Auto-calibration of HEC-HMS Model for Historic Flood Event under Rating Curve Uncertainty. Case Study: Allala Watershed, Algeria

Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating mode...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 26; no. 1; pp. 482 - 493
Main Authors Kastali, Abdennour, Zeroual, Ayoub, Zeroual, Sara, Hamitouche, Yasmine
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.01.2022
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-021-1051-4

Cover

Abstract Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating model parameters, the process of considering rainfall variability and errors in the discharge data used for the calibration. Indeed, the uncertainty associated with the discharge derived from the rating curve is ignored in many earlier rainfall-runoff models. In this paper, we provide a quantitative approach to rigorously investigate the effect that the rating curve uncertainty model has on the auto-calibration of Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model at hourly time scale. The multisegment BaRatin rating curve, based on the Bayesian analysis, was used to construct the most probable (MaxPost) rating curve with the bounds uncertainty for hydrometric station of Allala watershed. This allows establishing a new discharge hydrograph with its uncertainty bounds that are subsequently used in HEC-HMS calibration, to provide model parameters with confidence interval and to evaluate the model prediction accuracy. In HEC-HMS model, soil conservation service-curve number (SCS-CN) was applied to compute the runoff losses, while the SCS unit hydrograph (SCS-UH) method was used to estimate the direct runoff at the basin outlet. The model calibration process was carried out for the flood event of 2002 using four objective functions and validated for three independent events. We found that the calibration of the initial abstraction values (IA) varied between −15.16% and 20% when assessing the uncertainties associated with the rating curve, whereas the calibrated curve number values (CN) varied between −5.18% and 7.8%. The confidence interval for the CN and IA were extended from 65.71 to 74.81 and from 26.95 to 19.08, respectively. Results highlighted that the rating curve uncertainty has significant impact on the HEC-HMS model calibration parameters. Rigorous consideration of this uncertainty can improve considerably the model ability to predict the hourly discharge hydrographs.
AbstractList Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating model parameters, the process of considering rainfall variability and errors in the discharge data used for the calibration. Indeed, the uncertainty associated with the discharge derived from the rating curve is ignored in many earlier rainfall-runoff models. In this paper, we provide a quantitative approach to rigorously investigate the effect that the rating curve uncertainty model has on the auto-calibration of Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model at hourly time scale. The multisegment BaRatin rating curve, based on the Bayesian analysis, was used to construct the most probable (MaxPost) rating curve with the bounds uncertainty for hydrometric station of Allala watershed. This allows establishing a new discharge hydrograph with its uncertainty bounds that are subsequently used in HEC-HMS calibration, to provide model parameters with confidence interval and to evaluate the model prediction accuracy. In HEC-HMS model, soil conservation service-curve number (SCS-CN) was applied to compute the runoff losses, while the SCS unit hydrograph (SCS-UH) method was used to estimate the direct runoff at the basin outlet. The model calibration process was carried out for the flood event of 2002 using four objective functions and validated for three independent events. We found that the calibration of the initial abstraction values (IA) varied between −15.16% and 20% when assessing the uncertainties associated with the rating curve, whereas the calibrated curve number values (CN) varied between −5.18% and 7.8%. The confidence interval for the CN and IA were extended from 65.71 to 74.81 and from 26.95 to 19.08, respectively. Results highlighted that the rating curve uncertainty has significant impact on the HEC-HMS model calibration parameters. Rigorous consideration of this uncertainty can improve considerably the model ability to predict the hourly discharge hydrographs.
Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the flow simulation at a short time scale. These uncertainties are typically dependent on the model design, the technique used for estimating model parameters, the process of considering rainfall variability and errors in the discharge data used for the calibration. Indeed, the uncertainty associated with the discharge derived from the rating curve is ignored in many earlier rainfall-runoff models. In this paper, we provide a quantitative approach to rigorously investigate the effect that the rating curve uncertainty model has on the auto-calibration of Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model at hourly time scale. The multi-segment BaRatin rating curve, based on the Bayesian analysis, was used to construct the most probable (MaxPost) rating curve with the bounds uncertainty for hydrometric station of Allala watershed. This allows establishing a new discharge hydrograph with its uncertainty bounds that are subsequently used in HEC-HMS calibration, to provide model parameters with confidence interval and to evaluate the model prediction accuracy. In HEC-HMS model, soil conservation service-curve number (SCS-CN) was applied to compute the runoff losses, while the SCS unit hydrograph (SCS-UH) method was used to estimate the direct runoff at the basin outlet. The model calibration process was carried out for the flood event of 2002 using four objective functions and validated for three independent events. We found that the calibration of the initial abstraction values (IA) varied between -15.16% and 20% when assessing the uncertainties associated with the rating curve, whereas the calibrated curve number values (CN) varied between -5.18% and 7.8%. The confidence interval for the CN and IA were extended from 65.71 to 74.81 and from 26.95 to 19.08, respectively. Results highlighted that the rating curve uncertainty has significant impact on the HEC-HMS model calibration parameters. Rigorous consideration of this uncertainty can improve considerably the model ability to predict the hourly discharge hydrographs. KCI Citation Count: 9
Author Kastali, Abdennour
Zeroual, Sara
Hamitouche, Yasmine
Zeroual, Ayoub
Author_xml – sequence: 1
  givenname: Abdennour
  orcidid: 0000-0002-0858-2776
  surname: Kastali
  fullname: Kastali, Abdennour
  email: kastaliabdennour1992@gmail.com
  organization: Laboratory of Chemistry Vegetable-Water-Energy Hydraulic Department, University of Hassiba Benbouali
– sequence: 2
  givenname: Ayoub
  orcidid: 0000-0002-6044-7619
  surname: Zeroual
  fullname: Zeroual, Ayoub
  organization: Water Engineering and Environment Laboratory, National Higher School for Hydraulics (ENSH-Blida)
– sequence: 3
  givenname: Sara
  surname: Zeroual
  fullname: Zeroual, Sara
  organization: VESDD Laboratory, University of M’sila
– sequence: 4
  givenname: Yasmine
  orcidid: 0000-0002-8555-4621
  surname: Hamitouche
  fullname: Hamitouche, Yasmine
  organization: Water Engineering and Environment Laboratory, National Higher School for Hydraulics (ENSH-Blida)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002788790$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkcFKAzEQhoMoWKsP4C3gSTCaZDfZxFtZqhUsgq14DNndpG5dEk2ygjcf3WgF5_IPwzfDzPxHYN95ZwA4JfiSYFxdRUIpZghTgghmBJV7YEJkxVEhsNjPOaUcVVKIQ3AS4xbnKGglCjYBX7MxedTqoW-CTr130Fu4mNdosVzBpe_MAK0PcNHH5EPfwpvB-w7OP4xLcHSdCfAxt7kNrMfwYeCTa01Iunfp8xLWOhq4SmP3eQ1nw6AHDZ91MiG-mO4iVzYm9PoYHFg9RHPyp1PwdDNf1wt0_3B7V8_uUVtimhC1hFstaNuV2lpWWU5kKxotc4IZ55hhXnaEswYTS03JSVmyhnY2H0p11RRTcL6b64JVr22vvO5_dePVa1Czx_WdkkIKJllmz3bsW_Dvo4lJbf0YXF5PUUmkFFximim6o-JbyB8w4Z8iWP0Yo3bGqGyM-jFGlcU3DyiAfQ
CitedBy_id crossref_primary_10_3390_w16101353
crossref_primary_10_1002_joc_8467
crossref_primary_10_2166_wcc_2022_343
crossref_primary_10_1016_j_watcyc_2022_06_001
crossref_primary_10_2166_wpt_2024_224
crossref_primary_10_3390_ijgi12110464
crossref_primary_10_3390_w14071045
crossref_primary_10_1007_s11269_023_03727_2
crossref_primary_10_1007_s40808_022_01510_7
ContentType Journal Article
Copyright Korean Society of Civil Engineers 2021
Korean Society of Civil Engineers 2021.
Copyright_xml – notice: Korean Society of Civil Engineers 2021
– notice: Korean Society of Civil Engineers 2021.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
DOI 10.1007/s12205-021-1051-4
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 493
ExternalDocumentID oai_kci_go_kr_ARTI_9898595
10_1007_s12205_021_1051_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ACDTI
ACYCR
ID FETCH-LOGICAL-c402t-2f16fa82cd4aff57f619c8ba9f61056605064d165b01f2e461445b2df3272a7b3
IEDL.DBID BENPR
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:38 EST 2025
Fri Jul 25 12:09:43 EDT 2025
Fri Feb 21 02:47:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rating curve uncertainty
HEC-HMS
Flood forecasting
Nelder and mead algorithm (NM)
Auto calibration
BaRatin analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-2f16fa82cd4aff57f619c8ba9f61056605064d165b01f2e461445b2df3272a7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8555-4621
0000-0002-0858-2776
0000-0002-6044-7619
OpenAccessLink https://dx.doi.org/10.1007/s12205-021-1051-4
PQID 2919986902
PQPubID 1496355
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9898595
proquest_journals_2919986902
springer_journals_10_1007_s12205_021_1051_4
PublicationCentury 2000
PublicationDate 20220100
20220101
2022-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2022
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References GarciaRCostaVSilvaFBayesian rating curve modeling: Alternative error model to improve low-flow uncertainty estimationJournal of Hydrologic Engineering20202550402001210.1061/(ASCE)HE.1943-5584.0001903
Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: A quantitative analysis. Hydrology & Earth System Sciences 13(6), DOI: https://doi.org/10.5194/hessd-6-39-2009
Sharafati A, Khazaei MR, Nashwan MS, Al-Ansari N, Yaseen ZM, Shahid S (2020) Assessing the uncertainty associated with flood features due to variability of rainfall and hydrological parameters. Advances in Civil Engineering 2020, DOI: https://doi.org/10.1155/2020/7948902
SikorskaAERenardBCalibrating a hydrological model in stage space to account for rating curve uncertainties: General framework and key challengesAdvances in Water Resources2017105516610.1016/j.advwatres.2017.04.011
DarianeABJavadianzadehMMJamesLDDeveloping an efficient auto-calibration algorithm for HEC-HMS programWater Resources Management20163061923193710.1007/s11269-016-1260-7
McMillanHKWesterbergIKKruegerTHydrological data uncertainty and its implicationsWiley Interdisciplinary Reviews: Water201856e1319
MishraSKSinghVPSinghPKSinghVYadavSYadavaRRevisiting the soil conservation service curve number methodHydrologic modeling2018SingaporeSpringer66769310.1007/978-981-10-5801-1_46
Petersen-ØverleirASootAReitanTBayesian rating curve inference as a streamflow data quality assessment toolWater Resources Management20092391835184210.1007/s11269-008-9354-5
SchmidtAAnalysis of stage-discharge relations for open-channel flows and their associated uncertainties2002Champaign, IL, USAUniversity of Illinois at Urbana-Champaign
Montanari A (2004) An attempt to quantify uncertainty in observed river flows: Effect on parameterisation and performance evaluation of rainfall-runoff models. 2004 AGU fall meeting, December 13–17, San Francisco, CA, USA
US Army Corps of EngineersHydrologic modeling system HEC-HMS, user’s manual, version 4.32018Davis, CA, USAUS Army Corps of Engineers Hydrologic Engineering Center
KneblMRYangZLHutchisonKMaidmentDRRegional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm eventJournal of Environmental Management200575432533610.1016/j.jenvman.2004.11.024
McMillanHFreerJPappenbergerFKruegerTClarkMImpacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictionsHydrological Processes: An International Journal2010241012701284
SharmaVCRegondaSKMulti-spatial resolution rainfall-runoff modelling — A case study of Sabari river basin, IndiaWater2021139122410.3390/w13091224
KastaliAZeroualARemaounMSerrano-NotivoliRMoramarcoTDesign flood and flood-prone areas under rating curve uncertainty: Area of Vieux-Ténès, AlgeriaJournal of Hydrologic Engineering20212630502005410.1061/(ASCE)HE.1943-5584.0002049
CunderlikJSimonovicSPCalibration, verification and sensitivity analysis of the HEC-HMS hydrologic model2004London, ON, CanadaThe University of Western Ontario
Le Coz J, Chaléon C, Bonnifait L, Le Boursicaud R, Renard B, Branger F, Valente M (2013) Analyse bayésienne des courbes de tarage et de leurs incertitudes: La méthode BaRatin. La Houille Blanche (6):31–41
Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), DOI: https://doi.org/10.1029/2003WR002854
RahmanKUBalkhairKSAlmazrouiMMasoodASub-catchments flow losses computation using Muskingum-Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi ArabiaModeling Earth Systems and Environment201731410.1007/s40808-017-0268-1
AronicaGTCandelaAViolaFCannarozzoMInfluence of rating curve uncertainty on daily rainfall-runoff model predictionsPredictions in ungauged basins: promise and progress2006Wallingford, UKIAHS Press
ShresthaRTachikawaYTakaraKInput data resolution analysis for distributed hydrological modelingJournal of Hydrology2006319365010.1016/j.jhydrol.2005.04.025
DukićVErićRSHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka River Catchment (Czech Republic)Water202113687210.3390/w13060872
KiangJEGazoorianCMcMillanHCoxonGLe CozJWesterbergIKReitanTA comparison of methods for streamflow uncertainty estimationWater Resources Research201854107149717610.1029/2018WR022708
Le CozJRenardBBonnifaitLBrangerFLe BoursicaudRCombining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approachJournal of Hydrology201450957358710.1016/j.jhydrol.2013.11.016
ZeroualAMeddiMAssaniAAArtificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictionsWater Resources Management20163093191320510.1007/s11269-016-1340-8
MoyeedRAClarkeRTThe use of Bayesian methods for fitting rating curves, with case studiesAdvances in Water Resources200528880781810.1016/j.advwatres.2005.02.005
ISO/TS 25377Hydrometric uncertainty guidance (HUG)2007Geneva, SwitzerlandInternational Organization for Standardization
LobligeoisFAndréassianVPerrinCTabaryPLoumagneCWhen does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood eventsHydrology and Earth System Sciences201418257559410.5194/hess-18-575-2014
HossainFAnagnostouENDinkuTBorgaMHydrological model sensitivity to parameter and radar rainfall estimation uncertaintyHydrological Processes200418173277329110.1002/hyp.5659
PiotrowskiAPNapiorkowskiMJNapiorkowskiJJOsuchMKundzewiczZWAre modern metaheuristics successful in calibrating simple conceptual rainfall-runoff models?Hydrological Sciences Journal201762460662510.1080/02626667.2016.1234712
WheaterHSorooshianSSharmaKDHydrological modelling in arid and semi-arid areas2007Cambridge, UKCambridge University Press10.1017/CBO9780511535734
References_xml – reference: GarciaRCostaVSilvaFBayesian rating curve modeling: Alternative error model to improve low-flow uncertainty estimationJournal of Hydrologic Engineering20202550402001210.1061/(ASCE)HE.1943-5584.0001903
– reference: ZeroualAMeddiMAssaniAAArtificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictionsWater Resources Management20163093191320510.1007/s11269-016-1340-8
– reference: DarianeABJavadianzadehMMJamesLDDeveloping an efficient auto-calibration algorithm for HEC-HMS programWater Resources Management20163061923193710.1007/s11269-016-1260-7
– reference: RahmanKUBalkhairKSAlmazrouiMMasoodASub-catchments flow losses computation using Muskingum-Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi ArabiaModeling Earth Systems and Environment201731410.1007/s40808-017-0268-1
– reference: LobligeoisFAndréassianVPerrinCTabaryPLoumagneCWhen does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood eventsHydrology and Earth System Sciences201418257559410.5194/hess-18-575-2014
– reference: Petersen-ØverleirASootAReitanTBayesian rating curve inference as a streamflow data quality assessment toolWater Resources Management20092391835184210.1007/s11269-008-9354-5
– reference: KiangJEGazoorianCMcMillanHCoxonGLe CozJWesterbergIKReitanTA comparison of methods for streamflow uncertainty estimationWater Resources Research201854107149717610.1029/2018WR022708
– reference: McMillanHFreerJPappenbergerFKruegerTClarkMImpacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictionsHydrological Processes: An International Journal2010241012701284
– reference: DukićVErićRSHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka River Catchment (Czech Republic)Water202113687210.3390/w13060872
– reference: MishraSKSinghVPSinghPKSinghVYadavSYadavaRRevisiting the soil conservation service curve number methodHydrologic modeling2018SingaporeSpringer66769310.1007/978-981-10-5801-1_46
– reference: PiotrowskiAPNapiorkowskiMJNapiorkowskiJJOsuchMKundzewiczZWAre modern metaheuristics successful in calibrating simple conceptual rainfall-runoff models?Hydrological Sciences Journal201762460662510.1080/02626667.2016.1234712
– reference: Sharafati A, Khazaei MR, Nashwan MS, Al-Ansari N, Yaseen ZM, Shahid S (2020) Assessing the uncertainty associated with flood features due to variability of rainfall and hydrological parameters. Advances in Civil Engineering 2020, DOI: https://doi.org/10.1155/2020/7948902
– reference: ISO/TS 25377Hydrometric uncertainty guidance (HUG)2007Geneva, SwitzerlandInternational Organization for Standardization
– reference: Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), DOI: https://doi.org/10.1029/2003WR002854
– reference: SharmaVCRegondaSKMulti-spatial resolution rainfall-runoff modelling — A case study of Sabari river basin, IndiaWater2021139122410.3390/w13091224
– reference: KneblMRYangZLHutchisonKMaidmentDRRegional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm eventJournal of Environmental Management200575432533610.1016/j.jenvman.2004.11.024
– reference: Le Coz J, Chaléon C, Bonnifait L, Le Boursicaud R, Renard B, Branger F, Valente M (2013) Analyse bayésienne des courbes de tarage et de leurs incertitudes: La méthode BaRatin. La Houille Blanche (6):31–41
– reference: SchmidtAAnalysis of stage-discharge relations for open-channel flows and their associated uncertainties2002Champaign, IL, USAUniversity of Illinois at Urbana-Champaign
– reference: SikorskaAERenardBCalibrating a hydrological model in stage space to account for rating curve uncertainties: General framework and key challengesAdvances in Water Resources2017105516610.1016/j.advwatres.2017.04.011
– reference: Le CozJRenardBBonnifaitLBrangerFLe BoursicaudRCombining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approachJournal of Hydrology201450957358710.1016/j.jhydrol.2013.11.016
– reference: AronicaGTCandelaAViolaFCannarozzoMInfluence of rating curve uncertainty on daily rainfall-runoff model predictionsPredictions in ungauged basins: promise and progress2006Wallingford, UKIAHS Press
– reference: McMillanHKWesterbergIKKruegerTHydrological data uncertainty and its implicationsWiley Interdisciplinary Reviews: Water201856e1319
– reference: HossainFAnagnostouENDinkuTBorgaMHydrological model sensitivity to parameter and radar rainfall estimation uncertaintyHydrological Processes200418173277329110.1002/hyp.5659
– reference: US Army Corps of EngineersHydrologic modeling system HEC-HMS, user’s manual, version 4.32018Davis, CA, USAUS Army Corps of Engineers Hydrologic Engineering Center
– reference: CunderlikJSimonovicSPCalibration, verification and sensitivity analysis of the HEC-HMS hydrologic model2004London, ON, CanadaThe University of Western Ontario
– reference: Montanari A (2004) An attempt to quantify uncertainty in observed river flows: Effect on parameterisation and performance evaluation of rainfall-runoff models. 2004 AGU fall meeting, December 13–17, San Francisco, CA, USA
– reference: KastaliAZeroualARemaounMSerrano-NotivoliRMoramarcoTDesign flood and flood-prone areas under rating curve uncertainty: Area of Vieux-Ténès, AlgeriaJournal of Hydrologic Engineering20212630502005410.1061/(ASCE)HE.1943-5584.0002049
– reference: ShresthaRTachikawaYTakaraKInput data resolution analysis for distributed hydrological modelingJournal of Hydrology2006319365010.1016/j.jhydrol.2005.04.025
– reference: WheaterHSorooshianSSharmaKDHydrological modelling in arid and semi-arid areas2007Cambridge, UKCambridge University Press10.1017/CBO9780511535734
– reference: MoyeedRAClarkeRTThe use of Bayesian methods for fitting rating curves, with case studiesAdvances in Water Resources200528880781810.1016/j.advwatres.2005.02.005
– reference: Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: A quantitative analysis. Hydrology & Earth System Sciences 13(6), DOI: https://doi.org/10.5194/hessd-6-39-2009
SSID ssj0000327835
Score 2.2997148
Snippet Flow simulation and forecasting accuracy using rainfall-runoff models is one of the main challenges in hydrological modelling, especially when focused on the...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 482
SubjectTerms Accuracy
Bayesian analysis
Bayesian theory
Calibration
Civil Engineering
Confidence intervals
Discharge
Discharge hydrographs
Engineering
Flow simulation
Geotechnical Engineering & Applied Earth Sciences
Historic floods
Hydrographs
Hydrologic models
Hydrometric stations
Industrial Pollution Prevention
Mathematical models
Model accuracy
Outlets
Parameters
Precipitation
Probability theory
Rainfall
Rainfall-runoff relationships
Runoff
Soil conservation
Time
Uncertainty
Unit hydrographs
Water Resources and Hydrologic Engineering
Watersheds
토목공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWhoBNiA6PUcdKGrapaFSQYgIpulp3YgFqlUpoideOncxcSCoiFKVGcZLi7xO_Z7-4YO7MRwvBYtnmI4J5L60dcR7HlLROZprFJ4OJCbXEXDobyZhSMyjzuWaV2r7Ykiz_1MtmNckI5SQoQEyDxWWVrAVXzwiAeis7XwornU_MIki7iAyGnelzVbuZfb8E5Jc3cD3z5a0u0mGn6W2yzhIjQ-fTpNlux6Q7b-FY4cJe9d-b5lKN5ieySaWHqYNDr8sHtA1B7swkgGIWqBgj0SZ4OPdI2AmWNZXCvSe8M3Xn2ZmGIni-UAfniEro4rwHJCxdX0MEgmWh40lSD88UmF3jlmWJ2jw37vcfugJe9FHiMDDHnwjVDp9siTqR2Lmg5JE5x2-gITxADIalBbJI0w8B4TSesJJ4YGJE4tKbQLePvs1o6Te0Bg8gmnhGhEc43MrYto6X2Ej-0flsjXzR1dooWVeP4VVHtajo-T9U4U4jQrxX1qwyioM4alcFV-dXMlIgo4w_5uqiz88oJy-FlhWXyoUIfKvKhkof_uvuIrQvKYSjWURqslmdze4zIIjcnRSR9AKhvxNk
  priority: 102
  providerName: Springer Nature
Title Auto-calibration of HEC-HMS Model for Historic Flood Event under Rating Curve Uncertainty. Case Study: Allala Watershed, Algeria
URI https://link.springer.com/article/10.1007/s12205-021-1051-4
https://www.proquest.com/docview/2919986902
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002788790
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2022, 26(1), , pp.482-493
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AFBBN
  dateStart: 19971201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1976-3808
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: BENPR
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: 8FG
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: U2A
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQUOqLxEoEQrxA0W4vUjdiWEnMhuABGhQkQ5rfbZolZx6zqVeuOnM2NsAhw4reWVfJgZ737f7jczAM9dhjDcRClPENzzyIUZV5lxfKozHWhnY29atcUyWayi98fx8Q4s-1wYklX2a2K7UNvK0Bn5a5FRNhhyOfH24pJT1yi6Xe1baKiutYJ905YY24WhoMpYAxjOiuWno9-nLpOQOkuQrjFA3MGpWFd_1dnm01HaKSfVAsIO5Fa44axr_xf4_Oe-tN2Gyj240-FHlv9y-F3Ycet7cPuPqoL34Ue-aSqOticmTHZnlWeLYs4XHz8z6n12zhCpsr5ACCtJu84KEj4ySimr2ZEiMTSbb-prx1YYFq1soLl5xea46THSHt4csBwj6Fyxr4oKdJ46-xLfnFBAP4BVWXyZL3jXaIEbpI8NFz5IvEqFsZHyPp56ZFUm1SrDBwRIyHgQuNggifUk8MJFRCJjLaxHawo11eFDGKyrtXsELHN2okWihQ91ZNxUq0hNbJi4MFVIJvUInqFF5Zn5LqmwNY0nlTyrJcL3d5KaWcZZPIL93uCy-6Wu5DYARvCid8J2elt-mXwo0YeSfCijx___2BO4JSijoT1V2YdBU2_cU8QZjR7DbloejmGYl7PZksbDbx-KcRdSOLsS-U-fx9P6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAcEJ9ioYCF4ASGjeMka6QKLcuusrRdodIVvRnbsQtqtYE0C9obv4zfxkxIWODAradEiZRInrHnPfvNDMAjrxCGOzngKYJ7Ln2suFHO88wqG1lfJME1aotZms_lm6PkaAN-dLkwJKvs1sRmoS5KR3vkz4WibDDkcuLl5y-cukbR6WrXQsO0rRWKnabEWJvYsetX35DCne1MX6O9HwsxGR-Oct52GeAOuVPNRYjSYAbCFdKEkGQBKYUbWKPwBtEBwn2M2kWUJrYfBeElMajEiiLEIhMmszF-9wJsyVgqJH9br8aztwe_d3n6MXWyIB1lhDiHU3Gw7mi1yd-jNFdOKgn8FXI5DHCLKvwFdv85n23C3uQqXGnxKhv-crBrsOEX1-HyH1UMb8D34bIuOdqamDfZmZWB5eMRz_ffMeq1dsoQGbOuIAmbkFaejUloySiFrWIHhsTXbLSsvno2RzdsZAr16hkbYZBlpHVcvWBD9NhTw94bKgj60RdP8ckxTaCbMD-XIb8Fm4ty4W8DU77oW5FaEWIrnc-skaZfxKmPBwbJq-3BQxxRfeI-aSqkTdfjUp9UGunCVFPzzEQlPdjuBly3U_hMrx2uB086I6xfr8s9kw012lCTDbW88_-PPYCL-eH-nt6bznbvwiVB2RTNjs42bNbV0t9DjFPb-60jMfhw3r77E28aCwo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20guhB_MT6OYg3XW03m7TxVmpL_UTUordlN9mtoqSSpoI3f7ozsbEqXjwlpEkOM1P2veybN4zt2hBheCTrPEBwz6X1Qq7DyPKaCU3V2Nh3Ua62uAw6XXl679-P5pwOCrV7sSX52dNALk1JdvgSu8Nx4xv1h3KSFyA-QBI0yaYk-SRgQXdF4-sjS8WjQRIkY8QHAk7eXMXO5l9vwfUlSd0PrPlrezRfddrzbG4EF6Hxmd8FNmGTRTb7zURwib03hlmfY6iJ-FKYoe-g02ryzsUN0KizZ0BgCoUfCLRJqg4t0jkCdZClcK1J-wzNYfpqoYtVkKsEsrcDaOIaByQ1fDuCBhbMs4Y7TX6cDzbexys9qt9l1m23bpsdPpqrwCNkixkXrho4XRdRLLVzfs0hiYrqRod4gngICQ7ilLga-KZSdcJK4oy-EbHDaApdM94KKyX9xK4yCG1cMSIwwnlGRrZmtNSV2AusV9fIHU2Z7WBE1VP0qMjHmo69vnpKFaL1E0WzK_3QL7ONIuBq9A8aKBFS9x9yd1Fme0USxj-P3ZYphwpzqCiHSq796-5tNn113FbnJ5dn62xGUGtD_nllg5WydGg3EXBkZisvqg_YiMwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-calibration+of+HEC-HMS+Model+for+Historic+Flood+Event+under+Rating+Curve+Uncertainty.+Case+Study%3A+Allala+Watershed%2C+Algeria&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Kastali%2C+Abdennour&rft.au=Zeroual%2C+Ayoub&rft.au=Zeroual%2C+Sara&rft.au=Hamitouche%2C+Yasmine&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-7988&rft.eissn=1976-3808&rft.volume=26&rft.issue=1&rft.spage=482&rft.epage=493&rft_id=info:doi/10.1007%2Fs12205-021-1051-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon