Optimizing long-term stability of siRNA using thermoassemble ionizable reverse pluronic-Bcl2 micelleplexes

Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 264; no. Pt 2; p. 130783
Main Authors De, Anindita, Kang, Ji Hee, Sauraj, Lee, O Hyun, Ko, Young Tag
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text
ISSN0141-8130
1879-0003
1879-0003
DOI10.1016/j.ijbiomac.2024.130783

Cover

Abstract Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers. [Display omitted] •TIRP tech tackles siRNA hurdles with thermoassembly & ionizable characteristics overcoming past limitations.•TIRP-Bcl2's flexi-rigid response to hyperthermia boosts tissue penetration, siRNA release, and gene silencing in cancer.•Dual ionizable headgroup boosts siRNA loading; while reverse pluronic's unique orientation stabilizes encapsulated siRNA.
AbstractList Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.
Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers. [Display omitted] •TIRP tech tackles siRNA hurdles with thermoassembly & ionizable characteristics overcoming past limitations.•TIRP-Bcl2's flexi-rigid response to hyperthermia boosts tissue penetration, siRNA release, and gene silencing in cancer.•Dual ionizable headgroup boosts siRNA loading; while reverse pluronic's unique orientation stabilizes encapsulated siRNA.
Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.
Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.
ArticleNumber 130783
Author Kang, Ji Hee
De, Anindita
Sauraj
Lee, O Hyun
Ko, Young Tag
Author_xml – sequence: 1
  givenname: Anindita
  surname: De
  fullname: De, Anindita
  email: aninditanirupa@gmail.com
– sequence: 2
  givenname: Ji Hee
  surname: Kang
  fullname: Kang, Ji Hee
– sequence: 3
  surname: Sauraj
  fullname: Sauraj
– sequence: 4
  givenname: O Hyun
  surname: Lee
  fullname: Lee, O Hyun
– sequence: 5
  givenname: Young Tag
  surname: Ko
  fullname: Ko, Young Tag
  email: youngtakko@gachon.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38471603$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URG8Lf6HKkk0u4_gRR2JBqXhJFZUQrC3HmRRHThxsp6L99SS6vRs2dzWjme-MrXMuyNkUJiTkisKeApXvhr0bWhdGY_cVVHxPGdSKvSA7quqmBAB2RnZAOS3VujonFykN61QKql6Rc6Z4TSWwHRnu5uxG9-Sm-8KH6b7MGMciZdM67_JjEfoiuR_fr4slbUj-va6DSQnH1mPhwuSezNZFfMCYsJj9EtehLT9aXxWjs-g9zh7_YnpNXvbGJ3zzXC_Jr8-fft58LW_vvny7ub4tLQeay45LyaSohYBOGMWrvuEoGNCqxQY6xmTfKW57rgRU0FkrZWtMD23dQl1Dzy7J28PdOYY_C6asR5e2f5gJw5I0o4KJmgvVnESrRkipRMNgRa-e0aUdsdNzdKOJj_po5Qq8PwA2hpQi9tq6bPJqUY7GeU1Bb8npQR-T01ty-pDcKpf_yY8vnBR-OAhx9fTBYdTJOpwsdi6izboL7tSJf44WtyQ
CitedBy_id crossref_primary_10_3390_biomedicines12081822
crossref_primary_10_1089_adt_2024_121
crossref_primary_10_1016_j_ejpb_2024_114292
Cites_doi 10.1016/j.colsurfb.2017.06.014
10.1021/acsnano.0c01505
10.1080/17425247.2023.2153832
10.1016/j.carbpol.2020.117444
10.1007/s40005-021-00547-7
10.1021/acsami.0c17427
10.1038/s42003-021-02441-2
10.1007/s10544-020-0469-7
10.1021/acsabm.0c00390
10.1021/acs.macromol.8b00689
10.1016/j.jconrel.2019.10.047
10.1021/ma960272f
10.1021/ma9814550
10.1038/nrg3763
10.1016/j.xphs.2022.11.001
10.1016/j.biomaterials.2015.05.025
10.1021/acsomega.1c06919
10.2147/IJN.S123062
10.1039/c1an15176b
10.1054/bjoc.2001.2165
10.1016/j.jcyt.2021.09.012
10.1080/10717544.2022.2108523
10.1016/j.biomaterials.2010.12.039
10.1016/j.addr.2013.08.008
10.1016/j.ijbiomac.2017.09.059
10.18609/cgti.2019.007
10.1016/j.jconrel.2015.10.024
10.1039/C8NA00315G
10.1177/1849543518805355
10.2144/000112593
10.1016/j.ijpharm.2021.120586
10.1080/17425247.2019.1663822
10.1002/mabi.202100025
10.1002/adma.201903277
10.1016/j.cis.2021.102563
10.3390/polym14091823
10.1007/s11051-020-04959-8
10.1007/s40204-019-0118-5
10.1016/j.ijpharm.2019.05.052
10.1016/S0168-3659(02)00009-3
10.1002/adtp.201800085
10.1007/s10853-016-0729-3
10.1371/journal.pone.0072238
10.1016/j.jconrel.2019.04.014
10.1080/03639045.2019.1665060
10.1038/s41565-021-00898-0
10.1016/j.bsheal.2022.03.003
10.1007/s11426-012-4587-9
10.1021/la104590k
10.1021/la500133y
10.1021/acsnano.1c04996
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2024.130783
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 38471603
10_1016_j_ijbiomac_2024_130783
S0141813024015873
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
AAYXX
AGRNS
BNPGV
CITATION
RIG
SSH
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
7S9
L.6
ID FETCH-LOGICAL-c401t-d4663657550d5a842f94e53012be90d336fd84cf485020dcc66baaf0b7b0770f3
IEDL.DBID .~1
ISSN 0141-8130
1879-0003
IngestDate Fri Sep 05 15:07:39 EDT 2025
Sun Sep 28 09:18:26 EDT 2025
Thu Apr 03 07:08:41 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Tue Jul 01 03:37:00 EDT 2025
Sat Sep 06 17:18:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Thermosassemble
Ionizable reverse pluronic
Bcl2 siRNA
Blood brain barrier crossing
Long-term stability
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-d4663657550d5a842f94e53012be90d336fd84cf485020dcc66baaf0b7b0770f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38471603
PQID 2956685930
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153574589
proquest_miscellaneous_2956685930
pubmed_primary_38471603
crossref_citationtrail_10_1016_j_ijbiomac_2024_130783
crossref_primary_10_1016_j_ijbiomac_2024_130783
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_130783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
2024-Apr
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References De, Kuppusamy, Karri (bb0025) 2018; 107
Carboni, Maaliki, Alyami, Alsaiari, Khashab (bb0065) 2019; 2
Schoenmaker, Witzigmann, Kulkarni, Verbeke, Kersten, Jiskoot, Crommelin (bb0070) 2021; 601
De, Venkatesh, Senthil, Sanapalli, Shanmugham, Karri (bb0290) 2018; 5
De, Ko (bb0030) 2023; 20
De, Ko (bb0035) 2022
Honda, Gyobu, Shimahara, Miura, Hoshino (bb0150) 2020; 3
Khalin, Heimburger, Melnychuk, Collot, Groschup, Hellal, Reisch, Plesnila, Klymchenko (bb0280) 2020; 14
Zheng, Liu, Wang, Zhang, Zou, Ruan, Yin, Tao, Park, Shi (bb0210) 2019; 31
Yin, Hu, Zhang, Liu (bb0275) 2014; 30
Yang, Dong, Wang, Lin, Yan, Wang, Dong, Zhang, Huang, Wang (bb0165) 2021; 21
Carrasco, Alishetty, Alameh, Said, Wright, Paige, Soliman, Weissman, Cleveland, Grishaev (bb0160) 2021; 4
Ball, Bajaj, Whitehead (bb0175) 2017; 12
Zhu, Pang, Xu, Jia, Xu, Mei, Qin, Sun, Ji, Tang (bb0230) 2011; 136
Singla, Garg, McClements, Jamieson, Peeters, Mahajan (bb0105) 2022; 299
Blenke, Örnskov, Schöneich, Nilsson, Volkin, Mastrobattista, Almarsson, Crommelin (bb0075) 2022; 112
Tenchov, Bird, Curtze, Zhou (bb0215) 2021; 15
Lazarević, Mušović, Trtić-Petrović, Gadžurić (bb0120) 2023; 123653
Neuberg, Wagner, Remy, Kichler (bb0240) 2019; 566
Maghsoudnia, Eftekhari, Sohi, Zamzami, Dorkoosh (bb0085) 2020; 22
Jiao, Xia, Ze, Jing, Xin, Fu (bb0045) 2020; 22
Jones, Drane, Gowans (bb0180) 2007; 43
Suzuki, Hyodo, Tanaka, Ishihara (bb0195) 2015; 220
Noolandi, Shi, Linse (bb0110) 1996; 29
Myles, Church (bb0010) 2022; 24
Kreuter (bb0285) 2014; 71
Patel, Vaswani, Sengupta, Ray, Bhatia, Choudhury, Aswal, Kuperkar, Bahadur (bb0115) 2022
Zakaria, El Kurdi, Patra (bb0225) 2022; 7
De, Ko (bb0005) 2022; 29
Li, Zhang, Jiang, Zhang, Liu, Hu, Song (bb0020) 2022; 4
Kulkarni, Witzigmann, Thomson, Chen, Leavitt, Cullis, van der Meel (bb0015) 2021; 16
Yokoo, Kamimura, Kanefuji, Suda, Terai (bb0060) 2018
Kang, Kim, Lee, Ahn, Ko (bb0205) 2017; 157
Fujita, Ooya, Yui (bb0135) 1999; 32
Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bb0040) 2014; 15
Nyamay’Antu, Dumont, Kedinger, Erbacher (bb0050) 2019; 5
Kabanov, Batrakova, Alakhov (bb0090) 2002; 82
Zhao, Hou, Yan, Du, Xue, Li, Xiang, Dong (bb0185) 2020; 5
Moderna (bb0190) 2020
Lee, Kim (bb0125) 2017; 52
Alakhova, Zhao, Li, Kabanov (bb0100) 2013; 8
De, Kuppuswamy, Jaiswal (bb0155) 2019; 45
Batrakova, Li, Elmquist, Miller, Alakhov, Kabanov (bb0095) 2001; 85
Saha, Santi, Emondts, Roth, Rahimi, Großkurth, Ganguly, Wessling, Singha, Pich (bb0270) 2020; 12
Bakhtiar, Neah, Ng, Chowdhury (bb0200) 2022; 52
Lübtow, Nelke, Seifert, Kühnemundt, Sahay, Dandekar, Nietzer, Luxenhofer (bb0220) 2019; 303
Schroeder, Richtering, Potemkin, Pich (bb0235) 2018; 51
Kim, Seo, Thambi, Moon, Son, Li, Park, Lee, Kim, Lee (bb0250) 2015; 61
Li, Wang, Gao, Ye, Zhang, Feng (bb0130) 2012; 55
Sayed, Allawadhi, Khurana, Singh, Navik, Pasumarthi, Khurana, Banothu, Weiskirchen, Bharani (bb0055) 2022; 120375
Hiremath, Heggnnavar, Kariduraganavar, Hiremath (bb0140) 2019; 8
Zhang, Fan, Levorse, Crocker (bb0245) 2011; 27
Dai Phung, Nguyen, Choi, Pham, Acharya, Timilshina, Chang, Kim, Jeong, Ku (bb0170) 2019; 315
McWilliams, de Los Reyes, Liberman, Ergülen, Talmon, Pasquali, Martí (bb0260) 2019; 1
Watanabe, Wang, Ono, Chimura, Isono, Tajima, Satoh, Sato, Ida, Yamamoto (bb0265) 2022; 14
Boni, Cury, Ferreira, Teixeira, Gremião (bb0255) 2021; 254
Zhang, Shi, Chen, Ye, Sha, Fang (bb0145) 2011; 32
Ulkoski, Bak, Wilson, Krishnamurthy (bb0080) 2019; 16
De (10.1016/j.ijbiomac.2024.130783_bb0035) 2022
Sayed (10.1016/j.ijbiomac.2024.130783_bb0055) 2022; 120375
Carboni (10.1016/j.ijbiomac.2024.130783_bb0065) 2019; 2
De (10.1016/j.ijbiomac.2024.130783_bb0025) 2018; 107
Kabanov (10.1016/j.ijbiomac.2024.130783_bb0090) 2002; 82
Zhu (10.1016/j.ijbiomac.2024.130783_bb0230) 2011; 136
Yang (10.1016/j.ijbiomac.2024.130783_bb0165) 2021; 21
Alakhova (10.1016/j.ijbiomac.2024.130783_bb0100) 2013; 8
Dai Phung (10.1016/j.ijbiomac.2024.130783_bb0170) 2019; 315
Watanabe (10.1016/j.ijbiomac.2024.130783_bb0265) 2022; 14
Kim (10.1016/j.ijbiomac.2024.130783_bb0250) 2015; 61
Suzuki (10.1016/j.ijbiomac.2024.130783_bb0195) 2015; 220
Saha (10.1016/j.ijbiomac.2024.130783_bb0270) 2020; 12
Kang (10.1016/j.ijbiomac.2024.130783_bb0205) 2017; 157
Noolandi (10.1016/j.ijbiomac.2024.130783_bb0110) 1996; 29
Patel (10.1016/j.ijbiomac.2024.130783_bb0115) 2022
Yokoo (10.1016/j.ijbiomac.2024.130783_bb0060) 2018
Lee (10.1016/j.ijbiomac.2024.130783_bb0125) 2017; 52
Hiremath (10.1016/j.ijbiomac.2024.130783_bb0140) 2019; 8
Zhang (10.1016/j.ijbiomac.2024.130783_bb0145) 2011; 32
Batrakova (10.1016/j.ijbiomac.2024.130783_bb0095) 2001; 85
Myles (10.1016/j.ijbiomac.2024.130783_bb0010) 2022; 24
Carrasco (10.1016/j.ijbiomac.2024.130783_bb0160) 2021; 4
Schoenmaker (10.1016/j.ijbiomac.2024.130783_bb0070) 2021; 601
Ulkoski (10.1016/j.ijbiomac.2024.130783_bb0080) 2019; 16
Fujita (10.1016/j.ijbiomac.2024.130783_bb0135) 1999; 32
Zhang (10.1016/j.ijbiomac.2024.130783_bb0245) 2011; 27
Zheng (10.1016/j.ijbiomac.2024.130783_bb0210) 2019; 31
Zakaria (10.1016/j.ijbiomac.2024.130783_bb0225) 2022; 7
Schroeder (10.1016/j.ijbiomac.2024.130783_bb0235) 2018; 51
De (10.1016/j.ijbiomac.2024.130783_bb0005) 2022; 29
Li (10.1016/j.ijbiomac.2024.130783_bb0020) 2022; 4
Moderna (10.1016/j.ijbiomac.2024.130783_bb0190) 2020
Honda (10.1016/j.ijbiomac.2024.130783_bb0150) 2020; 3
Lazarević (10.1016/j.ijbiomac.2024.130783_bb0120) 2023; 123653
Kreuter (10.1016/j.ijbiomac.2024.130783_bb0285) 2014; 71
Kulkarni (10.1016/j.ijbiomac.2024.130783_bb0015) 2021; 16
Khalin (10.1016/j.ijbiomac.2024.130783_bb0280) 2020; 14
McWilliams (10.1016/j.ijbiomac.2024.130783_bb0260) 2019; 1
Singla (10.1016/j.ijbiomac.2024.130783_bb0105) 2022; 299
Tenchov (10.1016/j.ijbiomac.2024.130783_bb0215) 2021; 15
Yin (10.1016/j.ijbiomac.2024.130783_bb0275) 2014; 30
Bakhtiar (10.1016/j.ijbiomac.2024.130783_bb0200) 2022; 52
Blenke (10.1016/j.ijbiomac.2024.130783_bb0075) 2022; 112
De (10.1016/j.ijbiomac.2024.130783_bb0030) 2023; 20
Zhao (10.1016/j.ijbiomac.2024.130783_bb0185) 2020; 5
Yin (10.1016/j.ijbiomac.2024.130783_bb0040) 2014; 15
Jiao (10.1016/j.ijbiomac.2024.130783_bb0045) 2020; 22
Li (10.1016/j.ijbiomac.2024.130783_bb0130) 2012; 55
Neuberg (10.1016/j.ijbiomac.2024.130783_bb0240) 2019; 566
Maghsoudnia (10.1016/j.ijbiomac.2024.130783_bb0085) 2020; 22
Boni (10.1016/j.ijbiomac.2024.130783_bb0255) 2021; 254
De (10.1016/j.ijbiomac.2024.130783_bb0155) 2019; 45
Jones (10.1016/j.ijbiomac.2024.130783_bb0180) 2007; 43
Nyamay’Antu (10.1016/j.ijbiomac.2024.130783_bb0050) 2019; 5
Ball (10.1016/j.ijbiomac.2024.130783_bb0175) 2017; 12
Lübtow (10.1016/j.ijbiomac.2024.130783_bb0220) 2019; 303
De (10.1016/j.ijbiomac.2024.130783_bb0290) 2018; 5
References_xml – volume: 566
  start-page: 141
  year: 2019
  end-page: 148
  ident: bb0240
  article-title: Design and evaluation of ionizable peptide amphiphiles for siRNA delivery
  publication-title: Int. J. Pharm.
– volume: 22
  start-page: 1
  year: 2020
  end-page: 41
  ident: bb0085
  article-title: Application of nano-based systems for drug delivery and targeting: a review
  publication-title: J. Nanopart. Res.
– start-page: 1
  year: 2022
  end-page: 13
  ident: bb0035
  article-title: Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out
  publication-title: Expert Opin. Drug Deliv.
– volume: 5
  start-page: 358
  year: 2020
  end-page: 363
  ident: bb0185
  article-title: Long-term storage of lipid-like nanoparticles for mRNA delivery
  publication-title: Bioact. Mater.
– volume: 30
  start-page: 2551
  year: 2014
  end-page: 2558
  ident: bb0275
  article-title: Schizophrenic core–shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions
  publication-title: Langmuir
– volume: 32
  start-page: 2534
  year: 1999
  end-page: 2541
  ident: bb0135
  article-title: Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-cyclodextrins and poly (ethylene glycol)–poly (propylene glycol) triblock copolymer
  publication-title: Macromolecules
– volume: 136
  start-page: 3343
  year: 2011
  end-page: 3348
  ident: bb0230
  article-title: Aggregation-induced emission of tetraphenylethene derivative as a fluorescence method for probing the assembling/disassembling of amphiphilic molecules
  publication-title: Analyst
– start-page: 1
  year: 2022
  end-page: 18
  ident: bb0115
  article-title: Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics®
  publication-title: Colloid Polym. Sci.
– volume: 5
  start-page: 51
  year: 2019
  end-page: 57
  ident: bb0050
  article-title: Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy
  publication-title: Cell Gene Ther. Insights
– volume: 3
  start-page: 3827
  year: 2020
  end-page: 3834
  ident: bb0150
  article-title: Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH
  publication-title: ACS Appl. Bio Mater.
– volume: 7
  start-page: 9551
  year: 2022
  end-page: 9558
  ident: bb0225
  article-title: A novel study on the self-assembly behavior of poly (lactic-co-glycolic acid) polymer probed by curcumin fluorescence
  publication-title: ACS Omega
– volume: 20
  start-page: 75
  year: 2023
  end-page: 91
  ident: bb0030
  article-title: A tale of nucleic acid–ionizable lipid nanoparticles: design and manufacturing technology and advancement
  publication-title: Exp. Opin. Drug Deliv.
– volume: 12
  start-page: 305
  year: 2017
  ident: bb0175
  article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization
  publication-title: Int. J. Nanomedicine
– volume: 29
  start-page: 2644
  year: 2022
  end-page: 2657
  ident: bb0005
  article-title: Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics
  publication-title: Drug Deliv.
– volume: 315
  start-page: 126
  year: 2019
  end-page: 138
  ident: bb0170
  article-title: Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death
  publication-title: J. Control. Release
– volume: 27
  start-page: 1907
  year: 2011
  end-page: 1914
  ident: bb0245
  article-title: Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid–biomembrane interactions
  publication-title: Langmuir
– volume: 24
  start-page: 344
  year: 2022
  end-page: 355
  ident: bb0010
  article-title: An industry survey of implementation strategies for clinical supply chain management of cell and gene therapies
  publication-title: Cytotherapy
– volume: 14
  start-page: 1823
  year: 2022
  ident: bb0265
  article-title: Topology and sequence-dependent micellization and phase separation of pluronic L35, L64, 10R5, and 17R4: effects of cyclization and the chain ends
  publication-title: Polymers
– volume: 2
  start-page: 1800085
  year: 2019
  ident: bb0065
  article-title: Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery
  publication-title: Adv. Ther.
– volume: 29
  start-page: 5907
  year: 1996
  end-page: 5919
  ident: bb0110
  article-title: Theory of phase behavior of poly(oxyethylene)−poly (oxypropylene)−poly (oxyethylene) triblock copolymers in aqueous solutions
  publication-title: Macromolecules
– volume: 112
  start-page: 386
  year: 2022
  end-page: 403
  ident: bb0075
  article-title: The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case
  publication-title: J. Pharm. Sci.
– volume: 12
  start-page: 58223
  year: 2020
  end-page: 58238
  ident: bb0270
  article-title: Stimuli-responsive zwitterionic core–shell microgels for antifouling surface coatings
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 4923
  year: 2017
  end-page: 4933
  ident: bb0125
  article-title: Effect of bimodal pore structure on the bioactivity of poly (lactic-co-glycolic acid)/poly (γ-glutamic acid)/Pluronic 17R4 nerve conduits
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 105
  year: 2022
  end-page: 117
  ident: bb0020
  article-title: Biosafety assessment of delivery systems for clinical nucleic acid therapeutics
  publication-title: Biosaf. Health
– volume: 15
  start-page: 541
  year: 2014
  end-page: 555
  ident: bb0040
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
– volume: 15
  start-page: 16982
  year: 2021
  end-page: 17015
  ident: bb0215
  article-title: Lipid nanoparticles — from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement
  publication-title: ACS Nano
– volume: 52
  start-page: 95
  year: 2022
  end-page: 107
  ident: bb0200
  article-title: In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery
  publication-title: J. Pharm. Investig.
– volume: 31
  start-page: 1903277
  year: 2019
  ident: bb0210
  article-title: ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy
  publication-title: Adv. Mater.
– volume: 71
  start-page: 2
  year: 2014
  end-page: 14
  ident: bb0285
  article-title: Drug delivery to the central nervous system by polymeric nanoparticles: what do we know?
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  year: 2018
  ident: bb0290
  article-title: Smart niosomes of temozolomide for enhancement of brain targeting
  publication-title: Nanobiomedicine
– volume: 254
  year: 2021
  ident: bb0255
  article-title: Computational and experimental approaches for chitosan-based nano PECs design: insights on a deeper comprehension of nanostructure formation
  publication-title: Carbohydr. Polym.
– volume: 22
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0045
  article-title: Research Progress of nucleic acid delivery vectors for gene therapy
  publication-title: Biomed. Microdevices
– volume: 61
  start-page: 115
  year: 2015
  end-page: 125
  ident: bb0250
  article-title: Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer
  publication-title: Biomaterials
– year: 2020
  ident: bb0190
  article-title: Moderna Announces Longer Shelf Life for Its COVID-19 Vaccine Candidate at Refrigerated Temperatures
– volume: 1
  start-page: 1096
  year: 2019
  end-page: 1103
  ident: bb0260
  article-title: Surfactant-assisted individualization and dispersion of boron nitride nanotubes
  publication-title: Nanoscale Adv.
– volume: 299
  year: 2022
  ident: bb0105
  article-title: Advances in the therapeutic delivery and applications of functionalized pluronics: a critical review
  publication-title: Adv. Colloid Interface Sci.
– volume: 43
  start-page: 675
  year: 2007
  end-page: 681
  ident: bb0180
  article-title: Long-term storage of DNA-free RNA for use in vaccine studies
  publication-title: Biotechniques
– volume: 14
  start-page: 9755
  year: 2020
  end-page: 9770
  ident: bb0280
  article-title: Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain
  publication-title: ACS Nano
– volume: 51
  start-page: 6707
  year: 2018
  end-page: 6716
  ident: bb0235
  article-title: Stimuli-responsive zwitterionic microgels with covalent and ionic cross-links
  publication-title: Macromolecules
– volume: 123653
  year: 2023
  ident: bb0120
  article-title: Partition of parthenolide in ternary {block copolymer + biocompatible ionic liquid or natural deep eutectic solvent + water} systems
  publication-title: Sep. Purif. Technol.
– volume: 16
  start-page: 1149
  year: 2019
  end-page: 1167
  ident: bb0080
  article-title: Recent advances in polymeric materials for the delivery of RNA therapeutics
  publication-title: Expert Opin. Drug Deliv.
– volume: 8
  start-page: 155
  year: 2019
  end-page: 168
  ident: bb0140
  article-title: Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles
  publication-title: Prog. Biomater.
– volume: 303
  start-page: 162
  year: 2019
  end-page: 180
  ident: bb0220
  article-title: Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: physico-chemical characterization and evaluation in 2D and 3D in vitro models
  publication-title: J. Control. Release
– volume: 85
  start-page: 1987
  year: 2001
  end-page: 1997
  ident: bb0095
  article-title: Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: selective energy depletion
  publication-title: Br. J. Cancer
– volume: 601
  year: 2021
  ident: bb0070
  article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
  publication-title: Int. J. Pharm.
– volume: 21
  start-page: 2100025
  year: 2021
  ident: bb0165
  article-title: pH-sensitive polycations for siRNA delivery: effect of asymmetric structures of tertiary amine groups
  publication-title: Macromol. Biosci.
– volume: 4
  start-page: 1
  year: 2021
  end-page: 15
  ident: bb0160
  article-title: Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration
  publication-title: Commun. Biol.
– volume: 16
  start-page: 630
  year: 2021
  end-page: 643
  ident: bb0015
  article-title: The current landscape of nucleic acid therapeutics
  publication-title: Nat. Nanotechnol.
– year: 2018
  ident: bb0060
  article-title: Nucleic acid-based therapy: development of a nonviral-based delivery approach
  publication-title: In Vivo and Ex Vivo Gene Therapy for Inherited and Non-inherited Disorders
– volume: 107
  start-page: 906
  year: 2018
  end-page: 919
  ident: bb0025
  article-title: Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer
  publication-title: Int. J. Biol. Macromol.
– volume: 55
  start-page: 1115
  year: 2012
  end-page: 1124
  ident: bb0130
  article-title: Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins
  publication-title: Sci. China Chem.
– volume: 157
  start-page: 424
  year: 2017
  end-page: 431
  ident: bb0205
  article-title: In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery
  publication-title: Colloids Surf. B Biointerfaces
– volume: 8
  year: 2013
  ident: bb0100
  article-title: Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia
  publication-title: PloS One
– volume: 32
  start-page: 2894
  year: 2011
  end-page: 2906
  ident: bb0145
  article-title: Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors
  publication-title: Biomaterials
– volume: 220
  start-page: 44
  year: 2015
  end-page: 50
  ident: bb0195
  article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo
  publication-title: J. Control. Release
– volume: 120375
  year: 2022
  ident: bb0055
  article-title: Gene therapy: comprehensive overview and therapeutic applications
  publication-title: Life Sci.
– volume: 45
  start-page: 1821
  year: 2019
  end-page: 1834
  ident: bb0155
  article-title: Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation
  publication-title: Drug Dev. Ind. Pharm.
– volume: 82
  start-page: 189
  year: 2002
  end-page: 212
  ident: bb0090
  article-title: Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery
  publication-title: J. Control. Release
– volume: 157
  start-page: 424
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130783_bb0205
  article-title: In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.06.014
– volume: 14
  start-page: 9755
  issue: 8
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0280
  article-title: Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01505
– volume: 20
  start-page: 75
  issue: 1
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130783_bb0030
  article-title: A tale of nucleic acid–ionizable lipid nanoparticles: design and manufacturing technology and advancement
  publication-title: Exp. Opin. Drug Deliv.
  doi: 10.1080/17425247.2023.2153832
– volume: 254
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130783_bb0255
  article-title: Computational and experimental approaches for chitosan-based nano PECs design: insights on a deeper comprehension of nanostructure formation
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.117444
– volume: 52
  start-page: 95
  issue: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0200
  article-title: In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-021-00547-7
– volume: 12
  start-page: 58223
  issue: 52
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0270
  article-title: Stimuli-responsive zwitterionic core–shell microgels for antifouling surface coatings
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17427
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130783_bb0160
  article-title: Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02441-2
– volume: 22
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0045
  article-title: Research Progress of nucleic acid delivery vectors for gene therapy
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-020-0469-7
– volume: 3
  start-page: 3827
  issue: 6
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0150
  article-title: Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00390
– volume: 51
  start-page: 6707
  issue: 17
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.130783_bb0235
  article-title: Stimuli-responsive zwitterionic microgels with covalent and ionic cross-links
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00689
– volume: 315
  start-page: 126
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0170
  article-title: Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.10.047
– volume: 29
  start-page: 5907
  issue: 18
  year: 1996
  ident: 10.1016/j.ijbiomac.2024.130783_bb0110
  article-title: Theory of phase behavior of poly(oxyethylene)−poly (oxypropylene)−poly (oxyethylene) triblock copolymers in aqueous solutions
  publication-title: Macromolecules
  doi: 10.1021/ma960272f
– volume: 32
  start-page: 2534
  issue: 8
  year: 1999
  ident: 10.1016/j.ijbiomac.2024.130783_bb0135
  article-title: Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-cyclodextrins and poly (ethylene glycol)–poly (propylene glycol) triblock copolymer
  publication-title: Macromolecules
  doi: 10.1021/ma9814550
– volume: 15
  start-page: 541
  issue: 8
  year: 2014
  ident: 10.1016/j.ijbiomac.2024.130783_bb0040
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3763
– volume: 112
  start-page: 386
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0075
  article-title: The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2022.11.001
– volume: 61
  start-page: 115
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.130783_bb0250
  article-title: Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.05.025
– volume: 123653
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130783_bb0120
  article-title: Partition of parthenolide in ternary {block copolymer + biocompatible ionic liquid or natural deep eutectic solvent + water} systems
  publication-title: Sep. Purif. Technol.
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0115
  article-title: Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics®
  publication-title: Colloid Polym. Sci.
– year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0190
– volume: 7
  start-page: 9551
  issue: 11
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0225
  article-title: A novel study on the self-assembly behavior of poly (lactic-co-glycolic acid) polymer probed by curcumin fluorescence
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c06919
– volume: 12
  start-page: 305
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130783_bb0175
  article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S123062
– year: 2018
  ident: 10.1016/j.ijbiomac.2024.130783_bb0060
  article-title: Nucleic acid-based therapy: development of a nonviral-based delivery approach
– volume: 136
  start-page: 3343
  issue: 16
  year: 2011
  ident: 10.1016/j.ijbiomac.2024.130783_bb0230
  article-title: Aggregation-induced emission of tetraphenylethene derivative as a fluorescence method for probing the assembling/disassembling of amphiphilic molecules
  publication-title: Analyst
  doi: 10.1039/c1an15176b
– volume: 5
  start-page: 358
  issue: 2
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0185
  article-title: Long-term storage of lipid-like nanoparticles for mRNA delivery
  publication-title: Bioact. Mater.
– volume: 85
  start-page: 1987
  issue: 12
  year: 2001
  ident: 10.1016/j.ijbiomac.2024.130783_bb0095
  article-title: Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: selective energy depletion
  publication-title: Br. J. Cancer
  doi: 10.1054/bjoc.2001.2165
– volume: 24
  start-page: 344
  issue: 3
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0010
  article-title: An industry survey of implementation strategies for clinical supply chain management of cell and gene therapies
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2021.09.012
– volume: 29
  start-page: 2644
  issue: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0005
  article-title: Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2022.2108523
– volume: 32
  start-page: 2894
  issue: 11
  year: 2011
  ident: 10.1016/j.ijbiomac.2024.130783_bb0145
  article-title: Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.12.039
– volume: 71
  start-page: 2
  year: 2014
  ident: 10.1016/j.ijbiomac.2024.130783_bb0285
  article-title: Drug delivery to the central nervous system by polymeric nanoparticles: what do we know?
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.08.008
– volume: 107
  start-page: 906
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.130783_bb0025
  article-title: Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.09.059
– volume: 5
  start-page: 51
  issue: S1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0050
  article-title: Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy
  publication-title: Cell Gene Ther. Insights
  doi: 10.18609/cgti.2019.007
– volume: 220
  start-page: 44
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.130783_bb0195
  article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.10.024
– volume: 1
  start-page: 1096
  issue: 3
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0260
  article-title: Surfactant-assisted individualization and dispersion of boron nitride nanotubes
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00315G
– volume: 120375
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0055
  article-title: Gene therapy: comprehensive overview and therapeutic applications
  publication-title: Life Sci.
– volume: 5
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.130783_bb0290
  article-title: Smart niosomes of temozolomide for enhancement of brain targeting
  publication-title: Nanobiomedicine
  doi: 10.1177/1849543518805355
– volume: 43
  start-page: 675
  issue: 5
  year: 2007
  ident: 10.1016/j.ijbiomac.2024.130783_bb0180
  article-title: Long-term storage of DNA-free RNA for use in vaccine studies
  publication-title: Biotechniques
  doi: 10.2144/000112593
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0035
  article-title: Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out
  publication-title: Expert Opin. Drug Deliv.
– volume: 601
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130783_bb0070
  article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120586
– volume: 16
  start-page: 1149
  issue: 11
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0080
  article-title: Recent advances in polymeric materials for the delivery of RNA therapeutics
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2019.1663822
– volume: 21
  start-page: 2100025
  issue: 5
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130783_bb0165
  article-title: pH-sensitive polycations for siRNA delivery: effect of asymmetric structures of tertiary amine groups
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.202100025
– volume: 31
  start-page: 1903277
  issue: 37
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0210
  article-title: ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903277
– volume: 299
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0105
  article-title: Advances in the therapeutic delivery and applications of functionalized pluronics: a critical review
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2021.102563
– volume: 14
  start-page: 1823
  issue: 9
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0265
  article-title: Topology and sequence-dependent micellization and phase separation of pluronic L35, L64, 10R5, and 17R4: effects of cyclization and the chain ends
  publication-title: Polymers
  doi: 10.3390/polym14091823
– volume: 22
  start-page: 1
  issue: 8
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130783_bb0085
  article-title: Application of nano-based systems for drug delivery and targeting: a review
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-020-04959-8
– volume: 8
  start-page: 155
  issue: 3
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0140
  article-title: Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles
  publication-title: Prog. Biomater.
  doi: 10.1007/s40204-019-0118-5
– volume: 566
  start-page: 141
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0240
  article-title: Design and evaluation of ionizable peptide amphiphiles for siRNA delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.05.052
– volume: 82
  start-page: 189
  issue: 2–3
  year: 2002
  ident: 10.1016/j.ijbiomac.2024.130783_bb0090
  article-title: Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(02)00009-3
– volume: 2
  start-page: 1800085
  issue: 4
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0065
  article-title: Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery
  publication-title: Adv. Ther.
  doi: 10.1002/adtp.201800085
– volume: 52
  start-page: 4923
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130783_bb0125
  article-title: Effect of bimodal pore structure on the bioactivity of poly (lactic-co-glycolic acid)/poly (γ-glutamic acid)/Pluronic 17R4 nerve conduits
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0729-3
– volume: 8
  issue: 8
  year: 2013
  ident: 10.1016/j.ijbiomac.2024.130783_bb0100
  article-title: Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia
  publication-title: PloS One
  doi: 10.1371/journal.pone.0072238
– volume: 303
  start-page: 162
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0220
  article-title: Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: physico-chemical characterization and evaluation in 2D and 3D in vitro models
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.04.014
– volume: 45
  start-page: 1821
  issue: 11
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130783_bb0155
  article-title: Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2019.1665060
– volume: 16
  start-page: 630
  issue: 6
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130783_bb0015
  article-title: The current landscape of nucleic acid therapeutics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00898-0
– volume: 4
  start-page: 105
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130783_bb0020
  article-title: Biosafety assessment of delivery systems for clinical nucleic acid therapeutics
  publication-title: Biosaf. Health
  doi: 10.1016/j.bsheal.2022.03.003
– volume: 55
  start-page: 1115
  year: 2012
  ident: 10.1016/j.ijbiomac.2024.130783_bb0130
  article-title: Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-012-4587-9
– volume: 27
  start-page: 1907
  issue: 5
  year: 2011
  ident: 10.1016/j.ijbiomac.2024.130783_bb0245
  article-title: Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid–biomembrane interactions
  publication-title: Langmuir
  doi: 10.1021/la104590k
– volume: 30
  start-page: 2551
  issue: 9
  year: 2014
  ident: 10.1016/j.ijbiomac.2024.130783_bb0275
  article-title: Schizophrenic core–shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions
  publication-title: Langmuir
  doi: 10.1021/la500133y
– volume: 15
  start-page: 16982
  issue: 11
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130783_bb0215
  article-title: Lipid nanoparticles — from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04996
SSID ssj0006518
Score 2.4323392
Snippet Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130783
SubjectTerms Bcl2 siRNA
Blood brain barrier crossing
blood-brain barrier
Cell Line, Tumor
fever
Gene Silencing
genes
glioblastoma
Glioblastoma - metabolism
Humans
Ionizable reverse pluronic
Long-term stability
Micelles
nanocarriers
Nanoparticles - chemistry
particle size
Poloxamer - chemistry
RNA, Small Interfering - chemistry
Thermosassemble
Tumor Microenvironment
Title Optimizing long-term stability of siRNA using thermoassemble ionizable reverse pluronic-Bcl2 micelleplexes
URI https://dx.doi.org/10.1016/j.ijbiomac.2024.130783
https://www.ncbi.nlm.nih.gov/pubmed/38471603
https://www.proquest.com/docview/2956685930
https://www.proquest.com/docview/3153574589
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: AKRWK
  dateStart: 19790401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZLemguoc9kkzSo0KuytiXZ8nGzdNm2dAshgdyELEvBi9de9gFNDv3tnfEjbQ9LDj3aSCBGo5nP8jffEPIpCUNA1XAAA28ihuomTIUmYz7loePWRLa5h_w-j2e34uudvBuQSV8Lg7TKLva3Mb2J1t2bUWfN0aooRkhLgvTEUaQrlCpBxU9U_wKfvvz1h-YRy-aODwczHP1XlfDislhgkbtBKcNIYGPkRPF9CWofAG0S0fQVOeoQJB23i3xNBq56Q15O-sZtb8niB4SBZfEISYmWdXXPMPpSQIEND_aB1p5uiuv5mCLn_Z4iAlzWgKHdMisdxfvZR6ynoijutN44uip3jYAuu7JlRLF9fVm6Vel-us07cjv9fDOZsa6lArNgpS3LBSAM_Ncig1waJSKfCifhkEeZS4Oc89jnSlgvlAQcmVsbx5kxPsiSLEiSwPP35KCqK3dCKLa5CnPvnFGpMIDSLEARniXSx6mSkRsS2dtR205vHNtelLonli10b3-N9tet_Ydk9DRv1SpuPDsj7bdJ_-M7GtLCs3M_9vuqYZvQgqZy9W6jI_hyjFENLtg_hkO-kImQKh2S49YpntbMMe_HAT_9j9WdkUN8aplC5-Rgu965DwCCttlF4-UX5MX4y7fZ_DcIDAZc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ0iXou-46YMFurKWRFKiRtdo4DSJCxQJkI2gKDKQIUtGbANJfn3u9DCawciQVeIBxEfy7hN19x0hP5IwBFYNBzDwJmKobsJUaDLmUx46bk1km3vI81k8vRR_ruTVHpn0tTCYVtn5_tanN966ezLq0Bwti2KEaUkQnjiKdIVSJfwF2RcSfPKA7I9PTqezrUOOZXPNh-MZGvxXKDz_Wcyxzt2gmmEksDdyoviuGLWLgzax6Pg1edWRSDpu5_mG7LnqLTmY9L3b3pH5X_AEi-Ie4hIt6-qaoQOmQASbVNg7Wnu6Kv7NxhTT3q8pksBFDTTaLbLSUbyivceSKor6TjcrR5flptHQZb9sGVHsYF-Wblm6W7d6Ty6Pf19MpqzrqsAsALVmuQCSgb9bZJBLo0TkU-EknPMoc2mQcx77XAnrhZJAJXNr4zgzxgdZkgVJEnj-gQyqunKHhGKnqzD3zhmVCgNEzQIb4VkifZwqGbkhkT2O2naS49j5otR9btlc9_hrxF-3-A_JaGu3bEU3nrRI-2XSj7aPhsjwpO33fl01LBMiaCpXb1Y6go_HGAXhgt1jOIQMmQip0iH52G6K7Zw5hv444J-eMbtv5GB6cX6mz05mp0fkJb5pE4c-k8H6ZuO-ACdaZ1-7Pf8A6ZgJBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+long-term+stability+of+siRNA+using+thermoassemble+ionizable+reverse+pluronic-Bcl2+micelleplexes&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=De%2C+Anindita&rft.au=Kang%2C+Ji+Hee&rft.au=Sauraj&rft.au=Lee%2C+O+Hyun&rft.date=2024-04-01&rft.issn=0141-8130&rft.volume=264&rft.spage=130783&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.130783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2024_130783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon