Auto-calibration of HEC-HMS Model for Historic Flood Event under Rating Curve Uncertainty. Case Study: Allala Watershed, Algeria
Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating mode...
        Saved in:
      
    
          | Published in | KSCE journal of civil engineering Vol. 26; no. 1; pp. 482 - 493 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Seoul
          Korean Society of Civil Engineers
    
        01.01.2022
     Springer Nature B.V 대한토목학회  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1226-7988 1976-3808  | 
| DOI | 10.1007/s12205-021-1051-4 | 
Cover
| Abstract | Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating model parameters, the process of considering rainfall variability and errors in the discharge data used for the calibration. Indeed, the uncertainty associated with the discharge derived from the rating curve is ignored in many earlier rainfall-runoff models. In this paper, we provide a quantitative approach to rigorously investigate the effect that the rating curve uncertainty model has on the auto-calibration of Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model at hourly time scale. The multisegment BaRatin rating curve, based on the Bayesian analysis, was used to construct the most probable (MaxPost) rating curve with the bounds uncertainty for hydrometric station of Allala watershed. This allows establishing a new discharge hydrograph with its uncertainty bounds that are subsequently used in HEC-HMS calibration, to provide model parameters with confidence interval and to evaluate the model prediction accuracy. In HEC-HMS model, soil conservation service-curve number (SCS-CN) was applied to compute the runoff losses, while the SCS unit hydrograph (SCS-UH) method was used to estimate the direct runoff at the basin outlet. The model calibration process was carried out for the flood event of 2002 using four objective functions and validated for three independent events. We found that the calibration of the initial abstraction values (IA) varied between −15.16% and 20% when assessing the uncertainties associated with the rating curve, whereas the calibrated curve number values (CN) varied between −5.18% and 7.8%. The confidence interval for the CN and IA were extended from 65.71 to 74.81 and from 26.95 to 19.08, respectively. Results highlighted that the rating curve uncertainty has significant impact on the HEC-HMS model calibration parameters. Rigorous consideration of this uncertainty can improve considerably the model ability to predict the hourly discharge hydrographs. | 
    
|---|---|
| AbstractList | Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating model parameters, the process of considering rainfall variability and errors in the discharge data used for the calibration. Indeed, the uncertainty associated with the discharge derived from the rating curve is ignored in many earlier rainfall-runoff models. In this paper, we provide a quantitative approach to rigorously investigate the effect that the rating curve uncertainty model has on the auto-calibration of Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model at hourly time scale. The multisegment BaRatin rating curve, based on the Bayesian analysis, was used to construct the most probable (MaxPost) rating curve with the bounds uncertainty for hydrometric station of Allala watershed. This allows establishing a new discharge hydrograph with its uncertainty bounds that are subsequently used in HEC-HMS calibration, to provide model parameters with confidence interval and to evaluate the model prediction accuracy. In HEC-HMS model, soil conservation service-curve number (SCS-CN) was applied to compute the runoff losses, while the SCS unit hydrograph (SCS-UH) method was used to estimate the direct runoff at the basin outlet. The model calibration process was carried out for the flood event of 2002 using four objective functions and validated for three independent events. We found that the calibration of the initial abstraction values (IA) varied between −15.16% and 20% when assessing the uncertainties associated with the rating curve, whereas the calibrated curve number values (CN) varied between −5.18% and 7.8%. The confidence interval for the CN and IA were extended from 65.71 to 74.81 and from 26.95 to 19.08, respectively. Results highlighted that the rating curve uncertainty has significant impact on the HEC-HMS model calibration parameters. Rigorous consideration of this uncertainty can improve considerably the model ability to predict the hourly discharge hydrographs. Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating model parameters, the process of considering rainfall variability and errors in the discharge data used for the calibration. Indeed, the uncertainty associated with the discharge derived from the rating curve is ignored in many earlier rainfall-runoff models. In this paper, we provide a quantitative approach to rigorously investigate the effect that the rating curve uncertainty model has on the auto-calibration of Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model at hourly time scale. The multi-segment BaRatin rating curve, based on the Bayesian analysis, was used to construct the most probable (MaxPost) rating curve with the bounds uncertainty for hydrometric station of Allala watershed. This allows establishing a new discharge hydrograph with its uncertainty bounds that are subsequently used in HEC-HMS calibration, to provide model parameters with confidence interval and to evaluate the model prediction accuracy. In HEC-HMS model, soil conservation service-curve number (SCS-CN) was applied to compute the runoff losses, while the SCS unit hydrograph (SCS-UH) method was used to estimate the direct runoff at the basin outlet. The model calibration process was carried out for the flood event of 2002 using four objective functions and validated for three independent events. We found that the calibration of the initial abstraction values (IA) varied between -15.16% and 20% when assessing the uncertainties associated with the rating curve, whereas the calibrated curve number values (CN) varied between -5.18% and 7.8%. The confidence interval for the CN and IA were extended from 65.71 to 74.81 and from 26.95 to 19.08, respectively. Results highlighted that the rating curve uncertainty has significant impact on the HEC-HMS model calibration parameters. Rigorous consideration of this uncertainty can improve considerably the model ability to predict the hourly discharge hydrographs. KCI Citation Count: 9  | 
    
| Author | Kastali, Abdennour Zeroual, Sara Hamitouche, Yasmine Zeroual, Ayoub  | 
    
| Author_xml | – sequence: 1 givenname: Abdennour orcidid: 0000-0002-0858-2776 surname: Kastali fullname: Kastali, Abdennour email: kastaliabdennour1992@gmail.com organization: Laboratory of Chemistry Vegetable-Water-Energy Hydraulic Department, University of Hassiba Benbouali – sequence: 2 givenname: Ayoub orcidid: 0000-0002-6044-7619 surname: Zeroual fullname: Zeroual, Ayoub organization: Water Engineering and Environment Laboratory, National Higher School for Hydraulics (ENSH-Blida) – sequence: 3 givenname: Sara surname: Zeroual fullname: Zeroual, Sara organization: VESDD Laboratory, University of M’sila – sequence: 4 givenname: Yasmine orcidid: 0000-0002-8555-4621 surname: Hamitouche fullname: Hamitouche, Yasmine organization: Water Engineering and Environment Laboratory, National Higher School for Hydraulics (ENSH-Blida)  | 
    
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002788790$$DAccess content in National Research Foundation of Korea (NRF) | 
    
| BookMark | eNpFkcFKAzEQhoMoWKsP4C3gSTCaZDfZxFtZqhUsgq14DNndpG5dEk2ygjcf3WgF5_IPwzfDzPxHYN95ZwA4JfiSYFxdRUIpZghTgghmBJV7YEJkxVEhsNjPOaUcVVKIQ3AS4xbnKGglCjYBX7MxedTqoW-CTr130Fu4mNdosVzBpe_MAK0PcNHH5EPfwpvB-w7OP4xLcHSdCfAxt7kNrMfwYeCTa01Iunfp8xLWOhq4SmP3eQ1nw6AHDZ91MiG-mO4iVzYm9PoYHFg9RHPyp1PwdDNf1wt0_3B7V8_uUVtimhC1hFstaNuV2lpWWU5kKxotc4IZ55hhXnaEswYTS03JSVmyhnY2H0p11RRTcL6b64JVr22vvO5_dePVa1Czx_WdkkIKJllmz3bsW_Dvo4lJbf0YXF5PUUmkFFximim6o-JbyB8w4Z8iWP0Yo3bGqGyM-jFGlcU3DyiAfQ | 
    
| CitedBy_id | crossref_primary_10_3390_w16101353 crossref_primary_10_1002_joc_8467 crossref_primary_10_2166_wcc_2022_343 crossref_primary_10_1016_j_watcyc_2022_06_001 crossref_primary_10_2166_wpt_2024_224 crossref_primary_10_3390_ijgi12110464 crossref_primary_10_3390_w14071045 crossref_primary_10_1007_s11269_023_03727_2 crossref_primary_10_1007_s40808_022_01510_7  | 
    
| ContentType | Journal Article | 
    
| Copyright | Korean Society of Civil Engineers 2021 Korean Society of Civil Engineers 2021.  | 
    
| Copyright_xml | – notice: Korean Society of Civil Engineers 2021 – notice: Korean Society of Civil Engineers 2021.  | 
    
| DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR  | 
    
| DOI | 10.1007/s12205-021-1051-4 | 
    
| DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Korean Citation Index  | 
    
| DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1976-3808 | 
    
| EndPage | 493 | 
    
| ExternalDocumentID | oai_kci_go_kr_ARTI_9898595 10_1007_s12205_021_1051_4  | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ACDTI ACYCR  | 
    
| ID | FETCH-LOGICAL-c402t-2f16fa82cd4aff57f619c8ba9f61056605064d165b01f2e461445b2df3272a7b3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1226-7988 | 
    
| IngestDate | Sun Jan 19 03:36:38 EST 2025 Fri Jul 25 12:09:43 EDT 2025 Fri Feb 21 02:47:20 EST 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Rating curve uncertainty HEC-HMS Flood forecasting Nelder and mead algorithm (NM) Auto calibration BaRatin analysis  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c402t-2f16fa82cd4aff57f619c8ba9f61056605064d165b01f2e461445b2df3272a7b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8555-4621 0000-0002-0858-2776 0000-0002-6044-7619  | 
    
| OpenAccessLink | https://dx.doi.org/10.1007/s12205-021-1051-4 | 
    
| PQID | 2919986902 | 
    
| PQPubID | 1496355 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9898595 proquest_journals_2919986902 springer_journals_10_1007_s12205_021_1051_4  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220100 20220101 2022-01  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Seoul | 
    
| PublicationPlace_xml | – name: Seoul | 
    
| PublicationTitle | KSCE journal of civil engineering | 
    
| PublicationTitleAbbrev | KSCE J Civ Eng | 
    
| PublicationYear | 2022 | 
    
| Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회  | 
    
| Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회  | 
    
| References | GarciaRCostaVSilvaFBayesian rating curve modeling: Alternative error model to improve low-flow uncertainty estimationJournal of Hydrologic Engineering20202550402001210.1061/(ASCE)HE.1943-5584.0001903 Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: A quantitative analysis. Hydrology & Earth System Sciences 13(6), DOI: https://doi.org/10.5194/hessd-6-39-2009 Sharafati A, Khazaei MR, Nashwan MS, Al-Ansari N, Yaseen ZM, Shahid S (2020) Assessing the uncertainty associated with flood features due to variability of rainfall and hydrological parameters. Advances in Civil Engineering 2020, DOI: https://doi.org/10.1155/2020/7948902 SikorskaAERenardBCalibrating a hydrological model in stage space to account for rating curve uncertainties: General framework and key challengesAdvances in Water Resources2017105516610.1016/j.advwatres.2017.04.011 DarianeABJavadianzadehMMJamesLDDeveloping an efficient auto-calibration algorithm for HEC-HMS programWater Resources Management20163061923193710.1007/s11269-016-1260-7 McMillanHKWesterbergIKKruegerTHydrological data uncertainty and its implicationsWiley Interdisciplinary Reviews: Water201856e1319 MishraSKSinghVPSinghPKSinghVYadavSYadavaRRevisiting the soil conservation service curve number methodHydrologic modeling2018SingaporeSpringer66769310.1007/978-981-10-5801-1_46 Petersen-ØverleirASootAReitanTBayesian rating curve inference as a streamflow data quality assessment toolWater Resources Management20092391835184210.1007/s11269-008-9354-5 SchmidtAAnalysis of stage-discharge relations for open-channel flows and their associated uncertainties2002Champaign, IL, USAUniversity of Illinois at Urbana-Champaign Montanari A (2004) An attempt to quantify uncertainty in observed river flows: Effect on parameterisation and performance evaluation of rainfall-runoff models. 2004 AGU fall meeting, December 13–17, San Francisco, CA, USA US Army Corps of EngineersHydrologic modeling system HEC-HMS, user’s manual, version 4.32018Davis, CA, USAUS Army Corps of Engineers Hydrologic Engineering Center KneblMRYangZLHutchisonKMaidmentDRRegional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm eventJournal of Environmental Management200575432533610.1016/j.jenvman.2004.11.024 McMillanHFreerJPappenbergerFKruegerTClarkMImpacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictionsHydrological Processes: An International Journal2010241012701284 SharmaVCRegondaSKMulti-spatial resolution rainfall-runoff modelling — A case study of Sabari river basin, IndiaWater2021139122410.3390/w13091224 KastaliAZeroualARemaounMSerrano-NotivoliRMoramarcoTDesign flood and flood-prone areas under rating curve uncertainty: Area of Vieux-Ténès, AlgeriaJournal of Hydrologic Engineering20212630502005410.1061/(ASCE)HE.1943-5584.0002049 CunderlikJSimonovicSPCalibration, verification and sensitivity analysis of the HEC-HMS hydrologic model2004London, ON, CanadaThe University of Western Ontario Le Coz J, Chaléon C, Bonnifait L, Le Boursicaud R, Renard B, Branger F, Valente M (2013) Analyse bayésienne des courbes de tarage et de leurs incertitudes: La méthode BaRatin. La Houille Blanche (6):31–41 Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), DOI: https://doi.org/10.1029/2003WR002854 RahmanKUBalkhairKSAlmazrouiMMasoodASub-catchments flow losses computation using Muskingum-Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi ArabiaModeling Earth Systems and Environment201731410.1007/s40808-017-0268-1 AronicaGTCandelaAViolaFCannarozzoMInfluence of rating curve uncertainty on daily rainfall-runoff model predictionsPredictions in ungauged basins: promise and progress2006Wallingford, UKIAHS Press ShresthaRTachikawaYTakaraKInput data resolution analysis for distributed hydrological modelingJournal of Hydrology2006319365010.1016/j.jhydrol.2005.04.025 DukićVErićRSHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka River Catchment (Czech Republic)Water202113687210.3390/w13060872 KiangJEGazoorianCMcMillanHCoxonGLe CozJWesterbergIKReitanTA comparison of methods for streamflow uncertainty estimationWater Resources Research201854107149717610.1029/2018WR022708 Le CozJRenardBBonnifaitLBrangerFLe BoursicaudRCombining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approachJournal of Hydrology201450957358710.1016/j.jhydrol.2013.11.016 ZeroualAMeddiMAssaniAAArtificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictionsWater Resources Management20163093191320510.1007/s11269-016-1340-8 MoyeedRAClarkeRTThe use of Bayesian methods for fitting rating curves, with case studiesAdvances in Water Resources200528880781810.1016/j.advwatres.2005.02.005 ISO/TS 25377Hydrometric uncertainty guidance (HUG)2007Geneva, SwitzerlandInternational Organization for Standardization LobligeoisFAndréassianVPerrinCTabaryPLoumagneCWhen does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood eventsHydrology and Earth System Sciences201418257559410.5194/hess-18-575-2014 HossainFAnagnostouENDinkuTBorgaMHydrological model sensitivity to parameter and radar rainfall estimation uncertaintyHydrological Processes200418173277329110.1002/hyp.5659 PiotrowskiAPNapiorkowskiMJNapiorkowskiJJOsuchMKundzewiczZWAre modern metaheuristics successful in calibrating simple conceptual rainfall-runoff models?Hydrological Sciences Journal201762460662510.1080/02626667.2016.1234712 WheaterHSorooshianSSharmaKDHydrological modelling in arid and semi-arid areas2007Cambridge, UKCambridge University Press10.1017/CBO9780511535734  | 
    
| References_xml | – reference: GarciaRCostaVSilvaFBayesian rating curve modeling: Alternative error model to improve low-flow uncertainty estimationJournal of Hydrologic Engineering20202550402001210.1061/(ASCE)HE.1943-5584.0001903 – reference: ZeroualAMeddiMAssaniAAArtificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictionsWater Resources Management20163093191320510.1007/s11269-016-1340-8 – reference: DarianeABJavadianzadehMMJamesLDDeveloping an efficient auto-calibration algorithm for HEC-HMS programWater Resources Management20163061923193710.1007/s11269-016-1260-7 – reference: RahmanKUBalkhairKSAlmazrouiMMasoodASub-catchments flow losses computation using Muskingum-Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi ArabiaModeling Earth Systems and Environment201731410.1007/s40808-017-0268-1 – reference: LobligeoisFAndréassianVPerrinCTabaryPLoumagneCWhen does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood eventsHydrology and Earth System Sciences201418257559410.5194/hess-18-575-2014 – reference: Petersen-ØverleirASootAReitanTBayesian rating curve inference as a streamflow data quality assessment toolWater Resources Management20092391835184210.1007/s11269-008-9354-5 – reference: KiangJEGazoorianCMcMillanHCoxonGLe CozJWesterbergIKReitanTA comparison of methods for streamflow uncertainty estimationWater Resources Research201854107149717610.1029/2018WR022708 – reference: McMillanHFreerJPappenbergerFKruegerTClarkMImpacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictionsHydrological Processes: An International Journal2010241012701284 – reference: DukićVErićRSHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka River Catchment (Czech Republic)Water202113687210.3390/w13060872 – reference: MishraSKSinghVPSinghPKSinghVYadavSYadavaRRevisiting the soil conservation service curve number methodHydrologic modeling2018SingaporeSpringer66769310.1007/978-981-10-5801-1_46 – reference: PiotrowskiAPNapiorkowskiMJNapiorkowskiJJOsuchMKundzewiczZWAre modern metaheuristics successful in calibrating simple conceptual rainfall-runoff models?Hydrological Sciences Journal201762460662510.1080/02626667.2016.1234712 – reference: Sharafati A, Khazaei MR, Nashwan MS, Al-Ansari N, Yaseen ZM, Shahid S (2020) Assessing the uncertainty associated with flood features due to variability of rainfall and hydrological parameters. Advances in Civil Engineering 2020, DOI: https://doi.org/10.1155/2020/7948902 – reference: ISO/TS 25377Hydrometric uncertainty guidance (HUG)2007Geneva, SwitzerlandInternational Organization for Standardization – reference: Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), DOI: https://doi.org/10.1029/2003WR002854 – reference: SharmaVCRegondaSKMulti-spatial resolution rainfall-runoff modelling — A case study of Sabari river basin, IndiaWater2021139122410.3390/w13091224 – reference: KneblMRYangZLHutchisonKMaidmentDRRegional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm eventJournal of Environmental Management200575432533610.1016/j.jenvman.2004.11.024 – reference: Le Coz J, Chaléon C, Bonnifait L, Le Boursicaud R, Renard B, Branger F, Valente M (2013) Analyse bayésienne des courbes de tarage et de leurs incertitudes: La méthode BaRatin. La Houille Blanche (6):31–41 – reference: SchmidtAAnalysis of stage-discharge relations for open-channel flows and their associated uncertainties2002Champaign, IL, USAUniversity of Illinois at Urbana-Champaign – reference: SikorskaAERenardBCalibrating a hydrological model in stage space to account for rating curve uncertainties: General framework and key challengesAdvances in Water Resources2017105516610.1016/j.advwatres.2017.04.011 – reference: Le CozJRenardBBonnifaitLBrangerFLe BoursicaudRCombining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approachJournal of Hydrology201450957358710.1016/j.jhydrol.2013.11.016 – reference: AronicaGTCandelaAViolaFCannarozzoMInfluence of rating curve uncertainty on daily rainfall-runoff model predictionsPredictions in ungauged basins: promise and progress2006Wallingford, UKIAHS Press – reference: McMillanHKWesterbergIKKruegerTHydrological data uncertainty and its implicationsWiley Interdisciplinary Reviews: Water201856e1319 – reference: HossainFAnagnostouENDinkuTBorgaMHydrological model sensitivity to parameter and radar rainfall estimation uncertaintyHydrological Processes200418173277329110.1002/hyp.5659 – reference: US Army Corps of EngineersHydrologic modeling system HEC-HMS, user’s manual, version 4.32018Davis, CA, USAUS Army Corps of Engineers Hydrologic Engineering Center – reference: CunderlikJSimonovicSPCalibration, verification and sensitivity analysis of the HEC-HMS hydrologic model2004London, ON, CanadaThe University of Western Ontario – reference: Montanari A (2004) An attempt to quantify uncertainty in observed river flows: Effect on parameterisation and performance evaluation of rainfall-runoff models. 2004 AGU fall meeting, December 13–17, San Francisco, CA, USA – reference: KastaliAZeroualARemaounMSerrano-NotivoliRMoramarcoTDesign flood and flood-prone areas under rating curve uncertainty: Area of Vieux-Ténès, AlgeriaJournal of Hydrologic Engineering20212630502005410.1061/(ASCE)HE.1943-5584.0002049 – reference: ShresthaRTachikawaYTakaraKInput data resolution analysis for distributed hydrological modelingJournal of Hydrology2006319365010.1016/j.jhydrol.2005.04.025 – reference: WheaterHSorooshianSSharmaKDHydrological modelling in arid and semi-arid areas2007Cambridge, UKCambridge University Press10.1017/CBO9780511535734 – reference: MoyeedRAClarkeRTThe use of Bayesian methods for fitting rating curves, with case studiesAdvances in Water Resources200528880781810.1016/j.advwatres.2005.02.005 – reference: Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: A quantitative analysis. Hydrology & Earth System Sciences 13(6), DOI: https://doi.org/10.5194/hessd-6-39-2009  | 
    
| SSID | ssj0000327835 | 
    
| Score | 2.2997148 | 
    
| Snippet | Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the... | 
    
| SourceID | nrf proquest springer  | 
    
| SourceType | Open Website Aggregation Database Publisher  | 
    
| StartPage | 482 | 
    
| SubjectTerms | Accuracy Bayesian analysis Bayesian theory Calibration Civil Engineering Confidence intervals Discharge Discharge hydrographs Engineering Flow simulation Geotechnical Engineering & Applied Earth Sciences Historic floods Hydrographs Hydrologic models Hydrometric stations Industrial Pollution Prevention Mathematical models Model accuracy Outlets Parameters Precipitation Probability theory Rainfall Rainfall-runoff relationships Runoff Soil conservation Time Uncertainty Unit hydrographs Water Resources and Hydrologic Engineering Watersheds 토목공학  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWhoBNiA6PUcdKGrapaFSQYgIpulp3YgFqlUpoideOncxcSCoiFKVGcZLi7xO_Z7-4YO7MRwvBYtnmI4J5L60dcR7HlLROZprFJ4OJCbXEXDobyZhSMyjzuWaV2r7Ykiz_1MtmNckI5SQoQEyDxWWVrAVXzwiAeis7XwornU_MIki7iAyGnelzVbuZfb8E5Jc3cD3z5a0u0mGn6W2yzhIjQ-fTpNlux6Q7b-FY4cJe9d-b5lKN5ieySaWHqYNDr8sHtA1B7swkgGIWqBgj0SZ4OPdI2AmWNZXCvSe8M3Xn2ZmGIni-UAfniEro4rwHJCxdX0MEgmWh40lSD88UmF3jlmWJ2jw37vcfugJe9FHiMDDHnwjVDp9siTqR2Lmg5JE5x2-gITxADIalBbJI0w8B4TSesJJ4YGJE4tKbQLePvs1o6Te0Bg8gmnhGhEc43MrYto6X2Ej-0flsjXzR1dooWVeP4VVHtajo-T9U4U4jQrxX1qwyioM4alcFV-dXMlIgo4w_5uqiz88oJy-FlhWXyoUIfKvKhkof_uvuIrQvKYSjWURqslmdze4zIIjcnRSR9AKhvxNk priority: 102 providerName: Springer Nature  | 
    
| Title | Auto-calibration of HEC-HMS Model for Historic Flood Event under Rating Curve Uncertainty. Case Study: Allala Watershed, Algeria | 
    
| URI | https://link.springer.com/article/10.1007/s12205-021-1051-4 https://www.proquest.com/docview/2919986902 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002788790  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | KSCE Journal of Civil Engineering, 2022, 26(1), , pp.482-493 | 
    
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AFBBN dateStart: 19971201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1976-3808 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: BENPR dateStart: 19971201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1976-3808 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: 8FG dateStart: 19971201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: U2A dateStart: 19971201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQUOqLxEoEQrxA0W4vUjdiWEnMhuABGhQkQ5rfbZolZx6zqVeuOnM2NsAhw4reWVfJgZ737f7jczAM9dhjDcRClPENzzyIUZV5lxfKozHWhnY29atcUyWayi98fx8Q4s-1wYklX2a2K7UNvK0Bn5a5FRNhhyOfH24pJT1yi6Xe1baKiutYJ905YY24WhoMpYAxjOiuWno9-nLpOQOkuQrjFA3MGpWFd_1dnm01HaKSfVAsIO5Fa44axr_xf4_Oe-tN2Gyj240-FHlv9y-F3Ycet7cPuPqoL34Ue-aSqOticmTHZnlWeLYs4XHz8z6n12zhCpsr5ACCtJu84KEj4ySimr2ZEiMTSbb-prx1YYFq1soLl5xea46THSHt4csBwj6Fyxr4oKdJ46-xLfnFBAP4BVWXyZL3jXaIEbpI8NFz5IvEqFsZHyPp56ZFUm1SrDBwRIyHgQuNggifUk8MJFRCJjLaxHawo11eFDGKyrtXsELHN2okWihQ91ZNxUq0hNbJi4MFVIJvUInqFF5Zn5LqmwNY0nlTyrJcL3d5KaWcZZPIL93uCy-6Wu5DYARvCid8J2elt-mXwo0YeSfCijx___2BO4JSijoT1V2YdBU2_cU8QZjR7DbloejmGYl7PZksbDbx-KcRdSOLsS-U-fx9P6 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAcEJ9ioYCF4ASGjeMka6QKLcuusrRdodIVvRnbsQtqtYE0C9obv4zfxkxIWODAradEiZRInrHnPfvNDMAjrxCGOzngKYJ7Ln2suFHO88wqG1lfJME1aotZms_lm6PkaAN-dLkwJKvs1sRmoS5KR3vkz4WibDDkcuLl5y-cukbR6WrXQsO0rRWKnabEWJvYsetX35DCne1MX6O9HwsxGR-Oct52GeAOuVPNRYjSYAbCFdKEkGQBKYUbWKPwBtEBwn2M2kWUJrYfBeElMajEiiLEIhMmszF-9wJsyVgqJH9br8aztwe_d3n6MXWyIB1lhDiHU3Gw7mi1yd-jNFdOKgn8FXI5DHCLKvwFdv85n23C3uQqXGnxKhv-crBrsOEX1-HyH1UMb8D34bIuOdqamDfZmZWB5eMRz_ffMeq1dsoQGbOuIAmbkFaejUloySiFrWIHhsTXbLSsvno2RzdsZAr16hkbYZBlpHVcvWBD9NhTw94bKgj60RdP8ckxTaCbMD-XIb8Fm4ty4W8DU77oW5FaEWIrnc-skaZfxKmPBwbJq-3BQxxRfeI-aSqkTdfjUp9UGunCVFPzzEQlPdjuBly3U_hMrx2uB086I6xfr8s9kw012lCTDbW88_-PPYCL-eH-nt6bznbvwiVB2RTNjs42bNbV0t9DjFPb-60jMfhw3r77E28aCwo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20guhB_MT6OYg3XW03m7TxVmpL_UTUordlN9mtoqSSpoI3f7ozsbEqXjwlpEkOM1P2veybN4zt2hBheCTrPEBwz6X1Qq7DyPKaCU3V2Nh3Ua62uAw6XXl679-P5pwOCrV7sSX52dNALk1JdvgSu8Nx4xv1h3KSFyA-QBI0yaYk-SRgQXdF4-sjS8WjQRIkY8QHAk7eXMXO5l9vwfUlSd0PrPlrezRfddrzbG4EF6Hxmd8FNmGTRTb7zURwib03hlmfY6iJ-FKYoe-g02ryzsUN0KizZ0BgCoUfCLRJqg4t0jkCdZClcK1J-wzNYfpqoYtVkKsEsrcDaOIaByQ1fDuCBhbMs4Y7TX6cDzbexys9qt9l1m23bpsdPpqrwCNkixkXrho4XRdRLLVzfs0hiYrqRod4gngICQ7ilLga-KZSdcJK4oy-EbHDaApdM94KKyX9xK4yCG1cMSIwwnlGRrZmtNSV2AusV9fIHU2Z7WBE1VP0qMjHmo69vnpKFaL1E0WzK_3QL7ONIuBq9A8aKBFS9x9yd1Fme0USxj-P3ZYphwpzqCiHSq796-5tNn113FbnJ5dn62xGUGtD_nllg5WydGg3EXBkZisvqg_YiMwB | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-calibration+of+HEC-HMS+Model+for+Historic+Flood+Event+under+Rating+Curve+Uncertainty.+Case+Study%3A+Allala+Watershed%2C+Algeria&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Kastali%2C+Abdennour&rft.au=Zeroual%2C+Ayoub&rft.au=Zeroual%2C+Sara&rft.au=Hamitouche%2C+Yasmine&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=26&rft.issue=1&rft.spage=482&rft.epage=493&rft_id=info:doi/10.1007%2Fs12205-021-1051-4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |