Improved algorithm for generating evenly-spaced streamlines from an orientation field on a triangulated surface

Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by curre...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 251; p. 108202
Main Author Jacquemet, Vincent
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2024.108202

Cover

Abstract Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms. We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement. The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution. More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines. •Streamlines clarify the visualization of vector fields such as fiber orientation.•We developed software for evenly-spaced streamline generation on a 3D surface.•The algorithm uses an occupancy mask on the triangles to control streamline spacing.•It improves geometrical guarantees and handling of streamline endpoints.•The C++/python code can be downloaded at https://doi.org/10.5281/zenodo.10976377.
AbstractList Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms. We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement. The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution. More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines. •Streamlines clarify the visualization of vector fields such as fiber orientation.•We developed software for evenly-spaced streamline generation on a 3D surface.•The algorithm uses an occupancy mask on the triangles to control streamline spacing.•It improves geometrical guarantees and handling of streamline endpoints.•The C++/python code can be downloaded at https://doi.org/10.5281/zenodo.10976377.
Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms. We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement. The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution. More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines.
Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms.BACKGROUNDVector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the construction of interconnected cable structure for cardiac propagation models has more stringent requirements imperfectly fulfilled by current algorithms.We developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement.METHODWe developed an open-source C++/python package for the placement of evenly-spaced streamlines on a triangulated surface. The new algorithm improves upon previous works by more accurately handling streamline extremities, U-turns and limit cycles, by providing stronger geometrical guarantees on inter-streamline minimal distance, particularly when a high density of streamlines (up to 10μm spacing) is desired, and by making a more efficient parallel implementation available. The approach requires finding intersections between geometrical capsules and triangles to update an occupancy mask defined on the triangles. This enables fast streamline integration from thousands of seed points to identify optimal streamline placement.The algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution.RESULTSThe algorithm was assessed qualitatively on different left atrial models of fiber orientation with varying mesh resolutions (up to 375k triangles) and quantitatively by measuring streamline lengths and distribution of inter-streamline minimal distance. The complexity and the computational performance of the algorithm were studied as a function of streamline spacing in relation to triangular mesh resolution.More accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines.CONCLUSIONMore accurate geometrical computations, attention to details and fine-tuning led to an algorithm more amenable to applications that require precise positioning of streamlines.
ArticleNumber 108202
Author Jacquemet, Vincent
Author_xml – sequence: 1
  givenname: Vincent
  orcidid: 0000-0002-8485-8738
  surname: Jacquemet
  fullname: Jacquemet, Vincent
  email: vincent.jacquemet@umontreal.ca
  organization: Pharmacology and Physiology Department, Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, H3T 1J4, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38703718$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFCEYgImpsdvqH_BgOHqZFZgv1ngxjbZNmnjRM2GYl5WVgRGYNfvvfTdTPXhQTxDyPG_g4YpchBiAkJecbTnj3ZvD1kzzsBVMNHggcX1CNlz2ourbrr0gG4R2lehYf0mucj4wxkTbds_IZS17Vvdcbki8n-YUjzBS7fcxufJ1ojYmuocASRcX9hSOEPypyrM2iOWSQE_eBcjUpjhRHSh6EArSMVDrwI8UN5qW5HTYL16Xs7ckiwOek6dW-wwvHtdr8uXjh883d9XDp9v7m_cPlWmYKJXQmrfdzuKjZAOs4a0QZgDGjeCjgV52_dgY08ma29aAGfqxHkY51HKwBpqmvib1OncJsz790N6rOblJp5PiTJ3zqYM651PnfGrNh9br1cIm3xfIRU0uG_BeB4hLVjVr2a7hGA_RV4_oMkww_p7-Ky0CYgVMijknsP93gXerBNjm6CCpbLAthncJTFFjdH_X3_6hG_wpZ7T_Bqd_yT8BAKi28Q
Cites_doi 10.1109/TMI.2023.3329451
10.1016/j.compbiomed.2015.04.027
10.1063/5.0082763
10.1007/s11517-022-02550-y
10.1145/1183287.1183290
10.1161/CIRCEP.111.967950
10.1016/j.media.2019.04.004
10.1016/j.compbiomed.2019.103349
10.1371/journal.pone.0141573
10.1016/j.media.2018.04.001
10.1002/adfm.201908121
10.1016/j.compbiomed.2023.107009
10.1161/CIRCEP.116.004133
10.1145/166117.166151
10.1016/j.neuroimage.2022.118958
10.1152/ajpcell.00036.2021
10.1126/science.abq2599
10.1098/rsfs.2012.0069
10.1016/j.media.2018.01.005
10.1109/TVCG.2006.116
10.1046/j.1540-8167.2001.01046.x
10.1093/europace/euab001
10.1002/nbm.3426
10.1002/nbm.3563
10.1016/j.media.2021.102247
10.1016/j.compbiomed.2019.103444
10.1371/journal.pcbi.0010042
10.1109/TIP.2003.822608
10.3390/cells10112923
10.1063/1.4895811
10.1109/TVCG.2009.206
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.cmpb.2024.108202
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10.1016/j.cmpb.2024.108202
38703718
10_1016_j_cmpb_2024_108202
S0169260724001986
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABTAH
ADMBK
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
AFCTW
AGCQF
AGRNS
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c402t-2aa1569f82084e041522cbe01c21dce7867d4cc6831f5cecb7d3bd8b38bfce443
IEDL.DBID UNPAY
ISSN 0169-2607
1872-7565
IngestDate Tue Aug 19 22:31:24 EDT 2025
Mon Sep 29 04:48:50 EDT 2025
Mon Jul 21 06:07:19 EDT 2025
Wed Oct 01 03:21:47 EDT 2025
Sat Jun 01 15:41:29 EDT 2024
Tue Oct 14 19:41:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fiber orientation
Vector field visualization
Streamline integration
Interconnected cable model
Triangulated surface
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-2aa1569f82084e041522cbe01c21dce7867d4cc6831f5cecb7d3bd8b38bfce443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8485-8738
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cmpb.2024.108202
PMID 38703718
PQID 3050941703
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_cmpb_2024_108202
proquest_miscellaneous_3050941703
pubmed_primary_38703718
crossref_primary_10_1016_j_cmpb_2024_108202
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108202
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saliani, Tsikhanovich, Jacquemet (b25) 2019; 111
Ahmed, Joshi, Mansouri, Ahamed, Hsu, Gaborski, Abhyankar (b39) 2021; 320
Schuler, Pilia, Potyagaylo, Loewe (b15) 2021; 74
McLoughlin, Laramee, Peikert, Post, Chen (b23) 2010; vol. 29
Saliani, Jacquemet (b30) 2020
Bayer, Prassl, Pashaei, Gomez, Frontera, Neic, Plank, Vigmond (b14) 2018; 45
Dupraz, Jacquemet (b10) 2014; 24
Turk, Banks (b8) 1996
Pashakhanloo, Herzka, Ashikaga, Mori, Gai, Bluemke, Trayanova, McVeigh (b2) 2016; 9
Spencer, Laramee, Chen, Zhang (b22) 2009; vol. 28
Han, Trew, Zgierski-Johnston (b3) 2021; 10
Roney, Pashaei, Meo, Dubois, Boyle, Trayanova, Cochet, Niederer, Vigmond (b31) 2018
Nie, Ruan, Otaduy, Grinberg, Ringman, Shi (b19) 2024; 43
Solís-Lemus, Baptiste, Barrows, Sillett, Gharaviri, Raffaele, Razeghi, Strocchi, Sim, Kotadia, Bodagh, O’Hare, O’Neill, Williams, Roney, Niederer (b26) 2023; 162
Zhang, Mischaikow, Turk (b44) 2006; 25
Roney, Pashaei, Meo, Dubois, Boyle, Trayanova, Cochet, Niederer, Vigmond (b13) 2019; 55
Sporns, Tononi, Kötter (b18) 2005; 1
Saliani, Biswas, Jacquemet (b29) 2022; 32
Cantwell, Roney, Ng, Siggers, Sherwin, Peters (b4) 2015; 65
Vigmond, Ruckdeschel, Trayanova (b12) 2001; 12
Nieuwenhuyse, Hendrickx, den Abeele, Rajan, Lowie, Knecht, Duytschaever, Vandersickel (b38) 2022; 60
Jobard, Lefer (b9) 1997
Zhao, Butters, Zhang, Pullan, LeGrice, Sands, Smaill (b35) 2012; 5
Mao, Hatanaka, Higashida, Imamiya (b20) 1998
Potse, Gharaviri, Pezzuto, Auricchio, Krause, Verheule, Schotten (b32) 2018
Liu, Zhang, Ritchie (b43) 2020; 30
Ferrer, Sebastián, Sánchez-Quintana, Rodríguez, Godoy, Martínez, Saiz (b33) 2015; 10
Zhou, Gu (b41) 2004; 13
Shenasa, Hindricks, Callans, Miller, Josephson (b1) 2019
Damon, Froeling, Buck, Oudeman, Ding, Nederveen, Bush, Strijkers (b40) 2017; 30
Fan, Eichner, Afzali, Mueller, Tax, Davids, Mahmutovic, Keil, Bilgic, Setsompop, Lee, Tian, Maffei, Ramos-Llordén, Nummenmaa, Witzel, Yendiki, Song, Huang, Lin, Weiskopf, Anwander, Jones, Rosen, Wald, Huang (b5) 2022; 254
Fastl, Tobon-Gomez, Crozier, Whitaker, Rajani, McCarthy, Sanchez-Quintana, Ho, O’Neill, Plank, Bishop, Niederer (b28) 2018; 47
Fastl, Tobon-Gomez, Crozier, Whitaker, Rajani, McCarthy, Sanchez-Quintana, Ho, O’Neill, Plank, Bishop, Niederer (b37) 2018; 47
Axer, Amunts (b6) 2022; 378
Brian Cabral, Leith Casey Leedom, Imaging vector fields using line integral convolution, in: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993, pp. 263–270.
Mekkaoui, Reese, Jackowski, Bhat, Sosnovik (b7) 2017; 30
Liu, Moorhead, Groner (b21) 2006; 12
Aslanidi, Colman, Varela, Zhao, Smaill, Hancox, Boyett, Zhang (b34) 2013; 3
Samari (b42) 2019
Wang, Xiong, Nalar, Hansen, Kharche, Seemann, Loewe, Fedorov, Zhao (b16) 2019; 114
Saliani, Irakoze, Jacquemet (b11) 2021; 23
Wu, Liu, Zhang, Moorhead (b24) 2010; 16
Mattausch, Theussl, Hauser, Gröller (b17) 2003
Azzolin, Eichenlaub, Nagel, Nairn, Sánchez, Unger, Arentz, Westermann, Dössel, Jadidi, Loewe (b27) 2023; 108
Saliani (10.1016/j.cmpb.2024.108202_b30) 2020
Mekkaoui (10.1016/j.cmpb.2024.108202_b7) 2017; 30
Vigmond (10.1016/j.cmpb.2024.108202_b12) 2001; 12
Han (10.1016/j.cmpb.2024.108202_b3) 2021; 10
Wang (10.1016/j.cmpb.2024.108202_b16) 2019; 114
Fastl (10.1016/j.cmpb.2024.108202_b28) 2018; 47
McLoughlin (10.1016/j.cmpb.2024.108202_b23) 2010; vol. 29
Zhao (10.1016/j.cmpb.2024.108202_b35) 2012; 5
Turk (10.1016/j.cmpb.2024.108202_b8) 1996
Pashakhanloo (10.1016/j.cmpb.2024.108202_b2) 2016; 9
Ahmed (10.1016/j.cmpb.2024.108202_b39) 2021; 320
Roney (10.1016/j.cmpb.2024.108202_b31) 2018
Aslanidi (10.1016/j.cmpb.2024.108202_b34) 2013; 3
Mao (10.1016/j.cmpb.2024.108202_b20) 1998
Zhang (10.1016/j.cmpb.2024.108202_b44) 2006; 25
Samari (10.1016/j.cmpb.2024.108202_b42) 2019
Saliani (10.1016/j.cmpb.2024.108202_b25) 2019; 111
Dupraz (10.1016/j.cmpb.2024.108202_b10) 2014; 24
Sporns (10.1016/j.cmpb.2024.108202_b18) 2005; 1
Fastl (10.1016/j.cmpb.2024.108202_b37) 2018; 47
Roney (10.1016/j.cmpb.2024.108202_b13) 2019; 55
Nieuwenhuyse (10.1016/j.cmpb.2024.108202_b38) 2022; 60
10.1016/j.cmpb.2024.108202_b36
Cantwell (10.1016/j.cmpb.2024.108202_b4) 2015; 65
Liu (10.1016/j.cmpb.2024.108202_b21) 2006; 12
Axer (10.1016/j.cmpb.2024.108202_b6) 2022; 378
Schuler (10.1016/j.cmpb.2024.108202_b15) 2021; 74
Fan (10.1016/j.cmpb.2024.108202_b5) 2022; 254
Spencer (10.1016/j.cmpb.2024.108202_b22) 2009; vol. 28
Nie (10.1016/j.cmpb.2024.108202_b19) 2024; 43
Wu (10.1016/j.cmpb.2024.108202_b24) 2010; 16
Potse (10.1016/j.cmpb.2024.108202_b32) 2018
Jobard (10.1016/j.cmpb.2024.108202_b9) 1997
Saliani (10.1016/j.cmpb.2024.108202_b11) 2021; 23
Saliani (10.1016/j.cmpb.2024.108202_b29) 2022; 32
Shenasa (10.1016/j.cmpb.2024.108202_b1) 2019
Bayer (10.1016/j.cmpb.2024.108202_b14) 2018; 45
Mattausch (10.1016/j.cmpb.2024.108202_b17) 2003
Azzolin (10.1016/j.cmpb.2024.108202_b27) 2023; 108
Zhou (10.1016/j.cmpb.2024.108202_b41) 2004; 13
Liu (10.1016/j.cmpb.2024.108202_b43) 2020; 30
Solís-Lemus (10.1016/j.cmpb.2024.108202_b26) 2023; 162
Damon (10.1016/j.cmpb.2024.108202_b40) 2017; 30
Ferrer (10.1016/j.cmpb.2024.108202_b33) 2015; 10
References_xml – volume: vol. 29
  start-page: 1807
  year: 2010
  end-page: 1829
  ident: b23
  article-title: Over two decades of integration-based, geometric flow visualization
  publication-title: Computer Graphics Forum
– volume: 320
  start-page: C1112
  year: 2021
  end-page: C1124
  ident: b39
  article-title: Engineering fiber anisotropy within natural collagen hydrogels
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 55
  start-page: 65
  year: 2019
  end-page: 75
  ident: b13
  article-title: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes
  publication-title: Med. Image Anal.
– reference: Brian Cabral, Leith Casey Leedom, Imaging vector fields using line integral convolution, in: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993, pp. 263–270.
– volume: 162
  year: 2023
  ident: b26
  article-title: Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study
  publication-title: Comput. Biol. Med.
– volume: 30
  year: 2017
  ident: b7
  article-title: Sp diffusion MRI in the heart
  publication-title: Nmr Biomed.
– start-page: 135
  year: 1998
  end-page: 142
  ident: b20
  article-title: Image-guided streamline placement on curvilinear grid surfaces
  publication-title: Visualization’98. Proceedings
– year: 2019
  ident: b1
  article-title: Cardiac Mapping
– start-page: 43
  year: 1997
  end-page: 55
  ident: b9
  article-title: Creating evenly-spaced streamlines of arbitrary density
  publication-title: Visualization in Scientific Computing’97
– year: 2018
  ident: b32
  article-title: Schotten anatomically-induced fibrillation in a 3D model of the human atria
  publication-title: Computing in Cardiology
– volume: 12
  start-page: 965
  year: 2006
  end-page: 972
  ident: b21
  article-title: An advanced evenly-spaced streamline placement algorithm
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: vol. 28
  start-page: 1618
  year: 2009
  end-page: 1631
  ident: b22
  article-title: Evenly spaced streamlines for surfaces: An image-based approach
  publication-title: Computer Graphics Forum
– year: 2018
  ident: b31
  article-title: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes
– volume: 111
  year: 2019
  ident: b25
  article-title: Visualization of interpolated atrial fiber orientation using evenly-spaced streamlines
  publication-title: Comput. Biol. Med.
– volume: 43
  start-page: 1113
  year: 2024
  end-page: 1124
  ident: b19
  article-title: Surface-based probabilistic fiber tracking in Superficial white matter
  publication-title: IEEE Trans. Med. Imaging
– volume: 114
  year: 2019
  ident: b16
  article-title: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness
  publication-title: Comput. Biol. Med.
– start-page: 213
  year: 2003
  end-page: 222
  ident: b17
  article-title: Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines
  publication-title: Proceedings of the 19th Spring Conference on Computer Graphics
– volume: 25
  start-page: 1294
  year: 2006
  end-page: 1326
  ident: b44
  article-title: Vector field design on surfaces
  publication-title: ACM Trans. Graph.
– volume: 12
  start-page: 1046
  year: 2001
  end-page: 1054
  ident: b12
  article-title: Reentry in a morphologically realistic atrial model
  publication-title: J. Cardiovasc. Electrophysiol.
– start-page: 453
  year: 1996
  end-page: 460
  ident: b8
  article-title: Image-guided streamline placement
  publication-title: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
– volume: 30
  year: 2020
  ident: b43
  article-title: Structural orientation and anisotropy in biological materials: functional designs and mechanics
  publication-title: Adv. Funct. Mater.
– volume: 74
  year: 2021
  ident: b15
  article-title: Cobiveco: Consistent biventricular coordinates for precise and intuitive description of position in the heart - with MATLAB implementation
  publication-title: Med. Image Anal.
– volume: 65
  start-page: 229
  year: 2015
  ident: b4
  article-title: Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping
  publication-title: Comput. Biol. Med.
– volume: 45
  start-page: 83
  year: 2018
  end-page: 93
  ident: b14
  article-title: Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data
  publication-title: Med. Image Anal.
– volume: 378
  start-page: 500
  year: 2022
  end-page: 504
  ident: b6
  article-title: Scale matters: The nested human connectome
  publication-title: Science
– volume: 3
  year: 2013
  ident: b34
  article-title: Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation
  publication-title: Interface Focus
– volume: 13
  start-page: 821
  year: 2004
  end-page: 835
  ident: b41
  article-title: A model-based method for the computation of fingerprints’ orientation field
  publication-title: IEEE Trans. Image Process.
– volume: 47
  start-page: 180
  year: 2018
  end-page: 190
  ident: b28
  article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture
  publication-title: Med. Image Anal.
– volume: 24
  year: 2014
  ident: b10
  article-title: Geometrical measurement of cardiac wavelength in reaction–diffusion models
  publication-title: Chaos (Woodbury, N.Y.)
– volume: 23
  start-page: i169
  year: 2021
  end-page: i177
  ident: b11
  article-title: Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium
  publication-title: Europace
– volume: 32
  year: 2022
  ident: b29
  article-title: Simulation of atrial fibrillation in a non-ohmic propagation model with dynamic gap junctions
  publication-title: Chaos (Woodbury, N.Y.)
– volume: 60
  start-page: 1929
  year: 2022
  end-page: 1945
  ident: b38
  article-title: DG-mapping: a novel software package for the analysis of any type of reentry and focal activation of simulated, experimental or clinical data of cardiac arrhythmia
  publication-title: Med. Biol. Eng. Comput.
– volume: 254
  year: 2022
  ident: b5
  article-title: Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact
  publication-title: NeuroImage
– volume: 30
  year: 2017
  ident: b40
  article-title: Skeletal muscle DT-MRI fiber tracking: Rationale, Data acquisition and analysis methods, applications, and Future directions
  publication-title: NMR Biomed.
– volume: 10
  year: 2015
  ident: b33
  article-title: Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation
  publication-title: PLoS One
– volume: 5
  start-page: 361
  year: 2012
  end-page: 370
  ident: b35
  article-title: An image-based model of atrial muscular architecture: Effects of structural anisotropy on electrical activation. Circulation
  publication-title: Arrhythmia Electrophysiol.
– start-page: 1
  year: 2020
  end-page: 4
  ident: b30
  article-title: Diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium
  publication-title: 2020 Computing in Cardiology
– volume: 47
  start-page: 180
  year: 2018
  end-page: 190
  ident: b37
  article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture
  publication-title: Med. Image Anal.
– volume: 9
  year: 2016
  ident: b2
  article-title: Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circulation
  publication-title: Arrhythmia Electrophysiol.
– volume: 10
  start-page: 2923
  year: 2021
  ident: b3
  article-title: Cardiac conduction velocity, remodeling and arrhythmogenesis
  publication-title: Cells
– volume: 16
  start-page: 791
  year: 2010
  end-page: 801
  ident: b24
  article-title: Topology-aware evenly spaced streamline placement
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2019
  ident: b42
  article-title: Modeling Sheets and Fibers in Biological Tissues
– volume: 1
  year: 2005
  ident: b18
  article-title: The human connectome: A structural description of the human brain
  publication-title: PLoS Comput. Biol.
– volume: 108
  year: 2023
  ident: b27
  article-title: AugmentA: Patient-specific augmented atrial model generation tool
  publication-title: Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc.
– volume: 43
  start-page: 1113
  issue: 3
  year: 2024
  ident: 10.1016/j.cmpb.2024.108202_b19
  article-title: Surface-based probabilistic fiber tracking in Superficial white matter
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3329451
– volume: vol. 28
  start-page: 1618
  year: 2009
  ident: 10.1016/j.cmpb.2024.108202_b22
  article-title: Evenly spaced streamlines for surfaces: An image-based approach
– volume: 108
  year: 2023
  ident: 10.1016/j.cmpb.2024.108202_b27
  article-title: AugmentA: Patient-specific augmented atrial model generation tool
  publication-title: Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc.
– year: 2019
  ident: 10.1016/j.cmpb.2024.108202_b1
– volume: 65
  start-page: 229
  year: 2015
  ident: 10.1016/j.cmpb.2024.108202_b4
  article-title: Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.04.027
– volume: 32
  issue: 4
  year: 2022
  ident: 10.1016/j.cmpb.2024.108202_b29
  article-title: Simulation of atrial fibrillation in a non-ohmic propagation model with dynamic gap junctions
  publication-title: Chaos (Woodbury, N.Y.)
  doi: 10.1063/5.0082763
– volume: 60
  start-page: 1929
  issue: 7
  year: 2022
  ident: 10.1016/j.cmpb.2024.108202_b38
  article-title: DG-mapping: a novel software package for the analysis of any type of reentry and focal activation of simulated, experimental or clinical data of cardiac arrhythmia
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02550-y
– volume: 25
  start-page: 1294
  issue: 4
  year: 2006
  ident: 10.1016/j.cmpb.2024.108202_b44
  article-title: Vector field design on surfaces
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1183287.1183290
– volume: 5
  start-page: 361
  issue: 2
  year: 2012
  ident: 10.1016/j.cmpb.2024.108202_b35
  article-title: An image-based model of atrial muscular architecture: Effects of structural anisotropy on electrical activation. Circulation
  publication-title: Arrhythmia Electrophysiol.
  doi: 10.1161/CIRCEP.111.967950
– volume: vol. 29
  start-page: 1807
  year: 2010
  ident: 10.1016/j.cmpb.2024.108202_b23
  article-title: Over two decades of integration-based, geometric flow visualization
– start-page: 43
  year: 1997
  ident: 10.1016/j.cmpb.2024.108202_b9
  article-title: Creating evenly-spaced streamlines of arbitrary density
– volume: 55
  start-page: 65
  year: 2019
  ident: 10.1016/j.cmpb.2024.108202_b13
  article-title: Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.04.004
– volume: 111
  year: 2019
  ident: 10.1016/j.cmpb.2024.108202_b25
  article-title: Visualization of interpolated atrial fiber orientation using evenly-spaced streamlines
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103349
– volume: 10
  issue: 11
  year: 2015
  ident: 10.1016/j.cmpb.2024.108202_b33
  article-title: Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141573
– volume: 47
  start-page: 180
  year: 2018
  ident: 10.1016/j.cmpb.2024.108202_b37
  article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.04.001
– year: 2018
  ident: 10.1016/j.cmpb.2024.108202_b32
  article-title: Schotten anatomically-induced fibrillation in a 3D model of the human atria
– volume: 30
  issue: 10
  year: 2020
  ident: 10.1016/j.cmpb.2024.108202_b43
  article-title: Structural orientation and anisotropy in biological materials: functional designs and mechanics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908121
– volume: 162
  year: 2023
  ident: 10.1016/j.cmpb.2024.108202_b26
  article-title: Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107009
– volume: 9
  issue: 4
  year: 2016
  ident: 10.1016/j.cmpb.2024.108202_b2
  article-title: Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circulation
  publication-title: Arrhythmia Electrophysiol.
  doi: 10.1161/CIRCEP.116.004133
– year: 2019
  ident: 10.1016/j.cmpb.2024.108202_b42
– ident: 10.1016/j.cmpb.2024.108202_b36
  doi: 10.1145/166117.166151
– volume: 254
  year: 2022
  ident: 10.1016/j.cmpb.2024.108202_b5
  article-title: Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118958
– volume: 320
  start-page: C1112
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpb.2024.108202_b39
  article-title: Engineering fiber anisotropy within natural collagen hydrogels
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00036.2021
– start-page: 213
  year: 2003
  ident: 10.1016/j.cmpb.2024.108202_b17
  article-title: Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines
– volume: 378
  start-page: 500
  issue: 6619
  year: 2022
  ident: 10.1016/j.cmpb.2024.108202_b6
  article-title: Scale matters: The nested human connectome
  publication-title: Science
  doi: 10.1126/science.abq2599
– start-page: 135
  year: 1998
  ident: 10.1016/j.cmpb.2024.108202_b20
  article-title: Image-guided streamline placement on curvilinear grid surfaces
– start-page: 453
  year: 1996
  ident: 10.1016/j.cmpb.2024.108202_b8
  article-title: Image-guided streamline placement
– volume: 3
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2024.108202_b34
  article-title: Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2012.0069
– volume: 45
  start-page: 83
  year: 2018
  ident: 10.1016/j.cmpb.2024.108202_b14
  article-title: Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.01.005
– volume: 12
  start-page: 965
  issue: 5
  year: 2006
  ident: 10.1016/j.cmpb.2024.108202_b21
  article-title: An advanced evenly-spaced streamline placement algorithm
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2006.116
– volume: 12
  start-page: 1046
  issue: 9
  year: 2001
  ident: 10.1016/j.cmpb.2024.108202_b12
  article-title: Reentry in a morphologically realistic atrial model
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1046/j.1540-8167.2001.01046.x
– volume: 23
  start-page: i169
  issue: 23 Suppl 2
  year: 2021
  ident: 10.1016/j.cmpb.2024.108202_b11
  article-title: Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium
  publication-title: Europace
  doi: 10.1093/europace/euab001
– volume: 30
  issue: 3
  year: 2017
  ident: 10.1016/j.cmpb.2024.108202_b7
  article-title: Sp diffusion MRI in the heart
  publication-title: Nmr Biomed.
  doi: 10.1002/nbm.3426
– volume: 30
  issue: 3
  year: 2017
  ident: 10.1016/j.cmpb.2024.108202_b40
  article-title: Skeletal muscle DT-MRI fiber tracking: Rationale, Data acquisition and analysis methods, applications, and Future directions
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3563
– volume: 74
  year: 2021
  ident: 10.1016/j.cmpb.2024.108202_b15
  article-title: Cobiveco: Consistent biventricular coordinates for precise and intuitive description of position in the heart - with MATLAB implementation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102247
– volume: 114
  year: 2019
  ident: 10.1016/j.cmpb.2024.108202_b16
  article-title: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103444
– volume: 1
  issue: 4
  year: 2005
  ident: 10.1016/j.cmpb.2024.108202_b18
  article-title: The human connectome: A structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– year: 2018
  ident: 10.1016/j.cmpb.2024.108202_b31
– start-page: 1
  year: 2020
  ident: 10.1016/j.cmpb.2024.108202_b30
  article-title: Diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium
– volume: 13
  start-page: 821
  issue: 6
  year: 2004
  ident: 10.1016/j.cmpb.2024.108202_b41
  article-title: A model-based method for the computation of fingerprints’ orientation field
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.822608
– volume: 47
  start-page: 180
  year: 2018
  ident: 10.1016/j.cmpb.2024.108202_b28
  article-title: Personalized computational modeling of left atrial geometry and transmural myofiber architecture
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.04.001
– volume: 10
  start-page: 2923
  issue: 11
  year: 2021
  ident: 10.1016/j.cmpb.2024.108202_b3
  article-title: Cardiac conduction velocity, remodeling and arrhythmogenesis
  publication-title: Cells
  doi: 10.3390/cells10112923
– volume: 24
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpb.2024.108202_b10
  article-title: Geometrical measurement of cardiac wavelength in reaction–diffusion models
  publication-title: Chaos (Woodbury, N.Y.)
  doi: 10.1063/1.4895811
– volume: 16
  start-page: 791
  issue: 5
  year: 2010
  ident: 10.1016/j.cmpb.2024.108202_b24
  article-title: Topology-aware evenly spaced streamline placement
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2009.206
SSID ssj0002556
Score 2.3929207
Snippet Vector fields such as cardiac fiber orientation can be visualized on a surface using streamlines. The application of evenly-spaced streamline generation to the...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108202
SubjectTerms Fiber orientation
Interconnected cable model
Streamline integration
Triangulated surface
Vector field visualization
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPfA4VECBbnnISL0Vsxvb2XiPqGpVIZULVOrNsh27LNpNVttdVb30tzMTO0srECBuSZSJbI8z89n-ZgbgoA6IUq0UfDTxI65EHfmk1o6je0V4r8nDU4Dz2efx6bn6dFFebMFRHwtDtMps-5NN76x1fjLMozlcTKfDL5RHBNF4RSxIXDpT2m2lKqpi8OH2J82DUmyl_N4TTm_nwJnE8fLzhcM1olBEtRN5a-U3zulX8PkYHq6bhb25trPZHYd08gR2MpJkH1Njn8JWaJ7Bg7N8Vr4LbdovCDWzs8t2OV19mzNEqOyySzRNbGdG2ZtmNxyNCo4Do7AROyfYecUo6oTZhrXLaQ5OalhHdmN4YRnV-mi6IvYkt15G_MBzOD85_np0ynN5Be5x0bjiwlpcvE0idlyrQKH6QngXRoUXRe1DpcdVrbwfa1nE0gfvqlo61KPULvqglHwB203bhD1gRRljWVlrtazVSCoXx9IJbb3ShADjAA77cTWLlEXD9PSy74a0YEgLJmlhALIfetPHh6JFM2jk_yhVbqTuzaC_yr3rtWvw16LzEtuEdn1lJOXGUQXaxAG8TGrftF6inZPo1wfwfjMP_qFr-__ZyFfwiO4SR-01bK-W6_AG0dDKve2m-w9nawap
  priority: 102
  providerName: Elsevier
Title Improved algorithm for generating evenly-spaced streamlines from an orientation field on a triangulated surface
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724001986
https://dx.doi.org/10.1016/j.cmpb.2024.108202
https://www.ncbi.nlm.nih.gov/pubmed/38703718
https://www.proquest.com/docview/3050941703
https://doi.org/10.1016/j.cmpb.2024.108202
UnpaywallVersion publishedVersion
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5BK_E4LG8oj8pI3MBVYzuJe6xWrApoKw5UWk6R7ThloU2qNhHaPexvZyaPijfLLZEylj0ejz_HM98AvEg9olQjBR9P3JgrkWZ8kmrLcXtFeK9ph6cE5-N5NFuotyfhSUuTQ7kwP9zf13FYbr2xeI4TisLhBPFG9qMQcXcP-ov5--nHhrx7whGY15VUdIyQEWFKmyHz-0b-tAv9ijJvwvUq35izr2a1-m7nObrVlDDa1YSFFHDyZVSVduTOf6JzvNygbsNBC0DZtLGYO3DF53fh2nF7xX4PiuY3g0-ZWS2L7Wn5ac0Q2LJlzU9NQdKMSJ9WZxx9kcPPKNvErAmt7hglqzCTs2J72uY05ayOkWP4YBiVCMmXVDCM5Kpthg3ch8XR6w-HM95WZeAOz5olF8bgmW-SYbe18pThL4Szfhw4EaTOxzqKU-VcpGWQhc47G6fS4vRLbTPnlZIPoJcXuX8ELAizLIyNMVqmaiyVzSJphTZOaQKO2QBedrOUbBryjaSLSvuckA4T0mHS6HAAspvIpEsrRUeYoPb_KhXupVrQ0YCJf8o972wlwRVJ1ywm90W1SyRR6qgAXekAHjZGtO-9RPcoEQ4M4NXeqi4xtMf_9_kTuEFvTUTbU-iV28o_Q-xU2iFcHV0EQ-hP37ybzYftEvoGAvEUEQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITF4QHxTPo3EG2RtbCdxH9HEVGDdC5u0N8t27FHUJlXXCu2Fv5272CkgECDeoiSO7Dvn7nf2784AL2uPKNUIno3GbpRJXodsXCuboXtFeK_Iw1OC8_S4nJzK92fF2Q4c9LkwRKtMtj_a9M5apzvDJM3hcjYbfqQ6IojGK2JBYuhcXoGrsuAVRWD7X7_zPKjGVizwPc7o9ZQ5E0lebrG0GCRySVw7ntZWfuOdfkWfN2Bv0yzN5Rczn__gkQ5vwc0EJdmb2NvbsOObO3BtmjbL70IbFwx8zcz8vF3N1p8WDCEqO-8qTRPdmVH5pvllhlYFBcEob8QsCHdeMEo7YaZh7WqWspMa1rHdGF4YRod9NN0p9tRuswr4gXtwevj25GCSpfMVModR4zrjxmD0Ng44cCU95epz7qwf5Y7ntfOVKqtaOlcqkYfCeWerWlhUpFA2OC-luA-7Tdv4h8DyIoSiMsYoUcuRkDaUwnJlnFQEAcMAXvVy1ctYRkP3_LLPmrSgSQs6amEAohe97hNE0aRptPJ_bFVsW_00hf7a7kWvXY3_Fm2YmMa3mwstqDiOzNEoDuBBVPu29wINnUDHPoDX23nwD0N79J-dfA57k5PpkT56d_zhMVynJ5Gw9gR216uNf4rQaG2fdVP_G6cnCcw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELamThrwAIyfZWPyJN7AU2M7ifs4TUwT0iYeqDSeLNuxy0abVG0iNP567uKkgm3A9pZIOcs-n8-f47vvCHlXeECpRnA2GrsRk7wIbFwoy2B7BXivcIfHBOfTs-xkIj-dp-cdTQ7mwvxxf9_GYbn5wsI5jksMh-PIG7mZpYC7B2Rzcvb58Gsk7x4zAOZtJRWVA2QEmNJlyNzeyN92oZso8xF50JQLc_XDzGa_7TzHT2IJo1VLWIgBJ98PmtoeuJ_X6BzvNqin5HEHQOlhtJhtsuHLZ2TrtLtif06q-JvBF9TMptXyov42pwBs6bTlp8YgaYqkT7MrBr7IwWeYbWLmiFZXFJNVqClptbzocppK2sbIUXgwFEuElFMsGIZyzTJAAy_I5Pjjl6MT1lVlYA7OmjXjxsCZbxyg20p6zPDn3Fk_ShxPCudzleWFdC5TIgmp887mhbAw_ULZ4LyU4iUZlFXpXxOapCGkuTFGiUKOhLQhE5Yr46RC4BiG5H0_S3oRyTd0H5V2qVGHGnWoow6HRPQTqfu0UnCEGrT_T6l0LdWBjggm_iu339uKhhWJ1yym9FWz0gIpdWQCrnRIXkUjWvdegHsUAAeG5MPaqu4wtDf3-3yHPMS3GNG2Swb1svFvATvVdq9bNL8AAT8RhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+algorithm+for+generating+evenly-spaced+streamlines+from+an+orientation+field+on+a+triangulated+surface&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Jacquemet%2C+Vincent&rft.date=2024-06-01&rft.eissn=1872-7565&rft.volume=251&rft.spage=108202&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108202&rft_id=info%3Apmid%2F38703718&rft.externalDocID=38703718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon