CFD-driven symbolic identification of algebraic Reynolds-stress models

A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbu...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 457; p. 111037
Main Authors Ben Hassan Saïdi, Ismaïl, Schmelzer, Martin, Cinnella, Paola, Grasso, Francesco
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 15.05.2022
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
1090-2716
DOI10.1016/j.jcp.2022.111037

Cover

Abstract A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities of a baseline linear eddy viscosity model (LEVM) are expressed as functions of tensor polynomials selected from a library of candidate functions. The CFD-driven training consists in solving a blackbox optimization problem in which the fitness of candidate EARSM models is evaluated by running RANS simulations. The procedure enables training models against any target quantity of interest, computable as an output of the CFD model. Unlike the frozen-training approach, the proposed methodology is not restricted to data sets for which full fields of high-fidelity data, including second flow order statistics, are available. However, the solution of a high-dimensional expensive blackbox function optimization problem is required. Several steps are then undertaken to reduce the associated computational burden. First, a sensitivity analysis is used to identify the most influential terms and to reduce the dimensionality of the search space. Afterwards, the Constrained Optimization using Response Surface (CORS) algorithm, which approximates the black-box cost function using a response surface constructed from a limited number of CFD solves, is used to find the optimal model parameters. Model discovery and cross-validation is performed for three configurations of 2D turbulent separated flows in channels of variable section using different sets of training data to show the flexibility of the method. The discovered models are then applied to the prediction of an unseen 2D separated flow with higher Reynolds number and different geometry. The predictions of the discovered models for the new case are shown to be not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model derived from purely physical arguments. The proposed deterministic symbolic identification approach constitutes a promising candidate for building accurate and robust RANS models customized for a given class of flows at moderate computational cost. •A symbolic identification method for data-driven learning of EARSMs is proposed•CFD-driven training may use sparse high-fidelity data for any quantity of interest•The approach is successfully applied to learn EARSMs for 2D separated flows•The learned models improve predictions over standard RANS models•The learned models generalize well to other 2D separated flows
AbstractList A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities of a baseline linear eddy viscosity model (LEVM) are expressed as functions of tensor polynomials selected from a library of candidate functions. The CFD-driven training consists in solving a blackbox optimization problem in which the fitness of candidate EARSM models is evaluated by running RANS simulations. The procedure enables training models against any target quantity of interest, computable as an output of the CFD model. Unlike the frozen-training approach, the proposed methodology is not restricted to data sets for which full fields of high-fidelity data, including second flow order statistics, are available. However, the solution of a high-dimensional expensive blackbox function optimization problem is required. Several steps are then undertaken to reduce the associated computational burden. First, a sensitivity analysis is used to identify the most influential terms and to reduce the dimensionality of the search space. Afterwards, the Constrained Optimization using Response Surface (CORS) algorithm, which approximates the black-box cost function using a response surface constructed from a limited number of CFD solves, is used to find the optimal model parameters. Model discovery and cross-validation is performed for three configurations of 2D turbulent separated flows in channels of variable section using different sets of training data to show the flexibility of the method. The discovered models are then applied to the prediction of an unseen 2D separated flow with higher Reynolds number and different geometry. The predictions of the discovered models for the new case are shown to be not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model derived from purely physical arguments. The proposed deterministic symbolic identification approach constitutes a promising candidate for building accurate and robust RANS models customized for a given class of flows at moderate computational cost.
A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities of a baseline linear eddy viscosity model (LEVM) are expressed as functions of tensor polynomials selected from a library of candidate functions. The CFD-driven training consists in solving a blackbox optimization problem in which the fitness of candidate EARSM models is evaluated by running RANS simulations. The procedure enables training models against any target quantity of interest, computable as an output of the CFD model. Unlike the frozen-training approach, the proposed methodology is not restricted to data sets for which full fields of high-fidelity data, including second flow order statistics, are available. However, the solution of a high-dimensional expensive blackbox function optimization problem is required. Several steps are then undertaken to reduce the associated computational burden. First, a sensitivity analysis is used to identify the most influential terms and to reduce the dimensionality of the search space. Afterwards, the Constrained Optimization using Response Surface (CORS) algorithm, which approximates the black-box cost function using a response surface constructed from a limited number of CFD solves, is used to find the optimal model parameters. Model discovery and cross-validation is performed for three configurations of 2D turbulent separated flows in channels of variable section using different sets of training data to show the flexibility of the method. The discovered models are then applied to the prediction of an unseen 2D separated flow with higher Reynolds number and different geometry. The predictions of the discovered models for the new case are shown to be not only more accurate than the baseline LEVM, but also of a multi-purpose EARSM model derived from purely physical arguments. The proposed deterministic symbolic identification approach constitutes a promising candidate for building accurate and robust RANS models customized for a given class of flows at moderate computational cost. •A symbolic identification method for data-driven learning of EARSMs is proposed•CFD-driven training may use sparse high-fidelity data for any quantity of interest•The approach is successfully applied to learn EARSMs for 2D separated flows•The learned models improve predictions over standard RANS models•The learned models generalize well to other 2D separated flows
ArticleNumber 111037
Author Ben Hassan Saïdi, Ismaïl
Grasso, Francesco
Cinnella, Paola
Schmelzer, Martin
Author_xml – sequence: 1
  givenname: Ismaïl
  orcidid: 0000-0001-9648-3075
  surname: Ben Hassan Saïdi
  fullname: Ben Hassan Saïdi, Ismaïl
  email: ismail.benhassansaidi@ensam.eu
  organization: Institut Aérotechnique, CNAM, 15 Rue Marat, 78210 Saint-Cyr-l'École, France
– sequence: 2
  givenname: Martin
  surname: Schmelzer
  fullname: Schmelzer, Martin
  organization: Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 2, Delft, the Netherlands
– sequence: 3
  givenname: Paola
  surname: Cinnella
  fullname: Cinnella, Paola
  organization: Institut Jean Le Rond D'Alembert, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
– sequence: 4
  givenname: Francesco
  surname: Grasso
  fullname: Grasso, Francesco
  organization: Laboratoire DynFluid, CNAM, 151 Boulevard de l'Hopital, 75013 Paris, France
BackLink https://hal.science/hal-03892546$$DView record in HAL
BookMark eNqNkMtqGzEUQEVxoXbaD-huIKsuxrl6zIuuglsnAUOhJGuhka4aDWPJlcYu8_cZdwKBLEJWAumcy9VZkYUPHgn5SmFNgZZX3brThzUDxtaUUuDVB7Kk0EDOKlouyBKA0bxpGvqJrFLqAKAuRL0k2832R26iO6HP0rhvQ-905gz6wVmn1eCCz4LNVP8H26imt984-tCblKchYkrZPhjs02fy0ao-4Zfn84I8bH_eb27z3a-bu831LtcC2JBzKJnQdVkbylFrywtDbQMKVaGsNRW2lWBVZVpTVIVGZIUF3YBRorTQCssvCJvnHv1Bjf9U38tDdHsVR0lBnkvITk4l5LmEnEtM0rdZelQveFBO3l7v5PkOeN2wQpQnOrGXM3uI4e8R0yC7cIx--pNkZSF4w6ngE0VnSseQUkT7ri2qV452w__AwxS2f9P8PptTaDw5jDJph16jcRH1IE1wb9hPrUyk9Q
CitedBy_id crossref_primary_10_1063_5_0253703
crossref_primary_10_1016_j_taml_2021_100280
crossref_primary_10_1016_j_taml_2024_100503
crossref_primary_10_1016_j_compfluid_2023_105993
crossref_primary_10_1016_j_combustflame_2023_112925
crossref_primary_10_1063_5_0130052
crossref_primary_10_1088_1367_2630_ad6689
crossref_primary_10_1063_5_0231494
crossref_primary_10_1016_j_ijheatfluidflow_2022_109017
crossref_primary_10_1017_jfm_2022_744
crossref_primary_10_1063_5_0174470
crossref_primary_10_1063_5_0207256
crossref_primary_10_1063_5_0160977
crossref_primary_10_1007_s00466_023_02342_7
crossref_primary_10_1007_s10494_024_00539_1
crossref_primary_10_1016_j_ijheatfluidflow_2023_109140
crossref_primary_10_1063_5_0149547
crossref_primary_10_1063_5_0247759
crossref_primary_10_1063_5_0184157
crossref_primary_10_1063_5_0207704
Cites_doi 10.1103/PhysRevFluids.6.050504
10.1007/s10494-018-0005-5
10.1017/S0022112075001814
10.1016/j.paerosci.2018.10.001
10.1007/s10898-004-0570-0
10.1017/S0022112075003382
10.1073/pnas.1517384113
10.1007/s10494-017-9870-6
10.1016/j.ijheatfluidflow.2017.09.017
10.1080/14685240701506896
10.1080/10618560902776828
10.1016/j.jcp.2016.08.015
10.1007/BF00271513
10.1016/j.compfluid.2021.105213
10.1007/BF01575099
10.1016/j.jcp.2020.109413
10.1103/PhysRevFluids.3.074602
10.1115/1.4041753
10.1007/s10494-019-00089-x
10.1051/eucass/201203089
10.1016/j.compfluid.2021.104997
10.1007/s10710-019-09371-3
10.1080/14685248.2011.637923
10.1017/S0022112093002034
10.1126/sciadv.1602614
10.1017/S0022112099007004
10.2514/3.12149
10.1016/j.jmps.2021.104742
10.1016/j.jcp.2021.110153
10.1103/PhysRevFluids.5.084611
10.1146/annurev-fluid-010518-040547
10.1063/1.168744
10.1016/j.compfluid.2008.05.002
10.1017/jfm.2016.615
10.1016/j.jcp.2015.11.012
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright Elsevier Science Ltd. May 15, 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. May 15, 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
ADTOC
UNPAY
DOI 10.1016/j.jcp.2022.111037
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10.1016/j.jcp.2022.111037
oai:HAL:hal-03892546v1
10_1016_j_jcp_2022_111037
S0021999122000997
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c402t-30624c868d13eccf35d1f90aea5affd7eb74277dbd575cee25f0c90da46f0b4f3
IEDL.DBID UNPAY
ISSN 0021-9991
1090-2716
IngestDate Sun Oct 26 03:42:07 EDT 2025
Tue Oct 14 20:24:41 EDT 2025
Fri Jul 25 06:26:52 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Wed Oct 01 02:36:58 EDT 2025
Fri Feb 23 02:39:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Symbolic identification
Separated flows
Turbulence modelling
Symbolic identification Turbulence modelling Separated flows
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-30624c868d13eccf35d1f90aea5affd7eb74277dbd575cee25f0c90da46f0b4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9648-3075
0000-0001-9979-0783
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0021999122000997?via%3Dihub
PQID 2654393143
PQPubID 2047462
ParticipantIDs unpaywall_primary_10_1016_j_jcp_2022_111037
hal_primary_oai_HAL_hal_03892546v1
proquest_journals_2654393143
crossref_primary_10_1016_j_jcp_2022_111037
crossref_citationtrail_10_1016_j_jcp_2022_111037
elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Brunton, Proctor, Kutz (br0180) 2016; 113
Pope (br0050) 2001
Versteeg, Malalasekera (br0060) 2007
Hellsten, Wallin (br0030) 2009; 23
Brunton, Kutz (br0380) 2019
Wu, Xiao, Paterson (br0130) 2018; 3
Michélen Str ofer, Xiao (br0280) 2021; 11
Weller, Tabor, Jasak, Fureby (br0330) 1998; 12
Marquillie, Ehrenstein, Laval (br0360) 2011; 681
Bishop (br0400) 2006
Kommenda, Burlacu, Kronberger, Affenzeller (br0450) 2020; 21
Zhao, Akolekar, Weatheritt, Michelassi, Sandberg (br0270) 2020; 411
Zhang, Dwight, Schmelzer, Gómez, Han, Hickel (br0220) 2021; 432
Steiner, Dwight, Viré (br0210) 2022; 233
Paris, Duraisamy (br0110) 2016; 305
Bentaleb, Lardeau, Leschziner (br0370) 2012; 13
Beetham, Capecelatro (br0240) 08 2020; 5
Menter (br0310) 1994; 32
Yang, Wang, Liu, Eldar, Zhang (br0460) 2016; vol. 48
Speziale, Abid, Durbin (br0420) 1994; 9
Breuer, Peller, Rapp, Manhart (br0350) 2009; 38
Xiao, Cinnella (br0090) 2019; 108
McConaghy (br0390) 2011
Durbin (br0490) 1991; 3
Huijing, Dwight, Schmelzer (br0200) 2021; 225
Wallin, Johansson (br0480) 2000; 403
Wilcox (br0020) 2006
Gatski, Speziale (br0080) 1993; 254
Rudy, Brunton, Proctor, Kutz (br0190) 2017; 3
Banerjee, Krahl, Durst, Zenger (br0290) 2007; 8
Regis, Shoemaker (br0300) 2005; 31
Schmelzer, Dwight, Cinnella (br0010) 2020; 104
Gargiulo, Ozoroski, Hallock, Haghiri, Sandberg, Visonneau, Deng, Guilmineau, Geneau, Jeans, Bettle, Kerkvliet, Toxopeus, Duetsch-Patel, Sundarraj, Borgoltz, Devenport, Roy, Lowe (br0170) 2022
Weatheritt, Sandberg (br0150) 2017; 68
Ling, Kurzawski, Templeton (br0120) 2016; 807
Menter, Garbaruk, Egorov (br0320) 2012; 3
Duraisamy, Iaccarino, Xiao (br0100) 2019; 51
Holland, Baeder, Duraisamy (br0260) 2019
Duraisamy (br0250) 2021; 6
Wang, Chen, Liu (br0230) 2022; 159
Emory, Iaccarino (br0430) 2014
Caretto, Gosman, Patankar, Spalding (br0340) 1973
Pope (br0070) 1975; 72
Weatheritt, Sandberg (br0140) 2016; 325
Edeling, Iaccarino, Cinnella (br0440) 2018; 100
Launder, Reece, Rodi (br0040) 1975; 68
Gloerfelt, Cinnella (br0470) 2019; 103
Knysh, Korkolis (br0410) 2016
Akolekar, Weatheritt, Hutchins, Sandberg, Laskowski, Michelassi (br0160) 2019; 141
Caretto (10.1016/j.jcp.2022.111037_br0340) 1973
Durbin (10.1016/j.jcp.2022.111037_br0490) 1991; 3
Xiao (10.1016/j.jcp.2022.111037_br0090) 2019; 108
Paris (10.1016/j.jcp.2022.111037_br0110) 2016; 305
Schmelzer (10.1016/j.jcp.2022.111037_br0010) 2020; 104
Menter (10.1016/j.jcp.2022.111037_br0320) 2012; 3
Wallin (10.1016/j.jcp.2022.111037_br0480) 2000; 403
Gatski (10.1016/j.jcp.2022.111037_br0080) 1993; 254
Wu (10.1016/j.jcp.2022.111037_br0130) 2018; 3
Breuer (10.1016/j.jcp.2022.111037_br0350) 2009; 38
Duraisamy (10.1016/j.jcp.2022.111037_br0250) 2021; 6
Launder (10.1016/j.jcp.2022.111037_br0040) 1975; 68
Weatheritt (10.1016/j.jcp.2022.111037_br0140) 2016; 325
Emory (10.1016/j.jcp.2022.111037_br0430) 2014
Hellsten (10.1016/j.jcp.2022.111037_br0030) 2009; 23
Pope (10.1016/j.jcp.2022.111037_br0050) 2001
Edeling (10.1016/j.jcp.2022.111037_br0440) 2018; 100
Yang (10.1016/j.jcp.2022.111037_br0460) 2016; vol. 48
Ling (10.1016/j.jcp.2022.111037_br0120) 2016; 807
Bishop (10.1016/j.jcp.2022.111037_br0400) 2006
Holland (10.1016/j.jcp.2022.111037_br0260) 2019
Regis (10.1016/j.jcp.2022.111037_br0300) 2005; 31
Weller (10.1016/j.jcp.2022.111037_br0330) 1998; 12
Zhao (10.1016/j.jcp.2022.111037_br0270) 2020; 411
Kommenda (10.1016/j.jcp.2022.111037_br0450) 2020; 21
Weatheritt (10.1016/j.jcp.2022.111037_br0150) 2017; 68
Brunton (10.1016/j.jcp.2022.111037_br0180) 2016; 113
Duraisamy (10.1016/j.jcp.2022.111037_br0100) 2019; 51
Pope (10.1016/j.jcp.2022.111037_br0070) 1975; 72
Akolekar (10.1016/j.jcp.2022.111037_br0160) 2019; 141
Michélen Str ofer (10.1016/j.jcp.2022.111037_br0280) 2021; 11
Banerjee (10.1016/j.jcp.2022.111037_br0290) 2007; 8
Marquillie (10.1016/j.jcp.2022.111037_br0360) 2011; 681
Wang (10.1016/j.jcp.2022.111037_br0230) 2022; 159
Brunton (10.1016/j.jcp.2022.111037_br0380) 2019
Zhang (10.1016/j.jcp.2022.111037_br0220) 2021; 432
Versteeg (10.1016/j.jcp.2022.111037_br0060) 2007
Gargiulo (10.1016/j.jcp.2022.111037_br0170) 2022
Beetham (10.1016/j.jcp.2022.111037_br0240) 2020; 5
Knysh (10.1016/j.jcp.2022.111037_br0410)
Menter (10.1016/j.jcp.2022.111037_br0310) 1994; 32
Huijing (10.1016/j.jcp.2022.111037_br0200) 2021; 225
Speziale (10.1016/j.jcp.2022.111037_br0420) 1994; 9
McConaghy (10.1016/j.jcp.2022.111037_br0390) 2011
Rudy (10.1016/j.jcp.2022.111037_br0190) 2017; 3
Gloerfelt (10.1016/j.jcp.2022.111037_br0470) 2019; 103
Bentaleb (10.1016/j.jcp.2022.111037_br0370) 2012; 13
Wilcox (10.1016/j.jcp.2022.111037_br0020) 2006
Steiner (10.1016/j.jcp.2022.111037_br0210) 2022; 233
References_xml – volume: 432
  year: 2021
  ident: br0220
  article-title: Customized data-driven rans closures for bi-fidelity les–rans optimization
  publication-title: J. Comput. Phys.
– volume: 6
  year: 2021
  ident: br0250
  article-title: Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence
  publication-title: Phys. Rev. Fluids
– volume: 3
  year: 2018
  ident: br0130
  article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework
  publication-title: Phys. Rev. Fluids
– volume: 8
  start-page: N32
  year: 2007
  ident: br0290
  article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
  publication-title: J. Turbul.
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  ident: br0120
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– volume: 3
  start-page: 89
  year: 2012
  end-page: 104
  ident: br0320
  article-title: Explicit algebraic reynolds stress models for anisotropic wall-bounded flows
  publication-title: Progr. Flight Phys.
– volume: 159
  year: 2022
  ident: br0230
  article-title: Establish algebraic data-driven constitutive models for elastic solids with a tensorial sparse symbolic regression method and a hybrid feature selection technique
  publication-title: J. Mech. Phys. Solids
– start-page: 1
  year: 2022
  end-page: 33
  ident: br0170
  article-title: Computations of the BeVERLI Hill Three-Dimensional Separating Flow Model Validation Cases
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: br0310
  article-title: Two-equation eddy-viscosity turbulence model for engineering applications
  publication-title: AIAA J.
– volume: 100
  start-page: 593
  year: 2018
  end-page: 616
  ident: br0440
  article-title: Data-free and data-driven rans predictions with quantified uncertainty
  publication-title: Flow Turbul. Combust.
– year: 2007
  ident: br0060
  article-title: An Introduction to Computational Fluid Dynamics: the Finite Volume Method
– volume: 141
  year: 2019
  ident: br0160
  article-title: Development and use of machine-learnt algebraic reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines
  publication-title: J. Turbomach.
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: br0180
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 123
  year: 2014
  end-page: 138
  ident: br0430
  article-title: Visualizing Turbulence Anisotropy in the Spatial Domain with Componentality Contours
– year: 2001
  ident: br0050
  article-title: Turbulent Flows
– volume: 11
  year: 2021
  ident: br0280
  article-title: End-to-end differentiable learning of turbulence models from indirect observations
  publication-title: Theor. Appl. Mech. Lett.
– year: 2006
  ident: br0400
  article-title: Pattern Recognition and Machine Learning
– volume: 108
  start-page: 1
  year: 2019
  end-page: 31
  ident: br0090
  article-title: Quantification of model uncertainty in rans simulations: a review
  publication-title: Prog. Aerosp. Sci.
– start-page: 235
  year: 2011
  end-page: 260
  ident: br0390
  article-title: Ffx: fast, scalable, deterministic symbolic regression technology
  publication-title: Genetic Programming Theory and Practice IX
– volume: 72
  start-page: 331
  year: 1975
  end-page: 340
  ident: br0070
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
– volume: vol. 48
  start-page: 2472
  year: 2016
  end-page: 2481
  ident: br0460
  article-title: Sparse nonlinear regression: parameter estimation under nonconvexity
  publication-title: Proceedings of the 33rd International Conference on Machine Learning
– volume: 3
  start-page: 1
  year: 1991
  end-page: 13
  ident: br0490
  article-title: Near-wall turbulence closure modeling without “damping functions”
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 403
  start-page: 89
  year: 2000
  end-page: 132
  ident: br0480
  article-title: An explicit algebraic reynolds stress model for incompressible and compressible turbulent flows
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 153
  year: 2005
  end-page: 171
  ident: br0300
  article-title: Constrained global optimization of expensive black box functions using radial basis functions
  publication-title: J. Glob. Optim.
– volume: 12
  start-page: 620
  year: 1998
  end-page: 631
  ident: br0330
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
– volume: 254
  start-page: 59
  year: 1993
  end-page: 78
  ident: br0080
  article-title: On explicit algebraic stress models for complex turbulent flows
  publication-title: J. Fluid Mech.
– volume: 9
  start-page: 369
  year: 1994
  end-page: 403
  ident: br0420
  article-title: On the realizability of reynolds stress turbulence closures
  publication-title: J. Sci. Comput.
– volume: 103
  start-page: 55
  year: 2019
  end-page: 91
  ident: br0470
  article-title: Large eddy simulation requirements for the flow over periodic hills
  publication-title: Flow Turbul. Combust.
– volume: 305
  start-page: 758
  year: 2016
  ident: br0110
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– volume: 104
  start-page: 579
  year: 2020
  end-page: 603
  ident: br0010
  article-title: Discovery of algebraic reynolds-stress models using sparse symbolic regression
  publication-title: Flow Turbul. Combust.
– volume: 23
  start-page: 349
  year: 2009
  end-page: 361
  ident: br0030
  article-title: Explicit algebraic reynolds stress and non-linear eddy-viscosity models
  publication-title: Int. J. Comput. Fluid Dyn.
– year: 2016
  ident: br0410
  article-title: Blackbox: a procedure for parallel optimization of expensive black-box functions
– volume: 325
  start-page: 22
  year: 2016
  end-page: 37
  ident: br0140
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the rans stress–strain relationship
  publication-title: J. Comput. Phys.
– start-page: 1884
  year: 2019
  ident: br0260
  article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling
  publication-title: AIAA Scitech 2019 Forum
– volume: 3
  year: 2017
  ident: br0190
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
– volume: 68
  start-page: 298
  year: 2017
  end-page: 318
  ident: br0150
  article-title: The development of algebraic stress models using a novel evolutionary algorithm
  publication-title: Int. J. Heat Fluid Flow
– volume: 68
  start-page: 537
  year: 1975
  end-page: 566
  ident: br0040
  article-title: Progress in the development of a reynolds-stress turbulence closure
  publication-title: J. Fluid Mech.
– volume: 411
  year: 2020
  ident: br0270
  article-title: Rans turbulence model development using cfd-driven machine learning
  publication-title: J. Comput. Phys.
– volume: 225
  year: 2021
  ident: br0200
  article-title: Data-driven RANS closures for three-dimensional flows around bluff bodies
  publication-title: Comput. Fluids
– start-page: 60
  year: 1973
  end-page: 68
  ident: br0340
  article-title: Two calculation procedures for steady, three-dimensional flows with recirculation
  publication-title: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics
– volume: 38
  start-page: 433
  year: 2009
  end-page: 457
  ident: br0350
  article-title: Flow over periodic hills–numerical and experimental study in a wide range of reynolds numbers
  publication-title: Comput. Fluids
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  ident: br0100
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– volume: 5
  year: 08 2020
  ident: br0240
  article-title: Formulating turbulence closures using sparse regression with embedded form invariance
  publication-title: Phys. Rev. Fluids
– volume: 21
  start-page: 471
  year: 2020
  end-page: 501
  ident: br0450
  article-title: Parameter identification for symbolic regression using nonlinear least squares
  publication-title: Genet. Program. Evol. Mach.
– volume: 681
  start-page: 30
  year: 2011
  ident: br0360
  article-title: Instability of streaks in wall turbulence with adverse pressure gradient
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: N4
  year: 2012
  ident: br0370
  article-title: Large-eddy simulation of turbulent boundary layer separation from a rounded step
  publication-title: J. Turbul.
– volume: 233
  year: 2022
  ident: br0210
  article-title: Data-driven RANS closures for wind turbine wakes under neutral conditions
  publication-title: Comput. Fluids
– year: 2019
  ident: br0380
  article-title: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
– year: 2006
  ident: br0020
  article-title: Turbulence Modeling for CFD
– year: 2019
  ident: 10.1016/j.jcp.2022.111037_br0380
– volume: 6
  year: 2021
  ident: 10.1016/j.jcp.2022.111037_br0250
  article-title: Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.050504
– volume: 681
  start-page: 30
  issue: 205–240
  year: 2011
  ident: 10.1016/j.jcp.2022.111037_br0360
  article-title: Instability of streaks in wall turbulence with adverse pressure gradient
  publication-title: J. Fluid Mech.
– volume: 103
  start-page: 55
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2022.111037_br0470
  article-title: Large eddy simulation requirements for the flow over periodic hills
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-018-0005-5
– volume: 68
  start-page: 537
  issue: 3
  year: 1975
  ident: 10.1016/j.jcp.2022.111037_br0040
  article-title: Progress in the development of a reynolds-stress turbulence closure
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075001814
– year: 2007
  ident: 10.1016/j.jcp.2022.111037_br0060
– start-page: 235
  year: 2011
  ident: 10.1016/j.jcp.2022.111037_br0390
  article-title: Ffx: fast, scalable, deterministic symbolic regression technology
– volume: 108
  start-page: 1
  year: 2019
  ident: 10.1016/j.jcp.2022.111037_br0090
  article-title: Quantification of model uncertainty in rans simulations: a review
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2018.10.001
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  ident: 10.1016/j.jcp.2022.111037_br0300
  article-title: Constrained global optimization of expensive black box functions using radial basis functions
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– volume: 72
  start-page: 331
  issue: 2
  year: 1975
  ident: 10.1016/j.jcp.2022.111037_br0070
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075003382
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.jcp.2022.111037_br0180
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 100
  start-page: 593
  issue: 3
  year: 2018
  ident: 10.1016/j.jcp.2022.111037_br0440
  article-title: Data-free and data-driven rans predictions with quantified uncertainty
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-017-9870-6
– volume: 68
  start-page: 298
  year: 2017
  ident: 10.1016/j.jcp.2022.111037_br0150
  article-title: The development of algebraic stress models using a novel evolutionary algorithm
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.09.017
– volume: 8
  start-page: N32
  year: 2007
  ident: 10.1016/j.jcp.2022.111037_br0290
  article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
  publication-title: J. Turbul.
  doi: 10.1080/14685240701506896
– volume: 23
  start-page: 349
  issue: 4
  year: 2009
  ident: 10.1016/j.jcp.2022.111037_br0030
  article-title: Explicit algebraic reynolds stress and non-linear eddy-viscosity models
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/10618560902776828
– volume: 325
  start-page: 22
  year: 2016
  ident: 10.1016/j.jcp.2022.111037_br0140
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the rans stress–strain relationship
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.08.015
– volume: 3
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.jcp.2022.111037_br0490
  article-title: Near-wall turbulence closure modeling without “damping functions”
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/BF00271513
– volume: 233
  year: 2022
  ident: 10.1016/j.jcp.2022.111037_br0210
  article-title: Data-driven RANS closures for wind turbine wakes under neutral conditions
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2021.105213
– start-page: 123
  year: 2014
  ident: 10.1016/j.jcp.2022.111037_br0430
– volume: vol. 48
  start-page: 2472
  year: 2016
  ident: 10.1016/j.jcp.2022.111037_br0460
  article-title: Sparse nonlinear regression: parameter estimation under nonconvexity
– volume: 9
  start-page: 369
  issue: 4
  year: 1994
  ident: 10.1016/j.jcp.2022.111037_br0420
  article-title: On the realizability of reynolds stress turbulence closures
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01575099
– volume: 411
  year: 2020
  ident: 10.1016/j.jcp.2022.111037_br0270
  article-title: Rans turbulence model development using cfd-driven machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109413
– volume: 3
  year: 2018
  ident: 10.1016/j.jcp.2022.111037_br0130
  article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.074602
– start-page: 1884
  year: 2019
  ident: 10.1016/j.jcp.2022.111037_br0260
  article-title: Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling
– volume: 141
  issue: 4
  year: 2019
  ident: 10.1016/j.jcp.2022.111037_br0160
  article-title: Development and use of machine-learnt algebraic reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines
  publication-title: J. Turbomach.
  doi: 10.1115/1.4041753
– volume: 104
  start-page: 579
  issue: 2
  year: 2020
  ident: 10.1016/j.jcp.2022.111037_br0010
  article-title: Discovery of algebraic reynolds-stress models using sparse symbolic regression
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-019-00089-x
– volume: 3
  start-page: 89
  year: 2012
  ident: 10.1016/j.jcp.2022.111037_br0320
  article-title: Explicit algebraic reynolds stress models for anisotropic wall-bounded flows
  publication-title: Progr. Flight Phys.
  doi: 10.1051/eucass/201203089
– volume: 225
  year: 2021
  ident: 10.1016/j.jcp.2022.111037_br0200
  article-title: Data-driven RANS closures for three-dimensional flows around bluff bodies
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2021.104997
– ident: 10.1016/j.jcp.2022.111037_br0410
– start-page: 1
  year: 2022
  ident: 10.1016/j.jcp.2022.111037_br0170
– volume: 21
  start-page: 471
  year: 2020
  ident: 10.1016/j.jcp.2022.111037_br0450
  article-title: Parameter identification for symbolic regression using nonlinear least squares
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-019-09371-3
– volume: 13
  start-page: N4
  year: 2012
  ident: 10.1016/j.jcp.2022.111037_br0370
  article-title: Large-eddy simulation of turbulent boundary layer separation from a rounded step
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2011.637923
– volume: 254
  start-page: 59
  year: 1993
  ident: 10.1016/j.jcp.2022.111037_br0080
  article-title: On explicit algebraic stress models for complex turbulent flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093002034
– volume: 3
  issue: 4
  year: 2017
  ident: 10.1016/j.jcp.2022.111037_br0190
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 403
  start-page: 89
  year: 2000
  ident: 10.1016/j.jcp.2022.111037_br0480
  article-title: An explicit algebraic reynolds stress model for incompressible and compressible turbulent flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099007004
– year: 2001
  ident: 10.1016/j.jcp.2022.111037_br0050
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.jcp.2022.111037_br0310
  article-title: Two-equation eddy-viscosity turbulence model for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– volume: 159
  year: 2022
  ident: 10.1016/j.jcp.2022.111037_br0230
  article-title: Establish algebraic data-driven constitutive models for elastic solids with a tensorial sparse symbolic regression method and a hybrid feature selection technique
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104742
– volume: 432
  year: 2021
  ident: 10.1016/j.jcp.2022.111037_br0220
  article-title: Customized data-driven rans closures for bi-fidelity les–rans optimization
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110153
– volume: 5
  year: 2020
  ident: 10.1016/j.jcp.2022.111037_br0240
  article-title: Formulating turbulence closures using sparse regression with embedded form invariance
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.084611
– volume: 51
  start-page: 357
  year: 2019
  ident: 10.1016/j.jcp.2022.111037_br0100
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010518-040547
– volume: 12
  start-page: 620
  issue: 6
  year: 1998
  ident: 10.1016/j.jcp.2022.111037_br0330
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– start-page: 60
  year: 1973
  ident: 10.1016/j.jcp.2022.111037_br0340
  article-title: Two calculation procedures for steady, three-dimensional flows with recirculation
– volume: 38
  start-page: 433
  issue: 2
  year: 2009
  ident: 10.1016/j.jcp.2022.111037_br0350
  article-title: Flow over periodic hills–numerical and experimental study in a wide range of reynolds numbers
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.05.002
– year: 2006
  ident: 10.1016/j.jcp.2022.111037_br0400
– volume: 11
  year: 2021
  ident: 10.1016/j.jcp.2022.111037_br0280
  article-title: End-to-end differentiable learning of turbulence models from indirect observations
  publication-title: Theor. Appl. Mech. Lett.
– year: 2006
  ident: 10.1016/j.jcp.2022.111037_br0020
– volume: 807
  start-page: 155
  year: 2016
  ident: 10.1016/j.jcp.2022.111037_br0120
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.615
– volume: 305
  start-page: 758
  year: 2016
  ident: 10.1016/j.jcp.2022.111037_br0110
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.012
SSID ssj0008548
Score 2.5526862
Snippet A CFD-driven deterministic symbolic identification algorithm for learning explicit algebraic Reynolds-stress models (EARSM) from high-fidelity data is...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111037
SubjectTerms Accuracy
Algebra
Algorithms
Computational fluid dynamics
Computational physics
Computing costs
Configuration management
Cost function
Eddy viscosity
Engineering Sciences
Flow separation
Fluid flow
Machine learning
Optimization
Polynomials
Response surface methodology
Reynolds number
Reynolds stress
Sensitivity analysis
Separated flows
Symbolic identification
Tensors
Training
Turbulence modelling
Two dimensional flow
Two dimensional models
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rF734FtcXRTwp0TRNX8dldVlEPYiCt5AmDa6s3cWuyl787c606aogCh6bJiWdSSbfkG9mCDlMdBpZE3IqEpVSEeiEZrHmVMOCtlyBxnO80b26jvp34uI-vG-RbhMLg7RKZ_trm15Za9dy6qR5Oh4MMMaXYwy9z3mFczCiXIgYqxicvH_SPJJQ1NYYqQjQu7nZrDhejxpTVnKOhoNhKfSfz6a5ByRJfkGgCy_FWE3f1HD45TDqrZAlhyK9Tj3RVdLKizWy7BCl5_ZruU563d4ZNc9o0bxy-pRhEmBvYBxDqFKKN7Ie1voArxne3eTTYjQ0Ja1jSLyqUE65Qe5657fdPnWVE6gGf3BCwQ_gQidRYvwAdGSD0Pg2ZSpXobLWxHkGHnEcm8wAWoNjkoeW6ZQZJSLLMmGDTTJfjIp8i3gAVwyAPMANFk5zlirNFHzTt5FgGrTZJqyRmdQurThWtxjKhj_2KEHMEsUsazG3ydFsyLjOqfFbZ9EoQn5bGBJs_m_DDkBps89jEu1-51JiG6YUxCoAr36b7DY6lW7rlpJjtC38sAja5Him578nuv2_ie6QRXxCQoIf7pL5yfNLvgc4Z5LtVwv5Awui998
  priority: 102
  providerName: Elsevier
Title CFD-driven symbolic identification of algebraic Reynolds-stress models
URI https://dx.doi.org/10.1016/j.jcp.2022.111037
https://www.proquest.com/docview/2654393143
https://hal.science/hal-03892546
https://www.sciencedirect.com/science/article/am/pii/S0021999122000997?via%3Dihub
UnpaywallVersion publishedVersion
Volume 457
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB41yQEulKeatkQWggtok_X6fUJRSxReESAilZO13vWqKakTxUlROPDbmbHXUUGoCImj17uW1zOe-Ub7zQzA01glodGBYH4sE-Z7KmZZpARTqNBGSJR4Tie67yfheOq_OQvO9uBjkwtDtEpr-2ubXllrOzKwX3MgLwfL2YzSfAWl0btCVFAnenk1k8-809n5JmtBJwwQnrehM518GH6pqR4uo-nVCWjCmcBgoTnprDhfF4pKWApBhoRTa_Q_-6rWOZEmryHSW5tiKbff5Hx-zTmN9mHVbKvmpHztb9ZZX33_reLjf933XbhjoawzrFfdg728uA_7FtY61miUD2B0MjplekVm1Sm3lxlVInZm2tKUKs1wFsahhiMYuuO9T_m2WMx1yepEFqfq1lM-hOno1eeTMbPtG5jCoHTNMBgRvorDWLseKorxAu2ahMtcBtIYHeUZhuVRpDONkBF9tQgMVwnX0g8Nz3zjPYJ2sSjyA3AQM2lEmgheDEIKnkjFJT7TNaHPFapUF3gjqFTZ2ubUYmOeNiS2ixRlm5Js01q2XXi-W7KsC3vcNNlvpJ_-IqUUHc9Ny56gpuweT5W8x8N3KY1RXUNqRXDlduG4UaTU2o8yFZTyixv2vS682CnX31_08J9mH8FtuiIyhBscQ3u92uSPEWOtsx60-j_cHnSGr9-OJz37D_0EvlMkaw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPdBLH0DFAm0j1BPI4DjO64i2XW3bhQMCiZvl2LHY1Ta7IgtoL_3tnUmcLZUqKvUaP-TMZ4-_kecB8CkzeeJsLJjMdM5kZDJWpEYwgxvaCY2Il_Sie36RDK_lt5v4Zg36XSwMuVV63d_q9EZb-y-nXpqn8_GYYnwFxdCHQjQ8J12HFzIWKVlgJz9_-3lksWzVMfkiYPfuabNx8poYylkpBGkOTrXQ_345rd-Sl-QTCrp5X8318lFPp09uo8EbeOVpZHDWrvQtrJXVFrz2lDLwB7behkF_8JnZO1JpQb38UVAW4GBsvYtQg0owcwEV-0CzGdsuy2U1m9qatUEkQVMpp96B68GXq_6Q-dIJzKBBuGBoCAhpsiSzYYQguSi2ocu5LnWsnbNpWaBJnKa2sEjX8J4UseMm51bLxPFCuugdbFSzqtyFAPmKRZaHxMHhdc5zbbjGOUOXSG4Qzh7wTmbK-LziVN5iqjoHsolCMSsSs2rF3IOj1ZB5m1Tjuc6yA0L9sTMUKv3nhh0iaKvpKYv28Gyk6BvlFKQyAA9hDw46TJU_u7USFG6LPyyjHhyvcP73Qvf-b6EfYXN4dT5So68X3_fhJbWQd0IYH8DG4u6-fI-kZ1F8aDb1L5Jy-wI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9t3QO8sPGlFTYUIXgBeXWc7ydUbasqBBMgKo0ny7FjLaNLq6YdKn89d4lTjQkNIfEYx47i3OXud_Lv7gBepTqLrYkEC1OVsTDQKcsTLZhGhbZCocQLOtH9eBaPJ-H78-h8Cz53uTBEq3S2v7XpjbV2IwP3NQfqajAvS0rzFZRG7wvRQJ3k3XWpXgcn5cUq34adOEJ43oOdydmn4beW6uEzmt6cgGacCQwWupPOhvN1qamEpRBkSDi1Rv-zr9q-INLkDUR6b1XN1fqHmk5vOKfRLiy6bbWclO9Hq2V-pH_eqvj4X_e9Bw8clPWG7aqHsFVUj2DXwVrPGY36MYyORyfMLMisevX6KqdKxF5pHE2p0QxvZj1qOIKhO977Uqyr2dTUrE1k8ZpuPfUTmIxOvx6PmWvfwDQGpUuGwYgIdRqnxg9QUWwQGd9mXBUqUtaapMgxLE8SkxuEjOirRWS5zrhRYWx5HtrgKfSqWVXsg4eYySDSRPBiEVLwTGmu8Jm-jUOuUaX6wDtBSe1qm1OLjansSGyXEmUrSbaylW0f3myWzNvCHndNDjvpy9-kJNHx3LXsJWrK5vFUyXs8_CBpjOoaUiuCa78PB50iSWc_aiko5Rc3HAZ9eLtRrr-_6LN_mv0c7tMVkSH86AB6y8WqOESMtcxfuL_mF9emId8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD-driven+symbolic+identification+of+algebraic+Reynolds-stress+models&rft.jtitle=Journal+of+computational+physics&rft.au=Ben+Hassan+Sa%C3%AFdi%2C+Isma%C3%AFl&rft.au=Schmelzer%2C+Martin&rft.au=Cinnella%2C+Paola&rft.au=Grasso%2C+Francesco&rft.date=2022-05-15&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=457&rft_id=info:doi/10.1016%2Fj.jcp.2022.111037&rft.externalDocID=S0021999122000997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon