Modeling the random effects covariance matrix for generalized linear mixed models
Generalized linear mixed models (GLMMs) are commonly used to analyze longitudinal categorical data. In these models, we typically assume that the random effects covariance matrix is constant across the subject and is restricted because of its high dimensionality and its positive definiteness. Howeve...
Saved in:
Published in | Computational statistics & data analysis Vol. 56; no. 6; pp. 1545 - 1551 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2012
Elsevier |
Series | Computational Statistics & Data Analysis |
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 1872-7352 |
DOI | 10.1016/j.csda.2011.09.011 |
Cover
Abstract | Generalized linear mixed models (GLMMs) are commonly used to analyze longitudinal categorical data. In these models, we typically assume that the random effects covariance matrix is constant across the subject and is restricted because of its high dimensionality and its positive definiteness. However, the covariance matrix may differ by measured covariates in many situations, and ignoring this heterogeneity can result in biased estimates of the fixed effects. In this paper, we propose a heterogenous random effects covariance matrix, which depends on covariates, obtained using the modified Cholesky decomposition. This decomposition results in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite. The parameters have a sensible interpretation. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using our proposed model. |
---|---|
AbstractList | Generalized linear mixed models (GLMMs) are commonly used to analyze longitudinal categorical data. In these models, we typically assume that the random effects covariance matrix is constant across the subject and is restricted because of its high dimensionality and its positive definiteness. However, the covariance matrix may differ by measured covariates in many situations, and ignoring this heterogeneity can result in biased estimates of the fixed effects. In this paper, we propose a heterogenous random effects covariance matrix, which depends on covariates, obtained using the modified Cholesky decomposition. This decomposition results in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite. The parameters have a sensible interpretation. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using our proposed model. |
Author | Lee, Keunbaik Hagan, Joseph Yoo, Jae Keun Lee, JungBok |
Author_xml | – sequence: 1 givenname: Keunbaik surname: Lee fullname: Lee, Keunbaik organization: Department of Statistics, Sungkyunkwan University, Seoul, 110-745, Republic of Korea – sequence: 2 givenname: JungBok surname: Lee fullname: Lee, JungBok organization: Department of Clinical Epidemiology and Biostatistics, Ulsan College of Medicine, Asan Medical Center, 138-736, Republic of Korea – sequence: 3 givenname: Joseph surname: Hagan fullname: Hagan, Joseph organization: Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA – sequence: 4 givenname: Jae Keun surname: Yoo fullname: Yoo, Jae Keun email: peter.yoo@ewha.ac.kr organization: Department of Statistics, Ewha Womans University, Seoul, Republic of Korea |
BackLink | http://econpapers.repec.org/article/eeecsdana/v_3a56_3ay_3a2012_3ai_3a6_3ap_3a1545-1551.htm$$DView record in RePEc |
BookMark | eNp9Uc1q3DAYFCWFbNK-QE4-9mJHkiXZhl5K6E9gQynkLr6VPiVabGkrKUuSp6_Mlh56yGE0SMyMYOaCnIUYkJArRjtGmbredyZb6DhlrKNTV-kd2bBx4O3QS35GNlU0tJMY-nNykfOeUsrFMG7Ir7tocfbhoSmP2CQINi4NOoem5MbEIyQPwWCzQEn-uXExNQ8YMMHsX9E21YmQmsU_18uyRuUP5L2DOePHv3xJ7r99vb_50W5_fr-9-bJtjaC8tMzuHKeogAorHbMUYMSdhZE5N3LBelRMSeF2jKIVKEZqFXOTBFR0J11_ST6dYg8p_n7CXPTis8F5hoDxKetay6TENI1DlW5P0oQHNPqQ_ALpRSPiWloAfdQ9SFWPl4raIa_kK9anQwWTQmomJdOPZalx_BRnUsw5ofuXyOj6rdJ7vQbrdQ1NJ12pmsb_TMYXKD6GksDPb1s_n6y1XDx6TDobj3UU61OdSdvo37L_AUvsqA8 |
CitedBy_id | crossref_primary_10_1002_sim_7908 crossref_primary_10_1007_s00362_016_0840_1 crossref_primary_10_1016_j_csda_2017_05_001 crossref_primary_10_5351_CSAM_2017_24_1_081 crossref_primary_10_1007_s10260_018_00440_y crossref_primary_10_1016_j_csda_2014_06_016 crossref_primary_10_5351_CSAM_2016_23_6_575 crossref_primary_10_1007_s42952_019_00003_1 crossref_primary_10_7465_jkdi_2016_27_3_815 crossref_primary_10_29220_CSAM_2018_25_1_061 crossref_primary_10_5351_CSAM_2013_20_3_235 crossref_primary_10_5351_CSAM_2014_21_2_169 crossref_primary_10_1080_03610926_2023_2264997 crossref_primary_10_1029_2024EA003796 crossref_primary_10_5351_KJAS_2015_28_2_211 crossref_primary_10_1002_sim_8770 crossref_primary_10_29220_CSAM_2020_27_2_201 |
Cites_doi | 10.1002/sim.1470 10.1093/biomet/88.4.973 10.1002/sim.3352 10.1080/01621459.1993.10594284 10.1093/biomet/89.3.553 10.1093/biomet/86.3.677 10.1111/j.0006-341X.2002.00225.x 10.1002/sim.3534 10.1001/jama.287.3.356 10.1016/j.csda.2006.05.003 10.1080/02664763.2010.515675 10.1016/j.jmva.2009.04.015 10.1093/biomet/90.1.239 10.1093/biomet/87.2.425 10.1111/j.0006-341X.1999.00688.x 10.1191/1471082X06st105oa 10.1017/S0962492900002804 10.1016/j.csda.2010.07.005 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. |
Copyright_xml | – notice: 2011 Elsevier B.V. |
DBID | AAYXX CITATION DKI X2L 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.csda.2011.09.011 |
DatabaseName | CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
EndPage | 1551 |
ExternalDocumentID | eeecsdana_v_3a56_3ay_3a2012_3ai_3a6_3ap_3a1545_1551_htm 10_1016_j_csda_2011_09_011 S0167947311003306 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 02 0R 1 8P ABFLS ABPTK ADALY DKI G- HZ IPNFZ K M STF X X2L 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c402t-1dbf20e6a04d5f1d0aa8ebda81ff82413e61654fb10ed4e480d61f95ae60b5f3 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Sun Sep 28 07:30:38 EDT 2025 Wed Aug 18 03:11:02 EDT 2021 Wed Oct 01 03:05:07 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 23 02:19:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Cholesky decomposition Heterogeneity Longitudinal data |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-1dbf20e6a04d5f1d0aa8ebda81ff82413e61654fb10ed4e480d61f95ae60b5f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1019649987 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1019649987 repec_primary_eeecsdana_v_3a56_3ay_3a2012_3ai_3a6_3ap_3a1545_1551_htm crossref_primary_10_1016_j_csda_2011_09_011 crossref_citationtrail_10_1016_j_csda_2011_09_011 elsevier_sciencedirect_doi_10_1016_j_csda_2011_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationSeriesTitle | Computational Statistics & Data Analysis |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Pan, Mackenzie (br000080) 2006; 6 Ford, Giles, Dietz (br000025) 2002; 287 Gonzalez, Tuerlinckx, Boeck, Cools (br000030) 2006; 51 Heagerty, Kurland (br000040) 2001; 88 Caflisch (br000010) 1998; 7 Lee, Joo, Yoo, Lee (br000060) 2009; 28 Judd (br000045) 1998 Pourahmadi (br000090) 2000; 87 Daniels, Pourahmadi (br000020) 2002; 89 Lee, Kang, Liu, Seo (br000065) 2011; 17 Pan, Mackenzie (br000075) 2003; 90 . Breslow, Clayton (br000005) 1993; 88 Pourahmadi, Daniels (br000095) 2002; 58 Pourahmadi (br000085) 1999; 86 Lee, Joo, Song, Harper (br000055) 2011; 55 Niederreiter (br000070) 1992; No. 63 Wuertz, D., 2005. fOptions: financial software collection-fOptions. R package version 220.10063 Daniels, Zhao (br000015) 2003; 22 Lee, Daniels (br000050) 2008; 27 Heagerty (br000035) 1999; 55 Heagerty (10.1016/j.csda.2011.09.011_br000035) 1999; 55 Daniels (10.1016/j.csda.2011.09.011_br000015) 2003; 22 Judd (10.1016/j.csda.2011.09.011_br000045) 1998 Daniels (10.1016/j.csda.2011.09.011_br000105) 2009; 100 Caflisch (10.1016/j.csda.2011.09.011_br000010) 1998; 7 Pourahmadi (10.1016/j.csda.2011.09.011_br000090) 2000; 87 Pourahmadi (10.1016/j.csda.2011.09.011_br000095) 2002; 58 Ford (10.1016/j.csda.2011.09.011_br000025) 2002; 287 Breslow (10.1016/j.csda.2011.09.011_br000005) 1993; 88 Niederreiter (10.1016/j.csda.2011.09.011_br000070) 1992; No. 63 Pan (10.1016/j.csda.2011.09.011_br000075) 2003; 90 Pourahmadi (10.1016/j.csda.2011.09.011_br000085) 1999; 86 Lee (10.1016/j.csda.2011.09.011_br000065) 2011; 17 Pan (10.1016/j.csda.2011.09.011_br000080) 2006; 6 10.1016/j.csda.2011.09.011_br000100 Gonzalez (10.1016/j.csda.2011.09.011_br000030) 2006; 51 Daniels (10.1016/j.csda.2011.09.011_br000020) 2002; 89 Heagerty (10.1016/j.csda.2011.09.011_br000040) 2001; 88 Lee (10.1016/j.csda.2011.09.011_br000055) 2011; 55 Lee (10.1016/j.csda.2011.09.011_br000050) 2008; 27 Lee (10.1016/j.csda.2011.09.011_br000060) 2009; 28 |
References_xml | – reference: Wuertz, D., 2005. fOptions: financial software collection-fOptions. R package version 220.10063, – volume: 28 start-page: 1284 year: 2009 end-page: 1300 ident: br000060 article-title: Marginalized random effects models for multivariate longitudinal binary data publication-title: Statistics in Medicine – volume: 27 start-page: 4359 year: 2008 end-page: 4380 ident: br000050 article-title: Marginalized models for longitudinal ordinal data with application to quality of life studies publication-title: Statistics in Medicine – volume: 88 start-page: 125 year: 1993 end-page: 134 ident: br000005 article-title: Approximate inference in generalized linear mixed models publication-title: Journal of the American Statistical Association – volume: 88 start-page: 973 year: 2001 end-page: 985 ident: br000040 article-title: Misspecified maximum likelihood estimates and generalised linear mixed models publication-title: Biometrika – volume: 58 start-page: 225 year: 2002 end-page: 231 ident: br000095 article-title: Dynamic conditionally linear mixed models for longitudinal data publication-title: Biometrics – volume: No. 63 year: 1992 ident: br000070 article-title: Random number generation and quasi-Monte Carlo methods publication-title: CBMS–NSF Regional Conference Series in Applied Mathematics – volume: 17 start-page: 1577 year: 2011 end-page: 1590 ident: br000065 article-title: Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models publication-title: Journal of Applied Statistics – volume: 86 start-page: 677 year: 1999 end-page: 690 ident: br000085 article-title: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation publication-title: Biometrika – volume: 22 start-page: 1631 year: 2003 end-page: 1647 ident: br000015 article-title: Modelling the random effects covariance matrix in longitudinal data publication-title: Statistics in Medicine – volume: 87 start-page: 425 year: 2000 end-page: 435 ident: br000090 article-title: Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix publication-title: Biometrika – reference: . – volume: 7 start-page: 1 year: 1998 end-page: 49 ident: br000010 article-title: Monte Carlo and quasi-Monte Carlo methods publication-title: Acta Numerica – volume: 55 start-page: 824 year: 2011 end-page: 837 ident: br000055 article-title: Analysis of longitudinal zero-inflated count data using marginalized models publication-title: Computational Statistics & Data Analysis – volume: 90 start-page: 239 year: 2003 end-page: 244 ident: br000075 article-title: On modelling mean- covariance structures in longitudinal studies publication-title: Biometrika – year: 1998 ident: br000045 article-title: Numerical Methods in Economics – volume: 55 start-page: 688 year: 1999 end-page: 698 ident: br000035 article-title: Marginally specified logistic-normal models for longitudinal binary data publication-title: Biometrics – volume: 51 start-page: 1535 year: 2006 end-page: 1548 ident: br000030 article-title: Numerical integration in logistic-normal models publication-title: Computational Statistics & Data Analysis – volume: 6 start-page: 43 year: 2006 end-page: 57 ident: br000080 article-title: Regression models for covariance structures in longitudinal studies publication-title: Statistical Modelling – volume: 89 start-page: 553 year: 2002 end-page: 566 ident: br000020 article-title: Bayesian analysis of covariance matrices and dynamic models for longitudinal data publication-title: Biometrika – volume: 287 start-page: 356 year: 2002 end-page: 359 ident: br000025 article-title: Prevalence of metabolic syndrome among US adults: findings from the third national health and nutrition examination survey publication-title: JAMA – volume: 22 start-page: 1631 year: 2003 ident: 10.1016/j.csda.2011.09.011_br000015 article-title: Modelling the random effects covariance matrix in longitudinal data publication-title: Statistics in Medicine doi: 10.1002/sim.1470 – volume: 88 start-page: 973 year: 2001 ident: 10.1016/j.csda.2011.09.011_br000040 article-title: Misspecified maximum likelihood estimates and generalised linear mixed models publication-title: Biometrika doi: 10.1093/biomet/88.4.973 – volume: 27 start-page: 4359 year: 2008 ident: 10.1016/j.csda.2011.09.011_br000050 article-title: Marginalized models for longitudinal ordinal data with application to quality of life studies publication-title: Statistics in Medicine doi: 10.1002/sim.3352 – volume: 88 start-page: 125 year: 1993 ident: 10.1016/j.csda.2011.09.011_br000005 article-title: Approximate inference in generalized linear mixed models publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1993.10594284 – volume: 89 start-page: 553 year: 2002 ident: 10.1016/j.csda.2011.09.011_br000020 article-title: Bayesian analysis of covariance matrices and dynamic models for longitudinal data publication-title: Biometrika doi: 10.1093/biomet/89.3.553 – volume: 86 start-page: 677 year: 1999 ident: 10.1016/j.csda.2011.09.011_br000085 article-title: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation publication-title: Biometrika doi: 10.1093/biomet/86.3.677 – volume: 58 start-page: 225 year: 2002 ident: 10.1016/j.csda.2011.09.011_br000095 article-title: Dynamic conditionally linear mixed models for longitudinal data publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00225.x – ident: 10.1016/j.csda.2011.09.011_br000100 – volume: No. 63 year: 1992 ident: 10.1016/j.csda.2011.09.011_br000070 article-title: Random number generation and quasi-Monte Carlo methods – volume: 28 start-page: 1284 year: 2009 ident: 10.1016/j.csda.2011.09.011_br000060 article-title: Marginalized random effects models for multivariate longitudinal binary data publication-title: Statistics in Medicine doi: 10.1002/sim.3534 – volume: 287 start-page: 356 year: 2002 ident: 10.1016/j.csda.2011.09.011_br000025 article-title: Prevalence of metabolic syndrome among US adults: findings from the third national health and nutrition examination survey publication-title: JAMA doi: 10.1001/jama.287.3.356 – volume: 51 start-page: 1535 year: 2006 ident: 10.1016/j.csda.2011.09.011_br000030 article-title: Numerical integration in logistic-normal models publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2006.05.003 – volume: 17 start-page: 1577 year: 2011 ident: 10.1016/j.csda.2011.09.011_br000065 article-title: Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2010.515675 – volume: 100 start-page: 2352 year: 2009 ident: 10.1016/j.csda.2011.09.011_br000105 article-title: Modeling covariance matrices via partial autocorrelations publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2009.04.015 – year: 1998 ident: 10.1016/j.csda.2011.09.011_br000045 – volume: 90 start-page: 239 year: 2003 ident: 10.1016/j.csda.2011.09.011_br000075 article-title: On modelling mean- covariance structures in longitudinal studies publication-title: Biometrika doi: 10.1093/biomet/90.1.239 – volume: 87 start-page: 425 year: 2000 ident: 10.1016/j.csda.2011.09.011_br000090 article-title: Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix publication-title: Biometrika doi: 10.1093/biomet/87.2.425 – volume: 55 start-page: 688 year: 1999 ident: 10.1016/j.csda.2011.09.011_br000035 article-title: Marginally specified logistic-normal models for longitudinal binary data publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00688.x – volume: 6 start-page: 43 year: 2006 ident: 10.1016/j.csda.2011.09.011_br000080 article-title: Regression models for covariance structures in longitudinal studies publication-title: Statistical Modelling doi: 10.1191/1471082X06st105oa – volume: 7 start-page: 1 year: 1998 ident: 10.1016/j.csda.2011.09.011_br000010 article-title: Monte Carlo and quasi-Monte Carlo methods publication-title: Acta Numerica doi: 10.1017/S0962492900002804 – volume: 55 start-page: 824 year: 2011 ident: 10.1016/j.csda.2011.09.011_br000055 article-title: Analysis of longitudinal zero-inflated count data using marginalized models publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2010.07.005 |
SSID | ssj0002478 |
Score | 2.0834846 |
Snippet | Generalized linear mixed models (GLMMs) are commonly used to analyze longitudinal categorical data. In these models, we typically assume that the random... |
SourceID | proquest repec crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1545 |
SubjectTerms | Cholesky decomposition Cholesky decomposition Longitudinal data Heterogeneity Covariance matrix Data processing Decomposition Estimates Estimators Heterogeneity Longitudinal data Mathematical models Statistics |
Title | Modeling the random effects covariance matrix for generalized linear mixed models |
URI | https://dx.doi.org/10.1016/j.csda.2011.09.011 http://econpapers.repec.org/article/eeecsdana/v_3a56_3ay_3a2012_3ai_3a6_3ap_3a1545-1551.htm https://www.proquest.com/docview/1019649987 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELam7QUeEAwQHTAZiTeU1UltL36cxqaOapOAIfZm2fEZgta0artp8MBv5y5xuvHAHnhwLJ9sy_I55zv57jvG3gYK-_YmZMVImwwPBWQeCmpGX4ByUrXZGk7P9PiL_HChLjbYYR8LQ26VSfZ3Mr2V1okyTLs5nNf18DM50Bu5PyLQM7TKCXab0L_wTO_9vnXzKGQnjQnfm3qnwJnOx6taBpdgPM2eyPN_XU53lM-tBcyhunMHHT9mj5LyyA-69T1hG9Bss4ena-TV5VP2kZKbUYg5RyLHiyjMpjw5bfBqdo2mMfGZTwma_4ajysq_dcjT9S8InJROt-DT-gYbbZac5TN2fnx0fjjOUtqErEJjcJXlwcdCgHZCBhXzIJwrwQdX5jGW9IwGmkKYos8FBAmyFEHn0SgHWngVR8_ZZjNr4AXjxktCjCuilDh1ZUwwwue60mUlowI_YHm_XbZKkOKU2eLS9r5jPyxtsaUttsJYrAbs3XrMvAPUuLe36rlg_zoWFiX-vePe9Cyz-L_QI4hrYHa1pAFGo5lX7g_YUcvL9TIAgOZpnL22I6c0fn5iwWkLrGosRJpjIb3TkrJpv6-mO_-5xpfsAU3d-Z29YpurxRW8Rg1n5XfbI7zLtg5OJuMzqiefvk6Q-n5y8gfl7PyX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG-wA8ID5Fx5eReEOhcWp78eM0berYWglRpL1ZdnyGIJpWbTdt_PXcNU41HtgDD45lK3asO-d8J9_9jrEPgcK-vQlZMdImw00BmYeCmtEXoJxU22wNk6kef5OfL9TFHjvqYmHIrTLJ_lamb6V16hkmag6XdT38Sg70Rh6MCPQMrXJ9j_WlQpncY_3D07PxdCeQC9kKZIL4pgEpdqZ186rWwSUkT_MpF-Jf59Mt_bO_giVUt46hk8fsUdIf-WG7xCdsD5qn7OFkB766fsa-UH4zijLn2MnxLAqLOU9-G7xaXKF1TKzmc0Lnv-aotfLvLfh0_RsCJ73Trfi8vsbGNlHO-jmbnRzPjsZZypyQVWgPbjIRfCxy0C6XQUURcudK8MGVIsaSbtJAUxRT9CKHIEGWedAiGuVA517F0QvWaxYNvGTceEmgcUWUEqeujAkm90JXuqxkVOAHTHTkslVCFafkFr9s5z720xKJLZHY5sZiNWAfd2OWLabGnW-rjgv2r51hUejfOe59xzKLvwzdg7gGFpdrGmA0WnrlwYAdb3m5WwYA0DyNs1d25JTGxw0WnLbAqsZCXUsspHpa0jftj818_z_X-I7dH88m5_b8dHr2ij2gz7RuaK9Zb7O6hDeo8Gz827Sh_wCmiPym |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+random+effects+covariance+matrix+for+generalized+linear+mixed+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Lee%2C+Keunbaik&rft.au=Lee%2C+JungBok&rft.au=Hagan%2C+Joseph&rft.au=Yoo%2C+Jae+Keun&rft.date=2012-06-01&rft.issn=0167-9473&rft.volume=56&rft.issue=6&rft.spage=1545&rft.epage=1551&rft_id=info:doi/10.1016%2Fj.csda.2011.09.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |