Quantitative and reproducibility study of four tractography algorithms used in clinical routine
Purpose: To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Mate...
Saved in:
| Published in | Journal of magnetic resonance imaging Vol. 34; no. 1; pp. 165 - 172 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-1807 1522-2586 1522-2586 |
| DOI | 10.1002/jmri.22584 |
Cover
| Abstract | Purpose:
To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract.
Materials and Methods:
Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra‐operator, and inter‐exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter‐exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile.
Results:
For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm.
Conclusion:
This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract.PURPOSETo evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract.Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra-operator, and inter-exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter-exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile.MATERIALS AND METHODSTwo identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra-operator, and inter-exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter-exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile.For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm.RESULTSFor each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm.This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results.CONCLUSIONThis study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results. Purpose: To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Materials and Methods: Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra‐operator, and inter‐exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter‐exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile. Results: For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm. Conclusion: This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc. To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major tracts, anatomically well known, and which should be preserved as much as possible during neurosurgery: the corticospinal tract. Two identical exams, composed of three DTI acquisition schemes (6, 15, and 32 gradient directions), were performed on 12 healthy subjects during two different sessions. For each subject, intra-operator, and inter-exam reproducibility was quantitatively calculated from different fiber tracking algorithms: three deterministic and a probabilistic one. Inter-exam reproducibility was evaluated comparing fiber tracking results from the repetition of the same acquisition one month apart and variation of the fiber density distribution percentile. For each fiber tracking algorithm, the best reproducibility result is obtained in case of 50% of fiber density and for the number of directions equal to 32. The reproducibility is improved using the probabilistic algorithm. This study highlights increased reliability of reproducibility results based on the number of directions used during the acquisition. The method of tractography used and the choice of adequate density fiber tract greatly improve the results. |
| Author | Lahlou, Ihssan Lotterie, Jean Albert Berry, Isabelle Tensaouti, Fatima Clarisse, Perrine |
| Author_xml | – sequence: 1 givenname: Fatima surname: Tensaouti fullname: Tensaouti, Fatima email: tensaouti.f@chu-toulouse.fr organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France – sequence: 2 givenname: Ihssan surname: Lahlou fullname: Lahlou, Ihssan organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France – sequence: 3 givenname: Perrine surname: Clarisse fullname: Clarisse, Perrine organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France – sequence: 4 givenname: Jean Albert surname: Lotterie fullname: Lotterie, Jean Albert organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France – sequence: 5 givenname: Isabelle surname: Berry fullname: Berry, Isabelle organization: CHU Rangueil, Service Biophysique et Médecine Nucléaire, Toulouse, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21618329$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEtPFjEUhhuDkYtu_AGmOxPNQG8z01kaoogC5iMQl82h04Fip_3oRZx_78AAC2NYnbN43nN5ttGGD94g9JaSXUoI27seo91lrJbiBdqiNWPV3Dcbc09qXlFJ2k20ndI1IaTrRP0KbTLaUMlZt4XUqoDPNkO2vw0G3-No1jH0RdsL62yecMqln3AY8BBKxDmCzuEywvpqwuAuQ7T5aky4JNNj67F21lsNDsdQsvXmNXo5gEvmzUPdQedfPp_tf62Ofhwc7n86qrQgTFRNDYJDw7q-pVQKyRoiBTQdG3RPNa0lJ6RvBw4DNFJTTkRHteZCti3oXg98B31c5ha_hukWnFPraEeIk6JE3WlSd5rUvaaZfr_Q86s3xaSsRpu0cQ68CSUp2fKWMMnbmXz3QJaL0fRPQx8NzgBZAB1DStEMSt_bDH5WZd3_t3_4J_LsqXSBb60z0zOk-nZ8eviYqZaMTdn8ecpA_KWa-bNa_Tw5UOT4VNB69V2t-F9dPbGZ |
| CitedBy_id | crossref_primary_10_1002_jmri_23621 crossref_primary_10_1007_s00415_015_7841_1 crossref_primary_10_1371_journal_pone_0080713 crossref_primary_10_4103_glioma_glioma_15_20 crossref_primary_10_1016_j_wneu_2017_06_050 crossref_primary_10_1016_j_neuroimage_2018_01_086 crossref_primary_10_1016_j_mri_2018_03_001 crossref_primary_10_1016_j_neuroimage_2018_05_044 crossref_primary_10_1016_j_diii_2013_08_019 crossref_primary_10_1016_j_yebeh_2014_06_020 crossref_primary_10_1007_s00276_012_0951_x crossref_primary_10_1016_j_jradio_2013_05_013 crossref_primary_10_1002_hbm_22686 crossref_primary_10_1002_hbm_24579 crossref_primary_10_1371_journal_pone_0137905 crossref_primary_10_1007_s11682_018_9934_9 crossref_primary_10_1016_j_clineuro_2014_04_017 crossref_primary_10_1371_journal_pone_0035589 crossref_primary_10_1002_mrm_24602 crossref_primary_10_1016_j_bbadis_2014_08_002 crossref_primary_10_1162_jocn_a_01549 crossref_primary_10_2214_AJR_12_9230 crossref_primary_10_1007_s00330_012_2589_9 crossref_primary_10_3171_2014_12_JNS142169 |
| Cites_doi | 10.1002/mrm.10184 10.1016/j.media.2007.05.004 10.1016/S1361-8415(02)00079-8 10.1002/mrm.20279 10.1006/nimg.2000.0607 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1109/VISUAL.1999.809894 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1002/mrm.1125 10.1016/j.neuroimage.2005.04.008 10.1002/mrm.1910360620 10.1016/S1053-8119(02)00042-3 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H 10.1006/jmre.2000.2209 10.1002/mrm.1140 10.1016/S1053-8119(03)00142-3 10.1002/hbm.10102 10.1006/nimg.2001.0882 10.1109/CVPR.1996.517081 10.1002/mrm.20642 10.1016/j.neuroimage.2006.07.037 10.1016/j.media.2005.05.008 10.1002/mrm.10268 10.1002/nbm.782 10.1016/S0730-725X(97)00037-4 10.1002/jmri.21053 10.1016/j.neuroimage.2007.02.049 10.1073/pnas.252249999 10.1073/pnas.96.18.10422 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1002/jmri.22584 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1522-2586 |
| EndPage | 172 |
| ExternalDocumentID | 10.1002/jmri.22584 21618329 10_1002_jmri_22584 JMRI22584 ark_67375_WNG_0MR415QK_Q |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GrantInformation_xml | – fundername: The French Association pour la Recherche sur la Sclérose En plaques (ARSEP) |
| GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4024-65a43a629d71184826084a692fcd1c158300d7f3afa68c130491cc34877acdcf3 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-1807 1522-2586 |
| IngestDate | Tue Aug 19 21:29:17 EDT 2025 Fri Jul 11 06:56:05 EDT 2025 Mon Jul 21 05:48:56 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Wed Oct 01 02:24:23 EDT 2025 Wed Jan 22 16:28:17 EST 2025 Sun Sep 21 06:22:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4024-65a43a629d71184826084a692fcd1c158300d7f3afa68c130491cc34877acdcf3 |
| Notes | ark:/67375/WNG-0MR415QK-Q The French Association pour la Recherche sur la Sclérose En plaques (ARSEP) istex:DA5F46A0DCDEE27FBF4B06166B4B9190999D04AB ArticleID:JMRI22584 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22584 |
| PMID | 21618329 |
| PQID | 873702837 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1002_jmri_22584 proquest_miscellaneous_873702837 pubmed_primary_21618329 crossref_citationtrail_10_1002_jmri_22584 crossref_primary_10_1002_jmri_22584 wiley_primary_10_1002_jmri_22584_JMRI22584 istex_primary_ark_67375_WNG_0MR415QK_Q |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-07 July 2011 2011-07-00 2011-Jul 20110701 |
| PublicationDateYYYYMMDD | 2011-07-01 |
| PublicationDate_xml | – month: 07 year: 2011 text: 2011-07 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Journal of magnetic resonance imaging |
| PublicationTitleAlternate | J. Magn. Reson. Imaging |
| PublicationYear | 2011 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515-525. Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001; 45: 935-939. Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J. Magn Reson Imaging 2007; 26: 756-767. Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002; 48: 128-136. Lin CP, Tseng WY, Cheng HC, Chen JH. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001; 14: 1035-1047. Li J, Wunsche BC. An analysis of algorithms for in vivo fibre tractography. Auckland, New Zealand: University of Auckland, Department of Computer Science. 2005. Lazar M, Weinstein D, Tsuruda J, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003; 18: 306-321. Takahashi M, Hackney DB, Zhang G. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 2002; 99: 16102-16196. Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 2005; 27: 357-367. Skare S, Hedehus M, Moseley ME, Li TQ. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 2000; 147: 340-352. Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal 2007; 588-603. Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127. Jackowski M, Kao CY, Maolin Q, Constable RT, Staib LH. White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Med Image Anal 2005; 9: 427-440. Heiervang E, Behrens T, Mackay C, Robson M, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 2006; 33: 867-877. Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I. Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 2002; 6: 191-198. Wedeen V, Hagmann P, Tseng W, Reese T, Weisskoff R. Mapping complex tissue architecture with diffusion spectrum magnetic. resonance imaging. Magn Reson Med 2005; 54: 1377-1386. Conturo T, Lori N, Cull T, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999; 96: 10422-10427. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002; 48: 577-582. Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455. Hagmann P, Thiran J, Jonasson L, et al. DTI mapping of human brain connectivity: statistical fibre Tracking and virtual dissection. Neuroimage 2003; 19: 545-554. Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44: 625-632. Armitage PA, Bastin ME. Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magn Reson Med 2001; 45: 1056-1065. Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med 1996; 36: 960-964. Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 1997; 15: 771-784. Tuch DS. Q-ball imaging. Magn Reson Med 2004; 52: 1358-1372. Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007; 36: 630-644. Mori S, Crain B, Chacko V, Zijl PV. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265-269. Poupon C, Clark CA, Frouin V, et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 2000; 12: 184-195. Ciccarelli O, Parker GJ, Toosy AT, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 2003; 18: 348-359. 2002; 15 2006; 33 2000; 44 2002; 6 2002; 99 2009 1999; 45 2008 1997 1996 2007 1999; 42 2005 2003; 18 2003; 19 1996; 36 2005; 27 2001; 45 2007; 36 1999 2004; 52 2002; 48 2001 2000; 147 2000 2000; 12 2005; 9 1997; 15 2005; 54 1999; 96 2001; 14 2007; 26 e_1_2_5_26_2 Li J (e_1_2_5_27_2) 2005 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 e_1_2_5_20_2 e_1_2_5_21_2 e_1_2_5_28_2 e_1_2_5_29_2 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_13_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_8_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_34_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_19_2 e_1_2_5_30_2 |
| References_xml | – reference: Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med 1996; 36: 960-964. – reference: Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44: 625-632. – reference: Conturo T, Lori N, Cull T, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999; 96: 10422-10427. – reference: Lin CP, Tseng WY, Cheng HC, Chen JH. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001; 14: 1035-1047. – reference: Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J. Magn Reson Imaging 2007; 26: 756-767. – reference: Jackowski M, Kao CY, Maolin Q, Constable RT, Staib LH. White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Med Image Anal 2005; 9: 427-440. – reference: Skare S, Hedehus M, Moseley ME, Li TQ. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 2000; 147: 340-352. – reference: Armitage PA, Bastin ME. Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magn Reson Med 2001; 45: 1056-1065. – reference: Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002; 48: 128-136. – reference: Wedeen V, Hagmann P, Tseng W, Reese T, Weisskoff R. Mapping complex tissue architecture with diffusion spectrum magnetic. resonance imaging. Magn Reson Med 2005; 54: 1377-1386. – reference: Heiervang E, Behrens T, Mackay C, Robson M, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 2006; 33: 867-877. – reference: Tuch DS. Q-ball imaging. Magn Reson Med 2004; 52: 1358-1372. – reference: Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 2005; 27: 357-367. – reference: Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007; 36: 630-644. – reference: Ciccarelli O, Parker GJ, Toosy AT, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 2003; 18: 348-359. – reference: Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 1997; 15: 771-784. – reference: Mori S, Crain B, Chacko V, Zijl PV. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265-269. – reference: Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal 2007; 588-603. – reference: Lazar M, Weinstein D, Tsuruda J, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003; 18: 306-321. – reference: Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002; 48: 577-582. – reference: Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515-525. – reference: Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127. – reference: Hagmann P, Thiran J, Jonasson L, et al. DTI mapping of human brain connectivity: statistical fibre Tracking and virtual dissection. Neuroimage 2003; 19: 545-554. – reference: Poupon C, Clark CA, Frouin V, et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 2000; 12: 184-195. – reference: Takahashi M, Hackney DB, Zhang G. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 2002; 99: 16102-16196. – reference: Li J, Wunsche BC. An analysis of algorithms for in vivo fibre tractography. Auckland, New Zealand: University of Auckland, Department of Computer Science. 2005. – reference: Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I. Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 2002; 6: 191-198. – reference: Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455. – reference: Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001; 45: 935-939. – year: 2009 – volume: 19 start-page: 545 year: 2003 end-page: 554 article-title: DTI mapping of human brain connectivity: statistical fibre Tracking and virtual dissection publication-title: Neuroimage – volume: 42 start-page: 515 year: 1999 end-page: 525 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn Reson Med – year: 2005 – year: 2001 – start-page: 249 year: 1999 end-page: 254 – year: 2000 – volume: 44 start-page: 625 year: 2000 end-page: 632 article-title: In vivo fiber tractography using DT‐MRI data publication-title: Magn Reson Med – volume: 52 start-page: 1358 year: 2004 end-page: 1372 article-title: Q‐ball imaging publication-title: Magn Reson Med – volume: 45 start-page: 265 year: 1999 end-page: 269 article-title: Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann Neurol – volume: 96 start-page: 10422 year: 1999 end-page: 10427 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc Natl Acad Sci U S A – volume: 18 start-page: 348 year: 2003 end-page: 359 article-title: From diffusion tractography to quantitative white matter tract measures: a reproducibility study publication-title: Neuroimage – volume: 42 start-page: 1123 year: 1999 end-page: 1127 article-title: In vivo three‐dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging publication-title: Magn Reson Med – volume: 48 start-page: 128 year: 2002 end-page: 136 article-title: Diffusion tensor imaging using single‐shot SENSE‐EPI publication-title: Magn Reson Med – volume: 12 start-page: 184 year: 2000 end-page: 195 article-title: Regularization of diffusion‐based direction maps for the tracking of brain white matter fascicles publication-title: Neuroimage – volume: 6 start-page: 191 year: 2002 end-page: 198 article-title: Distortion correction and robust tensor estimation for MR diffusion imaging publication-title: Med Image Anal – volume: 15 start-page: 435 year: 2002 end-page: 455 article-title: The basis of anisotropic water diffusion in the nervous system‐a technical review publication-title: NMR Biomed – start-page: 245 year: 1996 end-page: 251 – volume: 26 start-page: 756 year: 2007 end-page: 767 article-title: Effects of signal‐to‐noise ratio on the accuracy and reproducibility of diffusion tensor imaging‐derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J publication-title: Magn Reson Imaging – start-page: 588 year: 2007 end-page: 603 article-title: Correction of susceptibility artifacts in diffusion tensor data using non‐linear registration publication-title: Med Image Anal – volume: 45 start-page: 935 year: 2001 end-page: 939 article-title: Anisotropy in high angular resolution diffusion‐weighted MRI publication-title: Magn Reson Med – volume: 27 start-page: 357 year: 2005 end-page: 367 article-title: Optimal imaging parameters for fiber‐orientation estimation in diffusion MRI publication-title: Neuroimage. – volume: 15 start-page: 771 year: 1997 end-page: 784 article-title: Optimised diffusion‐weighting for measurement of apparent diffusion coefficient (ADC) in human brain publication-title: Magn Reson Imaging – volume: 147 start-page: 340 year: 2000 end-page: 352 article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI publication-title: J Magn Reson – volume: 99 start-page: 16102 year: 2002 end-page: 16196 article-title: Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord publication-title: Proc Natl Acad Sci U S A – volume: 36 start-page: 960 year: 1996 end-page: 964 article-title: Correction for distortion of echo‐planar images used to calculate the apparent diffusion coefficient publication-title: Magn Reson Med – volume: 18 start-page: 306 year: 2003 end-page: 321 article-title: White matter tractography using diffusion tensor deflection publication-title: Hum Brain Mapp – volume: 33 start-page: 867 year: 2006 end-page: 877 article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures publication-title: Neuroimage – volume: 45 start-page: 1056 year: 2001 end-page: 1065 article-title: Utilizing the diffusion‐to‐noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy publication-title: Magn Reson Med – volume: 9 start-page: 427 year: 2005 end-page: 440 article-title: White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging publication-title: Med Image Anal – year: 2008 – volume: 48 start-page: 577 year: 2002 end-page: 582 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn Reson Med – volume: 36 start-page: 630 year: 2007 end-page: 644 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – year: 1997 – volume: 14 start-page: 1035 year: 2001 end-page: 1047 article-title: Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese‐enhanced optic tracts publication-title: Neuroimage – volume: 54 start-page: 1377 year: 2005 end-page: 1386 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic. resonance imaging publication-title: Magn Reson Med – ident: e_1_2_5_31_2 doi: 10.1002/mrm.10184 – ident: e_1_2_5_32_2 doi: 10.1016/j.media.2007.05.004 – ident: e_1_2_5_29_2 doi: 10.1016/S1361-8415(02)00079-8 – ident: e_1_2_5_36_2 doi: 10.1002/mrm.20279 – ident: e_1_2_5_8_2 doi: 10.1006/nimg.2000.0607 – ident: e_1_2_5_9_2 doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – ident: e_1_2_5_7_2 doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – ident: e_1_2_5_19_2 doi: 10.1109/VISUAL.1999.809894 – ident: e_1_2_5_21_2 – ident: e_1_2_5_24_2 doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – ident: e_1_2_5_35_2 doi: 10.1002/mrm.1125 – ident: e_1_2_5_16_2 doi: 10.1016/j.neuroimage.2005.04.008 – ident: e_1_2_5_30_2 doi: 10.1002/mrm.1910360620 – ident: e_1_2_5_13_2 doi: 10.1016/S1053-8119(02)00042-3 – ident: e_1_2_5_10_2 doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H – ident: e_1_2_5_25_2 doi: 10.1006/jmre.2000.2209 – ident: e_1_2_5_26_2 – ident: e_1_2_5_17_2 doi: 10.1002/mrm.1140 – ident: e_1_2_5_20_2 doi: 10.1016/S1053-8119(03)00142-3 – ident: e_1_2_5_5_2 doi: 10.1002/hbm.10102 – ident: e_1_2_5_11_2 doi: 10.1006/nimg.2001.0882 – ident: e_1_2_5_22_2 doi: 10.1109/CVPR.1996.517081 – volume-title: An analysis of algorithms for in vivo fibre tractography year: 2005 ident: e_1_2_5_27_2 – ident: e_1_2_5_33_2 doi: 10.1002/mrm.20642 – ident: e_1_2_5_14_2 doi: 10.1016/j.neuroimage.2006.07.037 – ident: e_1_2_5_2_2 doi: 10.1016/j.media.2005.05.008 – ident: e_1_2_5_34_2 – ident: e_1_2_5_37_2 doi: 10.1002/mrm.10268 – ident: e_1_2_5_4_2 doi: 10.1002/nbm.782 – ident: e_1_2_5_18_2 – ident: e_1_2_5_23_2 doi: 10.1016/S0730-725X(97)00037-4 – ident: e_1_2_5_28_2 – ident: e_1_2_5_15_2 doi: 10.1002/jmri.21053 – ident: e_1_2_5_12_2 doi: 10.1016/j.neuroimage.2007.02.049 – ident: e_1_2_5_3_2 doi: 10.1073/pnas.252249999 – ident: e_1_2_5_6_2 doi: 10.1073/pnas.96.18.10422 |
| SSID | ssj0009945 |
| Score | 2.1454012 |
| Snippet | Purpose:
To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of... To evaluate fiber tracking strategy in terms of acquisition schemes in conjunction with four algorithms used in clinical routine, we studied one of the major... |
| SourceID | unpaywall proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 165 |
| SubjectTerms | Adult Algorithms Brain - pathology Brain Mapping corticospinal tract Diagnostic Imaging - methods diffusion tensor imaging Diffusion Tensor Imaging - methods Humans Magnetic Resonance Imaging - methods Male Middle Aged Models, Statistical Probability Pyramidal Tracts - pathology reproducibility Reproducibility of Results tractography |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5CCm3z0PtwLwQNhRa8sS1ZtqEvpTRNUzawS0PzUsRYstpNNnbw2rTpr68kH0tKCLRvfhgLHd9IM9LMNwDbNNDKYAV9pjX3WR5zHwvF_SRFHqskCBXaBOfpAd87ZPtH8dEGvB1yYTp-iPHCzWqG26-tgmO-2lmThh6f1ouJQWNqyUBDyp0_NV9zR2WZq1Bs7Afqh2mQjNyk0c761wun0TU7sb8uMzW34EZbnuH5T1wuL1qx7hjavQ3fhgF00Scnk7bJJ_L3X9yO_zvCO3Crt0_Juw5Qd2GjKO_B9Wn_An8fxKzF0iWmmW2SYKmIpcW0rLFdmO05cYS1pNJEm7ZIY7OwelpsgsvvVb1ofpyuSLsqFFmUZMjMJHVlVKAsHsDh7ocv7_f8vkiDL43ryXweI6PIo0wlxldhxlsJUoY8i7RUoQzjlAaBSjRFjTyVoX3VC6Wkxk9KUCqp6UPYLKuyeAwkVRmzyflJpBkz2MLYbCicBpHOcx4VyoPXw2IJ2TOY20IaS9FxL0fCzphwM-bBy1H2rOPtuFTqlVvzUQTrExvplsTi68FHEUznxr6ZfRYzD8gACmH0zz6qYFlU7UqkRtraaIkHjzqwjI1FthgBjTIPtkf0XNmZNw4NV4iI_en8k_t68i_CT-FmdxVuo4yfwWZTt8VzY0s1-QunM38AlaIabQ priority: 102 providerName: Wiley-Blackwell |
| Title | Quantitative and reproducibility study of four tractography algorithms used in clinical routine |
| URI | https://api.istex.fr/ark:/67375/WNG-0MR415QK-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22584 https://www.ncbi.nlm.nih.gov/pubmed/21618329 https://www.proquest.com/docview/873702837 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22584 |
| UnpaywallVersion | publishedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2586 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELaglUB74DcjCCZLTEgguSSO46SPE2KMoVa0omI8WRc7hrIuqdJEMP56zkkabWiakHjLw8WK7e_Od7m7z4Tsh741iBVgwlrJRBpJBpmRLE5ARib2AwOuwXkylUcLcXwSnVzo4m_5Ifofbk4zGnvtFHxtbGvnu-w-f_PjrFyOEJGJuEmGMkJvfECGi-mng69NkjMKWdB2TOMpxRnKyZ6h9OLLl86koVveX1c5nDvkdp2v4fwnrFaXfdnmMDq8S2A7jbYG5XRUV-lI__6L4fF_5nmP3Ok8VXrQQus-uZHlD8itSZeLf0jUrIa8aVFDg0khN9QRZDr-2Lbg9pw21LW0sNTiWLRy_VgdQTaF1beiXFbfzza03mSGLnO67dGkZYHKkGePyOLw3ee3R6y7roFpDEIFkxGIECQfmxijFoFxi58IkGNutQl0ECWh75vYhmBBJjpw-b1A6xAjphi00TZ8TAZ5kWdPCE3MWLg2_ZhbIRBlEKFpkaHPbZpKnhmPvNpumNIdl7m7UmOlWhZmrtyKqWbFPPKil123DB5XSr1s9r0XgfLU1bzFkfoyfa_8yRw9ndlHNfMI3QJDoSa69ArkWVFvVILSzluLPbLbAqYfjLtrCUI-9sh-j6BrP-Z1g4hrRNTxZP6heXr6b2M-I4OqrLPn6EJV6R4GD3O-1-nKHwH_HWk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK1F44D7CaYkKCaRsczhO8ogQZXtkpV21om-WY8ewdJtU2URQfj0eJ5tVUVUJ3vIwiRL7G-cbe-YbgO3Q08pgRbhUa-bSPGKuKBRz40SwSMWerwQWOGcTNj6m-yfRSZ-bg7UwnT7EsOGGnmHXa3Rw3JDeWauG_jir5yMDx4TehE3KTKCCnGi2Vo9KU9uj2DCI0PUTLx7USYOd9b2X_kebOLS_riKbd2CrLc_FxU-xWFzmsfZHtHuv67a6tPqFmH9yOmqbfCR__6Xu-N_feB_u9hSVfOww9QBuFOVDuJX1h_CPgE9bUdraNLNSElEqgsqYKBzbZdpeEKtZSypNtHkWabAQq1fGJmLxrarnzfezJWmXhSLzkqyKM0ldGS8oi8dwvPv56NPY7fs0uNJEn9RlkaChYEGqYhOuUBOweAkVLA20VL70oyT0PBXrUGjBEunjwZ4vZWhCpVhIJXX4BDbKqiyeAUlUSrE-Pw40pQZeIjJrCgu9QOc5CwrlwPvVbHHZi5hjL40F7-SXA44jxu2IOfB2sD3vpDuutHpnJ30wEfUpJrvFEf86-cK9bGYozvSATx0gK1Rw44J4riLKomqXPDHWSNNiB552aBkeFmA_gjBIHdge4HPty3ywcLjGhO9nsz179fxfjN_A1vgoO-SHe5ODF3C72xnHpOOXsNHUbfHKUKsmf20d6A82ax6O |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BKxV44D7CaYkKCaRsczhO8ogoSw92xa6o2jfLsWNYuk1W2URQfj0eJ5tVUVUJ3vIwsRL7G3vGM_MNwHboaWWwIlyqNXNpFjFX5Iq5cSJYpGLPVwILnEdjtndED06iky43B2thWn6I_sINNcPu16jg-ULpnTVr6I-zajYwcEzoddikUZpgRt_udM0elaa2R7GxIELXT7y4ZycNdtbvXjiPNnFqf11mbN6CG02xEOc_xXx-0Y61B9HwTtttdWn5CzH_5HTQ1NlA_v6L3fG___Eu3O5MVPK-xdQ9uJYX92Fr1AXhHwCfNKKwtWlmpySiUASZMZE4ts20PSeWs5aUmmgzFqmxEKtjxiZi_q2sZvX3syVplrkis4KsijNJVRotKPKHcDT8-PXDntv1aXCl8T6pyyJBQ8GCVMXGXaHGYfESKlgaaKl86UdJ6Hkq1qHQgiXSx8CeL2VoXKVYSCV1-Ag2irLInwBJVEqxPj8ONKUGXiIyewoLvUBnGQty5cDb1Wpx2ZGYYy-NOW_plwOOM8btjDnwupddtNQdl0q9sYvei4jqFJPd4ogfjz9xbzQ1Js7kkE8cICtUcKOCGFcRRV42S54YaTTTYgcet2jpBwuwH0EYpA5s9_C58mPeWThcIcIPRtN9-_T0X4RfwdaX3SH_vD8-fAY324txzDl-Dht11eQvjGVVZy-t_vwBtogeEg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2BDb2sO8Pj3YIVgYbOLVlWXYey2jXdSQsZWHdkzhL1pY1tYNjs3V_fSXZMe0oZbA3P5yFJf3udOe7-wlgJwq0MlhBn2nNfZbF3MdccT9JkccqCUKFtsF5MuWHc3Z0Ep9c6uJv-SH6H25WM5y9tgq-Urq18112n-7-PKsWI4PIlN2GIY-NNz6A4Xz6ee-bS3LGkR-2HdPmlKK-keM9Q-nll6-cSUO7vL-vczjvwd2mWOH5L1wur_qy7jA6eAC4mUZbg3I6aupsJP_8xfD4P_N8CPc7T5XstdB6BLfy4jHcmXS5-CcgZg0WrkXNGEyChSKWINPyx7YFt-fEUdeSUhNtxiK17cfqCLIJLr-X1aL-cbYmzTpXZFGQTY8mqUqjDEX-FOYH-1_eH_rddQ2-NEEo83mMLEJOxyoxUQszcUuQMuRjqqUKZRinURCoREeokacytPm9UMrIREwJSiV19AwGRVnkL4Ckasxsm35CNWMGZRgb08KjgOos4zRXHrzdbJiQHZe5vVJjKVoWZirsigm3Yh687mVXLYPHtVJv3L73Ilid2pq3JBZfpx9EMDk2ns7sk5h5QDbAEEYTbXoFi7xs1iI10tZbSzx43gKmH4zaawkiOvZgp0fQjR_zziHiBhFxNDn-6J5e_tuYWzCoqybfNi5Unb3qtOQCV2YcgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+and+reproducibility+study+of+four+tractography+algorithms+used+in+clinical+routine&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tensaouti%2C+Fatima&rft.au=Lahlou%2C+Ihssan&rft.au=Clarisse%2C+Perrine&rft.au=Lotterie%2C+Jean+Albert&rft.date=2011-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=34&rft.issue=1&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1002%2Fjmri.22584&rft.externalDBID=10.1002%252Fjmri.22584&rft.externalDocID=JMRI22584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |