Improved algorithm for generating evenly-spaced streamlines from an orientation field on a triangulated surface
Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by curre...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 251; p. 108202 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Ireland
Elsevier B.V
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2024.108202 |
Cover
| Abstract | Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms.
We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement.
The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution.
More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines.
•Streamlines clarify the visualization of vector fields such as fiber orientation.•We developed software for evenly-spaced streamline generation on a 3D surface.•The algorithm uses an occupancy mask on the triangles to control streamline spacing.•It improves geometrical guarantees and handling of streamline endpoints.•The C++/python code can be downloaded at https://doi.org/10.5281/zenodo.10976377. |
|---|---|
| AbstractList | Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms.
We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement.
The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution.
More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines.
•Streamlines clarify the visualization of vector fields such as fiber orientation.•We developed software for evenly-spaced streamline generation on a 3D surface.•The algorithm uses an occupancy mask on the triangles to control streamline spacing.•It improves geometrical guarantees and handling of streamline endpoints.•The C++/python code can be downloaded at https://doi.org/10.5281/zenodo.10976377. Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms. We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement. The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution. More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines. Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms.BACKGROUNDVector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms.We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement.METHODWe developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement.The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution.RESULTSThe algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution.More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines.CONCLUSIONMore accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines. |
| ArticleNumber | 108202 |
| Author | Jacquemet, Vincent |
| Author_xml | – sequence: 1 givenname: Vincent orcidid: 0000-0002-8485-8738 surname: Jacquemet fullname: Jacquemet, Vincent email: vincent.jacquemet@umontreal.ca organization: Pharmacology and Physiology Department, Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38703718$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vFCEYgImpsdvqH_BgOHqZFZgv1ngxjbZNmnjRM2GYl5WVgRGYNfvvfTdTPXhQTxDyPG_g4YpchBiAkJecbTnj3ZvD1kzzsBVMNHggcX1CNlz2ourbrr0gG4R2lehYf0mucj4wxkTbds_IZS17Vvdcbki8n-YUjzBS7fcxufJ1ojYmuocASRcX9hSOEPypyrM2iOWSQE_eBcjUpjhRHSh6EArSMVDrwI8UN5qW5HTYL16Xs7ckiwOek6dW-wwvHtdr8uXjh883d9XDp9v7m_cPlWmYKJXQmrfdzuKjZAOs4a0QZgDGjeCjgV52_dgY08ma29aAGfqxHkY51HKwBpqmvib1OncJsz790N6rOblJp5PiTJ3zqYM651PnfGrNh9br1cIm3xfIRU0uG_BeB4hLVjVr2a7hGA_RV4_oMkww_p7-Ky0CYgVMijknsP93gXerBNjm6CCpbLAthncJTFFjdH_X3_6hG_wpZ7T_Bqd_yT8BAKi28Q |
| Cites_doi | 10.1109/TMI.2023.3329451 10.1016/j.compbiomed.2015.04.027 10.1063/5.0082763 10.1007/s11517-022-02550-y 10.1145/1183287.1183290 10.1161/CIRCEP.111.967950 10.1016/j.media.2019.04.004 10.1016/j.compbiomed.2019.103349 10.1371/journal.pone.0141573 10.1016/j.media.2018.04.001 10.1002/adfm.201908121 10.1016/j.compbiomed.2023.107009 10.1161/CIRCEP.116.004133 10.1145/166117.166151 10.1016/j.neuroimage.2022.118958 10.1152/ajpcell.00036.2021 10.1126/science.abq2599 10.1098/rsfs.2012.0069 10.1016/j.media.2018.01.005 10.1109/TVCG.2006.116 10.1046/j.1540-8167.2001.01046.x 10.1093/europace/euab001 10.1002/nbm.3426 10.1002/nbm.3563 10.1016/j.media.2021.102247 10.1016/j.compbiomed.2019.103444 10.1371/journal.pcbi.0010042 10.1109/TIP.2003.822608 10.3390/cells10112923 10.1063/1.4895811 10.1109/TVCG.2009.206 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.cmpb.2024.108202 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | 10.1016/j.cmpb.2024.108202 38703718 10_1016_j_cmpb_2024_108202 S0169260724001986 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD 6I. AACTN AAFTH AAIAV ABLVK ABTAH ADMBK AFKWA AJOXV AMFUW RIG AAYXX CITATION AFCTW AGCQF AGRNS NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c402t-2aa1569f82084e041522cbe01c21dce7867d4cc6831f5cecb7d3bd8b38bfce443 |
| IEDL.DBID | UNPAY |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Tue Aug 19 22:31:24 EDT 2025 Mon Sep 29 04:48:50 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 Wed Oct 01 03:21:47 EDT 2025 Sat Jun 01 15:41:29 EDT 2024 Tue Oct 14 19:41:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fiber orientation Vector field visualization Streamline integration Interconnected cable model Triangulated surface |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-2aa1569f82084e041522cbe01c21dce7867d4cc6831f5cecb7d3bd8b38bfce443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8485-8738 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpb.2024.108202 |
| PMID | 38703718 |
| PQID | 3050941703 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cmpb_2024_108202 proquest_miscellaneous_3050941703 pubmed_primary_38703718 crossref_primary_10_1016_j_cmpb_2024_108202 elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108202 elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108202 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Saliani, Tsikhanovich, Jacquemet (b25) 2019; 111 Ahmed, Joshi, Mansouri, Ahamed, Hsu, Gaborski, Abhyankar (b39) 2021; 320 Schuler, Pilia, Potyagaylo, Loewe (b15) 2021; 74 McLoughlin, Laramee, Peikert, Post, Chen (b23) 2010; vol. 29 Saliani, Jacquemet (b30) 2020 Bayer, Prassl, Pashaei, Gomez, Frontera, Neic, Plank, Vigmond (b14) 2018; 45 Dupraz, Jacquemet (b10) 2014; 24 Turk, Banks (b8) 1996 Pashakhanloo, Herzka, Ashikaga, Mori, Gai, Bluemke, Trayanova, McVeigh (b2) 2016; 9 Spencer, Laramee, Chen, Zhang (b22) 2009; vol. 28 Han, Trew, Zgierski-Johnston (b3) 2021; 10 Roney, Pashaei, Meo, Dubois, Boyle, Trayanova, Cochet, Niederer, Vigmond (b31) 2018 Nie, Ruan, Otaduy, Grinberg, Ringman, Shi (b19) 2024; 43 Solís-Lemus, Baptiste, Barrows, Sillett, Gharaviri, Raffaele, Razeghi, Strocchi, Sim, Kotadia, Bodagh, O’Hare, O’Neill, Williams, Roney, Niederer (b26) 2023; 162 Zhang, Mischaikow, Turk (b44) 2006; 25 Roney, Pashaei, Meo, Dubois, Boyle, Trayanova, Cochet, Niederer, Vigmond (b13) 2019; 55 Sporns, Tononi, Kötter (b18) 2005; 1 Saliani, Biswas, Jacquemet (b29) 2022; 32 Cantwell, Roney, Ng, Siggers, Sherwin, Peters (b4) 2015; 65 Vigmond, Ruckdeschel, Trayanova (b12) 2001; 12 Nieuwenhuyse, Hendrickx, den Abeele, Rajan, Lowie, Knecht, Duytschaever, Vandersickel (b38) 2022; 60 Jobard, Lefer (b9) 1997 Zhao, Butters, Zhang, Pullan, LeGrice, Sands, Smaill (b35) 2012; 5 Mao, Hatanaka, Higashida, Imamiya (b20) 1998 Potse, Gharaviri, Pezzuto, Auricchio, Krause, Verheule, Schotten (b32) 2018 Liu, Zhang, Ritchie (b43) 2020; 30 Ferrer, Sebastián, Sánchez-Quintana, Rodríguez, Godoy, Martínez, Saiz (b33) 2015; 10 Zhou, Gu (b41) 2004; 13 Shenasa, Hindricks, Callans, Miller, Josephson (b1) 2019 Damon, Froeling, Buck, Oudeman, Ding, Nederveen, Bush, Strijkers (b40) 2017; 30 Fan, Eichner, Afzali, Mueller, Tax, Davids, Mahmutovic, Keil, Bilgic, Setsompop, Lee, Tian, Maffei, Ramos-Llordén, Nummenmaa, Witzel, Yendiki, Song, Huang, Lin, Weiskopf, Anwander, Jones, Rosen, Wald, Huang (b5) 2022; 254 Fastl, Tobon-Gomez, Crozier, Whitaker, Rajani, McCarthy, Sanchez-Quintana, Ho, O’Neill, Plank, Bishop, Niederer (b28) 2018; 47 Fastl, Tobon-Gomez, Crozier, Whitaker, Rajani, McCarthy, Sanchez-Quintana, Ho, O’Neill, Plank, Bishop, Niederer (b37) 2018; 47 Axer, Amunts (b6) 2022; 378 Brian Cabral, Leith Casey Leedom, Imaging vector fields using line integral convolution, in: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993, pp. 263–270. Mekkaoui, Reese, Jackowski, Bhat, Sosnovik (b7) 2017; 30 Liu, Moorhead, Groner (b21) 2006; 12 Aslanidi, Colman, Varela, Zhao, Smaill, Hancox, Boyett, Zhang (b34) 2013; 3 Samari (b42) 2019 Wang, Xiong, Nalar, Hansen, Kharche, Seemann, Loewe, Fedorov, Zhao (b16) 2019; 114 Saliani, Irakoze, Jacquemet (b11) 2021; 23 Wu, Liu, Zhang, Moorhead (b24) 2010; 16 Mattausch, Theussl, Hauser, Gröller (b17) 2003 Azzolin, Eichenlaub, Nagel, Nairn, Sánchez, Unger, Arentz, Westermann, Dössel, Jadidi, Loewe (b27) 2023; 108 Saliani (10.1016/j.cmpb.2024.108202_b30) 2020 Mekkaoui (10.1016/j.cmpb.2024.108202_b7) 2017; 30 Vigmond (10.1016/j.cmpb.2024.108202_b12) 2001; 12 Han (10.1016/j.cmpb.2024.108202_b3) 2021; 10 Wang (10.1016/j.cmpb.2024.108202_b16) 2019; 114 Fastl (10.1016/j.cmpb.2024.108202_b28) 2018; 47 McLoughlin (10.1016/j.cmpb.2024.108202_b23) 2010; vol. 29 Zhao (10.1016/j.cmpb.2024.108202_b35) 2012; 5 Turk (10.1016/j.cmpb.2024.108202_b8) 1996 Pashakhanloo (10.1016/j.cmpb.2024.108202_b2) 2016; 9 Ahmed (10.1016/j.cmpb.2024.108202_b39) 2021; 320 Roney (10.1016/j.cmpb.2024.108202_b31) 2018 Aslanidi (10.1016/j.cmpb.2024.108202_b34) 2013; 3 Mao (10.1016/j.cmpb.2024.108202_b20) 1998 Zhang (10.1016/j.cmpb.2024.108202_b44) 2006; 25 Samari (10.1016/j.cmpb.2024.108202_b42) 2019 Saliani (10.1016/j.cmpb.2024.108202_b25) 2019; 111 Dupraz (10.1016/j.cmpb.2024.108202_b10) 2014; 24 Sporns (10.1016/j.cmpb.2024.108202_b18) 2005; 1 Fastl (10.1016/j.cmpb.2024.108202_b37) 2018; 47 Roney (10.1016/j.cmpb.2024.108202_b13) 2019; 55 Nieuwenhuyse (10.1016/j.cmpb.2024.108202_b38) 2022; 60 10.1016/j.cmpb.2024.108202_b36 Cantwell (10.1016/j.cmpb.2024.108202_b4) 2015; 65 Liu (10.1016/j.cmpb.2024.108202_b21) 2006; 12 Axer (10.1016/j.cmpb.2024.108202_b6) 2022; 378 Schuler (10.1016/j.cmpb.2024.108202_b15) 2021; 74 Fan (10.1016/j.cmpb.2024.108202_b5) 2022; 254 Spencer (10.1016/j.cmpb.2024.108202_b22) 2009; vol. 28 Nie (10.1016/j.cmpb.2024.108202_b19) 2024; 43 Wu (10.1016/j.cmpb.2024.108202_b24) 2010; 16 Potse (10.1016/j.cmpb.2024.108202_b32) 2018 Jobard (10.1016/j.cmpb.2024.108202_b9) 1997 Saliani (10.1016/j.cmpb.2024.108202_b11) 2021; 23 Saliani (10.1016/j.cmpb.2024.108202_b29) 2022; 32 Shenasa (10.1016/j.cmpb.2024.108202_b1) 2019 Bayer (10.1016/j.cmpb.2024.108202_b14) 2018; 45 Mattausch (10.1016/j.cmpb.2024.108202_b17) 2003 Azzolin (10.1016/j.cmpb.2024.108202_b27) 2023; 108 Zhou (10.1016/j.cmpb.2024.108202_b41) 2004; 13 Liu (10.1016/j.cmpb.2024.108202_b43) 2020; 30 Solís-Lemus (10.1016/j.cmpb.2024.108202_b26) 2023; 162 Damon (10.1016/j.cmpb.2024.108202_b40) 2017; 30 Ferrer (10.1016/j.cmpb.2024.108202_b33) 2015; 10 |
| References_xml | – volume: vol. 29 start-page: 1807 year: 2010 end-page: 1829 ident: b23 article-title: Over two decades of integration-based, geometric flow visualization publication-title: Computer Graphics Forum – volume: 320 start-page: C1112 year: 2021 end-page: C1124 ident: b39 article-title: Engineering fiber anisotropy within natural collagen hydrogels publication-title: Am. J. Physiol. Cell Physiol. – volume: 55 start-page: 65 year: 2019 end-page: 75 ident: b13 article-title: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes publication-title: Med. Image Anal. – reference: Brian Cabral, Leith Casey Leedom, Imaging vector fields using line integral convolution, in: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993, pp. 263–270. – volume: 162 year: 2023 ident: b26 article-title: Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study publication-title: Comput. Biol. Med. – volume: 30 year: 2017 ident: b7 article-title: Sp diffusion MRI in the heart publication-title: Nmr Biomed. – start-page: 135 year: 1998 end-page: 142 ident: b20 article-title: Image-guided streamline placement on curvilinear grid surfaces publication-title: Visualization’98. Proceedings – year: 2019 ident: b1 article-title: Cardiac Mapping – start-page: 43 year: 1997 end-page: 55 ident: b9 article-title: Creating evenly-spaced streamlines of arbitrary density publication-title: Visualization in Scientific Computing’97 – year: 2018 ident: b32 article-title: Schotten anatomically-induced fibrillation in a 3D model of the human atria publication-title: Computing in Cardiology – volume: 12 start-page: 965 year: 2006 end-page: 972 ident: b21 article-title: An advanced evenly-spaced streamline placement algorithm publication-title: IEEE Trans. Vis. Comput. Graphics – volume: vol. 28 start-page: 1618 year: 2009 end-page: 1631 ident: b22 article-title: Evenly spaced streamlines for surfaces: An image-based approach publication-title: Computer Graphics Forum – year: 2018 ident: b31 article-title: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes – volume: 111 year: 2019 ident: b25 article-title: Visualization of interpolated atrial fiber orientation using evenly-spaced streamlines publication-title: Comput. Biol. Med. – volume: 43 start-page: 1113 year: 2024 end-page: 1124 ident: b19 article-title: Surface-based probabilistic fiber tracking in Superficial white matter publication-title: IEEE Trans. Med. Imaging – volume: 114 year: 2019 ident: b16 article-title: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness publication-title: Comput. Biol. Med. – start-page: 213 year: 2003 end-page: 222 ident: b17 article-title: Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines publication-title: Proceedings of the 19th Spring Conference on Computer Graphics – volume: 25 start-page: 1294 year: 2006 end-page: 1326 ident: b44 article-title: Vector field design on surfaces publication-title: ACM Trans. Graph. – volume: 12 start-page: 1046 year: 2001 end-page: 1054 ident: b12 article-title: Reentry in a morphologically realistic atrial model publication-title: J. Cardiovasc. Electrophysiol. – start-page: 453 year: 1996 end-page: 460 ident: b8 article-title: Image-guided streamline placement publication-title: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques – volume: 30 year: 2020 ident: b43 article-title: Structural orientation and anisotropy in biological materials: functional designs and mechanics publication-title: Adv. Funct. Mater. – volume: 74 year: 2021 ident: b15 article-title: Cobiveco: Consistent biventricular coordinates for precise and intuitive description of position in the heart - with MATLAB implementation publication-title: Med. Image Anal. – volume: 65 start-page: 229 year: 2015 ident: b4 article-title: Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping publication-title: Comput. Biol. Med. – volume: 45 start-page: 83 year: 2018 end-page: 93 ident: b14 article-title: Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data publication-title: Med. Image Anal. – volume: 378 start-page: 500 year: 2022 end-page: 504 ident: b6 article-title: Scale matters: The nested human connectome publication-title: Science – volume: 3 year: 2013 ident: b34 article-title: Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation publication-title: Interface Focus – volume: 13 start-page: 821 year: 2004 end-page: 835 ident: b41 article-title: A model-based method for the computation of fingerprints’ orientation field publication-title: IEEE Trans. Image Process. – volume: 47 start-page: 180 year: 2018 end-page: 190 ident: b28 article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture publication-title: Med. Image Anal. – volume: 24 year: 2014 ident: b10 article-title: Geometrical measurement of cardiac wavelength in reaction–diffusion models publication-title: Chaos (Woodbury, N.Y.) – volume: 23 start-page: i169 year: 2021 end-page: i177 ident: b11 article-title: Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium publication-title: Europace – volume: 32 year: 2022 ident: b29 article-title: Simulation of atrial fibrillation in a non-ohmic propagation model with dynamic gap junctions publication-title: Chaos (Woodbury, N.Y.) – volume: 60 start-page: 1929 year: 2022 end-page: 1945 ident: b38 article-title: DG-mapping: a novel software package for the analysis of any type of reentry and focal activation of simulated, experimental or clinical data of cardiac arrhythmia publication-title: Med. Biol. Eng. Comput. – volume: 254 year: 2022 ident: b5 article-title: Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact publication-title: NeuroImage – volume: 30 year: 2017 ident: b40 article-title: Skeletal muscle DT-MRI fiber tracking: Rationale, Data acquisition and analysis methods, applications, and Future directions publication-title: NMR Biomed. – volume: 10 year: 2015 ident: b33 article-title: Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation publication-title: PLoS One – volume: 5 start-page: 361 year: 2012 end-page: 370 ident: b35 article-title: An image-based model of atrial muscular architecture: Effects of structural anisotropy on electrical activation. Circulation publication-title: Arrhythmia Electrophysiol. – start-page: 1 year: 2020 end-page: 4 ident: b30 article-title: Diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium publication-title: 2020 Computing in Cardiology – volume: 47 start-page: 180 year: 2018 end-page: 190 ident: b37 article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture publication-title: Med. Image Anal. – volume: 9 year: 2016 ident: b2 article-title: Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circulation publication-title: Arrhythmia Electrophysiol. – volume: 10 start-page: 2923 year: 2021 ident: b3 article-title: Cardiac conduction velocity, remodeling and arrhythmogenesis publication-title: Cells – volume: 16 start-page: 791 year: 2010 end-page: 801 ident: b24 article-title: Topology-aware evenly spaced streamline placement publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2019 ident: b42 article-title: Modeling Sheets and Fibers in Biological Tissues – volume: 1 year: 2005 ident: b18 article-title: The human connectome: A structural description of the human brain publication-title: PLoS Comput. Biol. – volume: 108 year: 2023 ident: b27 article-title: AugmentA: Patient-specific augmented atrial model generation tool publication-title: Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. – volume: 43 start-page: 1113 issue: 3 year: 2024 ident: 10.1016/j.cmpb.2024.108202_b19 article-title: Surface-based probabilistic fiber tracking in Superficial white matter publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3329451 – volume: vol. 28 start-page: 1618 year: 2009 ident: 10.1016/j.cmpb.2024.108202_b22 article-title: Evenly spaced streamlines for surfaces: An image-based approach – volume: 108 year: 2023 ident: 10.1016/j.cmpb.2024.108202_b27 article-title: AugmentA: Patient-specific augmented atrial model generation tool publication-title: Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. – year: 2019 ident: 10.1016/j.cmpb.2024.108202_b1 – volume: 65 start-page: 229 year: 2015 ident: 10.1016/j.cmpb.2024.108202_b4 article-title: Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.04.027 – volume: 32 issue: 4 year: 2022 ident: 10.1016/j.cmpb.2024.108202_b29 article-title: Simulation of atrial fibrillation in a non-ohmic propagation model with dynamic gap junctions publication-title: Chaos (Woodbury, N.Y.) doi: 10.1063/5.0082763 – volume: 60 start-page: 1929 issue: 7 year: 2022 ident: 10.1016/j.cmpb.2024.108202_b38 article-title: DG-mapping: a novel software package for the analysis of any type of reentry and focal activation of simulated, experimental or clinical data of cardiac arrhythmia publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02550-y – volume: 25 start-page: 1294 issue: 4 year: 2006 ident: 10.1016/j.cmpb.2024.108202_b44 article-title: Vector field design on surfaces publication-title: ACM Trans. Graph. doi: 10.1145/1183287.1183290 – volume: 5 start-page: 361 issue: 2 year: 2012 ident: 10.1016/j.cmpb.2024.108202_b35 article-title: An image-based model of atrial muscular architecture: Effects of structural anisotropy on electrical activation. Circulation publication-title: Arrhythmia Electrophysiol. doi: 10.1161/CIRCEP.111.967950 – volume: vol. 29 start-page: 1807 year: 2010 ident: 10.1016/j.cmpb.2024.108202_b23 article-title: Over two decades of integration-based, geometric flow visualization – start-page: 43 year: 1997 ident: 10.1016/j.cmpb.2024.108202_b9 article-title: Creating evenly-spaced streamlines of arbitrary density – volume: 55 start-page: 65 year: 2019 ident: 10.1016/j.cmpb.2024.108202_b13 article-title: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.04.004 – volume: 111 year: 2019 ident: 10.1016/j.cmpb.2024.108202_b25 article-title: Visualization of interpolated atrial fiber orientation using evenly-spaced streamlines publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103349 – volume: 10 issue: 11 year: 2015 ident: 10.1016/j.cmpb.2024.108202_b33 article-title: Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation publication-title: PLoS One doi: 10.1371/journal.pone.0141573 – volume: 47 start-page: 180 year: 2018 ident: 10.1016/j.cmpb.2024.108202_b37 article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.04.001 – year: 2018 ident: 10.1016/j.cmpb.2024.108202_b32 article-title: Schotten anatomically-induced fibrillation in a 3D model of the human atria – volume: 30 issue: 10 year: 2020 ident: 10.1016/j.cmpb.2024.108202_b43 article-title: Structural orientation and anisotropy in biological materials: functional designs and mechanics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908121 – volume: 162 year: 2023 ident: 10.1016/j.cmpb.2024.108202_b26 article-title: Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107009 – volume: 9 issue: 4 year: 2016 ident: 10.1016/j.cmpb.2024.108202_b2 article-title: Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circulation publication-title: Arrhythmia Electrophysiol. doi: 10.1161/CIRCEP.116.004133 – year: 2019 ident: 10.1016/j.cmpb.2024.108202_b42 – ident: 10.1016/j.cmpb.2024.108202_b36 doi: 10.1145/166117.166151 – volume: 254 year: 2022 ident: 10.1016/j.cmpb.2024.108202_b5 article-title: Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118958 – volume: 320 start-page: C1112 issue: 6 year: 2021 ident: 10.1016/j.cmpb.2024.108202_b39 article-title: Engineering fiber anisotropy within natural collagen hydrogels publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00036.2021 – start-page: 213 year: 2003 ident: 10.1016/j.cmpb.2024.108202_b17 article-title: Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines – volume: 378 start-page: 500 issue: 6619 year: 2022 ident: 10.1016/j.cmpb.2024.108202_b6 article-title: Scale matters: The nested human connectome publication-title: Science doi: 10.1126/science.abq2599 – start-page: 135 year: 1998 ident: 10.1016/j.cmpb.2024.108202_b20 article-title: Image-guided streamline placement on curvilinear grid surfaces – start-page: 453 year: 1996 ident: 10.1016/j.cmpb.2024.108202_b8 article-title: Image-guided streamline placement – volume: 3 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2024.108202_b34 article-title: Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation publication-title: Interface Focus doi: 10.1098/rsfs.2012.0069 – volume: 45 start-page: 83 year: 2018 ident: 10.1016/j.cmpb.2024.108202_b14 article-title: Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.01.005 – volume: 12 start-page: 965 issue: 5 year: 2006 ident: 10.1016/j.cmpb.2024.108202_b21 article-title: An advanced evenly-spaced streamline placement algorithm publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2006.116 – volume: 12 start-page: 1046 issue: 9 year: 2001 ident: 10.1016/j.cmpb.2024.108202_b12 article-title: Reentry in a morphologically realistic atrial model publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1046/j.1540-8167.2001.01046.x – volume: 23 start-page: i169 issue: 23 Suppl 2 year: 2021 ident: 10.1016/j.cmpb.2024.108202_b11 article-title: Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium publication-title: Europace doi: 10.1093/europace/euab001 – volume: 30 issue: 3 year: 2017 ident: 10.1016/j.cmpb.2024.108202_b7 article-title: Sp diffusion MRI in the heart publication-title: Nmr Biomed. doi: 10.1002/nbm.3426 – volume: 30 issue: 3 year: 2017 ident: 10.1016/j.cmpb.2024.108202_b40 article-title: Skeletal muscle DT-MRI fiber tracking: Rationale, Data acquisition and analysis methods, applications, and Future directions publication-title: NMR Biomed. doi: 10.1002/nbm.3563 – volume: 74 year: 2021 ident: 10.1016/j.cmpb.2024.108202_b15 article-title: Cobiveco: Consistent biventricular coordinates for precise and intuitive description of position in the heart - with MATLAB implementation publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102247 – volume: 114 year: 2019 ident: 10.1016/j.cmpb.2024.108202_b16 article-title: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103444 – volume: 1 issue: 4 year: 2005 ident: 10.1016/j.cmpb.2024.108202_b18 article-title: The human connectome: A structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – year: 2018 ident: 10.1016/j.cmpb.2024.108202_b31 – start-page: 1 year: 2020 ident: 10.1016/j.cmpb.2024.108202_b30 article-title: Diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium – volume: 13 start-page: 821 issue: 6 year: 2004 ident: 10.1016/j.cmpb.2024.108202_b41 article-title: A model-based method for the computation of fingerprints’ orientation field publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.822608 – volume: 47 start-page: 180 year: 2018 ident: 10.1016/j.cmpb.2024.108202_b28 article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.04.001 – volume: 10 start-page: 2923 issue: 11 year: 2021 ident: 10.1016/j.cmpb.2024.108202_b3 article-title: Cardiac conduction velocity, remodeling and arrhythmogenesis publication-title: Cells doi: 10.3390/cells10112923 – volume: 24 issue: 3 year: 2014 ident: 10.1016/j.cmpb.2024.108202_b10 article-title: Geometrical measurement of cardiac wavelength in reaction–diffusion models publication-title: Chaos (Woodbury, N.Y.) doi: 10.1063/1.4895811 – volume: 16 start-page: 791 issue: 5 year: 2010 ident: 10.1016/j.cmpb.2024.108202_b24 article-title: Topology-aware evenly spaced streamline placement publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2009.206 |
| SSID | ssj0002556 |
| Score | 2.3929207 |
| Snippet | Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 108202 |
| SubjectTerms | Fiber orientation Interconnected cable model Streamline integration Triangulated surface Vector field visualization |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPfA4VECBbnnISL0Vsxvb2XiPqGpVIZULVOrNsh27LNpNVttdVb30tzMTO0srECBuSZSJbI8z89n-ZgbgoA6IUq0UfDTxI65EHfmk1o6je0V4r8nDU4Dz2efx6bn6dFFebMFRHwtDtMps-5NN76x1fjLMozlcTKfDL5RHBNF4RSxIXDpT2m2lKqpi8OH2J82DUmyl_N4TTm_nwJnE8fLzhcM1olBEtRN5a-U3zulX8PkYHq6bhb25trPZHYd08gR2MpJkH1Njn8JWaJ7Bg7N8Vr4LbdovCDWzs8t2OV19mzNEqOyySzRNbGdG2ZtmNxyNCo4Do7AROyfYecUo6oTZhrXLaQ5OalhHdmN4YRnV-mi6IvYkt15G_MBzOD85_np0ynN5Be5x0bjiwlpcvE0idlyrQKH6QngXRoUXRe1DpcdVrbwfa1nE0gfvqlo61KPULvqglHwB203bhD1gRRljWVlrtazVSCoXx9IJbb3ShADjAA77cTWLlEXD9PSy74a0YEgLJmlhALIfetPHh6JFM2jk_yhVbqTuzaC_yr3rtWvw16LzEtuEdn1lJOXGUQXaxAG8TGrftF6inZPo1wfwfjMP_qFr-__ZyFfwiO4SR-01bK-W6_AG0dDKve2m-w9nawap priority: 102 providerName: Elsevier |
| Title | Improved algorithm for generating evenly-spaced streamlines from an orientation field on a triangulated surface |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724001986 https://dx.doi.org/10.1016/j.cmpb.2024.108202 https://www.ncbi.nlm.nih.gov/pubmed/38703718 https://www.proquest.com/docview/3050941703 https://doi.org/10.1016/j.cmpb.2024.108202 |
| UnpaywallVersion | publishedVersion |
| Volume | 251 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5BK_E4LG8oj8pI3MBVYzuJe6xWrApoKw5UWk6R7ThloU2qNhHaPexvZyaPijfLLZEylj0ejz_HM98AvEg9olQjBR9P3JgrkWZ8kmrLcXtFeK9ph6cE5-N5NFuotyfhSUuTQ7kwP9zf13FYbr2xeI4TisLhBPFG9qMQcXcP-ov5--nHhrx7whGY15VUdIyQEWFKmyHz-0b-tAv9ijJvwvUq35izr2a1-m7nObrVlDDa1YSFFHDyZVSVduTOf6JzvNygbsNBC0DZtLGYO3DF53fh2nF7xX4PiuY3g0-ZWS2L7Wn5ac0Q2LJlzU9NQdKMSJ9WZxx9kcPPKNvErAmt7hglqzCTs2J72uY05ayOkWP4YBiVCMmXVDCM5Kpthg3ch8XR6w-HM95WZeAOz5olF8bgmW-SYbe18pThL4Szfhw4EaTOxzqKU-VcpGWQhc47G6fS4vRLbTPnlZIPoJcXuX8ELAizLIyNMVqmaiyVzSJphTZOaQKO2QBedrOUbBryjaSLSvuckA4T0mHS6HAAspvIpEsrRUeYoPb_KhXupVrQ0YCJf8o972wlwRVJ1ywm90W1SyRR6qgAXekAHjZGtO-9RPcoEQ4M4NXeqi4xtMf_9_kTuEFvTUTbU-iV28o_Q-xU2iFcHV0EQ-hP37ybzYftEvoGAvEUEQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITF4QHxTPo3EG2RtbCdxH9HEVGDdC5u0N8t27FHUJlXXCu2Fv5272CkgECDeoiSO7Dvn7nf2784AL2uPKNUIno3GbpRJXodsXCuboXtFeK_Iw1OC8_S4nJzK92fF2Q4c9LkwRKtMtj_a9M5apzvDJM3hcjYbfqQ6IojGK2JBYuhcXoGrsuAVRWD7X7_zPKjGVizwPc7o9ZQ5E0lebrG0GCRySVw7ntZWfuOdfkWfN2Bv0yzN5Rczn__gkQ5vwc0EJdmb2NvbsOObO3BtmjbL70IbFwx8zcz8vF3N1p8WDCEqO-8qTRPdmVH5pvllhlYFBcEob8QsCHdeMEo7YaZh7WqWspMa1rHdGF4YRod9NN0p9tRuswr4gXtwevj25GCSpfMVModR4zrjxmD0Ng44cCU95epz7qwf5Y7ntfOVKqtaOlcqkYfCeWerWlhUpFA2OC-luA-7Tdv4h8DyIoSiMsYoUcuRkDaUwnJlnFQEAcMAXvVy1ctYRkP3_LLPmrSgSQs6amEAohe97hNE0aRptPJ_bFVsW_00hf7a7kWvXY3_Fm2YmMa3mwstqDiOzNEoDuBBVPu29wINnUDHPoDX23nwD0N79J-dfA57k5PpkT56d_zhMVynJ5Gw9gR216uNf4rQaG2fdVP_G6cnCcw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELamThrwAIyfZWPyJN7AU2M7ifs4TUwT0iYeqDSeLNuxy0abVG0iNP567uKkgm3A9pZIOcs-n8-f47vvCHlXeECpRnA2GrsRk7wIbFwoy2B7BXivcIfHBOfTs-xkIj-dp-cdTQ7mwvxxf9_GYbn5wsI5jksMh-PIG7mZpYC7B2Rzcvb58Gsk7x4zAOZtJRWVA2QEmNJlyNzeyN92oZso8xF50JQLc_XDzGa_7TzHT2IJo1VLWIgBJ98PmtoeuJ_X6BzvNqin5HEHQOlhtJhtsuHLZ2TrtLtif06q-JvBF9TMptXyov42pwBs6bTlp8YgaYqkT7MrBr7IwWeYbWLmiFZXFJNVqClptbzocppK2sbIUXgwFEuElFMsGIZyzTJAAy_I5Pjjl6MT1lVlYA7OmjXjxsCZbxyg20p6zPDn3Fk_ShxPCudzleWFdC5TIgmp887mhbAw_ULZ4LyU4iUZlFXpXxOapCGkuTFGiUKOhLQhE5Yr46RC4BiG5H0_S3oRyTd0H5V2qVGHGnWoow6HRPQTqfu0UnCEGrT_T6l0LdWBjggm_iu339uKhhWJ1yym9FWz0gIpdWQCrnRIXkUjWvdegHsUAAeG5MPaqu4wtDf3-3yHPMS3GNG2Swb1svFvATvVdq9bNL8AAT8RhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+algorithm+for+generating+evenly-spaced+streamlines+from+an+orientation+field+on+a+triangulated+surface&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Jacquemet%2C+Vincent&rft.date=2024-06-01&rft.eissn=1872-7565&rft.volume=251&rft.spage=108202&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108202&rft_id=info%3Apmid%2F38703718&rft.externalDocID=38703718 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |