxjKhj_2KEHMEsUsazG3ydFsyLjOqfFbZ9EoQn5bGBJs_m_DDkBps89jEu1-51JiG6YUxCoAr36b7DY6lW7rlpJjtC38sAja5Him578nuv2_ie6QRXxCQoIf7pL5yfNLvgc4Z5LtVwv5Awui998 priority: 102 providerName: Elsevier |
| Title | CFD-driven symbolic identification of algebraic Reynolds-stress models |
| URI | https://dx.doi.org/10.1016/j.jcp.2022.111037 https://www.proquest.com/docview/2654393143 https://hal.science/hal-03892546 https://www.sciencedirect.com/science/article/am/pii/S0021999122000997?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 457 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB41yQEulKeatkQWggtok_X6fUJRSxReESAilZO13vWqKakTxUlROPDbmbHXUUGoCImj17uW1zOe-Ub7zQzA01glodGBYH4sE-Z7KmZZpARTqNBGSJR4Tie67yfheOq_OQvO9uBjkwtDtEpr-2ubXllrOzKwX3MgLwfL2YzSfAWl0btCVFAnenk1k8-809n5JmtBJwwQnrehM518GH6pqR4uo-nVCWjCmcBgoTnprDhfF4pKWApBhoRTa_Q_-6rWOZEmryHSW5tiKbff5Hx-zTmN9mHVbKvmpHztb9ZZX33_reLjf933XbhjoawzrFfdg728uA_7FtY61miUD2B0MjplekVm1Sm3lxlVInZm2tKUKs1wFsahhiMYuuO9T_m2WMx1yepEFqfq1lM-hOno1eeTMbPtG5jCoHTNMBgRvorDWLseKorxAu2ahMtcBtIYHeUZhuVRpDONkBF9tQgMVwnX0g8Nz3zjPYJ2sSjyA3AQM2lEmgheDEIKnkjFJT7TNaHPFapUF3gjqFTZ2ubUYmOeNiS2ixRlm5Js01q2XXi-W7KsC3vcNNlvpJ_-IqUUHc9Ny56gpuweT5W8x8N3KY1RXUNqRXDlduG4UaTU2o8yFZTyixv2vS682CnX31_08J9mH8FtuiIyhBscQ3u92uSPEWOtsx60-j_cHnSGr9-OJz37D_0EvlMkaw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPdBLH0DFAm0j1BPI4DjO64i2XW3bhQMCiZvl2LHY1Ta7IgtoL_3tnUmcLZUqKvUaP-TMZ4-_kecB8CkzeeJsLJjMdM5kZDJWpEYwgxvaCY2Il_Sie36RDK_lt5v4Zg36XSwMuVV63d_q9EZb-y-nXpqn8_GYYnwFxdCHQjQ8J12HFzIWKVlgJz9_-3lksWzVMfkiYPfuabNx8poYylkpBGkOTrXQ_345rd-Sl-QTCrp5X8318lFPp09uo8EbeOVpZHDWrvQtrJXVFrz2lDLwB7behkF_8JnZO1JpQb38UVAW4GBsvYtQg0owcwEV-0CzGdsuy2U1m9qatUEkQVMpp96B68GXq_6Q-dIJzKBBuGBoCAhpsiSzYYQguSi2ocu5LnWsnbNpWaBJnKa2sEjX8J4UseMm51bLxPFCuugdbFSzqtyFAPmKRZaHxMHhdc5zbbjGOUOXSG4Qzh7wTmbK-LziVN5iqjoHsolCMSsSs2rF3IOj1ZB5m1Tjuc6yA0L9sTMUKv3nhh0iaKvpKYv28Gyk6BvlFKQyAA9hDw46TJU_u7USFG6LPyyjHhyvcP73Qvf-b6EfYXN4dT5So68X3_fhJbWQd0IYH8DG4u6-fI-kZ1F8aDb1L5Jy-wI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9t3QO8sPGlFTYUIXgBeXWc7ydUbasqBBMgKo0ny7FjLaNLq6YdKn89d4lTjQkNIfEYx47i3OXud_Lv7gBepTqLrYkEC1OVsTDQKcsTLZhGhbZCocQLOtH9eBaPJ-H78-h8Cz53uTBEq3S2v7XpjbV2IwP3NQfqajAvS0rzFZRG7wvRQJ3k3XWpXgcn5cUq34adOEJ43oOdydmn4beW6uEzmt6cgGacCQwWupPOhvN1qamEpRBkSDi1Rv-zr9q-INLkDUR6b1XN1fqHmk5vOKfRLiy6bbWclO9Hq2V-pH_eqvj4X_e9Bw8clPWG7aqHsFVUj2DXwVrPGY36MYyORyfMLMisevX6KqdKxF5pHE2p0QxvZj1qOIKhO977Uqyr2dTUrE1k8ZpuPfUTmIxOvx6PmWvfwDQGpUuGwYgIdRqnxg9QUWwQGd9mXBUqUtaapMgxLE8SkxuEjOirRWS5zrhRYWx5HtrgKfSqWVXsg4eYySDSRPBiEVLwTGmu8Jm-jUOuUaX6wDtBSe1qm1OLjansSGyXEmUrSbaylW0f3myWzNvCHndNDjvpy9-kJNHx3LXsJWrK5vFUyXs8_CBpjOoaUiuCa78PB50iSWc_aiko5Rc3HAZ9eLtRrr-_6LN_mv0c7tMVkSH86AB6y8WqOESMtcxfuL_mF9emId8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD-driven+symbolic+identification+of+algebraic+Reynolds-stress+models&rft.jtitle=Journal+of+computational+physics&rft.au=Ben+Hassan+Sa%C3%AFdi%2C+Isma%C3%AFl&rft.au=Schmelzer%2C+Martin&rft.au=Cinnella%2C+Paola&rft.au=Grasso%2C+Francesco&rft.date=2022-05-15&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=457&rft_id=info:doi/10.1016%2Fj.jcp.2022.111037&rft.externalDocID=S0021999122000997 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |