Optimizing long-term stability of siRNA using thermoassemble ionizable reverse pluronic-Bcl2 micelleplexes
Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA...
Saved in:
Published in | International journal of biological macromolecules Vol. 264; no. Pt 2; p. 130783 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-8130 1879-0003 1879-0003 |
DOI | 10.1016/j.ijbiomac.2024.130783 |
Cover
Abstract | Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.
[Display omitted]
•TIRP tech tackles siRNA hurdles with thermoassembly & ionizable characteristics overcoming past limitations.•TIRP-Bcl2's flexi-rigid response to hyperthermia boosts tissue penetration, siRNA release, and gene silencing in cancer.•Dual ionizable headgroup boosts siRNA loading; while reverse pluronic's unique orientation stabilizes encapsulated siRNA. |
---|---|
AbstractList | Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers. Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers. [Display omitted] •TIRP tech tackles siRNA hurdles with thermoassembly & ionizable characteristics overcoming past limitations.•TIRP-Bcl2's flexi-rigid response to hyperthermia boosts tissue penetration, siRNA release, and gene silencing in cancer.•Dual ionizable headgroup boosts siRNA loading; while reverse pluronic's unique orientation stabilizes encapsulated siRNA. Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers. Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers. |
ArticleNumber | 130783 |
Author | Kang, Ji Hee De, Anindita Sauraj Lee, O Hyun Ko, Young Tag |
Author_xml | – sequence: 1 givenname: Anindita surname: De fullname: De, Anindita email: aninditanirupa@gmail.com – sequence: 2 givenname: Ji Hee surname: Kang fullname: Kang, Ji Hee – sequence: 3 surname: Sauraj fullname: Sauraj – sequence: 4 givenname: O Hyun surname: Lee fullname: Lee, O Hyun – sequence: 5 givenname: Young Tag surname: Ko fullname: Ko, Young Tag email: youngtakko@gachon.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38471603$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1URG8Lf6HKkk0u4_gRR2JBqXhJFZUQrC3HmRRHThxsp6L99SS6vRs2dzWjme-MrXMuyNkUJiTkisKeApXvhr0bWhdGY_cVVHxPGdSKvSA7quqmBAB2RnZAOS3VujonFykN61QKql6Rc6Z4TSWwHRnu5uxG9-Sm-8KH6b7MGMciZdM67_JjEfoiuR_fr4slbUj-va6DSQnH1mPhwuSezNZFfMCYsJj9EtehLT9aXxWjs-g9zh7_YnpNXvbGJ3zzXC_Jr8-fft58LW_vvny7ub4tLQeay45LyaSohYBOGMWrvuEoGNCqxQY6xmTfKW57rgRU0FkrZWtMD23dQl1Dzy7J28PdOYY_C6asR5e2f5gJw5I0o4KJmgvVnESrRkipRMNgRa-e0aUdsdNzdKOJj_po5Qq8PwA2hpQi9tq6bPJqUY7GeU1Bb8npQR-T01ty-pDcKpf_yY8vnBR-OAhx9fTBYdTJOpwsdi6izboL7tSJf44WtyQ |
CitedBy_id | crossref_primary_10_3390_biomedicines12081822 crossref_primary_10_1089_adt_2024_121 crossref_primary_10_1016_j_ejpb_2024_114292 |
Cites_doi | 10.1016/j.colsurfb.2017.06.014 10.1021/acsnano.0c01505 10.1080/17425247.2023.2153832 10.1016/j.carbpol.2020.117444 10.1007/s40005-021-00547-7 10.1021/acsami.0c17427 10.1038/s42003-021-02441-2 10.1007/s10544-020-0469-7 10.1021/acsabm.0c00390 10.1021/acs.macromol.8b00689 10.1016/j.jconrel.2019.10.047 10.1021/ma960272f 10.1021/ma9814550 10.1038/nrg3763 10.1016/j.xphs.2022.11.001 10.1016/j.biomaterials.2015.05.025 10.1021/acsomega.1c06919 10.2147/IJN.S123062 10.1039/c1an15176b 10.1054/bjoc.2001.2165 10.1016/j.jcyt.2021.09.012 10.1080/10717544.2022.2108523 10.1016/j.biomaterials.2010.12.039 10.1016/j.addr.2013.08.008 10.1016/j.ijbiomac.2017.09.059 10.18609/cgti.2019.007 10.1016/j.jconrel.2015.10.024 10.1039/C8NA00315G 10.1177/1849543518805355 10.2144/000112593 10.1016/j.ijpharm.2021.120586 10.1080/17425247.2019.1663822 10.1002/mabi.202100025 10.1002/adma.201903277 10.1016/j.cis.2021.102563 10.3390/polym14091823 10.1007/s11051-020-04959-8 10.1007/s40204-019-0118-5 10.1016/j.ijpharm.2019.05.052 10.1016/S0168-3659(02)00009-3 10.1002/adtp.201800085 10.1007/s10853-016-0729-3 10.1371/journal.pone.0072238 10.1016/j.jconrel.2019.04.014 10.1080/03639045.2019.1665060 10.1038/s41565-021-00898-0 10.1016/j.bsheal.2022.03.003 10.1007/s11426-012-4587-9 10.1021/la104590k 10.1021/la500133y 10.1021/acsnano.1c04996 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2024.130783 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
ExternalDocumentID | 38471603 10_1016_j_ijbiomac_2024_130783 S0141813024015873 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- AAYXX AGRNS BNPGV CITATION RIG SSH AACTN CGR CUY CVF ECM EIF NPM 7X8 ACLOT ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-d4663657550d5a842f94e53012be90d336fd84cf485020dcc66baaf0b7b0770f3 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Sep 05 15:07:39 EDT 2025 Sun Sep 28 09:18:26 EDT 2025 Thu Apr 03 07:08:41 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Tue Jul 01 03:37:00 EDT 2025 Sat Sep 06 17:18:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Thermosassemble Ionizable reverse pluronic Bcl2 siRNA Blood brain barrier crossing Long-term stability |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-d4663657550d5a842f94e53012be90d336fd84cf485020dcc66baaf0b7b0770f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38471603 |
PQID | 2956685930 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153574589 proquest_miscellaneous_2956685930 pubmed_primary_38471603 crossref_citationtrail_10_1016_j_ijbiomac_2024_130783 crossref_primary_10_1016_j_ijbiomac_2024_130783 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_130783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 2024-Apr 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | De, Kuppusamy, Karri (bb0025) 2018; 107 Carboni, Maaliki, Alyami, Alsaiari, Khashab (bb0065) 2019; 2 Schoenmaker, Witzigmann, Kulkarni, Verbeke, Kersten, Jiskoot, Crommelin (bb0070) 2021; 601 De, Venkatesh, Senthil, Sanapalli, Shanmugham, Karri (bb0290) 2018; 5 De, Ko (bb0030) 2023; 20 De, Ko (bb0035) 2022 Honda, Gyobu, Shimahara, Miura, Hoshino (bb0150) 2020; 3 Khalin, Heimburger, Melnychuk, Collot, Groschup, Hellal, Reisch, Plesnila, Klymchenko (bb0280) 2020; 14 Zheng, Liu, Wang, Zhang, Zou, Ruan, Yin, Tao, Park, Shi (bb0210) 2019; 31 Yin, Hu, Zhang, Liu (bb0275) 2014; 30 Yang, Dong, Wang, Lin, Yan, Wang, Dong, Zhang, Huang, Wang (bb0165) 2021; 21 Carrasco, Alishetty, Alameh, Said, Wright, Paige, Soliman, Weissman, Cleveland, Grishaev (bb0160) 2021; 4 Ball, Bajaj, Whitehead (bb0175) 2017; 12 Zhu, Pang, Xu, Jia, Xu, Mei, Qin, Sun, Ji, Tang (bb0230) 2011; 136 Singla, Garg, McClements, Jamieson, Peeters, Mahajan (bb0105) 2022; 299 Blenke, Örnskov, Schöneich, Nilsson, Volkin, Mastrobattista, Almarsson, Crommelin (bb0075) 2022; 112 Tenchov, Bird, Curtze, Zhou (bb0215) 2021; 15 Lazarević, Mušović, Trtić-Petrović, Gadžurić (bb0120) 2023; 123653 Neuberg, Wagner, Remy, Kichler (bb0240) 2019; 566 Maghsoudnia, Eftekhari, Sohi, Zamzami, Dorkoosh (bb0085) 2020; 22 Jiao, Xia, Ze, Jing, Xin, Fu (bb0045) 2020; 22 Jones, Drane, Gowans (bb0180) 2007; 43 Suzuki, Hyodo, Tanaka, Ishihara (bb0195) 2015; 220 Noolandi, Shi, Linse (bb0110) 1996; 29 Myles, Church (bb0010) 2022; 24 Kreuter (bb0285) 2014; 71 Patel, Vaswani, Sengupta, Ray, Bhatia, Choudhury, Aswal, Kuperkar, Bahadur (bb0115) 2022 Zakaria, El Kurdi, Patra (bb0225) 2022; 7 De, Ko (bb0005) 2022; 29 Li, Zhang, Jiang, Zhang, Liu, Hu, Song (bb0020) 2022; 4 Kulkarni, Witzigmann, Thomson, Chen, Leavitt, Cullis, van der Meel (bb0015) 2021; 16 Yokoo, Kamimura, Kanefuji, Suda, Terai (bb0060) 2018 Kang, Kim, Lee, Ahn, Ko (bb0205) 2017; 157 Fujita, Ooya, Yui (bb0135) 1999; 32 Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bb0040) 2014; 15 Nyamay’Antu, Dumont, Kedinger, Erbacher (bb0050) 2019; 5 Kabanov, Batrakova, Alakhov (bb0090) 2002; 82 Zhao, Hou, Yan, Du, Xue, Li, Xiang, Dong (bb0185) 2020; 5 Moderna (bb0190) 2020 Lee, Kim (bb0125) 2017; 52 Alakhova, Zhao, Li, Kabanov (bb0100) 2013; 8 De, Kuppuswamy, Jaiswal (bb0155) 2019; 45 Batrakova, Li, Elmquist, Miller, Alakhov, Kabanov (bb0095) 2001; 85 Saha, Santi, Emondts, Roth, Rahimi, Großkurth, Ganguly, Wessling, Singha, Pich (bb0270) 2020; 12 Bakhtiar, Neah, Ng, Chowdhury (bb0200) 2022; 52 Lübtow, Nelke, Seifert, Kühnemundt, Sahay, Dandekar, Nietzer, Luxenhofer (bb0220) 2019; 303 Schroeder, Richtering, Potemkin, Pich (bb0235) 2018; 51 Kim, Seo, Thambi, Moon, Son, Li, Park, Lee, Kim, Lee (bb0250) 2015; 61 Li, Wang, Gao, Ye, Zhang, Feng (bb0130) 2012; 55 Sayed, Allawadhi, Khurana, Singh, Navik, Pasumarthi, Khurana, Banothu, Weiskirchen, Bharani (bb0055) 2022; 120375 Hiremath, Heggnnavar, Kariduraganavar, Hiremath (bb0140) 2019; 8 Zhang, Fan, Levorse, Crocker (bb0245) 2011; 27 Dai Phung, Nguyen, Choi, Pham, Acharya, Timilshina, Chang, Kim, Jeong, Ku (bb0170) 2019; 315 McWilliams, de Los Reyes, Liberman, Ergülen, Talmon, Pasquali, Martí (bb0260) 2019; 1 Watanabe, Wang, Ono, Chimura, Isono, Tajima, Satoh, Sato, Ida, Yamamoto (bb0265) 2022; 14 Boni, Cury, Ferreira, Teixeira, Gremião (bb0255) 2021; 254 Zhang, Shi, Chen, Ye, Sha, Fang (bb0145) 2011; 32 Ulkoski, Bak, Wilson, Krishnamurthy (bb0080) 2019; 16 De (10.1016/j.ijbiomac.2024.130783_bb0035) 2022 Sayed (10.1016/j.ijbiomac.2024.130783_bb0055) 2022; 120375 Carboni (10.1016/j.ijbiomac.2024.130783_bb0065) 2019; 2 De (10.1016/j.ijbiomac.2024.130783_bb0025) 2018; 107 Kabanov (10.1016/j.ijbiomac.2024.130783_bb0090) 2002; 82 Zhu (10.1016/j.ijbiomac.2024.130783_bb0230) 2011; 136 Yang (10.1016/j.ijbiomac.2024.130783_bb0165) 2021; 21 Alakhova (10.1016/j.ijbiomac.2024.130783_bb0100) 2013; 8 Dai Phung (10.1016/j.ijbiomac.2024.130783_bb0170) 2019; 315 Watanabe (10.1016/j.ijbiomac.2024.130783_bb0265) 2022; 14 Kim (10.1016/j.ijbiomac.2024.130783_bb0250) 2015; 61 Suzuki (10.1016/j.ijbiomac.2024.130783_bb0195) 2015; 220 Saha (10.1016/j.ijbiomac.2024.130783_bb0270) 2020; 12 Kang (10.1016/j.ijbiomac.2024.130783_bb0205) 2017; 157 Noolandi (10.1016/j.ijbiomac.2024.130783_bb0110) 1996; 29 Patel (10.1016/j.ijbiomac.2024.130783_bb0115) 2022 Yokoo (10.1016/j.ijbiomac.2024.130783_bb0060) 2018 Lee (10.1016/j.ijbiomac.2024.130783_bb0125) 2017; 52 Hiremath (10.1016/j.ijbiomac.2024.130783_bb0140) 2019; 8 Zhang (10.1016/j.ijbiomac.2024.130783_bb0145) 2011; 32 Batrakova (10.1016/j.ijbiomac.2024.130783_bb0095) 2001; 85 Myles (10.1016/j.ijbiomac.2024.130783_bb0010) 2022; 24 Carrasco (10.1016/j.ijbiomac.2024.130783_bb0160) 2021; 4 Schoenmaker (10.1016/j.ijbiomac.2024.130783_bb0070) 2021; 601 Ulkoski (10.1016/j.ijbiomac.2024.130783_bb0080) 2019; 16 Fujita (10.1016/j.ijbiomac.2024.130783_bb0135) 1999; 32 Zhang (10.1016/j.ijbiomac.2024.130783_bb0245) 2011; 27 Zheng (10.1016/j.ijbiomac.2024.130783_bb0210) 2019; 31 Zakaria (10.1016/j.ijbiomac.2024.130783_bb0225) 2022; 7 Schroeder (10.1016/j.ijbiomac.2024.130783_bb0235) 2018; 51 De (10.1016/j.ijbiomac.2024.130783_bb0005) 2022; 29 Li (10.1016/j.ijbiomac.2024.130783_bb0020) 2022; 4 Moderna (10.1016/j.ijbiomac.2024.130783_bb0190) 2020 Honda (10.1016/j.ijbiomac.2024.130783_bb0150) 2020; 3 Lazarević (10.1016/j.ijbiomac.2024.130783_bb0120) 2023; 123653 Kreuter (10.1016/j.ijbiomac.2024.130783_bb0285) 2014; 71 Kulkarni (10.1016/j.ijbiomac.2024.130783_bb0015) 2021; 16 Khalin (10.1016/j.ijbiomac.2024.130783_bb0280) 2020; 14 McWilliams (10.1016/j.ijbiomac.2024.130783_bb0260) 2019; 1 Singla (10.1016/j.ijbiomac.2024.130783_bb0105) 2022; 299 Tenchov (10.1016/j.ijbiomac.2024.130783_bb0215) 2021; 15 Yin (10.1016/j.ijbiomac.2024.130783_bb0275) 2014; 30 Bakhtiar (10.1016/j.ijbiomac.2024.130783_bb0200) 2022; 52 Blenke (10.1016/j.ijbiomac.2024.130783_bb0075) 2022; 112 De (10.1016/j.ijbiomac.2024.130783_bb0030) 2023; 20 Zhao (10.1016/j.ijbiomac.2024.130783_bb0185) 2020; 5 Yin (10.1016/j.ijbiomac.2024.130783_bb0040) 2014; 15 Jiao (10.1016/j.ijbiomac.2024.130783_bb0045) 2020; 22 Li (10.1016/j.ijbiomac.2024.130783_bb0130) 2012; 55 Neuberg (10.1016/j.ijbiomac.2024.130783_bb0240) 2019; 566 Maghsoudnia (10.1016/j.ijbiomac.2024.130783_bb0085) 2020; 22 Boni (10.1016/j.ijbiomac.2024.130783_bb0255) 2021; 254 De (10.1016/j.ijbiomac.2024.130783_bb0155) 2019; 45 Jones (10.1016/j.ijbiomac.2024.130783_bb0180) 2007; 43 Nyamay’Antu (10.1016/j.ijbiomac.2024.130783_bb0050) 2019; 5 Ball (10.1016/j.ijbiomac.2024.130783_bb0175) 2017; 12 Lübtow (10.1016/j.ijbiomac.2024.130783_bb0220) 2019; 303 De (10.1016/j.ijbiomac.2024.130783_bb0290) 2018; 5 |
References_xml | – volume: 566 start-page: 141 year: 2019 end-page: 148 ident: bb0240 article-title: Design and evaluation of ionizable peptide amphiphiles for siRNA delivery publication-title: Int. J. Pharm. – volume: 22 start-page: 1 year: 2020 end-page: 41 ident: bb0085 article-title: Application of nano-based systems for drug delivery and targeting: a review publication-title: J. Nanopart. Res. – start-page: 1 year: 2022 end-page: 13 ident: bb0035 article-title: Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out publication-title: Expert Opin. Drug Deliv. – volume: 5 start-page: 358 year: 2020 end-page: 363 ident: bb0185 article-title: Long-term storage of lipid-like nanoparticles for mRNA delivery publication-title: Bioact. Mater. – volume: 30 start-page: 2551 year: 2014 end-page: 2558 ident: bb0275 article-title: Schizophrenic core–shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions publication-title: Langmuir – volume: 32 start-page: 2534 year: 1999 end-page: 2541 ident: bb0135 article-title: Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-cyclodextrins and poly (ethylene glycol)–poly (propylene glycol) triblock copolymer publication-title: Macromolecules – volume: 136 start-page: 3343 year: 2011 end-page: 3348 ident: bb0230 article-title: Aggregation-induced emission of tetraphenylethene derivative as a fluorescence method for probing the assembling/disassembling of amphiphilic molecules publication-title: Analyst – start-page: 1 year: 2022 end-page: 18 ident: bb0115 article-title: Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics® publication-title: Colloid Polym. Sci. – volume: 5 start-page: 51 year: 2019 end-page: 57 ident: bb0050 article-title: Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy publication-title: Cell Gene Ther. Insights – volume: 3 start-page: 3827 year: 2020 end-page: 3834 ident: bb0150 article-title: Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH publication-title: ACS Appl. Bio Mater. – volume: 7 start-page: 9551 year: 2022 end-page: 9558 ident: bb0225 article-title: A novel study on the self-assembly behavior of poly (lactic-co-glycolic acid) polymer probed by curcumin fluorescence publication-title: ACS Omega – volume: 20 start-page: 75 year: 2023 end-page: 91 ident: bb0030 article-title: A tale of nucleic acid–ionizable lipid nanoparticles: design and manufacturing technology and advancement publication-title: Exp. Opin. Drug Deliv. – volume: 12 start-page: 305 year: 2017 ident: bb0175 article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization publication-title: Int. J. Nanomedicine – volume: 29 start-page: 2644 year: 2022 end-page: 2657 ident: bb0005 article-title: Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics publication-title: Drug Deliv. – volume: 315 start-page: 126 year: 2019 end-page: 138 ident: bb0170 article-title: Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death publication-title: J. Control. Release – volume: 27 start-page: 1907 year: 2011 end-page: 1914 ident: bb0245 article-title: Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid–biomembrane interactions publication-title: Langmuir – volume: 24 start-page: 344 year: 2022 end-page: 355 ident: bb0010 article-title: An industry survey of implementation strategies for clinical supply chain management of cell and gene therapies publication-title: Cytotherapy – volume: 14 start-page: 1823 year: 2022 ident: bb0265 article-title: Topology and sequence-dependent micellization and phase separation of pluronic L35, L64, 10R5, and 17R4: effects of cyclization and the chain ends publication-title: Polymers – volume: 2 start-page: 1800085 year: 2019 ident: bb0065 article-title: Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery publication-title: Adv. Ther. – volume: 29 start-page: 5907 year: 1996 end-page: 5919 ident: bb0110 article-title: Theory of phase behavior of poly(oxyethylene)−poly (oxypropylene)−poly (oxyethylene) triblock copolymers in aqueous solutions publication-title: Macromolecules – volume: 112 start-page: 386 year: 2022 end-page: 403 ident: bb0075 article-title: The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case publication-title: J. Pharm. Sci. – volume: 12 start-page: 58223 year: 2020 end-page: 58238 ident: bb0270 article-title: Stimuli-responsive zwitterionic core–shell microgels for antifouling surface coatings publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 4923 year: 2017 end-page: 4933 ident: bb0125 article-title: Effect of bimodal pore structure on the bioactivity of poly (lactic-co-glycolic acid)/poly (γ-glutamic acid)/Pluronic 17R4 nerve conduits publication-title: J. Mater. Sci. – volume: 4 start-page: 105 year: 2022 end-page: 117 ident: bb0020 article-title: Biosafety assessment of delivery systems for clinical nucleic acid therapeutics publication-title: Biosaf. Health – volume: 15 start-page: 541 year: 2014 end-page: 555 ident: bb0040 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. – volume: 15 start-page: 16982 year: 2021 end-page: 17015 ident: bb0215 article-title: Lipid nanoparticles — from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement publication-title: ACS Nano – volume: 52 start-page: 95 year: 2022 end-page: 107 ident: bb0200 article-title: In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery publication-title: J. Pharm. Investig. – volume: 31 start-page: 1903277 year: 2019 ident: bb0210 article-title: ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy publication-title: Adv. Mater. – volume: 71 start-page: 2 year: 2014 end-page: 14 ident: bb0285 article-title: Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? publication-title: Adv. Drug Deliv. Rev. – volume: 5 year: 2018 ident: bb0290 article-title: Smart niosomes of temozolomide for enhancement of brain targeting publication-title: Nanobiomedicine – volume: 254 year: 2021 ident: bb0255 article-title: Computational and experimental approaches for chitosan-based nano PECs design: insights on a deeper comprehension of nanostructure formation publication-title: Carbohydr. Polym. – volume: 22 start-page: 1 year: 2020 end-page: 10 ident: bb0045 article-title: Research Progress of nucleic acid delivery vectors for gene therapy publication-title: Biomed. Microdevices – volume: 61 start-page: 115 year: 2015 end-page: 125 ident: bb0250 article-title: Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer publication-title: Biomaterials – year: 2020 ident: bb0190 article-title: Moderna Announces Longer Shelf Life for Its COVID-19 Vaccine Candidate at Refrigerated Temperatures – volume: 1 start-page: 1096 year: 2019 end-page: 1103 ident: bb0260 article-title: Surfactant-assisted individualization and dispersion of boron nitride nanotubes publication-title: Nanoscale Adv. – volume: 299 year: 2022 ident: bb0105 article-title: Advances in the therapeutic delivery and applications of functionalized pluronics: a critical review publication-title: Adv. Colloid Interface Sci. – volume: 43 start-page: 675 year: 2007 end-page: 681 ident: bb0180 article-title: Long-term storage of DNA-free RNA for use in vaccine studies publication-title: Biotechniques – volume: 14 start-page: 9755 year: 2020 end-page: 9770 ident: bb0280 article-title: Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain publication-title: ACS Nano – volume: 51 start-page: 6707 year: 2018 end-page: 6716 ident: bb0235 article-title: Stimuli-responsive zwitterionic microgels with covalent and ionic cross-links publication-title: Macromolecules – volume: 123653 year: 2023 ident: bb0120 article-title: Partition of parthenolide in ternary {block copolymer + biocompatible ionic liquid or natural deep eutectic solvent + water} systems publication-title: Sep. Purif. Technol. – volume: 16 start-page: 1149 year: 2019 end-page: 1167 ident: bb0080 article-title: Recent advances in polymeric materials for the delivery of RNA therapeutics publication-title: Expert Opin. Drug Deliv. – volume: 8 start-page: 155 year: 2019 end-page: 168 ident: bb0140 article-title: Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles publication-title: Prog. Biomater. – volume: 303 start-page: 162 year: 2019 end-page: 180 ident: bb0220 article-title: Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: physico-chemical characterization and evaluation in 2D and 3D in vitro models publication-title: J. Control. Release – volume: 85 start-page: 1987 year: 2001 end-page: 1997 ident: bb0095 article-title: Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: selective energy depletion publication-title: Br. J. Cancer – volume: 601 year: 2021 ident: bb0070 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability publication-title: Int. J. Pharm. – volume: 21 start-page: 2100025 year: 2021 ident: bb0165 article-title: pH-sensitive polycations for siRNA delivery: effect of asymmetric structures of tertiary amine groups publication-title: Macromol. Biosci. – volume: 4 start-page: 1 year: 2021 end-page: 15 ident: bb0160 article-title: Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration publication-title: Commun. Biol. – volume: 16 start-page: 630 year: 2021 end-page: 643 ident: bb0015 article-title: The current landscape of nucleic acid therapeutics publication-title: Nat. Nanotechnol. – year: 2018 ident: bb0060 article-title: Nucleic acid-based therapy: development of a nonviral-based delivery approach publication-title: In Vivo and Ex Vivo Gene Therapy for Inherited and Non-inherited Disorders – volume: 107 start-page: 906 year: 2018 end-page: 919 ident: bb0025 article-title: Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer publication-title: Int. J. Biol. Macromol. – volume: 55 start-page: 1115 year: 2012 end-page: 1124 ident: bb0130 article-title: Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins publication-title: Sci. China Chem. – volume: 157 start-page: 424 year: 2017 end-page: 431 ident: bb0205 article-title: In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery publication-title: Colloids Surf. B Biointerfaces – volume: 8 year: 2013 ident: bb0100 article-title: Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia publication-title: PloS One – volume: 32 start-page: 2894 year: 2011 end-page: 2906 ident: bb0145 article-title: Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors publication-title: Biomaterials – volume: 220 start-page: 44 year: 2015 end-page: 50 ident: bb0195 article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo publication-title: J. Control. Release – volume: 120375 year: 2022 ident: bb0055 article-title: Gene therapy: comprehensive overview and therapeutic applications publication-title: Life Sci. – volume: 45 start-page: 1821 year: 2019 end-page: 1834 ident: bb0155 article-title: Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation publication-title: Drug Dev. Ind. Pharm. – volume: 82 start-page: 189 year: 2002 end-page: 212 ident: bb0090 article-title: Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery publication-title: J. Control. Release – volume: 157 start-page: 424 year: 2017 ident: 10.1016/j.ijbiomac.2024.130783_bb0205 article-title: In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.06.014 – volume: 14 start-page: 9755 issue: 8 year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0280 article-title: Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain publication-title: ACS Nano doi: 10.1021/acsnano.0c01505 – volume: 20 start-page: 75 issue: 1 year: 2023 ident: 10.1016/j.ijbiomac.2024.130783_bb0030 article-title: A tale of nucleic acid–ionizable lipid nanoparticles: design and manufacturing technology and advancement publication-title: Exp. Opin. Drug Deliv. doi: 10.1080/17425247.2023.2153832 – volume: 254 year: 2021 ident: 10.1016/j.ijbiomac.2024.130783_bb0255 article-title: Computational and experimental approaches for chitosan-based nano PECs design: insights on a deeper comprehension of nanostructure formation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.117444 – volume: 52 start-page: 95 issue: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0200 article-title: In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery publication-title: J. Pharm. Investig. doi: 10.1007/s40005-021-00547-7 – volume: 12 start-page: 58223 issue: 52 year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0270 article-title: Stimuli-responsive zwitterionic core–shell microgels for antifouling surface coatings publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17427 – volume: 4 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ijbiomac.2024.130783_bb0160 article-title: Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration publication-title: Commun. Biol. doi: 10.1038/s42003-021-02441-2 – volume: 22 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0045 article-title: Research Progress of nucleic acid delivery vectors for gene therapy publication-title: Biomed. Microdevices doi: 10.1007/s10544-020-0469-7 – volume: 3 start-page: 3827 issue: 6 year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0150 article-title: Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00390 – volume: 51 start-page: 6707 issue: 17 year: 2018 ident: 10.1016/j.ijbiomac.2024.130783_bb0235 article-title: Stimuli-responsive zwitterionic microgels with covalent and ionic cross-links publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00689 – volume: 315 start-page: 126 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0170 article-title: Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.10.047 – volume: 29 start-page: 5907 issue: 18 year: 1996 ident: 10.1016/j.ijbiomac.2024.130783_bb0110 article-title: Theory of phase behavior of poly(oxyethylene)−poly (oxypropylene)−poly (oxyethylene) triblock copolymers in aqueous solutions publication-title: Macromolecules doi: 10.1021/ma960272f – volume: 32 start-page: 2534 issue: 8 year: 1999 ident: 10.1016/j.ijbiomac.2024.130783_bb0135 article-title: Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-cyclodextrins and poly (ethylene glycol)–poly (propylene glycol) triblock copolymer publication-title: Macromolecules doi: 10.1021/ma9814550 – volume: 15 start-page: 541 issue: 8 year: 2014 ident: 10.1016/j.ijbiomac.2024.130783_bb0040 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3763 – volume: 112 start-page: 386 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0075 article-title: The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2022.11.001 – volume: 61 start-page: 115 year: 2015 ident: 10.1016/j.ijbiomac.2024.130783_bb0250 article-title: Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.05.025 – volume: 123653 year: 2023 ident: 10.1016/j.ijbiomac.2024.130783_bb0120 article-title: Partition of parthenolide in ternary {block copolymer + biocompatible ionic liquid or natural deep eutectic solvent + water} systems publication-title: Sep. Purif. Technol. – start-page: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0115 article-title: Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics® publication-title: Colloid Polym. Sci. – year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0190 – volume: 7 start-page: 9551 issue: 11 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0225 article-title: A novel study on the self-assembly behavior of poly (lactic-co-glycolic acid) polymer probed by curcumin fluorescence publication-title: ACS Omega doi: 10.1021/acsomega.1c06919 – volume: 12 start-page: 305 year: 2017 ident: 10.1016/j.ijbiomac.2024.130783_bb0175 article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S123062 – year: 2018 ident: 10.1016/j.ijbiomac.2024.130783_bb0060 article-title: Nucleic acid-based therapy: development of a nonviral-based delivery approach – volume: 136 start-page: 3343 issue: 16 year: 2011 ident: 10.1016/j.ijbiomac.2024.130783_bb0230 article-title: Aggregation-induced emission of tetraphenylethene derivative as a fluorescence method for probing the assembling/disassembling of amphiphilic molecules publication-title: Analyst doi: 10.1039/c1an15176b – volume: 5 start-page: 358 issue: 2 year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0185 article-title: Long-term storage of lipid-like nanoparticles for mRNA delivery publication-title: Bioact. Mater. – volume: 85 start-page: 1987 issue: 12 year: 2001 ident: 10.1016/j.ijbiomac.2024.130783_bb0095 article-title: Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: selective energy depletion publication-title: Br. J. Cancer doi: 10.1054/bjoc.2001.2165 – volume: 24 start-page: 344 issue: 3 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0010 article-title: An industry survey of implementation strategies for clinical supply chain management of cell and gene therapies publication-title: Cytotherapy doi: 10.1016/j.jcyt.2021.09.012 – volume: 29 start-page: 2644 issue: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0005 article-title: Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics publication-title: Drug Deliv. doi: 10.1080/10717544.2022.2108523 – volume: 32 start-page: 2894 issue: 11 year: 2011 ident: 10.1016/j.ijbiomac.2024.130783_bb0145 article-title: Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.12.039 – volume: 71 start-page: 2 year: 2014 ident: 10.1016/j.ijbiomac.2024.130783_bb0285 article-title: Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.08.008 – volume: 107 start-page: 906 year: 2018 ident: 10.1016/j.ijbiomac.2024.130783_bb0025 article-title: Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.09.059 – volume: 5 start-page: 51 issue: S1 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0050 article-title: Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy publication-title: Cell Gene Ther. Insights doi: 10.18609/cgti.2019.007 – volume: 220 start-page: 44 year: 2015 ident: 10.1016/j.ijbiomac.2024.130783_bb0195 article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.10.024 – volume: 1 start-page: 1096 issue: 3 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0260 article-title: Surfactant-assisted individualization and dispersion of boron nitride nanotubes publication-title: Nanoscale Adv. doi: 10.1039/C8NA00315G – volume: 120375 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0055 article-title: Gene therapy: comprehensive overview and therapeutic applications publication-title: Life Sci. – volume: 5 year: 2018 ident: 10.1016/j.ijbiomac.2024.130783_bb0290 article-title: Smart niosomes of temozolomide for enhancement of brain targeting publication-title: Nanobiomedicine doi: 10.1177/1849543518805355 – volume: 43 start-page: 675 issue: 5 year: 2007 ident: 10.1016/j.ijbiomac.2024.130783_bb0180 article-title: Long-term storage of DNA-free RNA for use in vaccine studies publication-title: Biotechniques doi: 10.2144/000112593 – start-page: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0035 article-title: Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out publication-title: Expert Opin. Drug Deliv. – volume: 601 year: 2021 ident: 10.1016/j.ijbiomac.2024.130783_bb0070 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120586 – volume: 16 start-page: 1149 issue: 11 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0080 article-title: Recent advances in polymeric materials for the delivery of RNA therapeutics publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2019.1663822 – volume: 21 start-page: 2100025 issue: 5 year: 2021 ident: 10.1016/j.ijbiomac.2024.130783_bb0165 article-title: pH-sensitive polycations for siRNA delivery: effect of asymmetric structures of tertiary amine groups publication-title: Macromol. Biosci. doi: 10.1002/mabi.202100025 – volume: 31 start-page: 1903277 issue: 37 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0210 article-title: ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy publication-title: Adv. Mater. doi: 10.1002/adma.201903277 – volume: 299 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0105 article-title: Advances in the therapeutic delivery and applications of functionalized pluronics: a critical review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2021.102563 – volume: 14 start-page: 1823 issue: 9 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0265 article-title: Topology and sequence-dependent micellization and phase separation of pluronic L35, L64, 10R5, and 17R4: effects of cyclization and the chain ends publication-title: Polymers doi: 10.3390/polym14091823 – volume: 22 start-page: 1 issue: 8 year: 2020 ident: 10.1016/j.ijbiomac.2024.130783_bb0085 article-title: Application of nano-based systems for drug delivery and targeting: a review publication-title: J. Nanopart. Res. doi: 10.1007/s11051-020-04959-8 – volume: 8 start-page: 155 issue: 3 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0140 article-title: Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles publication-title: Prog. Biomater. doi: 10.1007/s40204-019-0118-5 – volume: 566 start-page: 141 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0240 article-title: Design and evaluation of ionizable peptide amphiphiles for siRNA delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.05.052 – volume: 82 start-page: 189 issue: 2–3 year: 2002 ident: 10.1016/j.ijbiomac.2024.130783_bb0090 article-title: Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery publication-title: J. Control. Release doi: 10.1016/S0168-3659(02)00009-3 – volume: 2 start-page: 1800085 issue: 4 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0065 article-title: Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery publication-title: Adv. Ther. doi: 10.1002/adtp.201800085 – volume: 52 start-page: 4923 year: 2017 ident: 10.1016/j.ijbiomac.2024.130783_bb0125 article-title: Effect of bimodal pore structure on the bioactivity of poly (lactic-co-glycolic acid)/poly (γ-glutamic acid)/Pluronic 17R4 nerve conduits publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0729-3 – volume: 8 issue: 8 year: 2013 ident: 10.1016/j.ijbiomac.2024.130783_bb0100 article-title: Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia publication-title: PloS One doi: 10.1371/journal.pone.0072238 – volume: 303 start-page: 162 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0220 article-title: Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: physico-chemical characterization and evaluation in 2D and 3D in vitro models publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.04.014 – volume: 45 start-page: 1821 issue: 11 year: 2019 ident: 10.1016/j.ijbiomac.2024.130783_bb0155 article-title: Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1665060 – volume: 16 start-page: 630 issue: 6 year: 2021 ident: 10.1016/j.ijbiomac.2024.130783_bb0015 article-title: The current landscape of nucleic acid therapeutics publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00898-0 – volume: 4 start-page: 105 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.130783_bb0020 article-title: Biosafety assessment of delivery systems for clinical nucleic acid therapeutics publication-title: Biosaf. Health doi: 10.1016/j.bsheal.2022.03.003 – volume: 55 start-page: 1115 year: 2012 ident: 10.1016/j.ijbiomac.2024.130783_bb0130 article-title: Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins publication-title: Sci. China Chem. doi: 10.1007/s11426-012-4587-9 – volume: 27 start-page: 1907 issue: 5 year: 2011 ident: 10.1016/j.ijbiomac.2024.130783_bb0245 article-title: Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid–biomembrane interactions publication-title: Langmuir doi: 10.1021/la104590k – volume: 30 start-page: 2551 issue: 9 year: 2014 ident: 10.1016/j.ijbiomac.2024.130783_bb0275 article-title: Schizophrenic core–shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions publication-title: Langmuir doi: 10.1021/la500133y – volume: 15 start-page: 16982 issue: 11 year: 2021 ident: 10.1016/j.ijbiomac.2024.130783_bb0215 article-title: Lipid nanoparticles — from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement publication-title: ACS Nano doi: 10.1021/acsnano.1c04996 |
SSID | ssj0006518 |
Score | 2.4323392 |
Snippet | Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130783 |
SubjectTerms | Bcl2 siRNA Blood brain barrier crossing blood-brain barrier Cell Line, Tumor fever Gene Silencing genes glioblastoma Glioblastoma - metabolism Humans Ionizable reverse pluronic Long-term stability Micelles nanocarriers Nanoparticles - chemistry particle size Poloxamer - chemistry RNA, Small Interfering - chemistry Thermosassemble Tumor Microenvironment |
Title | Optimizing long-term stability of siRNA using thermoassemble ionizable reverse pluronic-Bcl2 micelleplexes |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2024.130783 https://www.ncbi.nlm.nih.gov/pubmed/38471603 https://www.proquest.com/docview/2956685930 https://www.proquest.com/docview/3153574589 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0003 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: AKRWK dateStart: 19790401 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZLemguoc9kkzSo0KuytiXZ8nGzdNm2dAshgdyELEvBi9de9gFNDv3tnfEjbQ9LDj3aSCBGo5nP8jffEPIpCUNA1XAAA28ihuomTIUmYz7loePWRLa5h_w-j2e34uudvBuQSV8Lg7TKLva3Mb2J1t2bUWfN0aooRkhLgvTEUaQrlCpBxU9U_wKfvvz1h-YRy-aODwczHP1XlfDislhgkbtBKcNIYGPkRPF9CWofAG0S0fQVOeoQJB23i3xNBq56Q15O-sZtb8niB4SBZfEISYmWdXXPMPpSQIEND_aB1p5uiuv5mCLn_Z4iAlzWgKHdMisdxfvZR6ynoijutN44uip3jYAuu7JlRLF9fVm6Vel-us07cjv9fDOZsa6lArNgpS3LBSAM_Ncig1waJSKfCifhkEeZS4Oc89jnSlgvlAQcmVsbx5kxPsiSLEiSwPP35KCqK3dCKLa5CnPvnFGpMIDSLEARniXSx6mSkRsS2dtR205vHNtelLonli10b3-N9tet_Ydk9DRv1SpuPDsj7bdJ_-M7GtLCs3M_9vuqYZvQgqZy9W6jI_hyjFENLtg_hkO-kImQKh2S49YpntbMMe_HAT_9j9WdkUN8aplC5-Rgu965DwCCttlF4-UX5MX4y7fZ_DcIDAZc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ0iXou-46YMFurKWRFKiRtdo4DSJCxQJkI2gKDKQIUtGbANJfn3u9DCawciQVeIBxEfy7hN19x0hP5IwBFYNBzDwJmKobsJUaDLmUx46bk1km3vI81k8vRR_ruTVHpn0tTCYVtn5_tanN966ezLq0Bwti2KEaUkQnjiKdIVSJfwF2RcSfPKA7I9PTqezrUOOZXPNh-MZGvxXKDz_Wcyxzt2gmmEksDdyoviuGLWLgzax6Pg1edWRSDpu5_mG7LnqLTmY9L3b3pH5X_AEi-Ie4hIt6-qaoQOmQASbVNg7Wnu6Kv7NxhTT3q8pksBFDTTaLbLSUbyivceSKor6TjcrR5flptHQZb9sGVHsYF-Wblm6W7d6Ty6Pf19MpqzrqsAsALVmuQCSgb9bZJBLo0TkU-EknPMoc2mQcx77XAnrhZJAJXNr4zgzxgdZkgVJEnj-gQyqunKHhGKnqzD3zhmVCgNEzQIb4VkifZwqGbkhkT2O2naS49j5otR9btlc9_hrxF-3-A_JaGu3bEU3nrRI-2XSj7aPhsjwpO33fl01LBMiaCpXb1Y6go_HGAXhgt1jOIQMmQip0iH52G6K7Zw5hv444J-eMbtv5GB6cX6mz05mp0fkJb5pE4c-k8H6ZuO-ACdaZ1-7Pf8A6ZgJBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+long-term+stability+of+siRNA+using+thermoassemble+ionizable+reverse+pluronic-Bcl2+micelleplexes&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=De%2C+Anindita&rft.au=Kang%2C+Ji+Hee&rft.au=Sauraj&rft.au=Lee%2C+O+Hyun&rft.date=2024-04-01&rft.issn=0141-8130&rft.volume=264&rft.spage=130783&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.130783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2024_130783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |