Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays

Purpose: To evaluate the performance of four‐dimensional (4D) flow‐sensitive MRI in the thoracic aorta using 12‐ and 32‐channel coils and parallel imaging. Materials and Methods: 4D flow‐sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils a...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 35; no. 1; pp. 190 - 195
Main Authors Stalder, Aurélien F., Dong, Zhiyuan, Yang, Qi, Bock, Jelena, Hennig, Jürgen, Markl, Michael, Li, Kuncheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2012
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.22633

Cover

Abstract Purpose: To evaluate the performance of four‐dimensional (4D) flow‐sensitive MRI in the thoracic aorta using 12‐ and 32‐channel coils and parallel imaging. Materials and Methods: 4D flow‐sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12‐channel coil, R = 2; (ii) 12‐channel coil, R = 3; (iii) 32‐channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi‐quantitative image grading was performed to assess quality of phase‐contrast angiography and 3D flow visualization. Results: Parallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra‐aortic branches where the 32‐channel coil proved superior. Conclusion: Using 32‐channel coils is beneficial for 4D flow‐sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality. J. Magn. Reson. Imaging 2012;35:190‐195. © 2011 Wiley Periodicals, Inc.
AbstractList Purpose: To evaluate the performance of four‐dimensional (4D) flow‐sensitive MRI in the thoracic aorta using 12‐ and 32‐channel coils and parallel imaging. Materials and Methods: 4D flow‐sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12‐channel coil, R = 2; (ii) 12‐channel coil, R = 3; (iii) 32‐channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi‐quantitative image grading was performed to assess quality of phase‐contrast angiography and 3D flow visualization. Results: Parallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra‐aortic branches where the 32‐channel coil proved superior. Conclusion: Using 32‐channel coils is beneficial for 4D flow‐sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality. J. Magn. Reson. Imaging 2012;35:190‐195. © 2011 Wiley Periodicals, Inc.
To evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging.PURPOSETo evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging.4D flow-sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12-channel coil, R = 2; (ii) 12-channel coil, R = 3; (iii) 32-channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi-quantitative image grading was performed to assess quality of phase-contrast angiography and 3D flow visualization.MATERIALS AND METHODS4D flow-sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12-channel coil, R = 2; (ii) 12-channel coil, R = 3; (iii) 32-channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi-quantitative image grading was performed to assess quality of phase-contrast angiography and 3D flow visualization.Parallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra-aortic branches where the 32-channel coil proved superior.RESULTSParallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra-aortic branches where the 32-channel coil proved superior.Using 32-channel coils is beneficial for 4D flow-sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality.CONCLUSIONUsing 32-channel coils is beneficial for 4D flow-sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality.
To evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging. 4D flow-sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12-channel coil, R = 2; (ii) 12-channel coil, R = 3; (iii) 32-channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi-quantitative image grading was performed to assess quality of phase-contrast angiography and 3D flow visualization. Parallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra-aortic branches where the 32-channel coil proved superior. Using 32-channel coils is beneficial for 4D flow-sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality.
Author Hennig, Jürgen
Markl, Michael
Yang, Qi
Li, Kuncheng
Bock, Jelena
Dong, Zhiyuan
Stalder, Aurélien F.
Author_xml – sequence: 1
  givenname: Aurélien F.
  surname: Stalder
  fullname: Stalder, Aurélien F.
  organization: Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
– sequence: 2
  givenname: Zhiyuan
  surname: Dong
  fullname: Dong, Zhiyuan
  organization: Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
– sequence: 3
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
– sequence: 4
  givenname: Jelena
  surname: Bock
  fullname: Bock, Jelena
  organization: Department of Radiology - Medical Physics, University Hospital, Freiburg, Germany
– sequence: 5
  givenname: Jürgen
  surname: Hennig
  fullname: Hennig, Jürgen
  organization: Department of Radiology - Medical Physics, University Hospital, Freiburg, Germany
– sequence: 6
  givenname: Michael
  surname: Markl
  fullname: Markl, Michael
  organization: Department of Radiology - Medical Physics, University Hospital, Freiburg, Germany
– sequence: 7
  givenname: Kuncheng
  surname: Li
  fullname: Li, Kuncheng
  email: likuncheng1955@yahoo.com.cn
  organization: Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21990271$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQRi1URB-w4Qcg75CoXPxKHLNDtw_6oEg8N0iW40xUFye-tZNe7r8nl7RdINSFNbZ0vhnrzC7a6mMPCL1k9IBRyt9ed8kfcF4K8QTtsIJzwouq3JrutBCEVVRto92crymlWsviGdrmTGvKFdtBP4_jmEjjO-izj70NuA1xRfLmOfhbwB8_n-LY4uEKphOTdd5hG9Ng32HGCb6FlMeMBSfuyvY9BOyiD9imZNf5OXra2pDhxV3dQ9-Oj74uPpCLTyeni_cXxEnKBbFlzawW0lUCmkY5qoRooFYSyhq4a0oFjdJQO0F1W1stnat1K5tCypJLcGIP7c99x35p1ysbglkm39m0NoyajSOzcWT-Opro1zO9TPFmhDyYzmcHIdge4piNZkzLqhDVRL66I8e6g-ah6b2-CaAz4FLMOUFrnB_sMIkckvXh_9Pf_BN59Ktshlc-wPoR0pxNe7rPkDnj8wC_HzI2_TKlEqowPy5PzLlgl18W5XdzKP4Ak0Wvkg
CitedBy_id crossref_primary_10_1007_s10554_014_0565_y
crossref_primary_10_1016_j_ejrad_2014_06_022
crossref_primary_10_1007_s11886_014_0481_8
crossref_primary_10_1155_2016_1724630
crossref_primary_10_1002_jmri_24814
crossref_primary_10_1097_RLI_0b013e318272d29f
crossref_primary_10_1148_ryct_2019190102
crossref_primary_10_1016_j_rcl_2013_08_002
crossref_primary_10_1002_jmri_25164
crossref_primary_10_1002_mrm_24811
crossref_primary_10_1002_mrm_25317
crossref_primary_10_1002_mrm_25999
crossref_primary_10_1002_mrm_24925
Cites_doi 10.1016/S0022-5223(95)70102-8
10.1037/h0031619
10.1002/mrm.20636
10.1002/jmri.22083
10.1002/jmri.1880030407
10.1002/jmri.20871
10.1002/mrm.1910390218
10.1002/mrm.1910330119
10.1002/mrm.21598
10.1002/jmri.1880020206
10.1186/1532-429X-10-30
10.1016/j.jtcvs.2008.02.062
10.1002/mrm.21763
10.1002/mrm.1910310104
10.1002/mrm.21778
10.1002/mrm.10171
10.1002/mrm.10611
10.1002/mrm.21109
10.1007/s007910050039
10.1002/mrm.22199
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1002/jmri.22633
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 195
ExternalDocumentID 10.1002/jmri.22633
21990271
10_1002_jmri_22633
JMRI22633
ark_67375_WNG_K31NSC6V_D
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EU Science and Technology Fellowship Program
  funderid: EuropeAid/127024/L/ACT/CN_STF/33
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4023-a6b1a934c83edd7c0733deb74e6be2cd67ed79ebc309fba94ccb9f4d544624ec3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Wed Oct 01 15:56:55 EDT 2025
Thu Jul 10 16:47:12 EDT 2025
Thu Apr 03 07:07:47 EDT 2025
Wed Oct 01 04:36:42 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Jan 22 16:20:23 EST 2025
Sun Sep 21 06:26:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4023-a6b1a934c83edd7c0733deb74e6be2cd67ed79ebc309fba94ccb9f4d544624ec3
Notes istex:02FD09753676B3F18019AF4ED177C32072141495
ArticleID:JMRI22633
EU Science and Technology Fellowship Program - No. EuropeAid/127024/L/ACT/CN_STF/33
ark:/67375/WNG-K31NSC6V-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22633
PMID 21990271
PQID 911948538
PQPubID 23479
PageCount 6
ParticipantIDs unpaywall_primary_10_1002_jmri_22633
proquest_miscellaneous_911948538
pubmed_primary_21990271
crossref_citationtrail_10_1002_jmri_22633
crossref_primary_10_1002_jmri_22633
wiley_primary_10_1002_jmri_22633_JMRI22633
istex_primary_ark_67375_WNG_K31NSC6V_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01
January 2012
2012-01-00
2012-Jan
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med 2008; 60: 1329-1336.
Bernstein MA, Zhou XJ, Polzin JA, et al. Concomitant gradient terms in phase contrast MR: Analysis and correction. Magn Reson Med 1998; 39: 300-308.
Bock J, Frydrychowicz A, Stalder AF, et al. 4D phase contrast MRI at 3 T: Effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 2010; 63: 330-338.
Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008; 60: 1218-1231.
Hope MD, Meadows AK, Hope TA, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 2010; 31: 711-718.
Song SM, Napel S, Glover GH, Pelc NJ. Noise reduction in three-dimensional phase-contrast MR velocity measurements. J Magn Reson Imaging 1993; 3: 587-596.
Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (grappa). Magn Reson Med 2002; 47: 1202-1210.
Quarteroni A, Tuveri M, Veneziani A. Computational vascular fluid dynamics: Problems, models and methods. Comput Visual Sci 2000; 2: 163-197.
Frydrychowicz A, Arnold R, Hirtler D, et al. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J Cardiovasc Magn Reson 2008; 10: 30.
Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull 1971; 76: 378-382.
Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 2007; 57: 127-140.
Emanuel G. Analytical fluid dynamics. Boca Raton, FL: CRC Press; 2001. 808 p.
Frydrychowicz A, Berger A, Russe MF, et al. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J Thorac Cardiovasc Surg 2008; 136: 400-407.
Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008; 59: 1431-1439.
Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg 1995; 110: 704-714.
Tsao J, Boesiger P, Pruessmann KP. K-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003; 50: 1031-1042.
Markl M, Harloff A, Bley TA, et al. Time-resolved 3D MR velocity mapping at 3T: Improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 2007; 25: 824-831.
Lee AT, Pike GB, Pelc NJ. Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio. Magn Reson Med 1995; 33: 122-126.
Napel S, Lee DH, Frayne R, Rutt BK. Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging 1992; 2: 143-153.
Buonocore MH. Algorithms for improving calculated streamlines in 3-D phase contrast angiography. Magn Reson Med 1994; 31: 22-30.
Reeder SB, Wintersperger BJ, Dietrich O, et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: Application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 2005; 54: 748-754.
2002; 47
2010; 31
1998; 39
1971; 76
2001
1995; 33
2008; 59
2005; 54
2008; 10
2000; 2
2008; 136
1995; 110
2003; 50
2008; 60
1992; 2
2007; 57
1993; 3
2010; 63
2007; 25
1994; 31
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_18_2
Emanuel G (e_1_2_6_19_2) 2001
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_22_2
e_1_2_6_11_2
e_1_2_6_21_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
References_xml – reference: Tsao J, Boesiger P, Pruessmann KP. K-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003; 50: 1031-1042.
– reference: Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (grappa). Magn Reson Med 2002; 47: 1202-1210.
– reference: Buonocore MH. Algorithms for improving calculated streamlines in 3-D phase contrast angiography. Magn Reson Med 1994; 31: 22-30.
– reference: Reeder SB, Wintersperger BJ, Dietrich O, et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: Application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 2005; 54: 748-754.
– reference: Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg 1995; 110: 704-714.
– reference: Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008; 59: 1431-1439.
– reference: Emanuel G. Analytical fluid dynamics. Boca Raton, FL: CRC Press; 2001. 808 p.
– reference: Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull 1971; 76: 378-382.
– reference: Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008; 60: 1218-1231.
– reference: Frydrychowicz A, Berger A, Russe MF, et al. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J Thorac Cardiovasc Surg 2008; 136: 400-407.
– reference: Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 2007; 57: 127-140.
– reference: Song SM, Napel S, Glover GH, Pelc NJ. Noise reduction in three-dimensional phase-contrast MR velocity measurements. J Magn Reson Imaging 1993; 3: 587-596.
– reference: Quarteroni A, Tuveri M, Veneziani A. Computational vascular fluid dynamics: Problems, models and methods. Comput Visual Sci 2000; 2: 163-197.
– reference: Bock J, Frydrychowicz A, Stalder AF, et al. 4D phase contrast MRI at 3 T: Effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 2010; 63: 330-338.
– reference: Bernstein MA, Zhou XJ, Polzin JA, et al. Concomitant gradient terms in phase contrast MR: Analysis and correction. Magn Reson Med 1998; 39: 300-308.
– reference: Napel S, Lee DH, Frayne R, Rutt BK. Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging 1992; 2: 143-153.
– reference: Hope MD, Meadows AK, Hope TA, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 2010; 31: 711-718.
– reference: Frydrychowicz A, Arnold R, Hirtler D, et al. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J Cardiovasc Magn Reson 2008; 10: 30.
– reference: Markl M, Harloff A, Bley TA, et al. Time-resolved 3D MR velocity mapping at 3T: Improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 2007; 25: 824-831.
– reference: Lee AT, Pike GB, Pelc NJ. Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio. Magn Reson Med 1995; 33: 122-126.
– reference: Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med 2008; 60: 1329-1336.
– volume: 33
  start-page: 122
  year: 1995
  end-page: 126
  article-title: Three‐point phase‐contrast velocity measurements with increased velocity‐to‐noise ratio
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1218
  year: 2008
  end-page: 1231
  article-title: Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1031
  year: 2003
  end-page: 1042
  article-title: K‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations
  publication-title: Magn Reson Med
– volume: 3
  start-page: 587
  year: 1993
  end-page: 596
  article-title: Noise reduction in three‐dimensional phase‐contrast MR velocity measurements
  publication-title: J Magn Reson Imaging
– volume: 110
  start-page: 704
  year: 1995
  end-page: 714
  article-title: Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts
  publication-title: J Thorac Cardiovasc Surg
– volume: 31
  start-page: 711
  year: 2010
  end-page: 718
  article-title: Clinical evaluation of aortic coarctation with 4D flow MR imaging
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 330
  year: 2010
  end-page: 338
  article-title: 4D phase contrast MRI at 3 T: Effect of standard and blood‐pool contrast agents on SNR, PC‐MRA, and blood flow visualization
  publication-title: Magn Reson Med
– volume: 59
  start-page: 1431
  year: 2008
  end-page: 1439
  article-title: A 128‐channel receive‐only cardiac coil for highly accelerated cardiac MRI at 3 Tesla
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (grappa)
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1329
  year: 2008
  end-page: 1336
  article-title: Improved 3D phase contrast MRI with off‐resonance corrected dual echo VIPR
  publication-title: Magn Reson Med
– volume: 25
  start-page: 824
  year: 2007
  end-page: 831
  article-title: Time‐resolved 3D MR velocity mapping at 3T: Improved navigator‐gated assessment of vascular anatomy and blood flow
  publication-title: J Magn Reson Imaging
– volume: 57
  start-page: 127
  year: 2007
  end-page: 140
  article-title: Time‐resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging
  publication-title: Magn Reson Med
– volume: 39
  start-page: 300
  year: 1998
  end-page: 308
  article-title: Concomitant gradient terms in phase contrast MR: Analysis and correction
  publication-title: Magn Reson Med
– volume: 31
  start-page: 22
  year: 1994
  end-page: 30
  article-title: Algorithms for improving calculated streamlines in 3‐D phase contrast angiography
  publication-title: Magn Reson Med
– volume: 136
  start-page: 400
  year: 2008
  end-page: 407
  article-title: Time‐resolved magnetic resonance angiography and flow‐sensitive 4‐dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis
  publication-title: J Thorac Cardiovasc Surg
– volume: 54
  start-page: 748
  year: 2005
  end-page: 754
  article-title: Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: Application with cardiac imaging and a 32‐channel cardiac coil
  publication-title: Magn Reson Med
– volume: 2
  start-page: 143
  year: 1992
  end-page: 153
  article-title: Visualizing three‐dimensional flow with simulated streamlines and three‐dimensional phase‐contrast MR imaging
  publication-title: J Magn Reson Imaging
– volume: 2
  start-page: 163
  year: 2000
  end-page: 197
  article-title: Computational vascular fluid dynamics: Problems, models and methods
  publication-title: Comput Visual Sci
– start-page: 808
  year: 2001
– volume: 10
  start-page: 30
  year: 2008
  article-title: Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation
  publication-title: J Cardiovasc Magn Reson
– volume: 76
  start-page: 378
  year: 1971
  end-page: 382
  article-title: Measuring nominal scale agreement among many raters
  publication-title: Psychol Bull
– ident: e_1_2_6_2_2
  doi: 10.1016/S0022-5223(95)70102-8
– ident: e_1_2_6_22_2
  doi: 10.1037/h0031619
– ident: e_1_2_6_14_2
  doi: 10.1002/mrm.20636
– ident: e_1_2_6_8_2
  doi: 10.1002/jmri.22083
– ident: e_1_2_6_20_2
  doi: 10.1002/jmri.1880030407
– start-page: 808
  volume-title: Analytical fluid dynamics
  year: 2001
  ident: e_1_2_6_19_2
– ident: e_1_2_6_7_2
  doi: 10.1002/jmri.20871
– ident: e_1_2_6_16_2
  doi: 10.1002/mrm.1910390218
– ident: e_1_2_6_17_2
  doi: 10.1002/mrm.1910330119
– ident: e_1_2_6_15_2
  doi: 10.1002/mrm.21598
– ident: e_1_2_6_3_2
  doi: 10.1002/jmri.1880020206
– ident: e_1_2_6_5_2
  doi: 10.1186/1532-429X-10-30
– ident: e_1_2_6_6_2
  doi: 10.1016/j.jtcvs.2008.02.062
– ident: e_1_2_6_11_2
  doi: 10.1002/mrm.21763
– ident: e_1_2_6_4_2
  doi: 10.1002/mrm.1910310104
– ident: e_1_2_6_9_2
  doi: 10.1002/mrm.21778
– ident: e_1_2_6_10_2
  doi: 10.1002/mrm.10171
– ident: e_1_2_6_12_2
  doi: 10.1002/mrm.10611
– ident: e_1_2_6_13_2
  doi: 10.1002/mrm.21109
– ident: e_1_2_6_18_2
  doi: 10.1007/s007910050039
– ident: e_1_2_6_21_2
  doi: 10.1002/mrm.22199
SSID ssj0009945
Score 2.0961983
Snippet Purpose: To evaluate the performance of four‐dimensional (4D) flow‐sensitive MRI in the thoracic aorta using 12‐ and 32‐channel coils and parallel imaging....
To evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging. 4D...
To evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging.PURPOSETo...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 190
SubjectTerms 32-channel coil
4D flow-sensitive MRI
Adult
Algorithms
aorta
Aorta, Thoracic - pathology
Blood Flow Velocity
Cardiovascular System - pathology
GRAPPA
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
Models, Statistical
parallel imaging
phase-contrast MRI
Reproducibility of Results
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA46A4oP3nUrKgEXQaHjtEnTxrdldVxXZhB1dH0KuRXG7bZDZ8q6PvkT_I3-Ek-aTtmVZRF8aGnDaZrLuXy5nBOEtmOqeK41CbmGsSpN4aYS5wXCM5Yyllmu3XzHdMb25nT_IDk45cXv40P0E25OMlp97QR8aXKv57vV_fjFt6N6MQIAQchlNGQJoPEBGs5n73e-toucCQkj7zENVgr-n2Ssj1B6-uMzNmnomvf7eYDzGrralEt5ciyL4iyWbY3R5AaSm2r4PSiHo2atRvrHXxEe_6eeN9H1DqniHc9at9AlW95GV6bdWvwdZCZA8fvnL-POB_CxPXBeVMeQtHIJTo_i6Ye3uMoxoEy4gNv0QmPpEP9LHMVAid2ukGaFiXtxTshQWqyrRYFlXcuT1V00n7z-tLsXdmc2hBpGoiSUTEWSE6ozYo1JtTsT0liVUsuUjbVhqTUpt0qTMc-V5FRrYBZqEhiWxtRqcg8Nyqq0WwjLccZBjWsLGIlKqTiMbnID3GQlmFTKAvRs02tCdwHN3bkahfChmGPhmk20zRagJz3t0ofxOJfqadv5PYmsD93GtzQRX2ZvxDsSzT7uss_iVYDwhjsEiKNbY5GlrZqVANvh4u2QLED3Pdf0mYFt4OM4jQK03bPRhYV53rLFBSRiH3qxfXrwb3k-RIN13dhHgKPW6nEnKn8Ag0UgXQ
  priority: 102
  providerName: Unpaywall
Title Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays
URI https://api.istex.fr/ark:/67375/WNG-K31NSC6V-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22633
https://www.ncbi.nlm.nih.gov/pubmed/21990271
https://www.proquest.com/docview/911948538
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22633
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2586
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UFtQ-eNfGSxmwCArZbjKzk4z4Uqprrewi1bX1QYaZyQTWxqQkG2p98if4G_0lnkl2s1RKQR8SkuEkzOXMnO_M5TsAWyHTIjWG-sKgr8oivOmBOwUiYh5xHlth3HzHaMz3Jmz_aHC0Ai8XZ2Fafohuws31jGa8dh1c6Wp7SRr69Vs57SF4oI7qM6C88acOltxRQjQRihE_UD-I-1HHTRpuLz89Z43WXMV-vwhqrsPVOj9RZ6cqy86j2MYMDW_Al0UB2t0nx716pnvmx1_cjv9bwptwfY5PyU6rULdgxea34cpovgJ_B5IhSvz--StxUQFaRg-SZsUpJlUuwY2eZHTwlhQpQWyJF-qYmRqiHM5_QYIQJYnbC1JXhLoXd_QYc0pMMc2IKkt1Vt2FyfD1x909fx6pwTfof1JfcR0oQZmJqU2SyLhIkInVEbNc29AkPLJJJKw2tC9SrQQzBlWEJQN0RkNmDb0Hq3mR2w0gqh8LHLyNRWTElNICfZo0QR2yCg0p4x48W7SYNHMacxdNI5MtAXMoXbXJpto8eNLJnrTkHRdKPW0avhNR5bHb7hYN5OH4jXxHg_GHXf5JvvKALDRDYid0Kysqt0VdSbQYjmWHxh7cbzWm-xlaBIGuf-DBVqdCl2bmeaMSl4jIfWzF5unBvwg_hGsI9sJ2-ugRrM7K2j5GQDXTm03H2YS1yfj9zuc_7xcf8A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglSgceD_C0xIVEkjZbmKvE3NDhWX72D2UFnqzbMeRloakSjYq5cRP4DfyS5hJ0qyKqkpwSJREk8ixx55vxvY3hKyH3MjUWuZLC74qj-BkRrgLRMYiEiJ20mK8YzoTkwO-fTg67Nbm4F6Ylh-iD7hhz2jGa-zgGJDeWLKGfv1WzgeAHhi7Sla5AEcFMdHekj1KyiZHMSAI5gfxMOrZScON5bvn7NEqVu33i8DmDbJW58f69ERn2Xkc2xii8a0222rV8Bfi-pOjQb0wA_vjL3bH__7H2-RmB1Hpu1an7pArLr9Lrk27Sfh7JBmDxO-fvxJMDNCSetA0K07gUYUPcACl070tWqQU4CUcoGZ2bqlGqP-WBiFIUlwOUleU4Q3uPoaiUlvMM6rLUp9W98nB-MP-5sTvkjX4FlxQ5mthAi0ZtzFzSRJZTAaZOBNxJ4wLbSIil0TSGcuGMjVacmtBS3gyAn805M6yB2QlL3L3iFA9jCWM39YBOOJaGwluTZqAGjkNtpQLj7w-azJlOyZzTKiRqZaDOVRYbaqpNo-87GWPW_6OC6VeNS3fi-jyCFe8RSP1ZfZR7bBg9mlTfFbvPULPVENBP8TJFZ27oq4UGA0k2mGxRx62KtN_DIyCBO8_8Mh6r0OXFuZNoxOXiKhtaMXm6vG_CL8ga5P96a7a3ZrtPCHXAfuFbTTpKVlZlLV7BvhqYZ43vegPySAiYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWglQo8cKeEqyUqJJCy3cTOxbyhLksv7AoVCn2zbMeRtg3JKtmolCc-gW_kS5hJ0qyKqkrwkCiJJpFjjz1n7PEZQjZ8rkVqDHOFAV-VR3DSAe4CEXEYhWFshcH5jsk03D7gu4fBYRebg3thWn6IfsINe0YzXmMHt_Mk3Vyyhh59K2cDQA-MXSWrPBAxRvSN9pfsUUI0OYoBQTDXi4dRz07qby7fPWePVrFqv18ENm-Qa3U-V6cnKsvO49jGEI1vtdlWq4a_EONPjgf1Qg_Mj7_YHf_7H2-Tmx1EpW9bnbpDrtj8LlmbdIvw90gyBonfP38lmBigJfWgaVacwKMKH-AASif7O7RIKcBLOEDNzMxQhVD_DfV8kKQYDlJXlOEN7j6GolJTzDKqylKdVvfJwfjd561tt0vW4BpwQZmrQu0pwbiJmU2SyGAyyMTqiNtQW98kYWSTSFht2FCkWgluDGgJTwLwR31uDXtAVvIitw8JVcNYwPhtLIAjrpQW4NakCaiRVWBLeeiQV2dNJk3HZI4JNTLZcjD7EqtNNtXmkBe97Lzl77hQ6mXT8r2IKo8x4i0K5Nfpe7nHvOmnrfCLHDmEnqmGhH6Iiysqt0VdSTAaSLTDYoestyrTfwyMggDv33PIRq9DlxbmdaMTl4jIXWjF5urRvwg_J2sfR2P5YWe695hcB-jnt5NJT8jKoqztU4BXC_2s6UR_AETUIeU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA46A4oP3nUrKgEXQaHjtEnTxrdldVxXZhB1dH0KuRXG7bZDZ8q6PvkT_I3-Ek-aTtmVZRF8aGnDaZrLuXy5nBOEtmOqeK41CbmGsSpN4aYS5wXCM5Yyllmu3XzHdMb25nT_IDk45cXv40P0E25OMlp97QR8aXKv57vV_fjFt6N6MQIAQchlNGQJoPEBGs5n73e-toucCQkj7zENVgr-n2Ssj1B6-uMzNmnomvf7eYDzGrralEt5ciyL4iyWbY3R5AaSm2r4PSiHo2atRvrHXxEe_6eeN9H1DqniHc9at9AlW95GV6bdWvwdZCZA8fvnL-POB_CxPXBeVMeQtHIJTo_i6Ye3uMoxoEy4gNv0QmPpEP9LHMVAid2ukGaFiXtxTshQWqyrRYFlXcuT1V00n7z-tLsXdmc2hBpGoiSUTEWSE6ozYo1JtTsT0liVUsuUjbVhqTUpt0qTMc-V5FRrYBZqEhiWxtRqcg8Nyqq0WwjLccZBjWsLGIlKqTiMbnID3GQlmFTKAvRs02tCdwHN3bkahfChmGPhmk20zRagJz3t0ofxOJfqadv5PYmsD93GtzQRX2ZvxDsSzT7uss_iVYDwhjsEiKNbY5GlrZqVANvh4u2QLED3Pdf0mYFt4OM4jQK03bPRhYV53rLFBSRiH3qxfXrwb3k-RIN13dhHgKPW6nEnKn8Ag0UgXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-dimensional+flow-sensitive+MRI+of+the+thoracic+aorta%3A+12-+versus+32-channel+coil+arrays&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Stalder%2C+Aur%C3%A9lien+F&rft.au=Dong%2C+Zhiyuan&rft.au=Yang%2C+Qi&rft.au=Bock%2C+Jelena&rft.date=2012-01-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=35&rft.issue=1&rft.spage=190&rft_id=info:doi/10.1002%2Fjmri.22633&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon