Quantitative and reproducibility study of four tractography algorithms used in clinical routine

Purpose: To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Mate...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 34; no. 1; pp. 165 - 172
Main Authors Tensaouti, Fatima, Lahlou, Ihssan, Clarisse, Perrine, Lotterie, Jean Albert, Berry, Isabelle
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.22584

Cover

Abstract Purpose: To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Materials and Methods: Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra‐operator, and inter‐exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter‐exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile. Results: For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm. Conclusion: This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.
AbstractList To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract.PURPOSETo evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract.Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra-operator, and inter-exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter-exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile.MATERIALS AND METHODSTwo identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra-operator, and inter-exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter-exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile.For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm.RESULTSFor each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm.This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results.CONCLUSIONThis study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results.
Purpose: To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Materials and Methods: Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra‐operator, and inter‐exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter‐exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile. Results: For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm. Conclusion: This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.
To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra-operator, and inter-exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter-exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile. For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm. This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results.
Author Lahlou, Ihssan
Lotterie, Jean Albert
Berry, Isabelle
Tensaouti, Fatima
Clarisse, Perrine
Author_xml – sequence: 1
  givenname: Fatima
  surname: Tensaouti
  fullname: Tensaouti, Fatima
  email: tensaouti.f@chu-toulouse.fr
  organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France
– sequence: 2
  givenname: Ihssan
  surname: Lahlou
  fullname: Lahlou, Ihssan
  organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France
– sequence: 3
  givenname: Perrine
  surname: Clarisse
  fullname: Clarisse, Perrine
  organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France
– sequence: 4
  givenname: Jean Albert
  surname: Lotterie
  fullname: Lotterie, Jean Albert
  organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France
– sequence: 5
  givenname: Isabelle
  surname: Berry
  fullname: Berry, Isabelle
  organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21618329$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPFjEUhhuDkYtu_AGmOxPNQG8z01kaoogC5iMQl82h04Fip_3oRZx_78AAC2NYnbN43nN5ttGGD94g9JaSXUoI27seo91lrJbiBdqiNWPV3Dcbc09qXlFJ2k20ndI1IaTrRP0KbTLaUMlZt4XUqoDPNkO2vw0G3-No1jH0RdsL62yecMqln3AY8BBKxDmCzuEywvpqwuAuQ7T5aky4JNNj67F21lsNDsdQsvXmNXo5gEvmzUPdQedfPp_tf62Ofhwc7n86qrQgTFRNDYJDw7q-pVQKyRoiBTQdG3RPNa0lJ6RvBw4DNFJTTkRHteZCti3oXg98B31c5ha_hukWnFPraEeIk6JE3WlSd5rUvaaZfr_Q86s3xaSsRpu0cQ68CSUp2fKWMMnbmXz3QJaL0fRPQx8NzgBZAB1DStEMSt_bDH5WZd3_t3_4J_LsqXSBb60z0zOk-nZ8eviYqZaMTdn8ecpA_KWa-bNa_Tw5UOT4VNB69V2t-F9dPbGZ
CitedBy_id crossref_primary_10_1002_jmri_23621
crossref_primary_10_1007_s00415_015_7841_1
crossref_primary_10_1371_journal_pone_0080713
crossref_primary_10_4103_glioma_glioma_15_20
crossref_primary_10_1016_j_wneu_2017_06_050
crossref_primary_10_1016_j_neuroimage_2018_01_086
crossref_primary_10_1016_j_mri_2018_03_001
crossref_primary_10_1016_j_neuroimage_2018_05_044
crossref_primary_10_1016_j_diii_2013_08_019
crossref_primary_10_1016_j_yebeh_2014_06_020
crossref_primary_10_1007_s00276_012_0951_x
crossref_primary_10_1016_j_jradio_2013_05_013
crossref_primary_10_1002_hbm_22686
crossref_primary_10_1002_hbm_24579
crossref_primary_10_1371_journal_pone_0137905
crossref_primary_10_1007_s11682_018_9934_9
crossref_primary_10_1016_j_clineuro_2014_04_017
crossref_primary_10_1371_journal_pone_0035589
crossref_primary_10_1002_mrm_24602
crossref_primary_10_1016_j_bbadis_2014_08_002
crossref_primary_10_1162_jocn_a_01549
crossref_primary_10_2214_AJR_12_9230
crossref_primary_10_1007_s00330_012_2589_9
crossref_primary_10_3171_2014_12_JNS142169
Cites_doi 10.1002/mrm.10184
10.1016/j.media.2007.05.004
10.1016/S1361-8415(02)00079-8
10.1002/mrm.20279
10.1006/nimg.2000.0607
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1109/VISUAL.1999.809894
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1002/mrm.1125
10.1016/j.neuroimage.2005.04.008
10.1002/mrm.1910360620
10.1016/S1053-8119(02)00042-3
10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
10.1006/jmre.2000.2209
10.1002/mrm.1140
10.1016/S1053-8119(03)00142-3
10.1002/hbm.10102
10.1006/nimg.2001.0882
10.1109/CVPR.1996.517081
10.1002/mrm.20642
10.1016/j.neuroimage.2006.07.037
10.1016/j.media.2005.05.008
10.1002/mrm.10268
10.1002/nbm.782
10.1016/S0730-725X(97)00037-4
10.1002/jmri.21053
10.1016/j.neuroimage.2007.02.049
10.1073/pnas.252249999
10.1073/pnas.96.18.10422
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1002/jmri.22584
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 172
ExternalDocumentID 10.1002/jmri.22584
21618329
10_1002_jmri_22584
JMRI22584
ark_67375_WNG_0MR415QK_Q
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: The French Association pour la Recherche sur la Sclérose En plaques (ARSEP)
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4024-65a43a629d71184826084a692fcd1c158300d7f3afa68c130491cc34877acdcf3
IEDL.DBID UNPAY
ISSN 1053-1807
1522-2586
IngestDate Tue Aug 19 21:29:17 EDT 2025
Fri Jul 11 06:56:05 EDT 2025
Mon Jul 21 05:48:56 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Wed Oct 01 02:24:23 EDT 2025
Wed Jan 22 16:28:17 EST 2025
Sun Sep 21 06:22:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4024-65a43a629d71184826084a692fcd1c158300d7f3afa68c130491cc34877acdcf3
Notes ark:/67375/WNG-0MR415QK-Q
The French Association pour la Recherche sur la Sclérose En plaques (ARSEP)
istex:DA5F46A0DCDEE27FBF4B06166B4B9190999D04AB
ArticleID:JMRI22584
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22584
PMID 21618329
PQID 873702837
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_jmri_22584
proquest_miscellaneous_873702837
pubmed_primary_21618329
crossref_citationtrail_10_1002_jmri_22584
crossref_primary_10_1002_jmri_22584
wiley_primary_10_1002_jmri_22584_JMRI22584
istex_primary_ark_67375_WNG_0MR415QK_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07
July 2011
2011-07-00
2011-Jul
20110701
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515-525.
Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001; 45: 935-939.
Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J. Magn Reson Imaging 2007; 26: 756-767.
Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002; 48: 128-136.
Lin CP, Tseng WY, Cheng HC, Chen JH. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001; 14: 1035-1047.
Li J, Wunsche BC. An analysis of algorithms for in vivo fibre tractography. Auckland, New Zealand: University of Auckland, Department of Computer Science. 2005.
Lazar M, Weinstein D, Tsuruda J, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003; 18: 306-321.
Takahashi M, Hackney DB, Zhang G. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 2002; 99: 16102-16196.
Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 2005; 27: 357-367.
Skare S, Hedehus M, Moseley ME, Li TQ. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 2000; 147: 340-352.
Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal 2007; 588-603.
Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127.
Jackowski M, Kao CY, Maolin Q, Constable RT, Staib LH. White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Med Image Anal 2005; 9: 427-440.
Heiervang E, Behrens T, Mackay C, Robson M, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 2006; 33: 867-877.
Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I. Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 2002; 6: 191-198.
Wedeen V, Hagmann P, Tseng W, Reese T, Weisskoff R. Mapping complex tissue architecture with diffusion spectrum magnetic. resonance imaging. Magn Reson Med 2005; 54: 1377-1386.
Conturo T, Lori N, Cull T, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999; 96: 10422-10427.
Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002; 48: 577-582.
Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455.
Hagmann P, Thiran J, Jonasson L, et al. DTI mapping of human brain connectivity: statistical fibre Tracking and virtual dissection. Neuroimage 2003; 19: 545-554.
Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44: 625-632.
Armitage PA, Bastin ME. Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magn Reson Med 2001; 45: 1056-1065.
Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med 1996; 36: 960-964.
Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 1997; 15: 771-784.
Tuch DS. Q-ball imaging. Magn Reson Med 2004; 52: 1358-1372.
Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007; 36: 630-644.
Mori S, Crain B, Chacko V, Zijl PV. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265-269.
Poupon C, Clark CA, Frouin V, et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 2000; 12: 184-195.
Ciccarelli O, Parker GJ, Toosy AT, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 2003; 18: 348-359.
2002; 15
2006; 33
2000; 44
2002; 6
2002; 99
2009
1999; 45
2008
1997
1996
2007
1999; 42
2005
2003; 18
2003; 19
1996; 36
2005; 27
2001; 45
2007; 36
1999
2004; 52
2002; 48
2001
2000; 147
2000
2000; 12
2005; 9
1997; 15
2005; 54
1999; 96
2001; 14
2007; 26
e_1_2_5_26_2
Li J (e_1_2_5_27_2) 2005
e_1_2_5_24_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_23_2
e_1_2_5_20_2
e_1_2_5_21_2
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_13_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_19_2
e_1_2_5_30_2
References_xml – reference: Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med 1996; 36: 960-964.
– reference: Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44: 625-632.
– reference: Conturo T, Lori N, Cull T, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999; 96: 10422-10427.
– reference: Lin CP, Tseng WY, Cheng HC, Chen JH. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001; 14: 1035-1047.
– reference: Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J. Magn Reson Imaging 2007; 26: 756-767.
– reference: Jackowski M, Kao CY, Maolin Q, Constable RT, Staib LH. White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Med Image Anal 2005; 9: 427-440.
– reference: Skare S, Hedehus M, Moseley ME, Li TQ. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 2000; 147: 340-352.
– reference: Armitage PA, Bastin ME. Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magn Reson Med 2001; 45: 1056-1065.
– reference: Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002; 48: 128-136.
– reference: Wedeen V, Hagmann P, Tseng W, Reese T, Weisskoff R. Mapping complex tissue architecture with diffusion spectrum magnetic. resonance imaging. Magn Reson Med 2005; 54: 1377-1386.
– reference: Heiervang E, Behrens T, Mackay C, Robson M, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 2006; 33: 867-877.
– reference: Tuch DS. Q-ball imaging. Magn Reson Med 2004; 52: 1358-1372.
– reference: Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 2005; 27: 357-367.
– reference: Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007; 36: 630-644.
– reference: Ciccarelli O, Parker GJ, Toosy AT, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 2003; 18: 348-359.
– reference: Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 1997; 15: 771-784.
– reference: Mori S, Crain B, Chacko V, Zijl PV. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265-269.
– reference: Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal 2007; 588-603.
– reference: Lazar M, Weinstein D, Tsuruda J, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003; 18: 306-321.
– reference: Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002; 48: 577-582.
– reference: Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515-525.
– reference: Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127.
– reference: Hagmann P, Thiran J, Jonasson L, et al. DTI mapping of human brain connectivity: statistical fibre Tracking and virtual dissection. Neuroimage 2003; 19: 545-554.
– reference: Poupon C, Clark CA, Frouin V, et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 2000; 12: 184-195.
– reference: Takahashi M, Hackney DB, Zhang G. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 2002; 99: 16102-16196.
– reference: Li J, Wunsche BC. An analysis of algorithms for in vivo fibre tractography. Auckland, New Zealand: University of Auckland, Department of Computer Science. 2005.
– reference: Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I. Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 2002; 6: 191-198.
– reference: Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455.
– reference: Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001; 45: 935-939.
– year: 2009
– volume: 19
  start-page: 545
  year: 2003
  end-page: 554
  article-title: DTI mapping of human brain connectivity: statistical fibre Tracking and virtual dissection
  publication-title: Neuroimage
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn Reson Med
– year: 2005
– year: 2001
– start-page: 249
  year: 1999
  end-page: 254
– year: 2000
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  article-title: In vivo fiber tractography using DT‐MRI data
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1358
  year: 2004
  end-page: 1372
  article-title: Q‐ball imaging
  publication-title: Magn Reson Med
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  article-title: Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann Neurol
– volume: 96
  start-page: 10422
  year: 1999
  end-page: 10427
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 18
  start-page: 348
  year: 2003
  end-page: 359
  article-title: From diffusion tractography to quantitative white matter tract measures: a reproducibility study
  publication-title: Neuroimage
– volume: 42
  start-page: 1123
  year: 1999
  end-page: 1127
  article-title: In vivo three‐dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 48
  start-page: 128
  year: 2002
  end-page: 136
  article-title: Diffusion tensor imaging using single‐shot SENSE‐EPI
  publication-title: Magn Reson Med
– volume: 12
  start-page: 184
  year: 2000
  end-page: 195
  article-title: Regularization of diffusion‐based direction maps for the tracking of brain white matter fascicles
  publication-title: Neuroimage
– volume: 6
  start-page: 191
  year: 2002
  end-page: 198
  article-title: Distortion correction and robust tensor estimation for MR diffusion imaging
  publication-title: Med Image Anal
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  article-title: The basis of anisotropic water diffusion in the nervous system‐a technical review
  publication-title: NMR Biomed
– start-page: 245
  year: 1996
  end-page: 251
– volume: 26
  start-page: 756
  year: 2007
  end-page: 767
  article-title: Effects of signal‐to‐noise ratio on the accuracy and reproducibility of diffusion tensor imaging‐derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J
  publication-title: Magn Reson Imaging
– start-page: 588
  year: 2007
  end-page: 603
  article-title: Correction of susceptibility artifacts in diffusion tensor data using non‐linear registration
  publication-title: Med Image Anal
– volume: 45
  start-page: 935
  year: 2001
  end-page: 939
  article-title: Anisotropy in high angular resolution diffusion‐weighted MRI
  publication-title: Magn Reson Med
– volume: 27
  start-page: 357
  year: 2005
  end-page: 367
  article-title: Optimal imaging parameters for fiber‐orientation estimation in diffusion MRI
  publication-title: Neuroimage.
– volume: 15
  start-page: 771
  year: 1997
  end-page: 784
  article-title: Optimised diffusion‐weighting for measurement of apparent diffusion coefficient (ADC) in human brain
  publication-title: Magn Reson Imaging
– volume: 147
  start-page: 340
  year: 2000
  end-page: 352
  article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI
  publication-title: J Magn Reson
– volume: 99
  start-page: 16102
  year: 2002
  end-page: 16196
  article-title: Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord
  publication-title: Proc Natl Acad Sci U S A
– volume: 36
  start-page: 960
  year: 1996
  end-page: 964
  article-title: Correction for distortion of echo‐planar images used to calculate the apparent diffusion coefficient
  publication-title: Magn Reson Med
– volume: 18
  start-page: 306
  year: 2003
  end-page: 321
  article-title: White matter tractography using diffusion tensor deflection
  publication-title: Hum Brain Mapp
– volume: 33
  start-page: 867
  year: 2006
  end-page: 877
  article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures
  publication-title: Neuroimage
– volume: 45
  start-page: 1056
  year: 2001
  end-page: 1065
  article-title: Utilizing the diffusion‐to‐noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy
  publication-title: Magn Reson Med
– volume: 9
  start-page: 427
  year: 2005
  end-page: 440
  article-title: White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging
  publication-title: Med Image Anal
– year: 2008
– volume: 48
  start-page: 577
  year: 2002
  end-page: 582
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn Reson Med
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– year: 1997
– volume: 14
  start-page: 1035
  year: 2001
  end-page: 1047
  article-title: Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese‐enhanced optic tracts
  publication-title: Neuroimage
– volume: 54
  start-page: 1377
  year: 2005
  end-page: 1386
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic. resonance imaging
  publication-title: Magn Reson Med
– ident: e_1_2_5_31_2
  doi: 10.1002/mrm.10184
– ident: e_1_2_5_32_2
  doi: 10.1016/j.media.2007.05.004
– ident: e_1_2_5_29_2
  doi: 10.1016/S1361-8415(02)00079-8
– ident: e_1_2_5_36_2
  doi: 10.1002/mrm.20279
– ident: e_1_2_5_8_2
  doi: 10.1006/nimg.2000.0607
– ident: e_1_2_5_9_2
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– ident: e_1_2_5_7_2
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– ident: e_1_2_5_19_2
  doi: 10.1109/VISUAL.1999.809894
– ident: e_1_2_5_21_2
– ident: e_1_2_5_24_2
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– ident: e_1_2_5_35_2
  doi: 10.1002/mrm.1125
– ident: e_1_2_5_16_2
  doi: 10.1016/j.neuroimage.2005.04.008
– ident: e_1_2_5_30_2
  doi: 10.1002/mrm.1910360620
– ident: e_1_2_5_13_2
  doi: 10.1016/S1053-8119(02)00042-3
– ident: e_1_2_5_10_2
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
– ident: e_1_2_5_25_2
  doi: 10.1006/jmre.2000.2209
– ident: e_1_2_5_26_2
– ident: e_1_2_5_17_2
  doi: 10.1002/mrm.1140
– ident: e_1_2_5_20_2
  doi: 10.1016/S1053-8119(03)00142-3
– ident: e_1_2_5_5_2
  doi: 10.1002/hbm.10102
– ident: e_1_2_5_11_2
  doi: 10.1006/nimg.2001.0882
– ident: e_1_2_5_22_2
  doi: 10.1109/CVPR.1996.517081
– volume-title: An analysis of algorithms for in vivo fibre tractography
  year: 2005
  ident: e_1_2_5_27_2
– ident: e_1_2_5_33_2
  doi: 10.1002/mrm.20642
– ident: e_1_2_5_14_2
  doi: 10.1016/j.neuroimage.2006.07.037
– ident: e_1_2_5_2_2
  doi: 10.1016/j.media.2005.05.008
– ident: e_1_2_5_34_2
– ident: e_1_2_5_37_2
  doi: 10.1002/mrm.10268
– ident: e_1_2_5_4_2
  doi: 10.1002/nbm.782
– ident: e_1_2_5_18_2
– ident: e_1_2_5_23_2
  doi: 10.1016/S0730-725X(97)00037-4
– ident: e_1_2_5_28_2
– ident: e_1_2_5_15_2
  doi: 10.1002/jmri.21053
– ident: e_1_2_5_12_2
  doi: 10.1016/j.neuroimage.2007.02.049
– ident: e_1_2_5_3_2
  doi: 10.1073/pnas.252249999
– ident: e_1_2_5_6_2
  doi: 10.1073/pnas.96.18.10422
SSID ssj0009945
Score 2.1454012
Snippet Purpose: To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of...
To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Adult
Algorithms
Brain - pathology
Brain Mapping
corticospinal tract
Diagnostic Imaging - methods
diffusion tensor imaging
Diffusion Tensor Imaging - methods
Humans
Magnetic Resonance Imaging - methods
Male
Middle Aged
Models, Statistical
Probability
Pyramidal Tracts - pathology
reproducibility
Reproducibility of Results
tractography
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5CCm3z0PtwLwQNhRa8sS1ZtqEvpTRNUzawS0PzUsRYstpNNnbw2rTpr68kH0tKCLRvfhgLHd9IM9LMNwDbNNDKYAV9pjX3WR5zHwvF_SRFHqskCBXaBOfpAd87ZPtH8dEGvB1yYTp-iPHCzWqG26-tgmO-2lmThh6f1ouJQWNqyUBDyp0_NV9zR2WZq1Bs7Afqh2mQjNyk0c761wun0TU7sb8uMzW34EZbnuH5T1wuL1qx7hjavQ3fhgF00Scnk7bJJ_L3X9yO_zvCO3Crt0_Juw5Qd2GjKO_B9Wn_An8fxKzF0iWmmW2SYKmIpcW0rLFdmO05cYS1pNJEm7ZIY7OwelpsgsvvVb1ofpyuSLsqFFmUZMjMJHVlVKAsHsDh7ocv7_f8vkiDL43ryXweI6PIo0wlxldhxlsJUoY8i7RUoQzjlAaBSjRFjTyVoX3VC6Wkxk9KUCqp6UPYLKuyeAwkVRmzyflJpBkz2MLYbCicBpHOcx4VyoPXw2IJ2TOY20IaS9FxL0fCzphwM-bBy1H2rOPtuFTqlVvzUQTrExvplsTi68FHEUznxr6ZfRYzD8gACmH0zz6qYFlU7UqkRtraaIkHjzqwjI1FthgBjTIPtkf0XNmZNw4NV4iI_en8k_t68i_CT-FmdxVuo4yfwWZTt8VzY0s1-QunM38AlaIabQ
  priority: 102
  providerName: Wiley-Blackwell
Title Quantitative and reproducibility study of four tractography algorithms used in clinical routine
URI https://api.istex.fr/ark:/67375/WNG-0MR415QK-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22584
https://www.ncbi.nlm.nih.gov/pubmed/21618329
https://www.proquest.com/docview/873702837
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22584
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2586
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELaglUB74DcjCCZLTEgguSSO46SPE2KMoVa0omI8WRc7hrIuqdJEMP56zkkabWiakHjLw8WK7e_Od7m7z4Tsh741iBVgwlrJRBpJBpmRLE5ARib2AwOuwXkylUcLcXwSnVzo4m_5Ifofbk4zGnvtFHxtbGvnu-w-f_PjrFyOEJGJuEmGMkJvfECGi-mng69NkjMKWdB2TOMpxRnKyZ6h9OLLl86koVveX1c5nDvkdp2v4fwnrFaXfdnmMDq8S2A7jbYG5XRUV-lI__6L4fF_5nmP3Ok8VXrQQus-uZHlD8itSZeLf0jUrIa8aVFDg0khN9QRZDr-2Lbg9pw21LW0sNTiWLRy_VgdQTaF1beiXFbfzza03mSGLnO67dGkZYHKkGePyOLw3ee3R6y7roFpDEIFkxGIECQfmxijFoFxi58IkGNutQl0ECWh75vYhmBBJjpw-b1A6xAjphi00TZ8TAZ5kWdPCE3MWLg2_ZhbIRBlEKFpkaHPbZpKnhmPvNpumNIdl7m7UmOlWhZmrtyKqWbFPPKil123DB5XSr1s9r0XgfLU1bzFkfoyfa_8yRw9ndlHNfMI3QJDoSa69ArkWVFvVILSzluLPbLbAqYfjLtrCUI-9sh-j6BrP-Z1g4hrRNTxZP6heXr6b2M-I4OqrLPn6EJV6R4GD3O-1-nKHwH_HWk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK1F44D7CaYkKCaRsczhO8ogQZXtkpV21om-WY8ewdJtU2URQfj0eJ5tVUVUJ3vIwiRL7G-cbe-YbgO3Q08pgRbhUa-bSPGKuKBRz40SwSMWerwQWOGcTNj6m-yfRSZ-bg7UwnT7EsOGGnmHXa3Rw3JDeWauG_jir5yMDx4TehE3KTKCCnGi2Vo9KU9uj2DCI0PUTLx7USYOd9b2X_kebOLS_riKbd2CrLc_FxU-xWFzmsfZHtHuv67a6tPqFmH9yOmqbfCR__6Xu-N_feB_u9hSVfOww9QBuFOVDuJX1h_CPgE9bUdraNLNSElEqgsqYKBzbZdpeEKtZSypNtHkWabAQq1fGJmLxrarnzfezJWmXhSLzkqyKM0ldGS8oi8dwvPv56NPY7fs0uNJEn9RlkaChYEGqYhOuUBOweAkVLA20VL70oyT0PBXrUGjBEunjwZ4vZWhCpVhIJXX4BDbKqiyeAUlUSrE-Pw40pQZeIjJrCgu9QOc5CwrlwPvVbHHZi5hjL40F7-SXA44jxu2IOfB2sD3vpDuutHpnJ30wEfUpJrvFEf86-cK9bGYozvSATx0gK1Rw44J4riLKomqXPDHWSNNiB552aBkeFmA_gjBIHdge4HPty3ywcLjGhO9nsz179fxfjN_A1vgoO-SHe5ODF3C72xnHpOOXsNHUbfHKUKsmf20d6A82ax6O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BKxV44D7CaYkKCaRsczhO8ogoSw92xa6o2jfLsWNYuk1W2URQfj0eJ5tVUVUJ3vIwsRL7G3vGM_MNwHboaWWwIlyqNXNpFjFX5Iq5cSJYpGLPVwILnEdjtndED06iky43B2thWn6I_sINNcPu16jg-ULpnTVr6I-zajYwcEzoddikUZpgRt_udM0elaa2R7GxIELXT7y4ZycNdtbvXjiPNnFqf11mbN6CG02xEOc_xXx-0Y61B9HwTtttdWn5CzH_5HTQ1NlA_v6L3fG___Eu3O5MVPK-xdQ9uJYX92Fr1AXhHwCfNKKwtWlmpySiUASZMZE4ts20PSeWs5aUmmgzFqmxEKtjxiZi_q2sZvX3syVplrkis4KsijNJVRotKPKHcDT8-PXDntv1aXCl8T6pyyJBQ8GCVMXGXaHGYfESKlgaaKl86UdJ6Hkq1qHQgiXSx8CeL2VoXKVYSCV1-Ag2irLInwBJVEqxPj8ONKUGXiIyewoLvUBnGQty5cDb1Wpx2ZGYYy-NOW_plwOOM8btjDnwupddtNQdl0q9sYvei4jqFJPd4ogfjz9xbzQ1Js7kkE8cICtUcKOCGFcRRV42S54YaTTTYgcet2jpBwuwH0EYpA5s9_C58mPeWThcIcIPRtN9-_T0X4RfwdaX3SH_vD8-fAY324txzDl-Dht11eQvjGVVZy-t_vwBtogeEg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2BDb2sO8Pj3YIVgYbOLVlWXYey2jXdSQsZWHdkzhL1pY1tYNjs3V_fSXZMe0oZbA3P5yFJf3udOe7-wlgJwq0MlhBn2nNfZbF3MdccT9JkccqCUKFtsF5MuWHc3Z0Ep9c6uJv-SH6H25WM5y9tgq-Urq18112n-7-PKsWI4PIlN2GIY-NNz6A4Xz6ee-bS3LGkR-2HdPmlKK-keM9Q-nll6-cSUO7vL-vczjvwd2mWOH5L1wur_qy7jA6eAC4mUZbg3I6aupsJP_8xfD4P_N8CPc7T5XstdB6BLfy4jHcmXS5-CcgZg0WrkXNGEyChSKWINPyx7YFt-fEUdeSUhNtxiK17cfqCLIJLr-X1aL-cbYmzTpXZFGQTY8mqUqjDEX-FOYH-1_eH_rddQ2-NEEo83mMLEJOxyoxUQszcUuQMuRjqqUKZRinURCoREeokacytPm9UMrIREwJSiV19AwGRVnkL4Ckasxsm35CNWMGZRgb08KjgOos4zRXHrzdbJiQHZe5vVJjKVoWZirsigm3Yh687mVXLYPHtVJv3L73Ilid2pq3JBZfpx9EMDk2ns7sk5h5QDbAEEYTbXoFi7xs1iI10tZbSzx43gKmH4zaawkiOvZgp0fQjR_zziHiBhFxNDn-6J5e_tuYWzCoqybfNi5Unb3qtOQCV2YcgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+and+reproducibility+study+of+four+tractography+algorithms+used+in+clinical+routine&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tensaouti%2C+Fatima&rft.au=Lahlou%2C+Ihssan&rft.au=Clarisse%2C+Perrine&rft.au=Lotterie%2C+Jean+Albert&rft.date=2011-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=34&rft.issue=1&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1002%2Fjmri.22584&rft.externalDBID=10.1002%252Fjmri.22584&rft.externalDocID=JMRI22584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon